JP6605201B2 - Method for producing sugar amino acid derivative or glycopeptide derivative - Google Patents

Method for producing sugar amino acid derivative or glycopeptide derivative Download PDF

Info

Publication number
JP6605201B2
JP6605201B2 JP2014267104A JP2014267104A JP6605201B2 JP 6605201 B2 JP6605201 B2 JP 6605201B2 JP 2014267104 A JP2014267104 A JP 2014267104A JP 2014267104 A JP2014267104 A JP 2014267104A JP 6605201 B2 JP6605201 B2 JP 6605201B2
Authority
JP
Japan
Prior art keywords
group
sugar
amino acid
protected
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014267104A
Other languages
Japanese (ja)
Other versions
JP2016124830A (en
Inventor
真盛 水野
賢二 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Inst
Original Assignee
Noguchi Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Inst filed Critical Noguchi Inst
Priority to JP2014267104A priority Critical patent/JP6605201B2/en
Publication of JP2016124830A publication Critical patent/JP2016124830A/en
Application granted granted Critical
Publication of JP6605201B2 publication Critical patent/JP6605201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Saccharide Compounds (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、糖ペプチド誘導体または糖アミノ酸誘導体の製造方法に関する。詳細には、全ての糖水酸基を、酸性条件下で除去可能なカルバメート系保護基で保護することで、従来はペプチドやアミノ酸の最終脱保護の後に別途必要であった糖水酸基の脱保護操作を、ペプチドやアミノ酸の最終脱保護と同時に行うことができる、糖ペプチド誘導体または糖アミノ酸誘導体の製造方法に関する。   The present invention relates to a method for producing a glycopeptide derivative or a sugar amino acid derivative. Specifically, by protecting all sugar hydroxyl groups with carbamate-based protecting groups that can be removed under acidic conditions, conventional sugar hydroxyl deprotection procedures that were separately required after the final deprotection of peptides and amino acids were performed. The present invention relates to a method for producing a glycopeptide derivative or a sugar amino acid derivative, which can be carried out simultaneously with the final deprotection of a peptide or amino acid.

糖ペプチド合成は主に固相合成で行われるため、アシル成分を過剰に使用する場合が多い。そのため、糖水酸基へのO−アシル化を防ぐために糖水酸基を保護する必要がある。   Since glycopeptide synthesis is mainly performed by solid phase synthesis, an acyl component is often used in excess. Therefore, it is necessary to protect the sugar hydroxyl group in order to prevent O-acylation to the sugar hydroxyl group.

糖ペプチド合成の際に用いられる糖水酸基の保護基としては、一般的はアセチル基やベンゾイル基等のアシル基や、ベンジル基やパラメトキシベンジル基、ベンジリデン基等のベンジル系保護基、tert−ブチルジメチルシリル基等のシリル基が挙げられる。   As a protecting group for the sugar hydroxyl group used in glycopeptide synthesis, acyl groups such as acetyl group and benzoyl group, benzyl protecting groups such as benzyl group, paramethoxybenzyl group and benzylidene group, and tert-butyl are generally used. Examples thereof include silyl groups such as dimethylsilyl group.

特にアシル系保護基やベンジル基は、糖鎖合成では汎用保護基であることから糖ペプチドの原料である糖アミノ酸合成の際にも多く用いられている。しかしアシル系保護基やベンジル基はペプチド鎖側鎖の脱保護条件やペプチド鎖の固相単体からの切り出し条件であるトリフルオロ酢酸(TFA)処理では安定であるため、ペプチド鎖部分の脱保護の後に糖水酸基の脱保護操作が必要となる。アシル基の場合は水酸化ナトリウムやナトリウムメトキシド等の塩基処理により、ベンジル基は接触水素還元やトリフルオロメタンスルホン酸(TfOH)−TFA処理により脱保護することで遊離の糖ペプチドが得られる。   In particular, acyl protecting groups and benzyl groups are widely used in the synthesis of sugar amino acids, which are raw materials for glycopeptides, because they are general-purpose protecting groups in sugar chain synthesis. However, since acyl-based protecting groups and benzyl groups are stable in trifluoroacetic acid (TFA) treatment, which is a deprotection condition for the side chain of a peptide chain and a condition for excision of a peptide chain from a solid phase, deprotection of the peptide chain portion Later, the sugar hydroxyl group needs to be deprotected. In the case of an acyl group, a free glycopeptide can be obtained by deprotecting by treatment with a base such as sodium hydroxide or sodium methoxide and the benzyl group by catalytic hydrogen reduction or trifluoromethanesulfonic acid (TfOH) -TFA treatment.

しかしアシル基の除去条件である塩基性条件下ではペプチド部位のラセミ化やβ脱離によるデヒドロアラニンの副生、および糖残基の脱離などの副反応が起こることが知られている(非特許文献1)。ベンジル基の場合は、ペプチド鎖中にシステインやメチオニンなどの含硫黄アミノ酸が含まれていると接触還元用の触媒の触媒毒となる可能性がある(非特許文献2)。さらに接触還元によりチロシンの側鎖が還元される副反応も報告されている(非特許文献3)。   However, it is known that side reactions such as racemization of peptide sites, by-product of dehydroalanine by β-elimination, and elimination of sugar residues occur under basic conditions, which are conditions for removing acyl groups (non-condensation). Patent Document 1). In the case of a benzyl group, if a peptide chain contains a sulfur-containing amino acid such as cysteine or methionine, it may become a catalyst poison of a catalyst for catalytic reduction (Non-patent Document 2). Furthermore, a side reaction in which the side chain of tyrosine is reduced by catalytic reduction has also been reported (Non-patent Document 3).

N結合型糖ペプチド合成では糖水酸基の保護基に酸性条件で脱保護できる保護基を用いて、TFA処理によりペプチド鎖の最終脱保護と同時に糖水酸基の脱保護も行う手法が報告されている。   In N-linked glycopeptide synthesis, a method has been reported in which a protecting group capable of deprotecting under acidic conditions is used as the protecting group for the sugar hydroxyl group, and the sugar hydroxyl group is deprotected simultaneously with the final deprotection of the peptide chain by TFA treatment.

例えばTBDMS基でGlcNAcの水酸基を保護し、固相合成後にTFA処理を行うことでペプチド鎖の脱保護と糖水酸基の脱保護を同時におこなう手法が報告されている(非特許文献4)。しかしこの方法では糖アミノ酸合成の際にグリコシルアジドを用いるStaudinger反応が使用できないため、一度アジド基をアミノ基へ還元した後アスパラギン酸の側鎖カルボキシル基と縮合することで糖アミノ酸合成を行う必要がある。しかしアジド基を還元して得られるグリコシルアミンは容易にアノマー位が異性化してしまうため、得られる糖アミノ酸は天然型であるβ体と非天然型であるα体の混合物となってしまう。   For example, there has been reported a method of simultaneously deprotecting a peptide chain and deprotecting a sugar hydroxyl group by protecting the hydroxyl group of GlcNAc with a TBDMS group and performing TFA treatment after solid-phase synthesis (Non-patent Document 4). However, in this method, since the Staudinger reaction using glycosyl azide cannot be used in the synthesis of sugar amino acid, it is necessary to synthesize the sugar amino acid by once reducing the azide group to an amino group and then condensing with the side chain carboxyl group of aspartic acid. is there. However, glycosylamine obtained by reducing the azide group is easily isomerized at the anomeric position, so that the resulting sugar amino acid is a mixture of the natural β-form and the non-natural alpha-form.

近年、糖アミノ酸合成時にStaudinger反応が使用でき、かつTFA処理によりペプチド鎖の最終脱保護と同時に糖水酸基の保護基を脱保護する手法が報告された(非特許文献5)。しかしこの手法は糖ペプチドの原料となる糖アミノ酸の合成が市販のグルコサミン誘導体を出発原料としたときに9工程も必要となる。これは従来法である、糖水酸基をアセチル基で保護した場合の糖鎖アミノ酸合成がわずか2工程で済むのと比べると合成工程数が大幅に増加してしまい、糖ペプチド合成において多くの時間と労力が必要となる。   In recent years, a method has been reported in which the Staudinger reaction can be used during sugar amino acid synthesis and the protective group of the sugar hydroxyl group is deprotected simultaneously with the final deprotection of the peptide chain by TFA treatment (Non-patent Document 5). However, this method requires nine steps when the synthesis of a sugar amino acid that is a raw material of a glycopeptide uses a commercially available glucosamine derivative as a starting material. Compared with the conventional method, in which the sugar chain amino acid synthesis with the acetyl group protecting the sugar hydroxyl group requires only two steps, the number of synthesis steps is greatly increased. Labor is required.

O−結合型糖ペプチド合成においては糖水酸基保護基としてアシル型保護基を用いるのが一般的である。理由としては、一般的にO−グリコシド結合はアセタール結合であるため酸性条件下で分解する場合がある。アシル型保護基はTFA条件下でもO−グリコシド結合を安定化させるため、糖ペプチド合成で汎用されている。しかし、その除去条件である塩基性条件下では、上記したように、ペプチド部位のラセミ化やβ脱離によるデヒドロアラニンの副生、および糖残基の脱離などの副反応が起こることが知られている。   In the synthesis of O-linked glycopeptides, it is common to use an acyl-type protecting group as a sugar-hydroxyl protecting group. As a reason, since an O-glycoside bond is generally an acetal bond, it may be decomposed under acidic conditions. Acyl-type protecting groups stabilize O-glycoside bonds even under TFA conditions, and are therefore widely used in glycopeptide synthesis. However, it is known that under basic conditions, which are the removal conditions, as described above, side reactions such as racemization of peptide sites, by-product of dehydroalanine due to β-elimination, and elimination of sugar residues occur. It has been.

水酸基の保護基としてはベンジル基も用いられる場合があるが、TfOH−TFA処理による脱保護では強酸性のためグリコシド結合が分解してしまう場合がある。接触還元による脱保護は上記したようにアミノ酸部位の修飾や触媒毒等の問題点がある。またベンジル基やシリル系保護基の場合はTFA処理によりグリコシド結合の分解が生じる(非特許文献6)。   A benzyl group may be used as a hydroxyl-protecting group. However, deprotection by TfOH-TFA treatment may cause degradation of glycoside bonds due to strong acidity. Deprotection by catalytic reduction has problems such as modification of the amino acid site and catalyst poison as described above. In the case of a benzyl group or a silyl protecting group, the glycoside bond is decomposed by TFA treatment (Non-patent Document 6).

糖ペプチド合成において望ましい糖水酸基の保護基としては(1)糖水酸基への導入が容易である、(2)原料である糖アミノ酸が比較的容易に合成できる、(3)TFA処理によりペプチド部位の脱保護と同時に脱保護でき、グリコシド結合に影響を与えない、(4)N−結合型、O−結合型の両方に使用できる、である。   Desirable protecting groups for sugar hydroxyl groups in glycopeptide synthesis are (1) easy introduction into sugar hydroxyl groups, (2) sugar amino acids as raw materials can be synthesized relatively easily, and (3) peptide sites by TFA treatment. It can be deprotected simultaneously with deprotection and does not affect the glycosidic bond. (4) It can be used for both N-linked and O-linked types.

Sjolin, P.; Elofsson, M.; Kihlberg, J. J. Org Chem. 1996, 61, 560−565.Sjolin, P.M. Elofsson, M .; Kihlberg, J .; J. et al. Org Chem. 1996, 61, 560-565. Nakahara, Y.; Nakahara, Y.; Ito, Y.; Ogawa, T. Tetrahedron Lett. 1997, 38, 7211.Nakahara, Y. et al. Nakahara, Y .; Ito, Y .; Ogawa, T .; Tetrahedron Lett. 1997, 38, 7211. Guo, Z. W.; Nakahara, Y.; Nakahara, Y.; Ogawa, T. Carbohydr. Res. 1997, 303, 373.Guo, Z. W. Nakahara, Y .; Nakahara, Y .; Ogawa, T .; Carbohydr. Res. 1997, 303, 373. Holm, B.; Linse, S. and Kihlberg, J. Tetrahedron 1998, 54, 11995.Holm, B.B. Linse, S .; and Kihlberg, J. et al. Tetrahedron 1998, 54, 11995. Y.AsahinaらOrg. Biomol. Chem.2013, 11, 7199.Y. Asahina et al. Org. Biomol. Chem. 2013, 11, 7199. Ning ShaoらJ. Org. Chem. 2003,l68, 9003.Ning Shao et al. Org. Chem. 2003, l68, 9003.

本発明の目的は、糖水酸基への導入と糖アミノ酸の合成が容易で、酸処理によりペプチド用保護基と同時に除去でき、グリコシド結合の安定性に影響を与えない、糖水酸基の保護基を用いた効率的な糖ペプチド製造法を提供することである。   An object of the present invention is to use a sugar hydroxyl protecting group that is easy to introduce into a sugar hydroxyl group and synthesize a sugar amino acid, can be removed at the same time as a peptide protecting group by acid treatment, and does not affect the stability of the glycosidic bond. It was to provide an efficient method for producing glycopeptides.

上記課題を鋭意検討した結果、本発明者らは糖水酸基の保護基として、酸性条件下で除去可能なカルバメート系保護基を用いることで糖ペプチドが効率的に製造できるという新たな知見に基づいて、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors based on the new knowledge that glycopeptides can be efficiently produced by using carbamate-based protecting groups that can be removed under acidic conditions as protecting groups for sugar hydroxyl groups. The present invention has been completed.

すなわち本発明は、以下の通りの製造方法、および糖誘導体である。
<1> 糖アミノ酸誘導体または糖ペプチド誘導体の製造方法であって、
糖残基中の全ての官能基を、酸性条件下で除去可能なカルバメート系保護基で保護した糖誘導体または/および糖アミノ酸誘導体を原料として用いることを特徴とする製造方法。
That is, the present invention is the following production method and sugar derivative.
<1> A method for producing a sugar amino acid derivative or a glycopeptide derivative,
A production method comprising using, as a raw material, a sugar derivative or / and a sugar amino acid derivative in which all functional groups in a sugar residue are protected with a carbamate-based protecting group that can be removed under acidic conditions.

<2> 前記糖残基中の全ての官能基を、酸性条件下で除去可能なカルバメート系保護基で保護した糖誘導体が、下記式(1)で表される糖誘導体である<1>に記載の製造方法。
A−X―Y (1)
(式(1)中、Aは、全ての官能基を酸性条件下で除去可能なカルバメート系保護基で保護した単糖もしくは糖鎖であり; Yは存在するか存在せず、Yが存在しない場合は、Xはアジド基、水酸基、または脱離能を有する基であり、Yが存在する場合は、Xは酸素、硫黄、またはセレンであり、Yはアシル基、炭素数1から20である飽和もしくは不飽和炭化水素基、または芳香族基である。)
<2> The sugar derivative in which all functional groups in the sugar residue are protected with a carbamate-based protecting group that can be removed under acidic conditions is a sugar derivative represented by the following formula (1): The manufacturing method as described.
A-XY (1)
(In Formula (1), A is a monosaccharide or a sugar chain in which all functional groups are protected with a carbamate-based protecting group that can be removed under acidic conditions; Y is present or absent, and Y is absent. In the case, X is an azide group, a hydroxyl group, or a group having a leaving ability, and when Y is present, X is oxygen, sulfur, or selenium, and Y is an acyl group having 1 to 20 carbon atoms. A saturated or unsaturated hydrocarbon group or an aromatic group.)

<3> 前記糖残基中の全ての官能基を、酸性条件下で除去可能なカルバメート系保護基で保護した糖アミノ酸誘導体が、下記式(2)で表される糖アミノ酸誘導体である<1>または<2>に記載の製造方法。
A−Am (2)
(式(2)中、Aは、全ての官能基を酸性条件下で除去可能なカルバメート系保護基で保護した単糖もしくは糖鎖であり; Amは、アミノ酸またはアミノ酸誘導体であり、主鎖アミノ基は遊離または保護基で保護またはアジド基に変換されており、主鎖カルボキシル基は遊離または保護基で保護されており; A−Amの結合は、Amの側鎖とAの還元末端のアノマー炭素との間の結合である。)
<3> A sugar amino acid derivative in which all functional groups in the sugar residue are protected with a carbamate-based protecting group that can be removed under acidic conditions is a sugar amino acid derivative represented by the following formula (2) <1 > Or <2>.
A-Am (2)
(In Formula (2), A is a monosaccharide or a sugar chain in which all functional groups are protected with a carbamate-based protecting group that can be removed under acidic conditions; Am is an amino acid or an amino acid derivative; The group is protected with a free or protecting group or converted to an azide group, and the main chain carboxyl group is protected with a free or protecting group; the A-Am bond is linked to the side chain of Am and the reducing end anomer of A. It is a bond between carbon.)

<4> 前記酸性条件下で除去可能なカルバメート系保護基が、tert−ブトキシカルボニル(Boc)基である<1>〜<3>に記載の製造方法。 <4> The production method according to <1> to <3>, wherein the carbamate-based protecting group that can be removed under acidic conditions is a tert-butoxycarbonyl (Boc) group.

<5> 下記式(3)で表される糖誘導体。

Figure 0006605201
(式(3)中、Yは存在するか存在せず、Yが存在しない場合は、Xはアジド基、水酸基、または脱離能を有する基であり、Yが存在する場合は、Xは酸素、硫黄、またはセレンであり、Yはアシル基、炭素数1から20である飽和もしくは不飽和炭化水素基、または芳香族基であり; Zは水素、メチル基、またはtert−ブチルオキシカルボニルオキシメチル基であり; Wは窒素、酸素、またはアジド基であり; Wがアジド基である場合は、R1とR2は存在せず、Wが酸素である場合は、R1はBoc基で、R2は存在せず、Wが窒素である場合は、R1はBoc基で、R2は水素、シリル基、アシル基、アルキル基、アリール基、またはアラルキル基である。) <5> A sugar derivative represented by the following formula (3).
Figure 0006605201
(In Formula (3), Y is present or absent, and when Y is absent, X is an azide group, a hydroxyl group, or a group having a leaving ability, and when Y is present, X is oxygen. , Sulfur, or selenium, Y is an acyl group, a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, or an aromatic group; Z is hydrogen, a methyl group, or tert-butyloxycarbonyloxymethyl W is nitrogen, oxygen, or an azide group; when W is an azide group, R1 and R2 are not present; when W is oxygen, R1 is a Boc group and R2 is present And when W is nitrogen, R1 is a Boc group and R2 is hydrogen, a silyl group, an acyl group, an alkyl group, an aryl group, or an aralkyl group.)

<6> 下記式(4)で表される糖誘導体。

Figure 0006605201
(式(4)中、X1、X2はそれぞれ、水酸基をBoc基で保護したL−フコース残基、またはBoc基である。) <6> A sugar derivative represented by the following formula (4).
Figure 0006605201
(In formula (4), X1 and X2 are each an L-fucose residue having a hydroxyl group protected with a Boc group, or a Boc group.)

本発明の、酸性条件下で除去可能なカルバメート系保護基を用いる糖ペプチド合成法を用いれば、従来法では抑制が非常に困難であった、ペプチド部位のラセミ化やβ脱離によるデヒドロアラニンの副生、および糖残基の脱離や糖鎖の開裂などの副反応が生じることなく、糖ペプチドを合成できる。さらに、糖水酸基の保護基としてアシル系保護基を用いるペプチド合成法と比較して、糖水酸基の脱保護とペプチド部位の脱保護が同時に行えることから、これまでの糖ペプチド合成法と比較して合成効率を向上させることに成功した。   If the glycopeptide synthesis method using a carbamate-based protecting group that can be removed under acidic conditions of the present invention is used, it is very difficult to suppress by conventional methods. Glycopeptides can be synthesized without side reactions and side reactions such as elimination of sugar residues and cleavage of sugar chains. Furthermore, compared to peptide synthesis methods that use acyl-based protecting groups as sugar hydroxyl protecting groups, sugar hydroxyl group deprotection and peptide site deprotection can be performed simultaneously. We succeeded in improving the synthesis efficiency.

以下、本発明を詳細に説明する。
本発明は、糖アミノ酸誘導体または糖ペプチド誘導体の製造方法であって、糖残基中の全ての官能基を、酸性条件下で除去可能なカルバメート系保護基で保護した糖誘導体または/および糖アミノ酸誘導体を原料として用いることを特徴とする製造方法である。
Hereinafter, the present invention will be described in detail.
The present invention relates to a method for producing a sugar amino acid derivative or a glycopeptide derivative, wherein all functional groups in a sugar residue are protected with a carbamate protecting group that can be removed under acidic conditions. It is a manufacturing method characterized by using a derivative as a raw material.

本発明の糖アミノ酸誘導体の製造方法には、前記保護した糖誘導体とアミノ酸とを縮合する場合、または前記保護した糖誘導体と前記保護した糖アミノ酸誘導体とを縮合する場合が含まれる。   The method for producing a sugar amino acid derivative of the present invention includes a case where the protected sugar derivative is condensed with an amino acid, or a case where the protected sugar derivative is condensed with the protected sugar amino acid derivative.

本発明の糖ペプチド誘導体の製造方法には、前記保護した糖アミノ酸誘導体を2つ以上縮合する場合、または前記保護した糖誘導体とペプチドとを縮合する場合、または前記保護した糖アミノ酸誘導体とアミノ酸もしくはペプチドとを縮合する場合、または前記保護した糖誘導体と前記保護した糖アミノ酸誘導体2つ以上とを縮合する場合、または前記保護した糖誘導体と前記保護した糖アミノ酸誘導体とアミノ酸もしくはペプチドとを縮合する場合が含まれる。   In the method for producing a glycopeptide derivative of the present invention, when two or more protected sugar amino acid derivatives are condensed, or when the protected sugar derivative and a peptide are condensed, or the protected sugar amino acid derivative and an amino acid or When condensing with a peptide, when condensing the protected sugar derivative and two or more protected sugar amino acid derivatives, or condensing the protected sugar derivative with the protected sugar amino acid derivative and an amino acid or peptide. Includes cases.

糖ペプチドの合成原料となる糖アミノ酸は、アミノ酸と糖誘導体との縮合により合成される。本発明の製造方法に用いる糖誘導体は、下記式(1)で表される化合物が好ましい。
A−X―Y (1)
(式(1)中、Aは、全ての官能基を、酸性条件下で除去可能なカルバメート系保護基で保護した単糖もしくは糖鎖であり; Yは存在するか存在せず、Yが存在しない場合は、Xはアジド基、水酸基、またはハロゲン基、イミデート基、アセトキシ基等、脱離能を有する基であり、Yが存在する場合は、Xは酸素、硫黄、またはセレンであり、Yはアシル基、炭素数1から20である飽和もしくは不飽和炭化水素基、または芳香族基である。)
A sugar amino acid as a raw material for the synthesis of a glycopeptide is synthesized by condensation of an amino acid and a sugar derivative. The sugar derivative used in the production method of the present invention is preferably a compound represented by the following formula (1).
A-XY (1)
(In Formula (1), A is a monosaccharide or sugar chain in which all functional groups are protected with a carbamate-based protecting group that can be removed under acidic conditions; Y is present or absent, and Y is present. If not, X is an azide group, hydroxyl group, or a group having a leaving ability such as a halogen group, an imidate group, an acetoxy group, and when Y is present, X is oxygen, sulfur or selenium; Is an acyl group, a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, or an aromatic group.)

また、本発明の製造方法に用いる糖アミノ酸誘導体は、下記式(2)で表される化合物が好ましい。
A−Am (2)
(式(2)中、Aは、全ての官能基を、酸性条件下で除去可能なカルバメート系保護基で保護した単糖もしくは糖鎖であり; Amは、アミノ酸またはアミノ酸誘導体であり、Amの主鎖アミノ基は遊離または保護基で保護またはアジド基に変換されており、主鎖カルボキシル基は遊離または保護基で保護されており; A−Amの結合は、Amの側鎖とAの還元末端のアノマー炭素との間での結合であり、アミド結合、エステル結合、エーテル結合、チオエーテル結合、アセタール結合、チオアセタール結合、炭素―炭素結合等を形成する。)
The sugar amino acid derivative used in the production method of the present invention is preferably a compound represented by the following formula (2).
A-Am (2)
(In Formula (2), A is a monosaccharide or a sugar chain in which all functional groups are protected with a carbamate-based protecting group that can be removed under acidic conditions; Am is an amino acid or an amino acid derivative, and The main chain amino group is protected with a free or protective group or converted to an azide group, and the main chain carboxyl group is free or protected with a protective group; the A-Am bond is a reduction of Am side chain and A (This is a bond with the terminal anomeric carbon, and forms an amide bond, ester bond, ether bond, thioether bond, acetal bond, thioacetal bond, carbon-carbon bond, etc.)

カルバメート系保護基の種類は酸性条件下で除去可能であれば特に限定されないが、導入試剤の入手や調製が容易であるBoc基や2−(トリメチルシリル)エトキシカルボニル(Teoc)基、パラメトキシベンジルオキシカルボニル(Z(OMe))基、パラメチルベンジルオキシカルボニル(Z(Me))基、ベンジルオキシカルボニル(Z)基、イソボルニルオキシカルボニル(Iboc)基、2−(3,5−ジメチルオキシフェニル)−2−プロピルオキシカルボニル(Ddz)基、パラビフェニルイソプロピルオキシカルボニル(Bpoc)基、2−フェニルイソプロピルオキシカルボニル基が好ましく、特にBoc基、Z(OMe)基、Teoc基が好ましい。   The type of carbamate-based protecting group is not particularly limited as long as it can be removed under acidic conditions. However, a Boc group, a 2- (trimethylsilyl) ethoxycarbonyl (Teoc) group, paramethoxybenzyloxy, which is easy to obtain and prepare an introduction reagent. Carbonyl (Z (OMe)) group, paramethylbenzyloxycarbonyl (Z (Me)) group, benzyloxycarbonyl (Z) group, isobornyloxycarbonyl (Iboc) group, 2- (3,5-dimethyloxyphenyl) ) -2-propyloxycarbonyl (Ddz) group, parabiphenylisopropyloxycarbonyl (Bpoc) group and 2-phenylisopropyloxycarbonyl group are preferable, and Boc group, Z (OMe) group and Teoc group are particularly preferable.

アミノ酸、及びアミノ酸誘導体の種類は特に限定されないが、側鎖に官能基を有するαアミノ酸であることが好ましく、さらに、天然の糖タンパク質中で糖残基と結合しているアミノ酸である、アスパラギン、セリン、スレオニンであることがより好ましい。アミノ酸の立体構造は特に限定されず、L体であっても、D体であっても、また、これらエナンチオマーの混合物であっても良いが、L体であることが好ましい。   The type of amino acid and amino acid derivative is not particularly limited, but is preferably an α-amino acid having a functional group in the side chain, and further, asparagine, which is an amino acid bonded to a sugar residue in a natural glycoprotein, Serine and threonine are more preferable. The steric structure of the amino acid is not particularly limited, and may be L-form, D-form, or a mixture of these enantiomers, but is preferably L-form.

アミノ酸、及びアミノ酸誘導体の主鎖アミノ基および主鎖カルボキシル基は遊離であっても、保護基で保護されていても良い。主鎖アミノ基の保護基の種類は特に限定されないが、ペプチド合成で汎用されるBoc基、Z基、Teoc基、9−フルオレニルメトキシカルボニル(Fmoc)基、アリルオキシカルボニル(Alloc)基、2,2,2−トリクロロエチルオキシカルボニル(Troc)基、が好ましく、特に固相合成で使用されるBoc基とFmoc基が好ましい。また主鎖アミノ基はアジド基に変換されていても良い。主鎖カルボキシル基の保護基の種類は特に限定されないが、メチルエステル、エチルエステル、フェナシルエステル、ベンジルエステル、第三ブチルエステル、トリメチルシリルエチルエステル、トリメチルシリルエステル、トリクロロエチルエステル、パラメトキシベンジルエステル、アリルエステル、9−フルオレニルメチルエステルが好ましく、さらに糖水酸基を保護しているカルバメート系保護基が酸性条件下で除去されることを考慮すると、中性条件もしくは弱塩基性もしくは弱酸性条件で除去が可能なフェナシルエステル、ベンジルエステル、トリクロロエチルエステル、アリルエステル、9−フルオレニルメチルエステルが好ましい。   The main chain amino group and main chain carboxyl group of amino acids and amino acid derivatives may be free or protected with a protecting group. The type of protecting group of the main chain amino group is not particularly limited, but Boc group, Z group, Teoc group, 9-fluorenylmethoxycarbonyl (Fmoc) group, allyloxycarbonyl (Alloc) group commonly used in peptide synthesis, 2,2,2-trichloroethyloxycarbonyl (Troc) group is preferred, and Boc group and Fmoc group used in solid phase synthesis are particularly preferred. The main chain amino group may be converted to an azide group. The type of protecting group for the main chain carboxyl group is not particularly limited, but methyl ester, ethyl ester, phenacyl ester, benzyl ester, tert-butyl ester, trimethylsilylethyl ester, trimethylsilyl ester, trichloroethyl ester, paramethoxybenzyl ester, allyl Ester, 9-fluorenylmethyl ester is preferable, and in consideration of the removal of the carbamate-based protecting group protecting the sugar hydroxyl group under acidic conditions, it is removed under neutral conditions or weakly basic or weakly acidic conditions. Phenacyl ester, benzyl ester, trichloroethyl ester, allyl ester, and 9-fluorenylmethyl ester are preferred.

A−Am結合は、アミノ酸、及びアミノ酸誘導体の側鎖と糖誘導体の還元末端のアノマー炭素との間での結合であり、共有結合であれば結合の種類は特に限定されないが、アミド結合、エステル結合、エーテル結合、チオエーテル結合、アセタール結合、チオアセタール結合、炭素―炭素が好ましく、特に、天然の糖タンパク質中で糖残基とタンパク質間の結合であるアミド結合とアセタール結合を形成していることが好ましい。   The A-Am bond is a bond between the amino acid and the side chain of the amino acid derivative and the anomeric carbon at the reducing end of the sugar derivative, and the type of bond is not particularly limited as long as it is a covalent bond. Bonds, ether bonds, thioether bonds, acetal bonds, thioacetal bonds, and carbon-carbon are preferred, and in particular, amide bonds and acetal bonds, which are bonds between sugar residues and proteins, are formed in natural glycoproteins. Is preferred.

糖アミノ酸の合成(A−Am結合の形成)は、当業者に公知の技術を用いて合成することができる。例えばN結合型糖アミノ酸3は、2−デオキシ−2−アセトアミド−β−D−グルコピラノシル アジド(1)から次の方法で合成することができる。   The synthesis of sugar amino acids (A-Am bond formation) can be synthesized using techniques known to those skilled in the art. For example, N-linked sugar amino acid 3 can be synthesized from 2-deoxy-2-acetamido-β-D-glucopyranosyl azide (1) by the following method.

まず、化合物1に二炭酸ジ−tert−ブチルとN,N−ジメチル−4−アミノピリジンとを作用させることによって、テトラBoc体2へと変換する。得られたテトラBoc体2に側鎖カルボキシル基に、ペンタフルオロフェニル基で保護したアスパラギン酸誘導体[Fmoc−Asp(OPfp)−OBn]とトリブチルホスフィンと3−ヒドロキシ−4−オキソ−3,4−ジヒドロ−1,2,3−ベンゾトリアジン(HOObt)とを作用させることにより、糖部位とアミノ酸部位がアミド結合した糖アミノ酸である化合物3を調製できる。

Figure 0006605201
First, compound B is converted to tetra-Boc body 2 by allowing di-tert-butyl dicarbonate and N, N-dimethyl-4-aminopyridine to act on compound 1. Aspartic acid derivative [Fmoc-Asp (OPfp) -OBn] protected with a pentafluorophenyl group on the side chain carboxyl group, tributylphosphine, 3-hydroxy-4-oxo-3,4- By reacting with dihydro-1,2,3-benzotriazine (HOObt), compound 3 which is a sugar amino acid in which a sugar moiety and an amino acid moiety are amide-bonded can be prepared.
Figure 0006605201

また、O−結合型糖アミノ酸15は次の方法で合成することができる。   O-linked sugar amino acid 15 can be synthesized by the following method.

水酸基をBoc基で保護した2―アジドガラクトースのチオグリコシド体14にFmoc−スレオニン ベンジルエステルとN−ヨードコハク酸イミドとトリフルオロメタンスルホン酸とを作用させることにより、糖部位とアミノ酸部位がアセタール結合した糖アミノ酸である化合物15を調製できる。

Figure 0006605201
By reacting Fmoc-threonine benzyl ester, N-iodosuccinimide and trifluoromethanesulfonic acid with 2-azidogalactose thioglycoside 14 in which the hydroxyl group is protected with a Boc group, a sugar having an acetal bond between the sugar moiety and the amino acid moiety Compound 15 which is an amino acid can be prepared.
Figure 0006605201

糖ペプチドの合成は、式(2)のAmの主鎖カルボキシル基が遊離もしくは活性化された糖アミノ酸を用いて、当業者に公知の技術を用いて合成することができる。   The glycopeptide can be synthesized using a sugar amino acid in which the main chain carboxyl group of Am in formula (2) is released or activated, using techniques known to those skilled in the art.

糖ペプチド合成に用いることができる溶媒の種類は特に限定されないが、化学合成の場合は有機溶媒が好ましい。有機溶媒の例は、塩化メチレン、クロロホルム、ジクロロエタン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、酢酸エチル、1−メチル−2−ピロリジノン、アセトニトリル、メタノール、エタノールまたは、上記の溶媒の組み合わせが挙げられる。好ましくは塩化メチレン、ジメチルホルムアミド、ジメチルアセトアミド、1−メチル−2−ピロリジノンである。   The type of solvent that can be used for glycopeptide synthesis is not particularly limited, but in the case of chemical synthesis, an organic solvent is preferred. Examples of the organic solvent include methylene chloride, chloroform, dichloroethane, dimethylformamide, dimethylacetamide, tetrahydrofuran, ethyl acetate, 1-methyl-2-pyrrolidinone, acetonitrile, methanol, ethanol, or a combination of the above solvents. Preferred are methylene chloride, dimethylformamide, dimethylacetamide, and 1-methyl-2-pyrrolidinone.

糖ペプチド合成に用いる反応はアミド結合を形成する反応であれば特に限定されないが、縮合剤を用いるのが好ましい。縮合剤の例は、カルボジイミド系縮合剤(DCC、EDC・HCl、DIC)、イミダゾール系縮合剤(CDI、DMC)、トリアジン系縮合剤(DMT−MM)、ホスホニウム系縮合剤(BOP、PyBOP、PyCloP、PyBrop)、ウロニウム系縮合剤(COMU、HBTU、HATU、TSTU)等が挙げられる。またこれらの縮合剤に添加剤を加えてもよい。添加剤の例は、1−ヒドロキシベンゾトリアゾール(HOBt)、3,4−ジヒドロ−3−ヒドロキシ−4−オキソ−1,2,3−ベンゾトリアジン(HOObt)、1−ヒドロキシ−7−アザベンゾトリアゾール(HOAt)、N−ヒドロキシスクシンイミド(HOSu)、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミド(HONB)、2−ヒドロキシイミノ−2−シアノ酢酸エチルエステル等が挙げられる。   The reaction used for glycopeptide synthesis is not particularly limited as long as it is a reaction that forms an amide bond, but a condensing agent is preferably used. Examples of condensing agents include carbodiimide condensing agents (DCC, EDC / HCl, DIC), imidazole condensing agents (CDI, DMC), triazine condensing agents (DMT-MM), phosphonium condensing agents (BOP, PyBOP, PyCloP). PyBrop), uronium-based condensing agents (COMU, HBTU, HATU, TSTU) and the like. An additive may be added to these condensing agents. Examples of additives are 1-hydroxybenzotriazole (HOBt), 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (HOObt), 1-hydroxy-7-azabenzotriazole (HOAt), N-hydroxysuccinimide (HOSu), N-hydroxy-5-norbornene-2,3-dicarboximide (HONB), 2-hydroxyimino-2-cyanoacetic acid ethyl ester and the like.

以下に、本発明を実施例を用いて更に詳細に説明するが、これらの実施例は本発明の具体例を示すもので、本発明を何ら限定するものではない。   The present invention will be described in more detail below with reference to examples, but these examples show specific examples of the present invention and do not limit the present invention.

3,4,6−Tri−O−tert−butoxycarbonyl−2−deoxy−2−{N−(tert−butoxycarbonyl)−acetamido}−β−D−glucopyranosyl azide (2)の合成 (ex6−192)
テトラヒドロフラン(60 mL)に2−デオキシ−2−アセトアミド−β−D−グルコピラノシル アジド(1)(1.03 g,4.17mmol)と二炭酸ジ−tert−ブチル(5.1 g, 23.4 mmol)とN,N−ジメチル−4−アミノピリジン(410 mg, 3.30 mmol)を加え、加熱還流下で90分攪拌した。溶媒を減圧留去後、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 n−ヘキサン:酢酸エチル=6:1)で精製し、無定形固体の化合物2(2.68g,quant.)を得た。

Figure 0006605201
Synthesis of 3,4,6-Tri-O-tert-butoxycarbon-2-yl-2-deoxy-2- {N- (tert-butoxycarbonyl) -acetamido} -β-D-glucopyranosyl azide (2) (ex6-192)
2-Deoxy-2-acetamido-β-D-glucopyranosyl azide (1) (1.03 g, 4.17 mmol) and di-tert-butyl dicarbonate (5.1 g, 23.4) in tetrahydrofuran (60 mL). mmol) and N, N-dimethyl-4-aminopyridine (410 mg, 3.30 mmol) were added, and the mixture was stirred for 90 minutes under heating to reflux. After the solvent was distilled off under reduced pressure, the resulting residue was purified by silica gel column chromatography (developing solvent n-hexane: ethyl acetate = 6: 1) to obtain an amorphous solid compound 2 (2.68 g, quant.). Obtained.
Figure 0006605201

化合物2 H NMR (600 MHz,CDCl) : δ = 1.41−1.58 (m, 36H), 2.39 (s, 1.8H, conformer A), 2.44 (s, 1.2H, conformer B),3.82−3.85(m, 0.4H, conformer B), 3.87−3.89(m, 0.6H, conformer A), 4.15−4.19(m, 1.6H, conformer A and conformer B), 4.31−4.39(m, 1H, conformer A and conformer B)4.81−4.89(m, 1.4H, conformer A and conformer B), 5.34 (d, 0.4H, J=8.9 Hz, conformer B), 5.46(dd, 0.4H, J=9.6 Hz, conformer B), 5.58(dd, 0.6H, J=10.3 Hz, conformerA), 5.65(d, 0.6H, J=8.9 Hz, conformer A) Compound 2 1 H NMR (600 MHz, CDCl 3 ): δ = 1.4-11.58 (m, 36H), 2.39 (s, 1.8H, conformer A), 2.44 (s, 1. 2H, conformer B), 3.82-3.85 (m, 0.4H, conformer B), 3.87-3.89 (m, 0.6H, conformer A), 4.15-4.19 ( m, 1.6H, conformer A and former B), 4.31-4.39 (m, 1H, former A and former B) 4.81-4.89 (m, 1.4H, former A and former B) ), 5.34 (d, 0.4H, J = 8.9 Hz, conformer B), 5.46 (dd, 0. 4H, J = 9.6 Hz, conformer B), 5.58 (dd, 0.6H, J = 10.3 Hz, conformer A), 5.65 (d, 0.6H, J = 8.9 Hz, conformer A)

−9−Fluorenylmethoxycarbonyl−N−[3,4,6−Tri−O−tert−butoxycarbonyl−2−deoxy−2−{N−(tert−butoxycarbonyl)−acetamido}−β−D−glucopyranosyl]−L−asparagine tert−butyl ester
化合物2(93 mg, 0.14 mmol)とFmoc−Asp(OPfp)−OtBu (112 mg, 0.19 mmol)と3,4−ジヒドロ−3−ヒドロキシ−4−オキソ−1,2,3−ベンゾトリアジン(33 mg, 0.20 mmol)をアルゴン雰囲気中、水/THF(2/98 v/v)混合溶液(1.6 mL)に溶解させた後、トリブチルホスフィン(50 μL, 0.20 mmol)を加え、室温で4時間攪拌した。反応溶液に酢酸エチルを加え、有機相を飽和食塩水で洗浄した後、硫酸マグネシウム上で乾燥させた。溶媒を減圧留去後、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 n−ヘキサン:酢酸エチル=3:1)で精製し、化合物3(148 mg,quant.)を得た。

Figure 0006605201
N 2 -9-Fluorenylmethoxycarbonyl-N 4 - [3,4,6-Tri-O-tert-butoxycarbonyl-2-deoxy-2- {N- (tert-butoxycarbonyl) -acetamido} -β-D-glucopyranosyl] - L-asparagine tert-butyl ester
Compound 2 (93 mg, 0.14 mmol), Fmoc-Asp (OPfp) -OtBu (112 mg, 0.19 mmol) and 3,4-dihydro-3-hydroxy-4-oxo-1,2,3- Benzotriazine (33 mg, 0.20 mmol) was dissolved in a water / THF (2/98 v / v) mixed solution (1.6 mL) in an argon atmosphere, and then tributylphosphine (50 μL, 0.20). mmol) was added and stirred at room temperature for 4 hours. Ethyl acetate was added to the reaction solution, and the organic phase was washed with saturated brine and then dried over magnesium sulfate. After the solvent was distilled off under reduced pressure, the obtained residue was purified by silica gel column chromatography (developing solvent n-hexane: ethyl acetate = 3: 1) to obtain Compound 3 (148 mg, quant.).
Figure 0006605201

化合物3 H NMR (600 MHz,CDCl) : δ = 1.42−1.58 (m, 36H), 1.51 (s, 1.8H, conformer B), 1.60 (s, 7.2H, conformer A), 2.33 (s, 0.6H, conformer B), 2.48 (s, 2.4H, conformer A),2.64 (dd, 1H, J=4.1 Hz, 16.5 Hz), 2.84 (dd, 1H, J=4.1 Hz, 16.5 Hz), 3.78−3.80(m, 0.8H, conformer A), 3.86−3.89(m, 0.2H, conformer B),4.09−4.12 (m, 1H), 4.19−4.49 (m, 7H), 5.60 (dd, 0.8H, J=9.6 Hz, conformer A), 5.74 (dd, 0.2H, J=9.6 Hz, conformer B), 5.89 (dd, 1H, J=9.6 Hz), 5.95 (d, 0.8H, J=8.9 Hz, conformer A), 6.04−6.10 (m, 0.4H, conformer B), 6.15−6.17 (m, 1H), 7.29−7.32 (m, 4H), 7.39 (dd, 2H, J=7.6 Hz), 7.60 (d, 2H, J=7.6 Hz), 7.75 (d, 2H, J=7.6 Hz) Compound 3 1 H NMR (600 MHz, CDCl 3 ): δ = 1.42-1.58 (m, 36H), 1.51 (s, 1.8H, conformer B), 1.60 (s, 7. 2H, conformer A), 2.33 (s, 0.6H, conformer B), 2.48 (s, 2.4H, conformer A), 2.64 (dd, 1H, J = 4.1 Hz, 16 .5 Hz), 2.84 (dd, 1H, J = 4.1 Hz, 16.5 Hz), 3.78-3.80 (m, 0.8 H, conformer A), 3.86-3. 89 (m, 0.2H, conformer B), 4.09-4.12 (m, 1H), 4.19-4.49 (m, 7H), 5.60 (dd, 0.8H, J = 9.6 Hz, conform r A), 5.74 (dd, 0.2H, J = 9.6 Hz, conformer B), 5.89 (dd, 1H, J = 9.6 Hz), 5.95 (d, 0.8H , J = 8.9 Hz, conformer A), 6.04-6.10 (m, 0.4H, conformer B), 6.15-6.17 (m, 1H), 7.29-7.32. (M, 4H), 7.39 (dd, 2H, J = 7.6 Hz), 7.60 (d, 2H, J = 7.6 Hz), 7.75 (d, 2H, J = 7. 6 Hz)

−9−Fluorenylmethoxycarbonyl−N−(2−deoxy−2−acetamido−β−D−glucopyranosyl)−L−asparagine tert−butyl ester
化合物3(50.9 mg, 50 μmol)を80%TFA/塩化メチレン溶液(1 mL)に溶解させ、室温で3時間攪拌した。溶媒を減圧留去し得られた残査にエーテルを加え、生じた粉末を濾過し、化合物4(20.0 mg, 72%)を得た。

Figure 0006605201
N 2 -9-Fluorenylmethoxycarbonyl-N 4 - (2-deoxy-2-acetamido-β-D-glucopyranosyl) -L-asparagine tert-butyl ester
Compound 3 (50.9 mg, 50 μmol) was dissolved in 80% TFA / methylene chloride solution (1 mL) and stirred at room temperature for 3 hours. Ether was added to the residue obtained by distilling off the solvent under reduced pressure, and the resulting powder was filtered to obtain Compound 4 (20.0 mg, 72%).
Figure 0006605201

化合物4 H NMR (600 MHz,DMSO−d6) : δ = 1.74 (s, 3H), 2.42−2.51 (m, 1H), 2.57−2.61 (m, 1H), 3.08−3.12 (m, 1H), 3.27−3.59 (m, 3H), 3.04−3.08 (m, 2H), 3.63−3.65 (m, 1H), 4.18−4.25 (m, 3H), 4.32−4.33 (m, 1H), 4.53 (t, 1H, J=5.5 Hz), 4.79 (t, 1H, J=9.6 Hz), 4.92 (d, 1H, J=5.5 Hz), 4.97 (d, 1H, J=4.8 Hz) 7.30 (t, 2H, J=7.6 Hz), 7.38−7.43 (m, 3H), 7.69 (d, 2H, J=7.6 Hz), 7.75 (brd, 1H, J=8.9 Hz), 7.87 (d, 2H, J=7.6 Hz), 8.15 (brd, 1H, J=8.9 Hz) Compound 4 1 H NMR (600 MHz, DMSO-d6): δ = 1.74 (s, 3H), 2.42-2.51 (m, 1H), 2.57-2.61 (m, 1H) , 3.08-3.12 (m, 1H), 3.27-3.59 (m, 3H), 3.04-3.08 (m, 2H), 3.63-3.65 (m, 1H), 4.18-4.25 (m, 3H), 4.32-4.33 (m, 1H), 4.53 (t, 1H, J = 5.5 Hz), 4.79 (t , 1H, J = 9.6 Hz), 4.92 (d, 1H, J = 5.5 Hz), 4.97 (d, 1H, J = 4.8 Hz) 7.30 (t, 2H, J = 7.6 Hz), 7.38-7.43 (m, 3H), 7.69 (d, 2H, J = 7.6 Hz), 7.75 (brd, 1H, J 8.9 Hz), 7.87 (d, 2H, J = 7.6 Hz), 8.15 (brd, 1H, J = 8.9 Hz)

−9−Fluorenylmethoxycarbonyl−N−[3,4,6−Tri−O−tert−butoxycarbonyl−2−deoxy−2−{N−(tert−butoxycarbonyl)−acetamido}−β−D−glucopyranosyl]−L−asparagine benzyl ester
化合物2(94 mg, 0.15 mmol)とFmoc−Asp(OPfp)−OBn (124 mg, 0.20 mmol)と3,4−ジヒドロ−3−ヒドロキシ−4−オキソ−1,2,3−ベンゾトリアジン(35 mg, 0.22 mmol)をアルゴン雰囲気中、水/THF(2/98 v/v)混合溶液(1.6 mL)に溶解させた後、トリブチルホスフィン(52 μL, 0.21 mmol)を加え、室温で2時間攪拌した。反応溶液に酢酸エチルを加え、有機相を飽和食塩水で洗浄した後、硫酸マグネシウム上で乾燥させた。溶媒を減圧留去後、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 n−ヘキサン:酢酸エチル=4:1)で精製し、化合物5(160 mg,quant.)を得た。

Figure 0006605201
N 2 -9-Fluorenylmethoxycarbonyl-N 4 - [3,4,6-Tri-O-tert-butoxycarbonyl-2-deoxy-2- {N- (tert-butoxycarbonyl) -acetamido} -β-D-glucopyranosyl] - L-asparagine benzyl ester
Compound 2 (94 mg, 0.15 mmol), Fmoc-Asp (OPfp) -OBn (124 mg, 0.20 mmol) and 3,4-dihydro-3-hydroxy-4-oxo-1,2,3- Benzotriazine (35 mg, 0.22 mmol) was dissolved in a water / THF (2/98 v / v) mixed solution (1.6 mL) in an argon atmosphere, and then tributylphosphine (52 μL, 0.21). mmol) and stirred at room temperature for 2 hours. Ethyl acetate was added to the reaction solution, and the organic phase was washed with saturated brine and then dried over magnesium sulfate. After the solvent was distilled off under reduced pressure, the resulting residue was purified by silica gel column chromatography (developing solvent n-hexane: ethyl acetate = 4: 1) to obtain Compound 5 (160 mg, quant.).
Figure 0006605201

化合物5 H NMR (600 MHz,CDCl) : δ = 1.42−1.47 (m, 27H), 1.53 (s, 1.8H, conformer B), 1.60 (s, 7.2H, conformer A), 2.33 (s, 0.6H, conformer B), 2.48 (s, 2.4H, conformer A),2.64 (dd, 1H, J=4.1 Hz, 16.5 Hz), 2.84 (dd, 1H, J=4.1 Hz, 16.5 Hz), 3.78−3.80(m, 0.8H, conformer A), 3.86−3.89(m, 0.2H, conformer B),4.09−4.12 (m, 1H), 4.19−4.49 (m, 7H), 5.60 (dd, 0.8H, J=9.6 Hz, conformer A), 5.74 (dd, 0.2H, J=9.6 Hz, conformer B), 5.89 (dd, 1H, J=9.6 Hz), 5.95 (d, 0.8H, J=8.9 Hz, conformer A), 6.04−6.10 (m, 0.4H, conformer B), 6.15−6.17 (m, 1H), 7.29−7.32 (m, 4H), 7.39 (dd, 2H, J=7.6 Hz), 7.60 (d, 2H, J=7.6 Hz), 7.75 (d, 2H, J=7.6 Hz) Compound 5 1 H NMR (600 MHz, CDCl 3 ): δ = 1.42-1.47 (m, 27H), 1.53 (s, 1.8H, conformer B), 1.60 (s, 7. 2H, conformer A), 2.33 (s, 0.6H, conformer B), 2.48 (s, 2.4H, conformer A), 2.64 (dd, 1H, J = 4.1 Hz, 16 .5 Hz), 2.84 (dd, 1H, J = 4.1 Hz, 16.5 Hz), 3.78-3.80 (m, 0.8 H, conformer A), 3.86-3. 89 (m, 0.2H, conformer B), 4.09-4.12 (m, 1H), 4.19-4.49 (m, 7H), 5.60 (dd, 0.8H, J = 9.6 Hz, conform r A), 5.74 (dd, 0.2H, J = 9.6 Hz, conformer B), 5.89 (dd, 1H, J = 9.6 Hz), 5.95 (d, 0.8H , J = 8.9 Hz, conformer A), 6.04-6.10 (m, 0.4H, conformer B), 6.15-6.17 (m, 1H), 7.29-7.32. (M, 4H), 7.39 (dd, 2H, J = 7.6 Hz), 7.60 (d, 2H, J = 7.6 Hz), 7.75 (d, 2H, J = 7. 6 Hz)

−9−Fluorenylmethoxycarbonyl−N−[3,4,6−Tri−O−tert−butoxycarbonyl−2−deoxy−2−{N−(tert−butoxycarbonyl)−acetamido}−β−D−glucopyranosyl]−L−asparagine
化合物5(115 mg, 0.11 mmol)を酢酸エチル(4 mL)とエタノール(2mL)の混合溶媒に溶解させ、10%パラジウム炭素(74 mg)を加え、水素ガスをバブリングしながら、室温で1時間攪拌した。不溶物をセライト濾過で除去し、溶媒を減圧留去後、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール=30:1)で精製し、化合物6(84 mg,79%)を得た。

Figure 0006605201
N 2 -9-Fluorenylmethoxycarbonyl-N 4 - [3,4,6-Tri-O-tert-butoxycarbonyl-2-deoxy-2- {N- (tert-butoxycarbonyl) -acetamido} -β-D-glucopyranosyl] - L-asparagine
Compound 5 (115 mg, 0.11 mmol) was dissolved in a mixed solvent of ethyl acetate (4 mL) and ethanol (2 mL), 10% palladium carbon (74 mg) was added, and hydrogen gas was bubbled at room temperature. Stir for 1 hour. Insoluble matter was removed by Celite filtration, and the solvent was distilled off under reduced pressure. The resulting residue was purified by silica gel column chromatography (developing solvent: chloroform: methanol = 30: 1) to give compound 6 (84 mg, 79%). Got.
Figure 0006605201

化合物6 H NMR (600 MHz,CDCl) : δ = 1.40−1.58 (m, 36H), 2.31 (s, 0.45H, conformer B), 2.47 (s, 2.55H, conformer A),2.68−2.88 (m, 2H),3.80−3.88 (m, 1H),4.08−4.13 (m, 1H),4.21−4.22 (m, 1H),4.32−4.34 (m, 3H),4.45−4.62 (brm, 1H),4.82−4.88 (m, 2H),5.58 (t, 0.85H, J=9.6 Hz, conformer A),5.74 (t, 0.15H, J=9.6 Hz, conformer B), 5.92 (t, 0.85H, J=9.6 Hz, conformer A),6.10 (t, 0.15H, J=9.6 Hz, conformer B),
6.17−6.31(brm, 1H), 6.62(brm, 1H), 7.30 (t, 1.7H, J=6.9 Hz, conformer A), 7.38 (t, 1.7H, J=7.6 Hz, conformer A) , 7.45 (t, 0.3H, J=7.6 Hz, conformer B), 7.54(t, 0.3H, J=7.6 Hz, conformer B), 7.59 (d, 2H, J=6.9 Hz),7.74 (d, 1.7H, J=7.6 Hz, conformer A) , 7.81 (d, 0.3H, J=7.6 Hz, conformer B)
Compound 6 1 H NMR (600 MHz, CDCl 3 ): δ = 1.40-1.58 (m, 36H), 2.31 (s, 0.45H, conformer B), 2.47 (s, 2. 55H, conformer A), 2.68-2.88 (m, 2H), 3.80-3.88 (m, 1H), 4.08-4.13 (m, 1H), 4.21-4 .22 (m, 1H), 4.32-4.34 (m, 3H), 4.45-4.62 (brm, 1H), 4.82-4.88 (m, 2H), 5.58 (T, 0.85H, J = 9.6 Hz, conformer A), 5.74 (t, 0.15H, J = 9.6 Hz, conformer B), 5.92 (t, 0.85H, J = 9.6 Hz, conformer A), 6.10 (t, 0 15H, J = 9.6 Hz, conformer B),
6.17-6.31 (brm, 1H), 6.62 (brm, 1H), 7.30 (t, 1.7H, J = 6.9 Hz, conformer A), 7.38 (t, 1 .7H, J = 7.6 Hz, conformer A), 7.45 (t, 0.3H, J = 7.6 Hz, conformer B), 7.54 (t, 0.3H, J = 7.6) Hz, conformer B), 7.59 (d, 2H, J = 6.9 Hz), 7.74 (d, 1.7H, J = 7.6 Hz, conformer A), 7.81 (d, 0 .3H, J = 7.6 Hz, conformer B)

2,3,4−Tri−O−tert−butoxycarbonyl−α−L−fucopyranosyl −(1→6)−3,4−di−O−tert−butoxycarbonyl−2−deoxy−2−{N−(tert−butoxycarbonyl)−acetamido}−β−D−glucopyranosyl azide (8)
テトラヒドロフラン(20 mL)に化合物7(0.64 g,1.64mmol)と二炭酸ジ−tert−ブチル(6.01 g, 27.6 mmol)とN,N−ジメチル−4−アミノピリジン(160 mg, 1.31 mmol)を加え、加熱還流下で60分攪拌した。溶媒を減圧留去後、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 n−ヘキサン:酢酸エチル=6:1)で精製し、無定形固体の化合物8(1.44g,88%)を得た。

Figure 0006605201
2,3,4-Tri-O-tert-butoxycarbonyl-α-L-fucopyranosyl- (1 → 6) -3,4-di-O-tert-butoxycarbonyl-2-deoxy-2- {N- (tert- butyoxycarbonyl) -acetamido} -β-D-glucopyranosyl azide (8)
Compound 7 (0.64 g, 1.64 mmol), di-tert-butyl dicarbonate (6.01 g, 27.6 mmol) and N, N-dimethyl-4-aminopyridine (160) were added to tetrahydrofuran (20 mL). mg, 1.31 mmol) was added, and the mixture was stirred for 60 minutes under heating to reflux. After the solvent was distilled off under reduced pressure, the resulting residue was purified by silica gel column chromatography (developing solvent n-hexane: ethyl acetate = 6: 1) to obtain amorphous solid compound 8 (1.44 g, 88%). Obtained.
Figure 0006605201

化合物11 H NMR (600 MHz,CDCl) : δ = 1.19−1.20 (m, 3H),1.41−1.59 (m, 54H), 2.38 (s, 0.55H, conformer A), 2.45 (s, 0.45H, conformer B), 3.65−3.75(m, 2H), 3.83−3.89(m, 1H), 4.13−4.19(m, 1.55H, conformer A and conformer B), 4.66−4.72(m, 1H), 4.85 (dd, 0.45H, J=8.9 Hz, conformer B), 4.90(d, 0.45H, J=4.1 Hz, conformer B), 4.92 (d, 0.55H, J=4.1 Hz, conformer A), 5.06−35.09(m, 1H), 5.20−5.28(m, 2.45H, conformer A and conformer B), 5.46−5.49(dd, 0.45H, J=8.9 Hz, conformer B), 5.55−5.58(m, 1.10H, conformer A) Compound 11 1 H NMR (600 MHz, CDCl 3 ): δ = 1.19-1.20 (m, 3H), 1.41-1.59 (m, 54H), 2.38 (s, 0.55H , Conformer A), 2.45 (s, 0.45H, conformer B), 3.65-3.75 (m, 2H), 3.83-3.89 (m, 1H), 4.13-4. .19 (m, 1.55H, conformer A and conformer B), 4.66-4.72 (m, 1H), 4.85 (dd, 0.45H, J = 8.9 Hz, conformer B), 4.90 (d, 0.45H, J = 4.1 Hz, conformer B), 4.92 (d, 0.55H, J = 4.1 Hz, conformer A), 5.06-35.09 ( m, 1H), 5.20-5.28 (m, 2.45H, conformer A and conformer B), 5.46-5.49 (dd, 0.45H, J = 8.9 Hz, conformer B), 5 .55-5.58 (m, 1.10H, conformer A)

−9−Fluorenylmethoxycarbonyl−N−[2,3,4−Tri−O−tert−butoxycarbonyl−α−L−fucopyranosyl −(1→6)−3,4−di−O−tert−butoxycarbonyl−2−deoxy−2−{N−(tert−butoxycarbonyl)−acetamido}−β−D−glucopyranosyl]−L−asparagine benzyl ester(9)の合成
化合物8(299 mg, 0.30 mmol)とFmoc−Asp(OPfp)−OBn (257 mg, 0.42 mmol)と3,4−ジヒドロ−3−ヒドロキシ−4−オキソ−1,2,3−ベンゾトリアジン(74 mg, 0.45 mmol)をアルゴン雰囲気中、水/THF(2/98 v/v)混合溶液(5 mL)に溶解させた後、トリブチルホスフィン(104 μL, 0.42 mmol)を加え、室温で2時間攪拌した。反応溶液に水と酢酸エチルを加え、有機相を水と飽和食塩水で洗浄した後、硫酸ナトリウム上で乾燥させた。溶媒を減圧留去後、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 n−ヘキサン:酢酸エチル=2:1)で精製し、化合物9(416 mg,99%)を得た。

Figure 0006605201
N 2 -9-Fluorenylmethoxycarbonyl-N 4 - [2,3,4-Tri-O-tert-butoxycarbonyl-α-L-fucopyranosyl - (1 → 6) -3,4-di-O-tert-butoxycarbonyl-2 -Deoxy-2- {N- (tert-butoxycarbonyl) -acetamido} -β-D-glucopyranosyl] -L-asparagine benzyl ester (9) Compound 8 (299 mg, 0.30 mmol) and Fmoc-Asp OPfp) -OBn (257 mg, 0.42 mmol) and 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (74 mg, 0.45 mmol) in an argon atmosphere. After dissolving in water / THF (2/98 v / v) mixed solution (5 mL) in the atmosphere, tributylphosphine (104 μL, 0.42 mmol) was added and stirred at room temperature for 2 hours. Water and ethyl acetate were added to the reaction solution, and the organic phase was washed with water and saturated brine, and then dried over sodium sulfate. After the solvent was distilled off under reduced pressure, the obtained residue was purified by silica gel column chromatography (developing solvent n-hexane: ethyl acetate = 2: 1) to obtain Compound 9 (416 mg, 99%).
Figure 0006605201

化合物9 H NMR (600 MHz,CDCl) : δ = 1.19−1.20 (m, 3H),1.41−1.47 (m, 45H), 1.59 (s, 7.65H, conformer A), 1.71 (s, 1.35H, conformer B), 2.27 (s, 0.45H, conformer B), 2.46 (s, 2.55H, conformer A), 2.72−2.77 (m, 1H), 2.88−2.95 (m, 1H), 3.62−3.67 (m, 1H), 3.74−3.76 (m, 1H), 3.82−3.84 (m, 1H), 4.16−4.22 (m, 2.15H), 4.25−4.30 (m, 1H), 4.37−4.41 (m, 1H), 4.66−4.69 (m, 0.85H, conformer A), 4.73−4.80 (m, 2H), 4.94 (dd, 1H, J=3.4, 10.3 Hz), 5.05−5.22 (m, 5.15H), 5.64 (dd, 0.85H, J=8.9, 10.3 Hz, conformer A), 5.77 (t, 0.15H, J=9.6 Hz, conformer B), 5.88 (t, 0.85H, J=9.6 Hz, conformer A), 6.01 (t, 0.15H, J=8.9 Hz, conformer B), 6.22 (t, 1.7H, J=7.6 Hz, conformer A), 6.33 (d, 0.15H, J=8.9 Hz, conformer B), 7.27−7.30 (m, 7H), 7.38 (t, 2H, J=7.6 Hz) , 7.59 (t, 2H, J=7.6 Hz) , 7.74 (d, 2H, J=7.6 Hz) Compound 9 1 H NMR (600 MHz, CDCl 3 ): δ = 1.19-1.20 (m, 3H), 1.41-1.47 (m, 45H), 1.59 (s, 7.65H , Conformer A), 1.71 (s, 1.35H, conformer B), 2.27 (s, 0.45H, conformer B), 2.46 (s, 2.55H, conformer A), 2.72. -2.77 (m, 1H), 2.88-2.95 (m, 1H), 3.62-3.67 (m, 1H), 3.74-3.76 (m, 1H), 3 .82-3.84 (m, 1H), 4.16-4.22 (m, 2.15H), 4.25-4.30 (m, 1H), 4.37-4.41 (m, 1H), 4.66-4.69 (m, 0.85H, conf rmer A), 4.73-4.80 (m, 2H), 4.94 (dd, 1H, J = 3.4, 10.3 Hz), 5.05-5.22 (m, 5.15H) ), 5.64 (dd, 0.85H, J = 8.9, 10.3 Hz, conformer A), 5.77 (t, 0.15H, J = 9.6 Hz, conformer B), 5. 88 (t, 0.85H, J = 9.6 Hz, conformer A), 6.01 (t, 0.15H, J = 8.9 Hz, conformer B), 6.22 (t, 1.7H, J = 7.6 Hz, conformer A), 6.33 (d, 0.15H, J = 8.9 Hz, conformer B), 7.27-7.30 (m, 7H), 7.38 (t , 2H, J = 7.6 Hz), 7.59 ( , 2H, J = 7.6 Hz), 7.74 (d, 2H, J = 7.6 Hz)

−9−Fluorenylmethoxycarbonyl−N−[2,3,4−Tri−O−tert−butoxycarbonyl−α−L−fucopyranosyl −(1→6)−3,4−di−O−tert−butoxycarbonyl−2−deoxy−2−{N−(tert−butoxycarbonyl)−acetamido}−β−D−glucopyranosyl]−L−asparagine(10)の合成
化合物9(197 mg, 0.14 mmol)をTHF(10 mL)に溶解させ、パラジウム炭素− エチレンジアミン複合体(120 mg)を加え、水素ガスをバブリングしながら、室温で3時間攪拌した。不溶物をセライト濾過で除去し、溶媒を減圧留去後、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール=9:1)で精製し、化合物10(170 mg,93%)を得た。

Figure 0006605201
N 2 -9-Fluorenylmethoxycarbonyl-N 4 - [2,3,4-Tri-O-tert-butoxycarbonyl-α-L-fucopyranosyl - (1 → 6) -3,4-di-O-tert-butoxycarbonyl-2 Synthesis of -deoxy-2- {N- (tert-butoxycarbonyl) -acetamido} -β-D-glucopyranosyl] -L-asparagine (10) Compound 9 (197 mg, 0.14 mmol) in THF (10 mL) The mixture was dissolved, palladium carbon-ethylenediamine complex (120 mg) was added, and the mixture was stirred at room temperature for 3 hours while bubbling hydrogen gas. Insoluble matter was removed by Celite filtration, and the solvent was distilled off under reduced pressure. The resulting residue was purified by silica gel column chromatography (developing solvent chloroform: methanol = 9: 1) to give compound 10 (170 mg, 93%). Got.
Figure 0006605201

化合物10 H NMR (600 MHz,CDCl) : δ = 1.20 (d, 3H, J=6.2 Hz),1.41−1.48 (m, 45H), 1.52 (s, 1.8H, conformer B), 1.59 (s, 7.2H, conformer A), 2.32 (s, 0.6H, conformer B), 2.47 (s, 2.4H, conformer A), 2.70−2.89 (m, 2H), 3.70−3.73 (m, 2H), 3.84−3.87 (m, 1H), 4.18−4.24 (m, 2H), 4.32−4.42 (brm, 2H), 4.59 (brm, 1H), 4.70 (t, 1H, J=9.6 Hz), 4.79 (t, 1H, J=9.6 Hz) , 4.92 (dd, 1H, J=3.4, 10.3 Hz), 5.09−5.27 (m, 3H), 5.64 (t, 0.8H, J=9.6 Hz, conformer A), 5.74 (t, 0.2H, J=9.6 Hz, conformer B), 5.87 (t, 0.8H, J=9.6 Hz, conformer A), 6.13 (brd, 0.8H, J=6.2 Hz, conformer A), 6.25 (br, 0.2H, conformer B), 6.51 (br,0.8H, conformer A), 7.26−7.33 (m, 2H), 7.38−7.40 (m, 2H) , 7.60 (d, 2H, J=7.6 Hz) , 7.75 (d, 2H, J=7.6 Hz) Compound 10 1 H NMR (600 MHz, CDCl 3 ): δ = 1.20 (d, 3H, J = 6.2 Hz), 1.41-1.48 (m, 45H), 1.52 (s, 1.8H, conformer B), 1.59 (s, 7.2H, conformer A), 2.32 (s, 0.6H, conformer B), 2.47 (s, 2.4H, conformer A), 2.70-2.89 (m, 2H), 3.70-3.73 (m, 2H), 3.84-3.87 (m, 1H), 4.18-4.24 (m, 2H) ), 4.32-4.42 (brm, 2H), 4.59 (brm, 1H), 4.70 (t, 1H, J = 9.6 Hz), 4.79 (t, 1H, J = 9.6 Hz), 4.92 (dd, 1H, J = 3.4, 1 0.3 Hz), 5.09-5.27 (m, 3H), 5.64 (t, 0.8H, J = 9.6 Hz, conformer A), 5.74 (t, 0.2H, J = 9.6 Hz, conformer B), 5.87 (t, 0.8H, J = 9.6 Hz, conformer A), 6.13 (brd, 0.8H, J = 6.2 Hz, conformer) A), 6.25 (br, 0.2H, conformer B), 6.51 (br, 0.8H, conformer A), 7.26-7.33 (m, 2H), 7.38-7. 40 (m, 2H), 7.60 (d, 2H, J = 7.6 Hz), 7.75 (d, 2H, J = 7.6 Hz)

−9−Fluorenylmethoxycarbonyl−N−[2,3,4−Tri−O−tert−butoxycarbonyl−α−L−fucopyranosyl −(1→6)−3,4−di−O−tert−butoxycarbonyl−2−deoxy−2−{N−(tert−butoxycarbonyl)−acetamido}−β−D−glucopyranosyl]−L−asparagine tert−butyl ester(11)
化合物8(107 mg, 0.11 mmol)とFmoc−Asp(OPfp)−OtBu (86 mg, 0.15 mmol)と3,4−ジヒドロ−3−ヒドロキシ−4−オキソ−1,2,3−ベンゾトリアジン(25 mg, 0.15 mmol)をアルゴン雰囲気中、水/THF(2/98 v/v)混合溶液(3 mL)に溶解させた後、トリブチルホスフィン(36 μL, 0.15 mmol)を加え、室温で2時間攪拌した。反応溶液に水と酢酸エチルを加え、有機相を水と飽和食塩水で洗浄した後、硫酸ナトリウム上で乾燥させた。溶媒を減圧留去後、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 n−ヘキサン:酢酸エチル=2:1)で精製し、化合物11(135 mg,92%)を得た。

Figure 0006605201
N 2 -9-Fluorenylmethoxycarbonyl-N 4 - [2,3,4-Tri-O-tert-butoxycarbonyl-α-L-fucopyranosyl - (1 → 6) -3,4-di-O-tert-butoxycarbonyl-2 -Deoxy-2- {N- (tert-butyoxycarbonyl) -acetamido} -β-D-glucopyranosyl] -L-asparagine tert-butyl ester (11)
Compound 8 (107 mg, 0.11 mmol), Fmoc-Asp (OPfp) -OtBu (86 mg, 0.15 mmol) and 3,4-dihydro-3-hydroxy-4-oxo-1,2,3- Benzotriazine (25 mg, 0.15 mmol) was dissolved in a water / THF (2/98 v / v) mixed solution (3 mL) in an argon atmosphere, and then tributylphosphine (36 μL, 0.15 mmol). And stirred at room temperature for 2 hours. Water and ethyl acetate were added to the reaction solution, and the organic phase was washed with water and saturated brine, and then dried over sodium sulfate. After evaporating the solvent under reduced pressure, the resulting residue was purified by silica gel column chromatography (developing solvent n-hexane: ethyl acetate = 2: 1) to obtain Compound 11 (135 mg, 92%).
Figure 0006605201

化合物11 H NMR (600 MHz,CDCl) : δ = 1.18−1.19 (m, 3H),1.41−1.46 (m, 54H), 1.60 (s, 7.5H, conformer A), 1.75 (s, 1.5H, conformer B), 2.31 (s, 0.5H, conformer B), 2.48 (s, 2.5H, conformer A), 2.68−2.71 (m, 1H), 2.81−2.87(m, 1H), 3.61−3.65(m, 1H), 3.76−3.78 (m, 1H), 3.82−3.83 (m, 1H), 4.18−4.32 (m, 3H), 4.38−4.43 (m, 1H), 4.50−4.51 (m, 1H), 4.75−4.83 (m, 2H), 4.93−4.95 (m, 1H), 5.09−5.12(m, 2H), 5.19 (m, 1H), 5.66 (t, 0.83H, J=9.6 Hz), 5.74 (t, 0.17H, J=9.6 Hz), 5.86 (t, 0.83H, J=9.6 Hz), 6.02 (t, 0.17H, J=9.6 Hz), 6.06 (d, 0.83H, J=9.6 Hz), 6.17 (d, 0.17H, J=9.6 Hz), 6.27−6.31 (m, 1H), 7.29−7.32 (m, 2H), 7.39 (t, 2H, J=7.6 Hz), 7.61−7.63 (m, 2H), 7.75 (d, 2H, J=7.6 Hz) Compound 11 1 H NMR (600 MHz, CDCl 3 ): δ = 1.18-1.19 (m, 3H), 1.41-1.46 (m, 54H), 1.60 (s, 7.5H , Conformer A), 1.75 (s, 1.5H, conformer B), 2.31 (s, 0.5H, conformer B), 2.48 (s, 2.5H, conformer A), 2.68. -2.71 (m, 1H), 2.81-2.87 (m, 1H), 3.61-3.65 (m, 1H), 3.76-3.78 (m, 1H), 3 .82-3.83 (m, 1H), 4.18-4.32 (m, 3H), 4.38-4.43 (m, 1H), 4.50-4.51 (m, 1H) , 4.75-4.83 (m, 2H), 4.93-4.95 (m, H), 5.09-5.12 (m, 2H), 5.19 (m, 1H), 5.66 (t, 0.83H, J = 9.6 Hz), 5.74 (t, 0 .17H, J = 9.6 Hz), 5.86 (t, 0.83H, J = 9.6 Hz), 6.02 (t, 0.17H, J = 9.6 Hz), 6.06 (D, 0.83H, J = 9.6 Hz), 6.17 (d, 0.17H, J = 9.6 Hz), 6.27-6.31 (m, 1H), 7.29- 7.32 (m, 2H), 7.39 (t, 2H, J = 7.6 Hz), 7.61-7.63 (m, 2H), 7.75 (d, 2H, J = 7. 6 Hz)

−9−Fluorenylmethoxycarbonyl−N−[α−L−fucopyranosyl −(1→6)−2−deoxy−2−acetamido−β−D−glucopyranosyl]−L−asparagine tert−butyl ester(12)
化合物11(107 mg, 77 μmol)を20%トリフルオロ酢酸/ジクロロメタン溶液(5 mL)に0℃で溶解させた後、4時間攪拌した。反応溶液にトルエン(10 mL)を加え、溶媒を減圧留去した。得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール=3:1)で精製し、化合物12(51 mg,91%)を得た。

Figure 0006605201
N 2 -9-Fluorenylmethoxycarbonyl-N 4 - [α-L-fucopyranosyl - (1 → 6) -2-deoxy-2-acetamido-β-D-glucopyranosyl] -L-asparagine tert-butyl ester (12)
Compound 11 (107 mg, 77 μmol) was dissolved in a 20% trifluoroacetic acid / dichloromethane solution (5 mL) at 0 ° C. and stirred for 4 hours. Toluene (10 mL) was added to the reaction solution, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: chloroform: methanol = 3: 1) to obtain Compound 12 (51 mg, 91%).
Figure 0006605201

化合物12 H NMR (600 MHz,DMSO−d6) : δ = 1.05 (d, 3H, J=6.9 Hz), 1.76 (s, 3H), 2.45 (dd, 1H, J=7.56, 15.8 Hz), 2.59 (dd, 1H, J=5.5, 15.8 Hz), 3.08−3.12 (m, 1H), 3.27−3.59 (m, 3H), 3.75 (d, 1H, J=10.31 Hz), 3.85 (q, 1H, J=6.9 Hz), 4.18−4.32 (m, 6H), 4.44 (bs, 1H,), 4.61 (d, 1H, J=2.8 Hz), 4.80 (t, 1H, J=8.9 Hz), 4.99 (d, 1H, J=4.8 Hz), 5.07 (d, 1H, J=4.8 Hz), 7.31 (t, 2H, J=7.6 Hz), 7.40t, 2H, J=7.6 Hz), 7.70 (dd, 2H, J=2.8, 6.87 Hz), 7.78 (d, 1H, J=8.9 Hz), 7.87 (d, 2H, J=7.6 Hz), 8.15 (d, 1H, J=8.9 Hz) Compound 12 1 H NMR (600 MHz, DMSO-d6): δ = 1.05 (d, 3H, J = 6.9 Hz), 1.76 (s, 3H), 2.45 (dd, 1H, J = 7.56, 15.8 Hz), 2.59 (dd, 1H, J = 5.5, 15.8 Hz), 3.08-3.12 (m, 1H), 3.27-3. 59 (m, 3H), 3.75 (d, 1H, J = 10.31 Hz), 3.85 (q, 1H, J = 6.9 Hz), 4.18-4.32 (m, 6H) ), 4.44 (bs, 1H,), 4.61 (d, 1H, J = 2.8 Hz), 4.80 (t, 1H, J = 8.9 Hz), 4.99 (d, 1H, J = 4.8 Hz), 5.07 (d, 1H, J = 4.8 Hz), 7.31 (t, 2H, J = 7.6 Hz), 7. 0t, 2H, J = 7.6 Hz), 7.70 (dd, 2H, J = 2.8, 6.87 Hz), 7.78 (d, 1H, J = 8.9 Hz), 7. 87 (d, 2H, J = 7.6 Hz), 8.15 (d, 1H, J = 8.9 Hz)

テトラヒドロフラン(3 mL)に化合物13(118 mg,0.32 mmol)と二炭酸ジ−tert−ブチル(419 mg, 1.92 mmol)とN,N−ジメチル−4−アミノピリジン(23 mg, 0.19 mmol)を加え、加熱還流下で120分攪拌した。溶媒を減圧留去後、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 n−ヘキサン:酢酸エチル=8:1)で精製し、化合物14(243 mg,quant.)を得た。

Figure 0006605201
To tetrahydrofuran (3 mL) was added compound 13 (118 mg, 0.32 mmol), di-tert-butyl dicarbonate (419 mg, 1.92 mmol) and N, N-dimethyl-4-aminopyridine (23 mg, 0 .19 mmol) was added, and the mixture was stirred for 120 minutes under reflux. After the solvent was distilled off under reduced pressure, the resulting residue was purified by silica gel column chromatography (developing solvent n-hexane: ethyl acetate = 8: 1) to obtain Compound 14 (243 mg, quant.).
Figure 0006605201

化合物18 H NMR (600 MHz,CDCl) : δ = 1.32 (s, 9H),1.46−1.48 (m, 27H), 2.44 (s, 3H), 3.72 (dd, 1H, J=10.3 Hz), 3.82−3.85(m, 1H), 4.16−4.23(m, 2H), 4.44(d, 1H, J=10.3 Hz), 4.59 (dd, 1H, J=3.4Hz,10.3Hz), 5.25(dd, 15H, J=3.4Hz), 7.16(d, 1H, J=8.3 Hz), 7.25(dd, 1H, J=8.3 Hz,10.3 Hz), 7.68(d, 1H, J=2.1 Hz) Compound 18 1 H NMR (600 MHz, CDCl 3 ): δ = 1.32 (s, 9H), 1.46-1.48 (m, 27H), 2.44 (s, 3H), 3.72 ( dd, 1H, J = 10.3 Hz), 3.82-3.85 (m, 1H), 4.16-4.23 (m, 2H), 4.44 (d, 1H, J = 10. 3 Hz), 4.59 (dd, 1H, J = 3.4 Hz, 10.3 Hz), 5.25 (dd, 15H, J = 3.4 Hz), 7.16 (d, 1H, J = 8. 3 Hz), 7.25 (dd, 1H, J = 8.3 Hz, 10.3 Hz), 7.68 (d, 1H, J = 2.1 Hz)

化合物14(71 mg,106 μmol)とFmoc−Thr−OBn(31 mg, 71 μmol)をジクロロメタン(2 mL)に溶解させ、モレキュラーシブス4A(200 mg)を加えて、−40℃に冷却した。N−ヨードスクシンイミド(48 mg, 213 μmol)とトリフルオロメタンスルホン酸(2.8 μL, 32 μmol)を加え、−40℃で2時間攪拌した。反応液をセライトで濾過し、酢酸エチルで洗浄後、有機相を5%チオ硫酸ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、硫酸ナトリウム上で乾燥させた。溶媒を減圧留去し、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 n−ヘキサン:酢酸エチル=3:1)で精製し、化合物15をα体(20.2 mg,31%)とβ体(15.6 mg, 24%)の混合物で得た。

Figure 0006605201
Compound 14 (71 mg, 106 μmol) and Fmoc-Thr-OBn (31 mg, 71 μmol) were dissolved in dichloromethane (2 mL), molecular sieve 4A (200 mg) was added, and the mixture was cooled to −40 ° C. . N-iodosuccinimide (48 mg, 213 μmol) and trifluoromethanesulfonic acid (2.8 μL, 32 μmol) were added, and the mixture was stirred at −40 ° C. for 2 hours. The reaction solution was filtered through celite, washed with ethyl acetate, and the organic phase was washed with 5% aqueous sodium thiosulfate solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (developing solvent n-hexane: ethyl acetate = 3: 1) to obtain compound 15 as α form (20.2 mg, 31%). Obtained as a mixture of β-form (15.6 mg, 24%).
Figure 0006605201

化合物15α体 H NMR (600 MHz,CDCl) : δ = 1.32 (d, 3H, J=6.9 Hz),1.45(s, 9H), 1.50 (s, 9H), 1.51 (s, 9H), 3.63(dd, 1H, J=3.4 Hz, 11.0 Hz), 4.09−4.15(m, 2H), 4.17−4.22 (m, 1H), 4.26 (dd, 1H, J=7.6 Hz), 4.34 (dd, 1H, J=7.6, 10.3 Hz), 4.38−4.48 (m, 3H), 4.86 (d, 1H, J=4.12 Hz), 5.02 (dd, 1H, J=3.4, 11.0 Hz), 5.17 (d, 1H, J=11.7 Hz), 5.25 (d, 1H, J=11.7 Hz), 5.34 (dd, 1H, J=2.8 Hz), 5.68 (d, 1H, J=9.6 Hz), 7.29−7.41 (m, 9H), 7.63 (d. 2H, J=6.9 Hz), 7.76 (d, 2H, J=7.6 Hz) Compound 15α form 1 H NMR (600 MHz, CDCl 3 ): δ = 1.32 (d, 3H, J = 6.9 Hz), 1.45 (s, 9H), 1.50 (s, 9H), 1.51 (s, 9H), 3.63 (dd, 1H, J = 3.4 Hz, 11.0 Hz), 4.09-4.15 (m, 2H), 4.17-4.22 (M, 1H), 4.26 (dd, 1H, J = 7.6 Hz), 4.34 (dd, 1H, J = 7.6, 10.3 Hz), 4.38-4.48 ( m, 3H), 4.86 (d, 1H, J = 4.12 Hz), 5.02 (dd, 1H, J = 3.4, 11.0 Hz), 5.17 (d, 1H, J = 11.7 Hz), 5.25 (d, 1H, J = 11.7 Hz), 5.34 (dd, 1H, J = 2.8 Hz), 5.6 (D, 1H, J = 9.6 Hz), 7.29-7.41 (m, 9H), 7.63 (d. 2H, J = 6.9 Hz), 7.76 (d, 2H, J = 7.6 Hz)

化合物15β体 H NMR (600 MHz,CDCl) : δ = 1.33 (d, 3H, J=6.2 Hz),1.46(s, 9H), 1.50 (s, 9H), 1.51 (s, 9H), 3.68−3.71 (m, 2H), 4.08−4.19 (m, 2H), 4.25 (dd, 1H, J=7.6 Hz), 4.33−4.39 (m, 3H), 4.40 (dd, 1H, J=3.4 Hz, 11.0 Hz), 4.90 (dd, 1H, J=2.1 Hz, 9.6 Hz), 4.61−4.64 (m, 1H), 5.16−5.19 (m, 2H), 5.27 (d, 1H, J=12.3 Hz), 5.63 (d, 1H, J=9.6 Hz), 7.29−7.34 (m, 3H), 7.35−7.40 (m, 6H), 7.61 (dd, 2H, J=8.3 Hz), 7.75 (d, 2H, J=7.6 Hz) Compound 15β-form 1 H NMR (600 MHz, CDCl 3 ): δ = 1.33 (d, 3H, J = 6.2 Hz), 1.46 (s, 9H), 1.50 (s, 9H), 1.51 (s, 9H), 3.68-3.71 (m, 2H), 4.08-4.19 (m, 2H), 4.25 (dd, 1H, J = 7.6 Hz) 4.33-4.39 (m, 3H), 4.40 (dd, 1H, J = 3.4 Hz, 11.0 Hz), 4.90 (dd, 1H, J = 2.1 Hz, 9.6 Hz), 4.61-4.64 (m, 1H), 5.16-5.19 (m, 2H), 5.27 (d, 1H, J = 12.3 Hz), 5. 63 (d, 1H, J = 9.6 Hz), 7.29-7.34 (m, 3H), 7.35-7.40 (m, 6H), 7.61 dd, 2H, J = 8.3 Hz), 7.75 (d, 2H, J = 7.6 Hz)

ジペプチドの合成
化合物10(170 mg, 0.13 mmol)と;グリシン tert−ブチル塩酸塩(22 mg, 0.13 mmol)と1−ヒドロキシベンゾトリアゾール一水和物(24 mg, 0.16 mmol)をDMF(3 mL)に溶解させ、この溶液に塩酸1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(30 mg, 0.16 mmol)とN,N−ジイソプロピルエチルアミン(46 μL, 0.26 mmol)を加え室温で2時間攪拌した。反応液に酢酸エチルを加え、有機相を5%クエン酸水溶液、水飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した後、硫酸ナトリウム上で乾燥させた。溶媒を減圧留去し、得られた残査をシリカゲルカラムクロマトグラフィー(展開溶媒 n−ヘキサン:酢酸エチル=1:1)で精製し、化合物16(167 mg,91%)を得た。得られた化合物16(167 mg,0.12 mmol)を20%トリフルオロ酢酸/ジクロロメタン溶液に0℃で溶解させ、0℃で4時間攪拌した。溶液にジエチルエーテルと20%アセトニトリル水溶液を加え、水相を分離し凍結乾燥させた。得られた残査(85mg)のうち56mgをHPLCにて精製を行い、化合物17(19 mg, 32%)を得た。

Figure 0006605201
Synthesis of dipeptide Compound 10 (170 mg, 0.13 mmol); Glycine tert-butyl hydrochloride (22 mg, 0.13 mmol) and 1-hydroxybenzotriazole monohydrate (24 mg, 0.16 mmol) Was dissolved in DMF (3 mL), and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (30 mg, 0.16 mmol) and N, N-diisopropylethylamine (46 μL, 0.0. 26 mmol) was added and stirred at room temperature for 2 hours. Ethyl acetate was added to the reaction solution, and the organic phase was washed with 5% aqueous citric acid solution, aqueous saturated sodium hydrogen carbonate aqueous solution, water and saturated brine, and then dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (developing solvent n-hexane: ethyl acetate = 1: 1) to obtain Compound 16 (167 mg, 91%). The obtained compound 16 (167 mg, 0.12 mmol) was dissolved in a 20% trifluoroacetic acid / dichloromethane solution at 0 ° C. and stirred at 0 ° C. for 4 hours. Diethyl ether and 20% aqueous acetonitrile were added to the solution, the aqueous phase was separated and lyophilized. 56 mg of the obtained residue (85 mg) was purified by HPLC to obtain Compound 17 (19 mg, 32%).
Figure 0006605201

本発明の製造方法および糖誘導体は、糖アミノ酸誘導体または糖ペプチド誘導体の製造に利用することができる。
The production method and sugar derivative of the present invention can be used for the production of a sugar amino acid derivative or a glycopeptide derivative.

Claims (6)

糖アミノ酸誘導体または糖ペプチド誘導体の製造方法であって、
糖残基中の全ての官能基を、酸性条件下で除去可能なカルバメート系保護基で保護した糖誘導体または/および糖アミノ酸誘導体を原料として用いること、および
前記糖残基中の全ての官能基を保護した酸性条件下で除去可能なカルバメート系保護基と、アミノ酸残基中またはぺプチド残基中の保護基とを、酸性条件下で同時に脱保護する工程を含むことを特徴とする製造方法。
A method for producing a sugar amino acid derivative or a glycopeptide derivative, comprising:
Using as a raw material a sugar derivative or / and a sugar amino acid derivative in which all functional groups in the sugar residue are protected with a carbamate-based protecting group that can be removed under acidic conditions ; and
Carbamate-based protecting groups that can be removed under acidic conditions in which all functional groups in the sugar residue are protected, and protecting groups in amino acid residues or peptide residues are simultaneously deprotected under acidic conditions. The manufacturing method characterized by including a process.
前記糖残基中の全ての官能基を、酸性条件下で除去可能なカルバメート系保護基で保護した糖誘導体が、下記式(1)で表される糖誘導体である請求項1に記載の製造方法。
A−X―Y (1)
(式(1)中、Aは、全ての官能基を酸性条件下で除去可能なカルバメート系保護基で保護した単糖もしくは糖鎖であり; Yは存在するか存在せず、Yが存在しない場合は、Xはアジド基、水酸基、または脱離能を有する基であり、Yが存在する場合は、Xは酸素、硫黄、またはセレンであり、Yはアシル基、炭素数1から20である飽和もしくは不飽和炭化水素基、または芳香族基である。)
The production according to claim 1, wherein the sugar derivative in which all functional groups in the sugar residue are protected with a carbamate-based protecting group that can be removed under acidic conditions is a sugar derivative represented by the following formula (1). Method.
A-XY (1)
(In Formula (1), A is a monosaccharide or a sugar chain in which all functional groups are protected with a carbamate-based protecting group that can be removed under acidic conditions; Y is present or absent, and Y is absent. In the case, X is an azide group, a hydroxyl group, or a group having a leaving ability, and when Y is present, X is oxygen, sulfur, or selenium, and Y is an acyl group having 1 to 20 carbon atoms. A saturated or unsaturated hydrocarbon group or an aromatic group.)
前記糖残基中の全ての官能基を、酸性条件下で除去可能なカルバメート系保護基で保護した糖アミノ酸誘導体が、下記式(2)で表される糖アミノ酸誘導体である請求項1または2に記載の製造方法。
A−Am (2)
(式(2)中、Aは、全ての官能基を酸性条件下で除去可能なカルバメート系保護基で保護した単糖もしくは糖鎖であり; Amは、アミノ酸またはアミノ酸誘導体であり、主鎖アミノ基は遊離または保護基で保護またはアジド基に変換されており、主鎖カルボキシル基は遊離または保護基で保護されており; A−Amの結合は、Amの側鎖とAの還元末端のアノマー炭素との間の結合である。)
The sugar amino acid derivative obtained by protecting all functional groups in the sugar residue with a carbamate-based protecting group that can be removed under acidic conditions is a sugar amino acid derivative represented by the following formula (2): The manufacturing method as described in.
A-Am (2)
(In Formula (2), A is a monosaccharide or a sugar chain in which all functional groups are protected with a carbamate-based protecting group that can be removed under acidic conditions; Am is an amino acid or an amino acid derivative; The group is protected with a free or protecting group or converted to an azide group, and the main chain carboxyl group is free or protected with a protecting group; the A-Am bond is the anomeric side chain of Am and the reducing end of A It is a bond between carbon.)
前記酸性条件下で除去可能なカルバメート系保護基が、tert−ブトキシカルボニル(Boc)基である請求項1〜3に記載の製造方法。   The production method according to claim 1, wherein the carbamate-based protecting group that can be removed under acidic conditions is a tert-butoxycarbonyl (Boc) group. 下記式(3)で表される糖誘導体。
Figure 0006605201
(式(3)中、Yは存在するか存在せず、Yが存在しない場合は、Xはアジド基、水酸基、ハロゲン基、イミデート基またはアセトキシ基であり、Yが存在する場合は、Xは酸素、硫黄、またはセレンであり、Yはアシル基、炭素数1から20である飽和もしくは不飽和炭化水素基、または芳香族基であり; Zは水素、メチル基、またはtert−ブチルオキシカルボニルオキシメチル基であり; Wは窒素またはアジド基であり; Wがアジド基である場合は、R1とR2は存在せず、Wが窒素である場合は、R1はBoc基で、R2は水素、シリル基、アシル基、アルキル基、アリール基、またはアラルキル基である。)
A sugar derivative represented by the following formula (3).
Figure 0006605201
(In Formula (3), Y is present or absent, and when Y is absent, X is an azide group, hydroxyl group, halogen group, imidate group or acetoxy group , and when Y is present, X is Oxygen, sulfur, or selenium, Y is an acyl group, a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, or an aromatic group; Z is hydrogen, a methyl group, or tert-butyloxycarbonyloxy a methyl group; W is nitrogen Motoma other is an azido group; when W is an azido group, R1 and R2 is not present, when W is nitrogen, R1 is Boc group, R2 is Hydrogen, silyl group, acyl group, alkyl group, aryl group, or aralkyl group.)
下記式(4)で表される糖誘導体。
Figure 0006605201
(式(4)中、X1、X2はそれぞれ、水酸基をBoc基で保護したL−フコース残基、またはBoc基である。)
A sugar derivative represented by the following formula (4).
Figure 0006605201
(In formula (4), X1 and X2 are each an L-fucose residue having a hydroxyl group protected with a Boc group, or a Boc group.)
JP2014267104A 2014-12-31 2014-12-31 Method for producing sugar amino acid derivative or glycopeptide derivative Active JP6605201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014267104A JP6605201B2 (en) 2014-12-31 2014-12-31 Method for producing sugar amino acid derivative or glycopeptide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014267104A JP6605201B2 (en) 2014-12-31 2014-12-31 Method for producing sugar amino acid derivative or glycopeptide derivative

Publications (2)

Publication Number Publication Date
JP2016124830A JP2016124830A (en) 2016-07-11
JP6605201B2 true JP6605201B2 (en) 2019-11-13

Family

ID=56358977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014267104A Active JP6605201B2 (en) 2014-12-31 2014-12-31 Method for producing sugar amino acid derivative or glycopeptide derivative

Country Status (1)

Country Link
JP (1) JP6605201B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614615A (en) * 1995-03-21 1997-03-25 The Scripps Research Institute Sialyl Lewis X mimetics incorporating fucopeptides
JP2006063055A (en) * 2004-08-30 2006-03-09 National Institute Of Advanced Industrial & Technology O-acetylated sugar amino acid
JP4813838B2 (en) * 2005-07-20 2011-11-09 学校法人東海大学 O-linked sugar amino acid derivative having core 6 type structure and method for producing the same
JP2009215207A (en) * 2008-03-10 2009-09-24 Hokkaido Univ Amino acid bonded with o-mannose type sugar chain and method for producing sugar peptide by using the same
JPWO2013157267A1 (en) * 2012-04-19 2015-12-21 杏林製薬株式会社 Method for producing acylglucuronic acid conjugate

Also Published As

Publication number Publication date
JP2016124830A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
ES2589306T3 (en) Methods to synthesize a structural element of amatoxins and amatoxins
US9067978B2 (en) Solution phase processes for the manufacture of macrocyclic depsipeptides and new intermediates
EP1996609B1 (en) Method of preparing glycopeptides
CZ304204B6 (en) Aplidine derivatives
WO2020167831A1 (en) Method of preparing a don prodrug from l-glutamic acid
JP6788376B2 (en) Method for Producing Peptide Containing Aspartic Acid Residue
JP6605201B2 (en) Method for producing sugar amino acid derivative or glycopeptide derivative
JP2020023555A (en) Process for liquid phase synthesis of h-inp-(d)bal-(d)trp-phe-apc-nh2 and pharmaceutically acceptable salts thereof
US7951905B2 (en) Synthesis of carbohydrate-templated amino acids and methods of using same
AU2018363696B2 (en) Method for the synthesis of cyclic depsipeptides
US8981049B2 (en) Aziridine mediated native chemical ligation
US7001982B2 (en) Non-natural C-linked carbo-β-peptides with robust secondary structures
EP3573996B1 (en) Compound with analgesic effect for use in prevention and treatment of pain
RU2817013C1 (en) Method for synthesis of cyclic depsipeptides
JP4593284B2 (en) Method for producing bicyclic hexapeptide, nepadutant
PT2004670E (en) Process for the manufacture of lysobactin derivatives
US9145440B2 (en) Versatile native chemical ligation technologies
JP2020529472A (en) Cross-references to related applications for cyclization and release of peptide compounds
WO2023106356A1 (en) Method for producing peptide compound, reagent for forming protective group, and substituted benzyl compound
WO2013118823A1 (en) Method for producing cereulide and derivative thereof, intermediate for production of cereulide, and cereulide derivative
WO2016193709A1 (en) Synthesis of duocarmycin analogues
KR20240096774A (en) Method for producing peptide compounds, reagents for forming protecting groups, and substituted benzyl compounds
EP3480195A1 (en) Method for the synthesis of cyclic depsipeptides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191016

R150 Certificate of patent or registration of utility model

Ref document number: 6605201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250