JP6601876B2 - Core network node and method - Google Patents

Core network node and method Download PDF

Info

Publication number
JP6601876B2
JP6601876B2 JP2016200291A JP2016200291A JP6601876B2 JP 6601876 B2 JP6601876 B2 JP 6601876B2 JP 2016200291 A JP2016200291 A JP 2016200291A JP 2016200291 A JP2016200291 A JP 2016200291A JP 6601876 B2 JP6601876 B2 JP 6601876B2
Authority
JP
Japan
Prior art keywords
pgw
mme
hss
communication
3gpp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016200291A
Other languages
Japanese (ja)
Other versions
JP2017069960A5 (en
JP2017069960A (en
Inventor
利之 田村
洵也 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Communication Systems Ltd
Original Assignee
NEC Corp
NEC Communication Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Communication Systems Ltd filed Critical NEC Corp
Priority to JP2016200291A priority Critical patent/JP6601876B2/en
Publication of JP2017069960A publication Critical patent/JP2017069960A/en
Publication of JP2017069960A5 publication Critical patent/JP2017069960A5/en
Application granted granted Critical
Publication of JP6601876B2 publication Critical patent/JP6601876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

本発明は移動通信システム、移動管理装置、通信方法、及びプログラムに関し、特にハンドオーバ処理を実行する移動通信システム、移動管理装置、通信方法、及びプログラムに関する。   The present invention relates to a mobile communication system, a mobility management device, a communication method, and a program, and more particularly, to a mobile communication system, a mobility management device, a communication method, and a program that execute a handover process.

3GPP(3rd Generation Partnership Project)において、3GPPに規定されている無線通信方式が用いられる通信エリア(3GPP通信エリア)と、3GPPに規定されていない無線通信方式が用いられる通信エリア(Non−3GPP通信エリア)との間でサービスを継続提供するためのハンドオーバに関する方法が検討されている。   In 3GPP (3rd Generation Partnership Project), a communication area (3GPP communication area) in which a wireless communication method specified in 3GPP is used and a communication area (Non-3GPP communication area) in which a wireless communication method not specified in 3GPP is used A method related to a handover for continuously providing a service to the Internet is being studied.

以下に、現在3GPPにおいて検討されている、3GPP通信エリアからNon−3GPP通信エリアへハンドオーバする方法について説明する。はじめに、3GPP通信エリアにおいて、移動通信端末であるUE(User Equipment)は、3GPP無線アクセス技術を用いて在圏ネットワーク(EPC:Evolved Packet Core)に接続し、ゲートウェイ(例えば、PGW:Packet Data Network Gateway)を介して、外部ネットワーク(PDN:Packet Data NetworkやInternet)に接続する。PGWは、UEに関するユーザデータを、在圏ネットワークと外部ネットワークとの間で伝送(送受信)するためのゲートウェイであり、UEとの通信に用いるPDN Connectionを確立する。PDN Connectionは、1つ、或いは複数の通信ベアラから構成される。PDN Connectionは、UEに提供されるサービス毎に確立される。サービスとは、例えば、IMS(IP Multimedia Subsystem)やInternet接続などAPN(Access Point Name)に関連づくものである。   A method for performing handover from the 3GPP communication area to the Non-3GPP communication area, which is currently being studied in 3GPP, will be described below. First, in a 3GPP communication area, a UE (User Equipment) which is a mobile communication terminal connects to a visited network (EPC: Evolved Packet Core) using a 3GPP radio access technology, and a gateway (for example, PGW: Packet Data Network Gateway). ) To an external network (PDN: Packet Data Network or Internet). The PGW is a gateway for transmitting (transmitting / receiving) user data related to the UE between the visited network and the external network, and establishes a PDN Connection used for communication with the UE. PDN Connection is composed of one or a plurality of communication bearers. A PDN Connection is established for each service provided to the UE. The service is related to an APN (Access Point Name) such as IMS (IP Multimedia Subsystem) or Internet connection.

この3GPP通信エリアでのPDN Connectionの確立において、MME(Mobility Management Entity)は、UEに関する加入者情報を管理するHSS(Home Subscriber Server)へ、PGWの識別情報であるPGW IDを送信する。PGW IDは、UEとの通信に用いるPDN Connectionを確立しているPGWの識別情報である。MMEは、PDN Connectionの設定、UEに関する移動管理や通信制御などを行うノード装置である。HSSは、PDN Connection単位にPGW IDを関連づける管理、UEの加入者情報の管理などを行うサーバ装置である。MMEがPGW IDをHSSへ送信する手順については、ATTACH手順について説明している非特許文献1に記載されている。   In establishing PDN Connection in this 3GPP communication area, an MME (Mobility Management Entity) transmits a PGW ID, which is PGW identification information, to an HSS (Home Subscriber Server) that manages subscriber information related to the UE. The PGW ID is identification information of a PGW that has established a PDN connection used for communication with the UE. The MME is a node device that performs PDN Connection settings, mobility management related to UE, communication control, and the like. The HSS is a server device that performs management for associating a PGW ID with each PDN Connection, management of subscriber information of the UE, and the like. The procedure for the MME to transmit the PGW ID to the HSS is described in Non-Patent Document 1 describing the ATTACH procedure.

次に、UEが、Non−3GPP通信エリアへ移動した際に、UEはNon−3GPP無線アクセス技術を用いてIPアクセス装置に接続する。IPアクセス装置は、UEが外部ネットワークから継続してサービスが受けられるように、AAA(Authentication Authorization Accounting)サーバに対して、UEとPDN Connectionを確立しているPGWのPGW IDの問合せを行う。AAAサーバは、Non−3GPP通信エリアにおける通信の認証等を実行する。ここで、AAAサーバは、HSSと連携しており、HSSにおいて管理されているPGW IDを取得することができる。AAAサーバは、HSSから取得したPGW IDを、IPアクセス装置に通知する。   Next, when the UE moves to the Non-3GPP communication area, the UE connects to the IP access device using the Non-3GPP radio access technology. The IP access device makes an inquiry to the AAA (Authentication Authorization Accounting) server for the PGW ID of the PGW that has established PDN Connection with the UE so that the UE can continuously receive services from the external network. The AAA server executes communication authentication and the like in the Non-3GPP communication area. Here, the AAA server cooperates with the HSS, and can acquire the PGW ID managed in the HSS. The AAA server notifies the IP access device of the PGW ID acquired from the HSS.

IPアクセス装置は、AAAサーバから取得したPGW IDを用いて、UEに関するPDN Connectionを確立しているPGWを選択することができる。さらに、IPアクセス装置は、UEとPGWとの間の通信経路もしくは通信ベアラを確立する。このようにして、UEは、移動先でも同じPGWを介して外部ネットワークからサービスを受け続けることができる。つまり、PGWをアンカーポイントとすることによって、3GPP通信エリアからNon−3GPP通信エリアへのハンドオーバが実現される。   The IP access device can select a PGW that has established a PDN connection for the UE, using the PGW ID acquired from the AAA server. Further, the IP access device establishes a communication path or communication bearer between the UE and the PGW. In this way, the UE can continue to receive services from the external network via the same PGW even at the movement destination. That is, handover from the 3GPP communication area to the Non-3GPP communication area is realized by using the PGW as an anchor point.

続いて、PGW IDを保持するHSSに障害が発生した場合について説明する。HSSに障害が発生した場合、HSSにおいてサービスが一旦停止し、初期設定動作が行われることにより、HSSが再開される。このHSSが再開した場合の手順は、非特許文献2に記載されている。具体的には、HSSは、再開すると、保持していたPGW IDをすべて削除する。さらに、HSSは、MMEに対してReset通知を行う。   Next, a case where a failure occurs in the HSS holding the PGW ID will be described. When a failure occurs in the HSS, the service is temporarily stopped in the HSS, and the HSS is resumed by performing an initial setting operation. The procedure when this HSS is restarted is described in Non-Patent Document 2. Specifically, when the HSS resumes, it deletes all the PGW IDs it has held. Further, the HSS issues a Reset notification to the MME.

MMEは、HSSからReset通知を受信した場合、当該UEにおけるLocation Information Confirmed in HSS(LICH)をNot Confirmedとして管理する。なお、LICHがNot Confirmedとされている状態は、HSSが再開し、UEとの通信に用いるPDN Connectionを確立したPGWのPGW IDを保持していないことを示している。   When the MME receives a Reset notification from the HSS, the MME manages Location Information Confirmed in HSS (LICH) in the UE as Not Confirmed. Note that the state in which LICH is Not Confirmed indicates that the HSS has resumed and does not hold the PGW ID of the PGW that has established the PDN Connection used for communication with the UE.

ここで、UEは、3GPP通信エリア内において、定期的に位置情報の提供としてTAU(Tracking Area Update)を実行するためにTAU RequestメッセージをMMEへ送信している。MMEは、TAU Requestメッセージを受信すると、UEのTA(Tracking Area)を更新するためにHSSへULR(Update Location Request)メッセージを送信する。この時、MMEは、UEとの通信に用いるPDN Connectionを確立しているPGWのPGW IDを含むActive APN(Access Point Name) AVP(Attribute Value Pair)を設定したULRメッセージをHSSへ送信する。ここでは、MMEがTAU Requestメッセージを受信した場合について記述したが、MMEはTAU Requestメッセージ以外の何らかのメッセージをUEから受信した場合でも、MMEは、UEとの通信に用いるPDN Connectionを確立しているPGWのPGW IDを含むActive APN(Access Point Name) AVP(Attribute Value Pair)を設定したULRメッセージをHSSへ送信してもかまわない。   Here, in the 3GPP communication area, the UE transmits a TAU Request message to the MME in order to periodically perform TAU (Tracking Area Update) as providing location information. Upon receiving the TAU Request message, the MME transmits an ULR (Update Location Request) message to the HSS in order to update the TA (Tracking Area) of the UE. At this time, the MME transmits an ULR message in which an Active APN (Access Point Name) AVP (Attribute Value Pair) including the PGW ID of the PGW that has established the PDN Connection used for communication with the UE is set to the HSS. Although the case where the MME receives the TAU Request message has been described here, the MME establishes the PDN Connection used for communication with the UE even when the MME receives any message other than the TAU Request message from the UE. An ULR message in which an Active APN (Access Point Name) AVP (Attribute Value Pair) including the PGW ID of the PGW is set may be transmitted to the HSS.

従って、HSSは、Active APN AVPが設定されたULRメッセージを受信することによって、前記再開によって削除したPGW IDをUEと関連づけて再び保持することができる。これにより、HSSは、再開した後においても、UEに関連づけられたPGW IDを再度保持することができる。そのため、その後、UEがNon−3GPP通信エリアへハンドオーバした場合に、AAAサーバは、UEとの通信に用いるPDN Connectionを確立しているPGWのPGW IDをHSSから取得することができる。その結果、UEは、Non−3GPP通信エリアにおいても、3GPP通信エリアにおけるPGWと同じPGWへアクセスすることが可能となり、そのPGWをアンカーポイントとしてハンドオーバを実行することができる。   Therefore, the HSS can hold the PGW ID deleted by the resumption in association with the UE again by receiving the ULR message in which the Active APN AVP is set. Thereby, even after restarting, HSS can hold | maintain PGW ID linked | related with UE again. Therefore, when the UE is subsequently handed over to the Non-3GPP communication area, the AAA server can acquire the PGW ID of the PGW that has established the PDN Connection used for communication with the UE from the HSS. As a result, the UE can access the same PGW as the PGW in the 3GPP communication area even in the Non-3GPP communication area, and can perform handover using the PGW as an anchor point.

3GPP TS 23.401 V13.3.0 (2015-06) 5.3.2節3GPP TS 23.401 V13.3.0 (2015-06) Section 5.3.2 3GPP TS 29.272 V13.2.0 (2015-06) 5.2.4節3GPP TS 29.272 V13.2.0 (2015-06) Section 5.2.4 3GPP TS 23.402 V13.2.0 (2015-06) 4.3.1.2節, 4.3.4節, 16章3GPP TS 23.402 V13.2.0 (2015-06) Sections 4.3.1.2, 4.3.4, Chapter 16

非特許文献2におけるHSSの再開後の復旧手順は、UEがMMEの変更を伴わないエリアにおいてTAUを実行することを前提としている。具体的には、UEは、LICHをNot Confirmedとして管理しているMMEへTAU Requestメッセージを送信する。MMEは、TAU Requestメッセージを送信してきたUEのLICHがNot Confirmedである場合に、UEとの通信に用いるPDN Connectionを確立しているPGWのPGW IDを含むActive APN AVPを設定したULRメッセージをHSSへ送信する。   The recovery procedure after resumption of HSS in Non-Patent Document 2 is based on the premise that the UE executes TAU in an area that does not involve MME change. Specifically, the UE transmits a TAU Request message to the MME that manages LICH as Not Confirmed. When the LICH of the UE that has transmitted the TAU Request message is Not Confirmed, the MME sends the ULR message in which the Active APN AVP including the PGW ID of the PGW that has established the PDN Connection used for communication with the UE is set to the HSS. Send to.

ここで、HSSの再開後の復旧手順として、UEがMMEの変更を伴うエリアへ移動した際の手順について説明する。はじめに、HSSは、再開すると各MMEへReset通知を送信する。それにより、各MMEは、その時点で自装置の管理下にいるUEについて、そのUEのLICHをNot Confirmedに管理する。次に、あるUEが、MMEの変更を伴うエリアへ移動した際に、そのUEはTAU Requestメッセージを新たな変更後のMMEへ送信する。しかし、変更後のMMEは、TAU Requestメッセージを送信してきたUEについて、そのUEのLICHをNot Confirmedとして管理していない。そのため、変更後のMMEは、そのUEとの通信に用いるPDN Connectionを確立しているPGWのPGW IDをHSSへ送信しない。ただし、そのような場合であっても、変更後のMMEは、変更前のMMEからPGW IDの情報を取得することができる。そのため、変更後のMMEは、取得したPGW IDを用いて、UEが移動前に接続していたPGWと同じPGWに接続することができる。   Here, as a recovery procedure after resuming the HSS, a procedure when the UE moves to an area accompanied by an MME change will be described. First, when the HSS resumes, the HSS transmits a Reset notification to each MME. Thereby, each MME manages the LICH of the UE as Not Confirmed for the UE currently under the control of the own device. Next, when a certain UE moves to an area with an MME change, the UE transmits a TAU Request message to the newly changed MME. However, the MME after the change does not manage the LICH of the UE that has transmitted the TAU Request message as Not Confirmed. Therefore, the changed MME does not transmit the PGW ID of the PGW that has established the PDN Connection used for communication with the UE to the HSS. However, even in such a case, the MME after the change can acquire the information of the PGW ID from the MME before the change. Therefore, the MME after the change can be connected to the same PGW as the PGW to which the UE was connected before moving, using the acquired PGW ID.

このような状況において、UEがさらに3GPP通信エリアからNon−3GPP通信エリアへハンドオーバした場合、HSSは、UEとの通信に用いるPDN Connectionを確立しているPGWのPGW IDを保持していないため、AAAサーバは、HSSからPGW IDを取得することができない。そのため、Non−3GPP通信エリアにおけるIPアクセス装置は、アンカーポイントとなるPGWを検出することができない。その結果、UEが、3GPP通信エリアからNon−3GPP通信エリアへハンドオーバできないという問題が発生する。   In such a situation, when the UE is further handed over from the 3GPP communication area to the Non-3GPP communication area, the HSS does not hold the PGW ID of the PGW that has established the PDN Connection used for communication with the UE. The AAA server cannot obtain the PGW ID from the HSS. For this reason, the IP access device in the Non-3GPP communication area cannot detect the PGW serving as an anchor point. As a result, there arises a problem that the UE cannot be handed over from the 3GPP communication area to the Non-3GPP communication area.

本発明の目的は、上記のような状況において、HSSの再開後においても、UEが、正常に3GPP通信エリアからNon−3GPP通信エリアへハンドオーバすることができる移動通信システム、移動管理装置、通信方法、及びプログラムを提供することにある。   An object of the present invention is to provide a mobile communication system, a mobility management apparatus, and a communication method that allow a UE to normally perform a handover from a 3GPP communication area to a non-3GPP communication area even after resumption of HSS in the above situation. And providing a program.

本発明の第1の態様にかかる移動通信システムは、移動通信端末との通信に用いるPDN Connectionを確立するPGWと、前記PGWの識別子であるPGW IDを保持するHSSと、前記移動通信端末の移動管理を行う移動管理装置と、を備え、前記移動管理装置は、前記移動通信端末から送信されたTracking Area Updateメッセージを受信すると、前記HSSにおける前記PGW IDの保持状態にかかわらず、前記PGW IDを設定したUpdate Location Requestメッセージを前記HSSへ送信するものである。   A mobile communication system according to a first aspect of the present invention includes a PGW that establishes a PDN connection used for communication with a mobile communication terminal, an HSS that holds a PGW ID that is an identifier of the PGW, and the movement of the mobile communication terminal A mobility management device that performs management.When the mobility management device receives the Tracking Area Update message transmitted from the mobile communication terminal, the mobility management device sets the PGW ID regardless of the holding state of the PGW ID in the HSS. A set Update Location Request message is transmitted to the HSS.

本発明の第2の態様にかかる移動管理装置は、移動通信端末から送信されたTracking Area Updateメッセージを受信すると、前記移動通信端末との通信に用いるPDN Connectionを確立したPGWのPGW IDを保持するHSSにおける前記PGW IDの保持状態にかかわらず、前記PGW IDを設定したUpdate Location Requestメッセージを前記HSSへ送信する通信部、を備えるものである。   The mobility management device according to the second aspect of the present invention, when receiving the Tracking Area Update message transmitted from the mobile communication terminal, holds the PGW ID of the PGW that has established the PDN Connection used for communication with the mobile communication terminal Regardless of the holding state of the PGW ID in the HSS, a communication unit that transmits an Update Location Request message in which the PGW ID is set to the HSS is provided.

本発明の第3の態様にかかる通信方法は、移動通信端末から送信されたTracking Area Updateメッセージを受信すると、前記移動通信端末との通信に用いるPDN Connectionを確立したPGWのPGW IDを保持するHSSにおける前記PGW IDの保持状態にかかわらず、前記PGW IDを設定したUpdate Location Requestメッセージを前記HSSへ送信するものである。   The communication method according to the third aspect of the present invention, when receiving the Tracking Area Update message transmitted from the mobile communication terminal, holds the PGW ID of the PGW that has established the PDN Connection used for communication with the mobile communication terminal. The Update Location Request message in which the PGW ID is set is transmitted to the HSS regardless of the holding state of the PGW ID.

本発明の第4の態様にかかるプログラムは、移動通信端末から送信されたTracking Area Updateメッセージを受信すると、前記移動通信端末との通信に用いるPDN Connectionを確立したPGWのPGW IDを保持するHSSにおける前記PGW IDの保持状態にかかわらず、前記PGW IDを設定したUpdate Location Requestメッセージを前記HSSへ送信することをコンピュータに実行させるものである。   When the program according to the fourth aspect of the present invention receives the Tracking Area Update message transmitted from the mobile communication terminal, the program in the HSS that holds the PGW ID of the PGW that has established the PDN Connection used for communication with the mobile communication terminal Regardless of the holding state of the PGW ID, the computer is caused to transmit an Update Location Request message in which the PGW ID is set to the HSS.

本発明により、上記のような状況において、HSSの再開後においても、UEが、正常に3GPP通信エリアからNon−3GPP通信エリアへハンドオーバすることができる移動通信システム、移動管理装置、通信方法、及びプログラムを提供することができる。   According to the present invention, in the above situation, even after resumption of HSS, the UE can normally hand over from the 3GPP communication area to the Non-3GPP communication area, the mobile management device, the communication method, and A program can be provided.

実施の形態1にかかる移動通信システムの構成図である。1 is a configuration diagram of a mobile communication system according to a first embodiment. 実施の形態2にかかる移動通信システムの構成図である。FIG. 3 is a configuration diagram of a mobile communication system according to a second embodiment. 実施の形態2にかかるMMEの構成図である。It is a block diagram of MME concerning Embodiment 2. FIG. 実施の形態2にかかるUEの構成図である。It is a block diagram of UE concerning Embodiment 2. FIG. 実施の形態2にかかるTAU処理の流れを示す図である。It is a figure which shows the flow of the TAU process concerning Embodiment 2. FIG. 実施の形態2にかかるTAU処理の流れを示す図である。It is a figure which shows the flow of the TAU process concerning Embodiment 2. FIG. 実施の形態2にかかるUpdate Location Requestメッセージを示す図である。It is a figure which shows the Update Location Request message concerning Embodiment 2. FIG. 実施の形態2にかかるハンドオーバ処理の流れを示す図である。FIG. 10 is a diagram showing a flow of a handover process according to the second embodiment. 実施の形態2にかかる移動通信システムの構成図である。FIG. 3 is a configuration diagram of a mobile communication system according to a second embodiment. 実施の形態3にかかるContext Responseメッセージの設定内容を示す図である。It is a figure which shows the setting content of the Context Response message concerning Embodiment 3. FIG. 実施の形態3にかかるIndication Flagsに設定されるIndicationの設定内容を示す図である。It is a figure which shows the setting content of Indication set to Indication Flags concerning Embodiment 3. FIG. 実施の形態3にかかるContext ResponseメッセージのMME/SGSN UE EPS PDN Connectionsの設定内容を示す図である。It is a figure which shows the setting content of MME / SGSN UE EPS PDN Connections of the Context Response message concerning Embodiment 3. FIG. 実施の形態4にかかるARDの内容を示す図である。It is a figure which shows the content of ARD concerning Embodiment 4. FIG. 実施の形態5にかかるハンドオーバ処理の流れを示す図である。FIG. 10 is a diagram showing a flow of handover processing according to the fifth embodiment. 実施の形態5にかかるAAAサーバ、HSS、及びMMEの間で行われる認証処理の流れを示す図である。It is a figure which shows the flow of the authentication process performed among the AAA server concerning Embodiment 5, HSS, and MME.

(実施の形態1)
以下、図面を参照して本発明の実施の形態について説明する。図1を用いて本発明の実施の形態1にかかる移動通信システムの構成例について説明する。図1の移動通信システムは、移動通信端末10、PGW11、HSS12、及び移動管理装置100を有している。図1の通信システムは、主に3GPPにおいて規定されているノード装置を用いて構成されている。
(Embodiment 1)
Embodiments of the present invention will be described below with reference to the drawings. A configuration example of the mobile communication system according to the first exemplary embodiment of the present invention will be described using FIG. The mobile communication system of FIG. 1 includes a mobile communication terminal 10, a PGW 11, an HSS 12, and a mobility management device 100. The communication system of FIG. 1 is configured using node devices mainly defined in 3GPP.

移動通信端末10は、携帯電話端末、スマートフォン端末、もしくはタブレット型端末等であってもよい。もしくは、移動通信端末10は、M2M(Machine to Machine)端末、もしくはMTC(Machine Type Communication)端末等であってもよい。また、移動通信端末10は、プロセッサがメモリに格納されたプログラムを実行することによって動作するコンピュータ装置であってもよい。移動通信端末10は、3GPP通信エリア及びNon−3GPP通信エリアにいて通信することができる端末を前提とする。   The mobile communication terminal 10 may be a mobile phone terminal, a smart phone terminal, a tablet terminal, or the like. Alternatively, the mobile communication terminal 10 may be an M2M (Machine to Machine) terminal, an MTC (Machine Type Communication) terminal, or the like. In addition, the mobile communication terminal 10 may be a computer device that operates when a processor executes a program stored in a memory. The mobile communication terminal 10 is assumed to be a terminal that can communicate in the 3GPP communication area and the Non-3GPP communication area.

PGW11、HSS12、及び移動管理装置100は、3GPPにおいて機能及び動作が規定されているノード装置である。PGW11、HSS12、及び移動管理装置100は、プロセッサがメモリに格納されたプログラムを実行することによって動作するコンピュータ装置であってもよい。   The PGW 11, the HSS 12, and the mobility management device 100 are node devices whose functions and operations are defined in 3GPP. The PGW 11, the HSS 12, and the mobility management device 100 may be computer devices that operate when a processor executes a program stored in a memory.

PGW11は、移動通信端末10との通信に用いるPDN Connectionを確立する。PDN Connectionは、eNB(evolved Node B)(不図示)もしくはRNC(Radio Network Controller)(不図示)を介し、移動通信端末10とPGW11との間に確立される。eNB及びRNCは、3GPPにおいて機能及び動作が規定されている装置である。eNBは、無線通信方式としてLTE(Long Term Evolution)をサポートする基地局である。RNCは、2G(第2世代携帯電話)もしくは3G(第3世代携帯電話)と称される無線通信方式をサポートするノード装置である。また、PGW11には、通信システム内において一意に識別される識別子であるPGW IDが付与されている。通信システムは、例えば、EPS(Evolved Packet System)であってもよい。   The PGW 11 establishes a PDN connection used for communication with the mobile communication terminal 10. The PDN Connection is established between the mobile communication terminal 10 and the PGW 11 via an eNB (evolved Node B) (not shown) or an RNC (Radio Network Controller) (not shown). eNB and RNC are devices whose functions and operations are defined in 3GPP. The eNB is a base station that supports LTE (Long Term Evolution) as a wireless communication method. The RNC is a node device that supports a wireless communication system called 2G (second generation mobile phone) or 3G (third generation mobile phone). The PGW 11 is assigned a PGW ID that is an identifier uniquely identified in the communication system. The communication system may be, for example, an EPS (Evolved Packet System).

HSS12は、移動通信端末10との通信に用いるPDN Connectionを確立しているPGWのPGW IDを保持する。移動管理装置100は、移動通信端末10に関する移動管理を行う。移動管理とは、例えば、移動通信端末10の移動に伴って変化する位置情報を管理することであってもよい。また、移動管理装置100は、MMEまたはSGSN(Serving GPRS Support Node)であってもよい。   The HSS 12 holds the PGW ID of the PGW that has established the PDN Connection used for communication with the mobile communication terminal 10. The mobility management device 100 performs mobility management related to the mobile communication terminal 10. The movement management may be, for example, managing position information that changes as the mobile communication terminal 10 moves. Further, the mobility management device 100 may be an MME or an SGSN (Serving GPRS Support Node).

ここで、移動通信端末10は、定期的にTAU Requestメッセージを移動管理装置100へ送信する。具体的には、移動通信端末10は、eNBを介してTAU Requestメッセージを移動管理装置100へ送信する。   Here, the mobile communication terminal 10 periodically transmits a TAU Request message to the mobility management apparatus 100. Specifically, the mobile communication terminal 10 transmits a TAU Request message to the mobility management device 100 via the eNB.

Tracking Areaは、1以上のセルによって構成される。Tracking Areaは、例えば、移動管理装置100によって管理される情報である。言い換えると、移動管理装置100は、移動通信端末10の位置情報としてTracking Areaを管理する。また、移動管理装置100は、移動通信端末10を呼び出す際に、移動通信端末10と関連づけられているTracking Areaに位置する全ての移動通信端末に対してPagingを実行する。   The Tracking Area is composed of one or more cells. The Tracking Area is information managed by the mobility management device 100, for example. In other words, the mobility management device 100 manages the Tracking Area as the location information of the mobile communication terminal 10. Further, when the mobile management device 100 calls the mobile communication terminal 10, the mobile management device 100 executes Paging for all mobile communication terminals located in the tracking area associated with the mobile communication terminal 10.

移動管理装置100は、移動通信端末10から送信されたTAU Requestメッセージを受信すると、HSS12におけるPGW IDの保持状態にかかわらず、PGW IDを設定したULRメッセージをHSS12へ送信する。   When the mobility management device 100 receives the TAU Request message transmitted from the mobile communication terminal 10, the mobility management device 100 transmits a ULR message in which the PGW ID is set to the HSS 12 regardless of the holding state of the PGW ID in the HSS 12.

移動管理装置100は、HSS12において管理されている移動通信端末10の位置情報を更新するために、ULRメッセージをHSS12へ送信する。HSS12は、通常、移動通信端末10のATTACH処理時に、移動通信端末10との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを取得する。さらに、HSS12は、移動通信端末10とPGW11のPGW IDとを関連付けて保持している。ただし、HSS12は、障害の発生等により再開すると保持していたPGW IDをすべて削除する。そのため、HSS12は、移動通信端末10と関連づけられたPGW11のPGW IDを保持してない場合もある。   The mobility management device 100 transmits a ULR message to the HSS 12 in order to update the location information of the mobile communication terminal 10 managed in the HSS 12. The HSS 12 normally acquires the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the mobile communication terminal 10 during the ATTACH process of the mobile communication terminal 10. Further, the HSS 12 holds the mobile communication terminal 10 and the PGW ID of the PGW 11 in association with each other. However, the HSS 12 deletes all held PGW IDs when it resumes due to the occurrence of a failure or the like. Therefore, the HSS 12 may not hold the PGW ID of the PGW 11 associated with the mobile communication terminal 10.

移動管理装置100は、HSS12が移動通信端末10と関連づけられたPGW11のPGW IDを保持しているか否かにかかわらず、PGW11のPGW IDを設定したULRメッセージを送信する。HSS12は、ULRメッセージを受信すると、既にPGW11のPGW IDを保持しており、受信したPGW IDと変更がない場合は、移動通信端末10と関連づけられたPGW11のPGW IDを更新する処理を行わなくてもよい。一方、既に保持しているPGW IDと、ULRメッセージに設定されているPGW IDとが異なる場合は、上書きして保存する。   The mobility management device 100 transmits a ULR message in which the PGW ID of the PGW 11 is set regardless of whether or not the HSS 12 holds the PGW ID of the PGW 11 associated with the mobile communication terminal 10. When receiving the ULR message, the HSS 12 already holds the PGW ID of the PGW 11, and if there is no change from the received PGW ID, the HSS 12 does not perform the process of updating the PGW ID of the PGW 11 associated with the mobile communication terminal 10. May be. On the other hand, if the already held PGW ID is different from the PGW ID set in the ULR message, it is overwritten and saved.

HSS12は、ULRメッセージを受信すると、PGW11のPGW IDを保持していない場合、ULRメッセージに設定されているPGW IDを移動通信端末10と関連付けて保持する。   When receiving the ULR message, the HSS 12 holds the PGW ID set in the ULR message in association with the mobile communication terminal 10 when the PGW ID of the PGW 11 is not held.

HSS12がPGW11のPGW IDを保持しているか否かにかかわらず、とは、移動管理装置100が、TAU Requestメッセージを送信してきた移動通信端末10についてLICHをNot Confirmedとして管理しているか否かにかかわらず、と言い換えてもよい。つまり、移動管理装置100は、TAU Requestメッセージを送信してきた移動通信端末10についてLICHをNot Confirmedとして管理しているか否かにかかわらず、PGW IDを設定したULRメッセージをHSS12へ送信する。   Regardless of whether the HSS 12 holds the PGW ID of the PGW 11 or not, the mobility management device 100 manages the LICH as Not Confirmed for the mobile communication terminal 10 that has transmitted the TAU Request message. Regardless, it may be paraphrased. That is, the mobility management device 100 transmits the ULR message in which the PGW ID is set to the HSS 12 regardless of whether or not the LICH is managed as Not Confirmed for the mobile communication terminal 10 that has transmitted the TAU Request message.

以上説明したように、移動管理装置100は、HSS12が、TAU Requestメッセージを送信してきた移動通信端末10との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを保持しているか否かにかかわらず、PGW IDを設定したULRメッセージをHSS12へ送信する。言い換えると、移動管理装置100は、TAU Requestメッセージを送信してきた移動通信端末10についてLICHをNot Confirmedとして管理しているか否かにかかわらず、PGW IDを設定したULRメッセージをHSS12へ送信する。   As described above, the mobility management apparatus 100 determines whether or not the HSS 12 holds the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the mobile communication terminal 10 that has transmitted the TAU Request message. Regardless, the ULR message in which the PGW ID is set is transmitted to the HSS 12. In other words, the mobility management device 100 transmits the ULR message in which the PGW ID is set to the HSS 12 regardless of whether or not the LICH is managed as Not Confirmed for the mobile communication terminal 10 that has transmitted the TAU Request message.

これにより、HSS12は、再開後に移動通信端末10がMMEの変更を伴う移動をした場合であっても、移動通信端末10との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを取得することができる。そのため、移動通信端末10が、HSS12の再開前にTAU Requestメッセージを送信したMMEと、HSS12の再開後にTAU Requestメッセージを送信したMMEとが異なる場合であっても、移動通信端末10のハンドオーバ処理を正常に実行することができる。さらに、移動通信端末10が3GPP通信エリアからNon−3GPP通信エリアへ移動した場合であっても、移動通信端末10のハンドオーバ処理を正常に実行することができる。   As a result, the HSS 12 acquires the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the mobile communication terminal 10 even when the mobile communication terminal 10 moves with the change of the MME after restarting. be able to. Therefore, even when the MME that has transmitted the TAU Request message before the HSS 12 resumes and the MME that has transmitted the TAU Request message after the HSS 12 resumes, the mobile communication terminal 10 performs the handover process of the mobile communication terminal 10. Can be executed normally. Furthermore, even when the mobile communication terminal 10 moves from the 3GPP communication area to the Non-3GPP communication area, the handover process of the mobile communication terminal 10 can be executed normally.

つまり、HSS12は、移動通信端末10がTAU Requestメッセージを送信するタイミングに、移動通信端末10との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを更新することができる。そのため、HSS12は、自装置が再開後に、移動通信端末10が3GPP通信エリア内においてMMEの変更を伴う移動をし、さらに移動通信端末10がNon−3GPP通信エリアへ移動した場合であっても、AAAサーバへ移動通信端末10に関するPGW IDを送信することができる。そのため、Non−3GPP通信エリアにおいても、アンカーポイントとなるPGW11のPGW IDを特定することができるため、移動通信端末10に関するハンドオーバ処理を正常に実行することができる。   That is, the HSS 12 can update the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the mobile communication terminal 10 at the timing when the mobile communication terminal 10 transmits the TAU Request message. Therefore, even if the mobile communication terminal 10 moves with a change of the MME in the 3GPP communication area after the mobile device restarts, and the mobile communication terminal 10 moves to the Non-3GPP communication area, The PGW ID related to the mobile communication terminal 10 can be transmitted to the AAA server. Therefore, since the PGW ID of the PGW 11 serving as the anchor point can be specified also in the Non-3GPP communication area, the handover process related to the mobile communication terminal 10 can be executed normally.

(実施の形態2)
続いて、図2を用いて本発明の実施の形態2にかかる移動通信システムの構成例について説明する。図2の移動通信システムは、PGW11、HSS12、MME13、MME14、UE20、AAAサーバ31、IPアクセス装置32、eNB40、eNB41、SGW50、SGW60、及びPCRF70を有している。PGW11及びHSS12は、図1と同様であるため詳細な説明を省略する。また、図2においては、移動管理装置100としてMME13を用いて説明する。
(Embodiment 2)
Then, the structural example of the mobile communication system concerning Embodiment 2 of this invention is demonstrated using FIG. The mobile communication system of FIG. 2 has PGW11, HSS12, MME13, MME14, UE20, AAA server 31, IP access device 32, eNB40, eNB41, SGW50, SGW60, and PCRF70. Since the PGW 11 and the HSS 12 are the same as those in FIG. In FIG. 2, the MME 13 is used as the mobility management device 100.

UE20は、図1の移動通信端末10に相当する。UE20は、3GPPにおいて移動通信端末の総称として用いられている。AAAサーバ31は、Non−3GPP通信エリアにおいて、UE20の認証を行う装置である。さらに、AAAサーバ31は、HSS12と連携しており、HSS12から、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを受信する。   The UE 20 corresponds to the mobile communication terminal 10 in FIG. UE 20 is used as a general term for mobile communication terminals in 3GPP. The AAA server 31 is a device that performs authentication of the UE 20 in the Non-3GPP communication area. Further, the AAA server 31 is linked to the HSS 12 and receives the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 from the HSS 12.

IPアクセス装置32は、Non−3GPP通信エリアにおいて、UE20と通信を行う装置である。IPアクセス装置32は、例えば、無線LANにおけるアクセスポイントであってもよく、もしくは、3GPPにおいて定められた通信方式と異なる通信方式を用いて、UE20とモバイル通信を行う装置であってもよい。なお、IPアクセス装置32は、非特許文献3に記載されているTrusted non-3GPP Access network、ePDG(Evolved Packet Data Gateway)、TWAN(Trusted WLAN Access Network)であってもかまわない。また、IPアクセス装置32は、WT(Wireless LAN Termination)であってもよい。   The IP access device 32 is a device that communicates with the UE 20 in the Non-3GPP communication area. The IP access device 32 may be, for example, an access point in a wireless LAN, or may be a device that performs mobile communication with the UE 20 using a communication method different from the communication method defined in 3GPP. The IP access device 32 may be a Trusted non-3GPP Access network, an ePDG (Evolved Packet Data Gateway), or a TWAN (Trusted WLAN Access Network) described in Non-Patent Document 3. The IP access device 32 may be a WT (Wireless LAN Termination).

さらに、IPアクセス装置32は、AAAサーバ31からUE20に関連付けられたPGW IDを取得する。IPアクセス装置32は、取得したPGW IDを用いてPGW11へアクセスする。これによって、IPアクセス装置32は、アンカーポイントであるPGW11と、UE20との間の通信を中継することができる。   Further, the IP access device 32 acquires the PGW ID associated with the UE 20 from the AAA server 31. The IP access device 32 accesses the PGW 11 using the acquired PGW ID. As a result, the IP access device 32 can relay communication between the PGW 11 serving as an anchor point and the UE 20.

eNB40及びeNB41は、無線方式としてLTEを用いてUE20と通信する。また、SGW50は、eNB40とPGW11との間の通信を中継し、SGW60は、eNB41とPGW11との間の通信を中継する。PCRF70は、UE20に関するQoSポリシー等を管理するノード装置である。   eNB40 and eNB41 communicate with UE20 using LTE as a radio system. Moreover, SGW50 relays communication between eNB40 and PGW11, and SGW60 relays communication between eNB41 and PGW11. The PCRF 70 is a node device that manages a QoS policy or the like related to the UE 20.

図2は、UE20が、MME13が管理するTracking Areaから、MME14が管理するTracking Areaへ移動し、さらに、Non−3GPP通信エリアへ移動することを示している。図2の実線は、制御情報もしくはC-Plane情報が送信もしくは受信されることを示す。図2の破線は、ユーザデータもしくはU-Plane情報が送信もしくは受信されることを示す。また、図2のUE20間に示されている矢印は、UE20が移動していることを示す。   FIG. 2 shows that the UE 20 moves from the Tracking Area managed by the MME 13 to the Tracking Area managed by the MME 14 and further moves to the Non-3GPP communication area. The solid line in FIG. 2 indicates that control information or C-Plane information is transmitted or received. A broken line in FIG. 2 indicates that user data or U-Plane information is transmitted or received. Moreover, the arrow shown between UE20 of FIG. 2 shows that UE20 is moving.

また、実施の形態2においては、HSS12が再開した後に、UE20が、MME13が管理するTracking AreaからMME14によって管理されるTracking Areaへ移動し、その後、Non−3GPP通信エリアへ移動した場合の処理について主に説明する。   In the second embodiment, after the HSS 12 is resumed, the UE 20 moves from the Tracking Area managed by the MME 13 to the Tracking Area managed by the MME 14 and then moves to the Non-3GPP communication area. Mainly explained.

続いて、図3を用いて本発明の実施の形態2にかかるMME13の構成例について説明する。MME14は、MME13と同様の構成であるため詳細な説明を省略する。MME13は、通信部(なお、通信部は送信及び受信部と言い換えてもよい)15及び制御部16を有している。通信部15及び制御部16は、プロセッサがメモリに格納されたプログラムを実行することによって動作するソフトウェアもしくはモジュール等であってもよい。もしくは、通信部15及び制御部16は、回路もしくはチップ等のハードウェアであってもよい。   Then, the structural example of MME13 concerning Embodiment 2 of this invention is demonstrated using FIG. Since the MME 14 has the same configuration as the MME 13, detailed description thereof is omitted. The MME 13 includes a communication unit (the communication unit may be referred to as a transmission and reception unit) 15 and a control unit 16. The communication unit 15 and the control unit 16 may be software or a module that operates when a processor executes a program stored in a memory. Alternatively, the communication unit 15 and the control unit 16 may be hardware such as a circuit or a chip.

通信部15は、eNB40、HSS12、及びMME14と通信を行う。また、通信部15は、eNB40を介してUE20と通信を行う。制御部16は、通信部15を介してeNB40、MME14、及びHSS12へ送信するメッセージを生成、さらに、eNB40、MME14、及びHSS12から受信したメッセージの解析等を行う。   The communication unit 15 communicates with the eNB 40, the HSS 12, and the MME 14. Further, the communication unit 15 communicates with the UE 20 via the eNB 40. The control unit 16 generates a message to be transmitted to the eNB 40, the MME 14, and the HSS 12 via the communication unit 15, and further analyzes a message received from the eNB 40, the MME 14, and the HSS 12.

例えば、制御部16は、UE20のATTACH処理において、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを設定したNotify Requestメッセージを通信部15を介してHSS12へ送信する。また、制御部16は、eNB40を介してUE20から送信されたTAU Requestメッセージを受信すると、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを設定したULRメッセージを通信部15を介してHSS12へ送信する。   For example, in the ATTACH process of the UE 20, the control unit 16 transmits a Notify Request message in which the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 is set to the HSS 12 via the communication unit 15. When the control unit 16 receives the TAU Request message transmitted from the UE 20 via the eNB 40, the control unit 16 transmits the ULR message in which the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 is set to the communication unit 15. To the HSS 12.

また、制御部16は、HSS12からReset通知を受信すると、UE20に関するLICHをNot Confirmedとして管理する。   Moreover, the control part 16 will manage LICH regarding UE20 as Not Confirmed, if Reset notification is received from HSS12.

続いて、図4を用いて本発明の実施の形態2にかかるUE20の構成例について説明する。UE20は、3GPP通信部21及びNon−3GPP通信部22を有している。3GPP通信部21及びNon−3GPP通信部22は、プロセッサがメモリに格納されたプログラムを実行することによって動作するソフトウェアもしくはモジュール等であってもよい。もしくは、3GPP通信部21及びNon−3GPP通信部22は、回路もしくはチップ等のハードウェアであってもよい。   Then, the structural example of UE20 concerning Embodiment 2 of this invention is demonstrated using FIG. The UE 20 includes a 3GPP communication unit 21 and a Non-3GPP communication unit 22. The 3GPP communication unit 21 and the Non-3GPP communication unit 22 may be software or a module that operates when a processor executes a program stored in a memory. Alternatively, the 3GPP communication unit 21 and the Non-3GPP communication unit 22 may be hardware such as a circuit or a chip.

3GPP通信部21は、eNB40と無線通信を行う。例えば、3GPP通信部21は、無線通信方式としてLTEを用いてeNB40と無線通信を行う。3GPP通信部21は、UE20が電源OFF状態からON状態へ遷移した場合に、ATTACH RequestメッセージをeNB40へ送信する。さらに、3GPP通信部21は、定期的に、UE20の位置情報を送信する、TAU RequestメッセージをeNB40へ送信する。もしくは、3GPP通信部21は、MMEの変更を伴う移動をした場合、TAU RequestメッセージをeNB40へ送信する。   The 3GPP communication unit 21 performs radio communication with the eNB 40. For example, the 3GPP communication unit 21 performs radio communication with the eNB 40 using LTE as a radio communication method. The 3GPP communication unit 21 transmits an ATTACH Request message to the eNB 40 when the UE 20 transitions from the power OFF state to the ON state. Further, the 3GPP communication unit 21 periodically transmits a TAU Request message for transmitting the location information of the UE 20 to the eNB 40. Alternatively, the 3GPP communication unit 21 transmits a TAU Request message to the eNB 40 when moving with a change of the MME.

Non−3GPP通信部22は、IPアクセス装置32と無線通信を行う。例えば、Non−3GPP通信部22は、IPアクセス装置32と無線LAN通信を行ってもよく、その他の通信方式を用いてIPアクセス装置32と通信を行ってもよい。   The Non-3GPP communication unit 22 performs wireless communication with the IP access device 32. For example, the Non-3GPP communication unit 22 may perform wireless LAN communication with the IP access device 32 or may communicate with the IP access device 32 using other communication methods.

続いて、図5及び図6を用いて本発明の実施の形態2にかかるTAU処理および3GPP通信エリア内でのハンドオーバの処理の流れについて説明する。図5及び図6は、3GPP TS 23.401 V13.1.0 (2014-12)におけるFigure 5.3.3.1-1を参照している。また、図5及び図6においては、HSS12が再開し(S1)、HSS12が、MME13及びMME14へReset通知を送信している(S2及びS3)ことを前提とする。はじめに、UE20は、TAU処理を開始することを決定する(S11)。例えば、UE20は、MMEの変更を伴う位置に移動した場合、もしくは、TAU処理を開始する定期タイミングを検出した場合に、TAU処理を開始する。図5においては、UE20が、MMEの変更を伴う位置に移動した場合のTAU処理の流れについて説明する。   Subsequently, the flow of the TAU process and the handover process in the 3GPP communication area according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6. 5 and 6 refer to Figure 5.3.3.1-1 in 3GPP TS 23.401 V13.1.0 (2014-12). 5 and 6, it is assumed that the HSS 12 has restarted (S1) and the HSS 12 has transmitted a Reset notification to the MME 13 and the MME 14 (S2 and S3). First, the UE 20 determines to start the TAU process (S11). For example, the UE 20 starts the TAU process when it moves to a position that involves a change in MME or when it detects a periodic timing for starting the TAU process. In FIG. 5, the flow of the TAU process when the UE 20 moves to a position with an MME change will be described.

次に、UE20は、eNB41を介してMME14へTAU Requestメッセージを送信する(S12及びS13)。MME14は、移動後のUE20を管理するMME(new MME)である。また、移動前のUE20を管理していたMME(old MME)は、MME13とする。   Next, UE20 transmits a TAU Request message to MME14 via eNB41 (S12 and S13). The MME 14 is an MME (new MME) that manages the UE 20 after movement. Moreover, MME (old MME) which managed UE20 before movement is set to MME13.

次に、MME14は、移動前のUE20を管理していたMME13へ、UE20に関する加入者情報等の送信を要求するためにContext Requestメッセージを送信する(S14)。次に、MME13は、UE20に関するPGW IDを含む加入者情報等を設定したContext ResponseメッセージをMME14へ送信する(S15)。次に、UE20とMME14との間、さらに、MME14とHSS12との間において、UE20に関する認証処理を実行する(S16)。   Next, the MME 14 transmits a Context Request message to the MME 13 that has managed the UE 20 before moving in order to request transmission of subscriber information and the like regarding the UE 20 (S14). Next, the MME 13 transmits a Context Response message in which subscriber information including the PGW ID related to the UE 20 is set to the MME 14 (S15). Next, the authentication process regarding UE20 is performed between UE20 and MME14, and also between MME14 and HSS12 (S16).

次に、MME14は、UE20の移動に伴い、UE20を収容するゲートウェイ装置を、SGW(Serving Gateway)50からSGW60へ変更することを指示するために、MME13へ、Context Acknowledgeメッセージを送信する(S17)。   Next, the MME 14 transmits a Context Acknowledge message to the MME 13 in order to instruct to change the gateway apparatus accommodating the UE 20 from the SGW (Serving Gateway) 50 to the SGW 60 as the UE 20 moves (S17). .

次に、MME14は、SGW60へ、PGW11との間における通信ベアラを生成することを指示するために、Create Session Requestメッセージを送信する(S18)。次に、SGW60は、通信ベアラの生成を要求するために、PGW11へModify Bearer Requestメッセージを送信する(S19)。次に、PGW11は、Modify Bearer Requestメッセージに対する応答として、Modify Bearer ResponseメッセージをSGW60へ送信する(S20)。次に、SGW60は、ステップS18におけるCreate Session Requestメッセージに対する応答として、Create Session ResponseメッセージをMME14へ送信する(S21)。このようにして、UE20は、SGW60を介して、PGW11との間にPDN Connectionを確立する。   Next, the MME 14 transmits a Create Session Request message to instruct the SGW 60 to generate a communication bearer with the PGW 11 (S18). Next, the SGW 60 transmits a Modify Bearer Request message to the PGW 11 in order to request generation of a communication bearer (S19). Next, the PGW 11 transmits a Modify Bearer Response message to the SGW 60 as a response to the Modify Bearer Request message (S20). Next, the SGW 60 transmits a Create Session Response message to the MME 14 as a response to the Create Session Request message in Step S18 (S21). In this way, the UE 20 establishes a PDN connection with the PGW 11 via the SGW 60.

次に、MME14は、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを含むActive APN AVPを設定したUpdate Location RequestメッセージをHSS12へ送信する(S22)。Active APN AVPが設定されたUpdate Location Requestメッセージを図7で示す。図7は、3GPP TS 29.272 V13.2.0 (2015-06) Table 5.2.1.1.1/1を参照している。MME14は、UE20に関するLICHがNot Confirmedとして管理されているか否かにかかわらず、Update Location Requestメッセージに、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを含むActive APN AVPを設定する。言い換えると、MME14は、HSS12の再開もしくはReset処理に伴い、HSS12におけるPGW IDの再設定が必要か否かにかかわらず、Update Location RequestメッセージにPGW IDを含むActive APN AVPを設定する。また、MME14は、MME13からContext ResponseメッセージによりPGW IDの情報を取得している。そのため、MME14は、取得したPGW IDを用いて、UEが移動前に接続していたPGWと同じPGWに接続し、HSS再開後においても正常にハンドオーバを実行することができる。   Next, the MME 14 transmits an Update Location Request message in which an Active APN AVP including the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 is set to the HSS 12 (S22). FIG. 7 shows an Update Location Request message in which the Active APN AVP is set. FIG. 7 refers to 3GPP TS 29.272 V13.2.0 (2015-06) Table 5.2.1.1.1 / 1. The MME 14 sets the Active APN AVP including the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 in the Update Location Request message regardless of whether or not the LICH related to the UE 20 is managed as Not Confirmed. To do. In other words, the MME 14 sets the Active APN AVP including the PGW ID in the Update Location Request message regardless of whether or not the PGW ID needs to be reset in the HSS 12 when the HSS 12 is restarted or reset. In addition, the MME 14 acquires information on the PGW ID from the MME 13 by using a Context Response message. Therefore, the MME 14 can use the acquired PGW ID to connect to the same PGW that the UE was connected to before moving, and can normally perform a handover even after the HSS is resumed.

続いて、図8を用いて本発明の実施の形態2にかかる3GPP通信エリアからnon−3GPP通信エリアへのハンドオーバ処理の流れについて説明する。図8は、非特許文献3内のFigure 8.2.2-1を参照している。はじめに、UE20は、3GPP通信エリア内において通信を行っていることを前提とする。この時、SGW60とPGW11との間は、PMIPv6もしくはGTP tunnelを用いて通信ベアラが設定されていることを前提とする(S31)。   Next, a flow of handover processing from the 3GPP communication area to the non-3GPP communication area according to the second embodiment of the present invention will be described using FIG. FIG. 8 refers to FIG. 8.2.2-1 in Non-Patent Document 3. First, it is assumed that the UE 20 performs communication in the 3GPP communication area. At this time, it is assumed that a communication bearer is set between SGW 60 and PGW 11 using PMIPv6 or GTP tunnel (S31).

次に、UE20が3GPP通信エリアからNon−3GPP通信エリアへ移動した場合について説明する。この時、UE20は、IPアクセス装置32を検出する(S32)。UE20がIPアクセス装置32を検出すると、UE20とIPアクセス装置32との間において、認証処理が実行される(S33)。また、UE20に関する認証は、ネットワーク内においても実行される(S34)。ステップS34の認証処理において、AAAサーバ31は、HSS12へ問い合わせを行って、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを取得し、そのPGW IDをAAA Proxy71へ送信する。なお、AAA Proxy71は、AAAサーバ31のProxyサーバとして用いられる。   Next, a case where the UE 20 moves from the 3GPP communication area to the Non-3GPP communication area will be described. At this time, the UE 20 detects the IP access device 32 (S32). When the UE 20 detects the IP access device 32, an authentication process is executed between the UE 20 and the IP access device 32 (S33). Moreover, the authentication regarding UE20 is performed also in a network (S34). In the authentication process of step S34, the AAA server 31 makes an inquiry to the HSS 12, acquires the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20, and transmits the PGW ID to the AAA proxy 71. The AAA proxy 71 is used as a proxy server for the AAA server 31.

さらに、ステップS34の認証処理において、AAA Proxy71は、AAAサーバ31から受信したPGW IDをIPアクセス装置32へ送信する。   Further, in the authentication process of step S 34, the AAA proxy 71 transmits the PGW ID received from the AAA server 31 to the IP access device 32.

次に、UE20は、IPアクセス装置32との間において、L3 Attach Trigger処理を実行する(S35)。これにより、例えば、UE20は、3GPP通信エリアにおける通信時に使用していたAPNに関する情報をIPアクセス装置32へ送信する。   Next, the UE 20 executes L3 Attach Trigger processing with the IP access device 32 (S35). Thereby, for example, the UE 20 transmits information on the APN used at the time of communication in the 3GPP communication area to the IP access device 32.

次に、IPアクセス装置32とvPCRF(Policy and Charging Rules Function)72との間、さらに、vPCRF72とhPCRF73との間において、Gateway Control Session Establishment Procedureが実行される(S36)。PCRFは、UE20に関するQoSポリシー等を管理するノード装置である。vPCRF72は、UE20がローミングした際に、ローミング先のネットワークにおいて、UE20に関するポリシー制御を実行する。hPCRF73は、UE20のホーム網内において、UE20に関するポリシー制御を実行する。   Next, a Gateway Control Session Establishment Procedure is executed between the IP access device 32 and the vPCRF (Policy and Charging Rules Function) 72, and further between the vPCRF 72 and the hPCRF 73 (S36). The PCRF is a node device that manages a QoS policy or the like related to the UE 20. The vPCRF 72 executes policy control related to the UE 20 in the roaming destination network when the UE 20 roams. The hPCRF 73 executes policy control related to the UE 20 in the home network of the UE 20.

ステップS36において、hPCRF73は、vPCRF72へ、UE20に関するQoSポリシー情報等を送信する。さらに、vPCRF72は、IPアクセス装置32へ、UE20に関するQoSポリシー情報等を送信(転送)する。   In step S <b> 36, the hPCRF 73 transmits the QoS policy information regarding the UE 20 to the vPCRF 72. Further, the vPCRF 72 transmits (transfers) QoS policy information and the like related to the UE 20 to the IP access device 32.

次に、IPアクセス装置32は、ステップS34において受信したPGW11のPGW IDを用いて、PGW11へProxy Binding Updateを送信する(S37)。PGW11は、Proxy Binding Updateを受信することによって、3GPP通信エリアにおけるUE20との通信に用いるPDN Connectionと、Non−3GPP通信エリアにおける通信ベアラもしくは通信コネクションとを関連づけて、UE20のハンドオーバ処理を実行する。   Next, the IP access device 32 transmits Proxy Binding Update to the PGW 11 using the PGW ID of the PGW 11 received in Step S34 (S37). By receiving the Proxy Binding Update, the PGW 11 associates the PDN Connection used for communication with the UE 20 in the 3GPP communication area and the communication bearer or communication connection in the Non-3GPP communication area, and executes the handover process of the UE 20.

以上説明したように、本発明の実施の形態2にかかる移動通信システムを用いることによって、HSS12は、UE20がTAU処理を実行するたびに、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを取得することができる。言い換えると、MME14は、LICHがNot Confirmedとして管理されているか否かにかかわらず、UE20のTAU処理の度に、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDをHSS12へ送信する。   As described above, by using the mobile communication system according to the second embodiment of the present invention, the HSS 12 establishes a PDN connection used for communication with the UE 20 every time the UE 20 executes the TAU process. PGW ID can be obtained. In other words, the MME 14 sends the PGW ID of the PGW 11 that establishes the PDN Connection used for communication with the UE 20 to the HSS 12 every time the TAU process of the UE 20 is performed regardless of whether or not the LICH is managed as Not Confirmed. To do.

これにより、HSS12が再開後に、UE20がMMEの変更を伴う移動をした場合であっても、HSS12は、移動後のUE20に関する移動管理を行うMME14から、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを受信することができる(S22)。これにより、AAAサーバ31は、HSS12の再開後であっても、HSS12からUE20に関するPGW IDを取得することができるため、UE20は、移動前後で同じPGWへアクセスすることが可能となり、そのPGWをアンカーポイントとして3GPP通信エリアからNon−3GPP通信エリアへ正常にハンドオーバすることができる。その結果、UEは、移動先でも同じPGWを介して外部ネットワークからサービスを受け続けることができる。   As a result, even if the UE 20 moves with the change of the MME after the HSS 12 resumes, the HSS 12 establishes a PDN Connection used for communication with the UE 20 from the MME 14 that performs the mobility management related to the UE 20 after the movement. The PGW ID of the PGW 11 being received can be received (S22). As a result, the AAA server 31 can acquire the PGW ID related to the UE 20 from the HSS 12 even after the HSS 12 is restarted. Therefore, the UE 20 can access the same PGW before and after the movement. As an anchor point, a normal handover can be performed from the 3GPP communication area to the Non-3GPP communication area. As a result, the UE can continue to receive services from the external network via the same PGW even at the movement destination.

なお、実施の形態2においては、移動管理装置100として主にMMEを用いて説明したが、図9に示すように、MMEの替りにSGSN110及びSGSN111が用いられてもよい。この場合、図2におけるMME13は、SGSN110に置き換えられ、MME14は、SGSN111に置き換えられる。さらに、図2におけるeNB40及びeNB41は、RNC130及びRNC131に置き換えられる。また、図2におけるHSS12は、HLR120に置き換えられる。その場合、UE20は、TAU処理の替りにRAU(Routing Area Update)処理を実行し、RAU RequestをRNC131を介してSGSN111に送信する。   In the second embodiment, the MME is mainly used as the mobility management apparatus 100. However, as shown in FIG. 9, SGSN 110 and SGSN 111 may be used instead of the MME. In this case, the MME 13 in FIG. 2 is replaced with the SGSN 110, and the MME 14 is replaced with the SGSN 111. Furthermore, eNB 40 and eNB 41 in FIG. 2 are replaced with RNC 130 and RNC 131. Further, the HSS 12 in FIG. 2 is replaced with the HLR 120. In that case, the UE 20 executes a RAU (Routing Area Update) process instead of the TAU process, and transmits a RAU Request to the SGSN 111 via the RNC 131.

(実施の形態3)
続いて、実施の形態3にかかるTAU処理の流れについて説明する。実施の形態3は、実施の形態2において説明した図5及び図6とTAU処理の流れは同様であり、メッセージの設定内容が異なる。そのため、実施の形態3においては、図5及び図6の中で、実施の形態2におけるメッセージと異なる内容を設定するメッセージについて主に説明する。
(Embodiment 3)
Subsequently, a flow of the TAU process according to the third embodiment will be described. The flow of TAU processing in the third embodiment is the same as that in FIGS. 5 and 6 described in the second embodiment, and the message setting contents are different. Therefore, in the third embodiment, in FIG. 5 and FIG. 6, a message for setting contents different from the message in the second embodiment will be mainly described.

また、実施の形態3においては、HSS12が再開し、Reset通知をMME13へ送信していることを前提とする。また、MME13は、Reset通知を受け取ることによって、UE20におけるLICHをNot Confirmedとして管理している。   In the third embodiment, it is assumed that the HSS 12 is restarted and a Reset notification is transmitted to the MME 13. Further, the MME 13 manages the LICH in the UE 20 as Not Confirmed by receiving the Reset notification.

また、UE20は、MME13によって管理されている位置から、MME14によって管理される位置へ移動する。このような状況において、UE20は、図5のステップS11以降のTAU処理を実行する。   Further, the UE 20 moves from a position managed by the MME 13 to a position managed by the MME 14. In such a situation, the UE 20 executes the TAU process after step S11 in FIG.

ステップS11〜S14は、実施の形態2と同様である。ステップS14において、MME13は、UE20に関するTAU処理が実行されていることを特定すると、ステップS15において、UE20に関して、LICHをNot Confirmedとして管理していることを設定したContext ResponseメッセージをMME14へ送信する。   Steps S11 to S14 are the same as those in the second embodiment. In step S14, when the MME 13 specifies that the TAU process related to the UE 20 is being performed, in step S15, the MME 13 transmits to the MME 14 a Context Response message that sets that LICH is managed as Not Confirmed.

ここで、図10を用いてContext Responseメッセージの設定内容について説明する。図10は、3GPP TS29.274 V13.2.0 (2015-06) Table 7.3.6-1を参照している。図10は、Context Responseメッセージに、PDN Connection毎に設定されるデータがあることを示す、MME/SGSN UE EPS PDN Connectionsが設定されることを示している。また、MME/SGSN UE EPS PDN ConnectionsのIE(Information Element) Typeが、PDN Connectionであることを示している。さらに、Context ResponseメッセージのIndication Flagsに、LICHが追加されていることを示している。また、Indication FlagsのIE Typeが、Indicationであることを示している。   Here, the setting contents of the Context Response message will be described with reference to FIG. FIG. 10 refers to 3GPP TS29.274 V13.2.0 (2015-06) Table 7.3.6-1. FIG. 10 shows that MME / SGSN UE EPS PDN Connections indicating that there is data set for each PDN Connection is set in the Context Response message. Further, it is indicated that the IE (Information Element) Type of MME / SGSN UE EPS PDN Connections is PDN Connection. Furthermore, it is shown that LICH is added to Indication Flags of the Context Response message. In addition, the IE Type of Indication Flags indicates Indication.

ここで、図11を用いて、Context ResponseメッセージのIndication Flagsに設定されるIndicationの設定内容について説明する。図11は、3GPP TS29.274 V13.2.0 (2015-06) Figure 8.12-1を参照している。図11においては、Octet 9のBit 5に、LICHに関するフラグが設定されることを示している。例えば、Octet 9のBit 5に1が設定された場合、MME14がHSS12へUpdate Location Requestメッセージを送信する際に、Active APNがUpdate Location Requestメッセージに設定されることが必要であることを示している。つまり、Octet 9のBit 5に1が設定された場合、LICHがNot Confirmedであることを示している。   Here, the setting contents of Indication set in Indication Flags of the Context Response message will be described with reference to FIG. FIG. 11 refers to 3GPP TS29.274 V13.2.0 (2015-06) Figure 8.12-1. FIG. 11 shows that a flag related to LICH is set in Bit 5 of Octet 9. For example, when 1 is set in Bit 5 of Octet 9, when the MME 14 transmits the Update Location Request message to the HSS 12, it indicates that the Active APN needs to be set in the Update Location Request message. . That is, when 1 is set in Bit 5 of Octet 9, it indicates that LICH is Not Confirmed.

ここで、図12を用いて、Context ResponseメッセージのMME/SGSN UE EPS PDN Connectionsの設定内容について説明する。図12は、3GPP TS29.274 V13.2.0 (2015-06) Table 7.3.6-2を参照している。図12においては、PDN Connectionの識別情報を示すContext Identifierが追加されていることを示している。Context Identifierは、PDN Connectionを識別するために用いられる情報であり、後に説明するActive-APN AVPを送信する際に用いられる。そのため、MME13は、Context Responseメッセージに、UE20に関するLICHがNot Confirmedであることを示すフラグと伴に、Context Identifierを設定する。また、MME13は、PGW11のPGW IDを含むContext ResponseメッセージをMME14へ送信する。ここでは、MME/SGSN UE EPS PDN Connections IEを用いてPGW IDに関する情報をMME13からMME14に転送するとしているが、PGW IDに関する情報を専用のIEを用いて転送してもかまわない。   Here, the setting contents of the MME / SGSN UE EPS PDN Connections of the Context Response message will be described with reference to FIG. FIG. 12 refers to 3GPP TS29.274 V13.2.0 (2015-06) Table 7.3.6-2. FIG. 12 shows that a Context Identifier indicating PDN Connection identification information is added. The Context Identifier is information used to identify the PDN Connection, and is used when transmitting an Active-APN AVP described later. Therefore, the MME 13 sets a Context Identifier in the Context Response message together with a flag indicating that the LICH related to the UE 20 is Not Confirmed. Further, the MME 13 transmits a Context Response message including the PGW ID of the PGW 11 to the MME 14. Here, the information about the PGW ID is transferred from the MME 13 to the MME 14 using the MME / SGSN UE EPS PDN Connections IE, but the information about the PGW ID may be transferred using a dedicated IE.

図5及び図6に戻り、ステップS16〜S21は、実施の形態2と同様である。ステップS22において、MME14は、UE20に関するLICHがNot Confirmedであるために、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを含むActive-APN AVPを設定したULRメッセージをHSS12へ送信する。例えば、ステップS15において、MME14は、Indicationを示す領域のOctet 9のBit 5に1が設定されたContext Responseメッセージを受信した場合、ステップS15のContext Responseメッセージに設定されたContext IdentifierをActive-APN AVPに設定する。それにより、ステップS22において、MME14は、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを含むActive-APN AVPを設定したULRメッセージをHSS12へ送信する。   Returning to FIG. 5 and FIG. 6, steps S16 to S21 are the same as those in the second embodiment. In step S22, since the LICH related to the UE 20 is Not Confirmed, the MME 14 transmits, to the HSS 12, the ULR message in which the Active-APN AVP including the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 is set. To do. For example, in step S15, when the MME 14 receives a Context Response message in which Bit 5 of Octet 9 in the area indicating Indication is set to 1, the MME 14 sets the Context Identifier set in the Context Response message in step S15 to Active-APN AVP. Set to. Thereby, in step S22, MME14 transmits the ULR message which set Active-APN AVP containing PGW ID of PGW11 which has established PDN Connection used for communication with UE20 to HSS12.

以上説明したように、移動後のUE20を管理することになったMME14は、移動前のUE20を管理していたMME13から送信されるContext Responseメッセージによって、UE20に関するLICHの管理状態を把握することができる。つまり、UE20が移動することによって、UE20を管理するMMEが、MME13からMME14へ変更した場合であっても、MME14へ、LICHの管理状態を引き継ぐことができる。そのため、HSS12は、MME14からULRメッセージを受信することによって、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを取得することができる。   As described above, the MME 14 that has managed the UE 20 after moving can grasp the LICH management state related to the UE 20 by the Context Response message transmitted from the MME 13 that has managed the UE 20 before moving. it can. That is, even if the MME that manages the UE 20 changes from the MME 13 to the MME 14 due to the movement of the UE 20, the management state of the LICH can be taken over to the MME 14. Therefore, the HSS 12 can acquire the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 by receiving the ULR message from the MME 14.

その結果、UE20がMMEの変更を伴う移動後に、Non−3GPP通信エリアへ移動した場合であっても、AAAサーバ31は、再開したHSS12から、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを取得することができる。そのため、UE20は、3GPP通信エリアからNon−3GPP通信エリアへ正常にハンドオーバすることができる。   As a result, even if the UE 20 moves to the Non-3GPP communication area after moving with the change of the MME, the AAA server 31 has established a PDN connection used for communication with the UE 20 from the resumed HSS 12. The PGW ID of the PGW 11 can be acquired. Therefore, the UE 20 can normally hand over from the 3GPP communication area to the Non-3GPP communication area.

(実施の形態4)
続いて、実施の形態4にかかるTAU処理の流れについて説明する。実施の形態4は、実施の形態2において説明した図5及び図6とTAU処理の流れは同様であり、メッセージに設定する内容が異なる。そのため、実施の形態4においては、図5及び図6の中で、実施の形態2のメッセージと異なる内容を設定するメッセージについて主に説明する。
(Embodiment 4)
Next, the flow of the TAU process according to the fourth embodiment will be described. The flow of TAU processing in the fourth embodiment is the same as that in FIGS. 5 and 6 described in the second embodiment, and the contents set in the message are different. Therefore, in the fourth embodiment, in FIG. 5 and FIG. 6, a message for setting contents different from the message of the second embodiment will be mainly described.

また、実施の形態4においては、HSS12が再開し、Reset通知をMME13へ送信していることを前提とする。また、MME13は、Reset通知を受け取ることによって、UE20におけるLICHをNot Confirmedとして管理する。   In the fourth embodiment, it is assumed that the HSS 12 is restarted and a Reset notification is transmitted to the MME 13. Further, the MME 13 manages the LICH in the UE 20 as Not Confirmed by receiving the Reset notification.

また、UE20は、MME13によって管理されている位置から、MME14によって管理される位置へ移動する。このような状況において、UE20は、図5のステップS11以降のTAU処理を実行する。   Further, the UE 20 moves from a position managed by the MME 13 to a position managed by the MME 14. In such a situation, the UE 20 executes the TAU process after step S11 in FIG.

さらに、3GPP TS 29.272 V13.2.0 (2015-06) Table 7.7.31/1には、HSS12において、UE20の使用が制限されるアクセスネットワークを示すAccess-Restriction-Data(ARD)を保持することが規定されている。ARDは、図13に示すように、ARDが設定される領域と、制限内容とが関連付けて規定されている。例えば、ARDを示す領域のBit 5に、1が設定された場合、UE20は、Non−3GPP通信エリアへのハンドオーバが許可されないことを示している。また、ARDを示す領域の各Bitに、0が設定された場合、各Bitに関連付けられているアクセスネットワークの使用が制限されないことを示している。   Furthermore, 3GPP TS 29.272 V13.2.0 (2015-06) Table 7.7.31 / 1 stipulates that HSS12 retains Access-Restriction-Data (ARD) indicating an access network in which use of UE20 is restricted. Has been. As shown in FIG. 13, the ARD is defined by associating an area where the ARD is set and the restriction content. For example, when 1 is set in Bit 5 of the area indicating ARD, the UE 20 indicates that handover to the Non-3GPP communication area is not permitted. In addition, when 0 is set in each Bit in the area indicating ARD, it indicates that the use of the access network associated with each Bit is not restricted.

さらに、HSS12は、MME13に対して、ARDに関する情報を送信する。例えば、HSS12は、周期的なUE20のTAU処理において、Update Location Requestメッセージの応答メッセージであるUpdate Location AnswerメッセージにARDに関する情報を設定して、MME13に送信する。   Further, the HSS 12 transmits information regarding the ARD to the MME 13. For example, in periodic TAU processing of the UE 20, the HSS 12 sets ARD-related information in an Update Location Answer message that is a response message to the Update Location Request message, and transmits the information to the MME 13.

ここで、図5のステップS14において、MME13は、UE20に関するTAU処理が実行されていることを特定すると、MME13は、UE20のARDを示す領域のBit 5に0が設定されているか確認する。ARDを示す領域のBit 5に0が設定されていることは、UE20がNon−3GPP通信エリアへハンドオーバすることが許可されていることを示す。   Here, in step S14 of FIG. 5, when the MME 13 specifies that the TAU process related to the UE 20 is being performed, the MME 13 confirms whether 0 is set in Bit 5 of the area indicating the ARD of the UE 20. The fact that 0 is set in Bit 5 of the area indicating ARD indicates that the UE 20 is permitted to perform handover to the Non-3GPP communication area.

MME13は、UE20に関するTAU処理が実行されていることを特定すると、UE20のARDを示す領域のBit 5に0が設定されていることを確認した場合、MME14へ指示情報を送信する。具体的には、MME13は、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを含むActive-APNを設定したULRメッセージをHSS12へ送信することを指示する情報をContext Responseメッセージに設定し、そのContext ResponseメッセージをMME14へ送信する。ARDを示す領域のBit 5は、HTN3AA(Handover To Non 3GPP- Access Not Allowed)の状態を意味するフラグである。なお、この状態を意味することをARD以外で定義し、MME13が、そのことをContext Responseメッセージに設定してMME14へ通知してもかまわない。   When the MME 13 determines that the TAU process related to the UE 20 is being executed, the MME 13 transmits instruction information to the MME 14 when confirming that Bit 5 in the area indicating the ARD of the UE 20 is set to 0. Specifically, the MME 13 sets, in the Context Response message, information that instructs the HSS 12 to transmit the ULR message in which the Active-APN including the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 is set. The Context Response message is set and transmitted to the MME 14. Bit 5 of the area indicating ARD is a flag indicating a state of HTN3AA (Handover To Non 3GPP-Access Not Allowed). It should be noted that it may be defined other than ARD to mean this state, and the MME 13 may notify the MME 14 by setting this in a Context Response message.

MME14は、ステップS15において、Active-APN AVPを含むULRメッセージをHSS12へ送信することを指示する情報を取得すると、ステップS22において、PGW IDを含むActive-APNを設定したULRメッセージをHSS12へ送信する。   In step S15, when the MME 14 obtains information instructing to transmit the ULR message including the Active-APN AVP to the HSS 12, in step S22, the MME 14 transmits the ULR message in which the Active-APN including the PGW ID is set to the HSS 12. .

さらに、MME13は、UE20のARDを示す領域のBit 5に0が設定され、かつ、LICHがNot Confirmedと管理されている場合に、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを含むActive-APNを設定したULRメッセージをHSS12へ送信することを指示する情報をContext Responseメッセージに設定してもよい。そうして、MME13は、そのContext ResponseメッセージをMME14に送信してもよい。   Furthermore, when 0 is set in Bit 5 of the area indicating the ARD of the UE 20 and the LICH is managed as Not Confirmed, the MME 13 establishes the PDN connection used for communication with the UE 20 and the PGW of the PGW 11 Information instructing transmission of the ULR message in which the Active-APN including the ID is set to the HSS 12 may be set in the Context Response message. Then, the MME 13 may transmit the Context Response message to the MME 14.

以上説明したように、MME13は、ARDに示される制限内容を用いて、移動後のUE20を管理するMME14に対して、ULRメッセージの内容に関する指示情報を送信することができる。つまり、MME13は、ULRメッセージにUE20が通信ベアラを設定しているPGW11のPGW IDを設定することをMME14に指示することができる。   As described above, the MME 13 can transmit the instruction information regarding the content of the ULR message to the MME 14 that manages the UE 20 after movement, using the restriction content indicated in the ARD. That is, the MME 13 can instruct the MME 14 to set the PGW ID of the PGW 11 for which the UE 20 has set the communication bearer in the ULR message.

また、実施の形態4においては、MME14は、UE20がNon−3GPP通信エリアへハンドオーバすることが許可されている場合にのみ、Active-APNをULRメッセージに設定する。これにより、実施の形態4における処理を実行した場合、常にULRメッセージにActive-APNを設定する実施の形態1及び2の場合と比較して、ULRメッセージの情報量を削減することができる。   Moreover, in Embodiment 4, MME14 sets Active-APN to a ULR message, only when UE20 is permitted to hand over to a Non-3GPP communication area. Thereby, when the processing in the fourth embodiment is executed, the information amount of the ULR message can be reduced as compared with the first and second embodiments in which the Active-APN is always set in the ULR message.

なお、実施の形態3および4においても、MME13,14の替りにSGSN110,111が用いられてもよく、eNB40及びeNB41の替わりにRNC130及びRNC131が用いられても良く、HSS12の替わりにHLR120が用いられてもよい。その場合、UE20は、TAU処理の替りにRAU処理を実行し、RAU RequestをRNC131を介してSGSN111に送信する。   In Embodiments 3 and 4, SGSN 110 and 111 may be used instead of MME 13 and 14, RNC 130 and RNC 131 may be used instead of eNB 40 and eNB 41, and HLR 120 is used instead of HSS 12. May be. In that case, the UE 20 executes the RAU process instead of the TAU process, and transmits the RAU Request to the SGSN 111 via the RNC 131.

(実施の形態5)
続いて、図14、及び図15用いて本発明の実施の形態5にかかる3GPP通信エリアからnon−3GPP通信エリアへのハンドオーバ処理の流れについて説明する。図14は、非特許文献3内のFigure 8.2.2-1を参照している。はじめに、UE20は、3GPP通信エリア内において通信を行っていることを前提とする。この時、SGW60とPGW11との間は、PMIPv6もしくはGTP tunnelを用いて通信ベアラが設定されていることを前提とする(S31)。
(Embodiment 5)
Subsequently, the flow of the handover process from the 3GPP communication area to the non-3GPP communication area according to the fifth embodiment of the present invention will be described with reference to FIGS. 14 and 15. FIG. 14 refers to FIG. 8.2.2-1 in Non-Patent Document 3. First, it is assumed that the UE 20 performs communication in the 3GPP communication area. At this time, it is assumed that a communication bearer is set between SGW 60 and PGW 11 using PMIPv6 or GTP tunnel (S31).

次に、UE20が3GPP通信エリアからNon−3GPP通信エリアへ移動した場合について説明する。この時、UE20は、IPアクセス装置32を検出する(S32)。UE20がIPアクセス装置32を検出すると、UE20とIPアクセス装置32との間において、認証処理が実行される(S33)。また、UE20に関する認証は、ネットワーク内においても実行される(S34)。ステップS34の認証処理において、HSS12/AAAサーバ31は、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを、AAA Proxy71へ送信する必要があるが、HSS12が再開した事でHSS12がUE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDがHSS12から削除されている場合がある。この場合、HSS12は、UE20の移動先となっているMME14に問い合わせを行う事で、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを取得し、その後AAA Proxy71へ送信する。AAA Proxy71は、AAAサーバ31のProxyサーバとして用いられる。   Next, a case where the UE 20 moves from the 3GPP communication area to the Non-3GPP communication area will be described. At this time, the UE 20 detects the IP access device 32 (S32). When the UE 20 detects the IP access device 32, an authentication process is executed between the UE 20 and the IP access device 32 (S33). Moreover, the authentication regarding UE20 is performed also in a network (S34). In the authentication process of step S34, the HSS 12 / AAA server 31 needs to transmit the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 to the AAA Proxy 71, but the HSS 12 is restarted so that the HSS 12 The PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 may be deleted from the HSS 12. In this case, the HSS 12 obtains the PGW ID of the PGW 11 that has established the PDN connection used for communication with the UE 20 by making an inquiry to the MME 14 that is the destination of the UE 20, and then transmits the PGW ID to the AAA Proxy 71. The AAA proxy 71 is used as a proxy server of the AAA server 31.

ここで、図15を用いてHSS12が再開した事でHSS12がUE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDがHSS12から削除されている場合でのAAAサーバ31、HSS12、及びMME14の間で行われる認証処理の詳細を説明する。HSS12で再開動作が発生した場合(S41)、HSS12は、関連MMEに対してRESETメッセージを送付する(S42)。RESETメッセージを受信したMME14は、RESETメッセージが送られてきたHSS12に収容されている全ての加入者をリスト化してRESET ANSWERメッセージに設定し、RESET ANSWERメッセージをHSS12に送信する(S43)。ここで設定される加入者をリストは、IMSIで構成されても他のUser Identityで構成されても構わない。HSS12は、MME単位に加入者リストを保持する事で、RESET処理以降、加入者と加入者が移動先とするMMEの関連付けを管理する事ができる。この関連付けは、下記において説明するHSS12からMME14に対する問い合わせ動作を可能とするものであるが、SMS着信、ネットワーク起動の加入者位置検索、MTCサーバからのサービス提供など、その他の動作に用いられても構わない。ここで、UE20が、3GPP通信エリアからNon−3GPP通信エリアへ移動したとする(S44)。   Here, the AAA server 31, the HSS 12, and the PGW ID of the PGW 11 that has established the PDN Connection used by the HSS 12 for communication with the UE 20 due to the restart of the HSS 12 using FIG. 15 are deleted from the HSS 12. Details of the authentication process performed between the MMEs 14 will be described. When the restart operation occurs in the HSS 12 (S41), the HSS 12 sends a RESET message to the related MME (S42). The MME 14 that has received the RESET message lists all the subscribers accommodated in the HSS 12 to which the RESET message has been sent, sets it as a RESET ANSWER message, and transmits the RESET ANSWER message to the HSS 12 (S43). The list of subscribers set here may be configured by IMSI or another user identity. The HSS 12 can manage the association between the subscriber and the MME that the subscriber moves to after the RESET process by holding the subscriber list in MME units. This association enables an inquiry operation from the HSS 12 to the MME 14, which will be described below. However, the association may be used for other operations such as SMS reception, network-initiated subscriber location search, service provision from the MTC server, and the like. I do not care. Here, it is assumed that the UE 20 has moved from the 3GPP communication area to the Non-3GPP communication area (S44).

UE20の認証要求として、HSS12は、AAAサーバ31よりSTa Access Authentication and Authorization Requestメッセージを受信する。(S45)STa Access Authentication and Authorization Requestメッセージには、IMSI相当のパラメータがUser Identityとして設定されている。HSS12は、User Identityに対するPGW IDを保持して無い場合、HSS12は、更にMMEに対してStatus request メッセージを送信する。(S46)このメッセージにはIMSI相当の加入者情報、及びUE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDに関する情報を要求する旨を示す情報要素が含まれる。また、Status requestメッセージは、RESET REQUEST メッセージ、或いは他のメッセージでもあっても良い。Status requestメッセージを受けたMME14は、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDに関する情報を設定しStatus answerメッセージをHSS12に送信する。(S47)。また、Status answerメッセージは、RESET ANSWER メッセージ、或いは他のメッセージであっても良い。HSS12は、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDに関する情報を設定したTrusted non-3GPP Access Authentication and Authorization AnswerメッセージをAAAサーバ31に送信する。(S48)   As an authentication request for the UE 20, the HSS 12 receives an STa Access Authentication and Authorization Request message from the AAA server 31. (S45) In the STa Access Authentication and Authorization Request message, a parameter corresponding to IMSI is set as User Identity. When the HSS 12 does not hold the PGW ID for the User Identity, the HSS 12 further transmits a Status request message to the MME. (S46) This message includes subscriber information corresponding to IMSI and an information element indicating that information on the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 is requested. Further, the Status request message may be a RESET REQUEST message or another message. The MME 14 that has received the Status request message sets information on the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20, and transmits a Status answer message to the HSS 12. (S47). In addition, the Status answer message may be a RESET ANSWER message or another message. The HSS 12 transmits to the AAA server 31 a Trusted non-3GPP Access Authentication and Authorization Answer message in which information related to the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20 is set. (S48)

ここから、図14に戻りステップS34以降について継続して説明する。 From here, it returns to FIG. 14 and continues and demonstrates after step S34.

ステップS34の認証処理において、AAA Proxy71は、HSS12/AAAサーバ31から受信したPGW IDをIPアクセス装置32へ送信する。   In the authentication process of step S34, the AAA proxy 71 transmits the PGW ID received from the HSS 12 / AAA server 31 to the IP access device 32.

次に、UE20は、IPアクセス装置32との間において、L3 Attach Trigger処理を実行する(S35)。これにより、例えば、UE20は、3GPP通信エリアにおける通信時に使用していたAPNに関する情報をIPアクセス装置32へ送信する。   Next, the UE 20 executes L3 Attach Trigger processing with the IP access device 32 (S35). Thereby, for example, the UE 20 transmits information on the APN used at the time of communication in the 3GPP communication area to the IP access device 32.

次に、IPアクセス装置32とvPCRF(Policy and Charging Rules Function)72との間、さらに、vPCRF72とhPCRF73との間において、Gateway Control Session Establishment Procedureが実行される(S36)。PCRFは、UE20に関するQoSポリシー等を管理するノード装置である。vPCRF72は、UE20がローミングした際に、ローミング先のネットワークにおいて、UE20に関するポリシー制御を実行する。hPCRF73は、UE20のホーム網内において、UE20に関するポリシー制御を実行する。   Next, a Gateway Control Session Establishment Procedure is executed between the IP access device 32 and the vPCRF (Policy and Charging Rules Function) 72, and further between the vPCRF 72 and the hPCRF 73 (S36). The PCRF is a node device that manages a QoS policy or the like related to the UE 20. The vPCRF 72 executes policy control related to the UE 20 in the roaming destination network when the UE 20 roams. The hPCRF 73 executes policy control related to the UE 20 in the home network of the UE 20.

ステップS36において、hPCRF73は、vPCRF72へ、UE20に関するQoSポリシー情報等を送信する。さらに、vPCRF72は、IPアクセス装置32へ、UE20に関するQoSポリシー情報等を送信(転送)する。   In step S <b> 36, the hPCRF 73 transmits the QoS policy information regarding the UE 20 to the vPCRF 72. Further, the vPCRF 72 transmits (transfers) QoS policy information and the like related to the UE 20 to the IP access device 32.

次に、IPアクセス装置32は、ステップS34において受信したPGW11のPGW IDを用いて、PGW11へProxy Binding Updateを送信する(S37)。PGW11は、Proxy Binding Updateを受信することによって、3GPP通信エリアにおけるUE20との通信に用いるPDN Connectionと、Non−3GPP通信エリアにおける通信ベアラもしくは通信コネクションとを関連づけて、UE20のハンドオーバ処理を実行する。   Next, the IP access device 32 transmits Proxy Binding Update to the PGW 11 using the PGW ID of the PGW 11 received in Step S34 (S37). By receiving the Proxy Binding Update, the PGW 11 associates the PDN Connection used for communication with the UE 20 in the 3GPP communication area and the communication bearer or communication connection in the Non-3GPP communication area, and executes the handover process of the UE 20.

以上説明したように、本発明の実施の形態2にかかる移動通信システムを用いることによって、HSS12は、AAAサーバ31からの認証処理要求をトリガーにUE20の移動先となっているMME14に問い合わせを行う事ができる。その結果HSS12は、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを取得する事ができる。   As described above, by using the mobile communication system according to the second embodiment of the present invention, the HSS 12 makes an inquiry to the MME 14 that is the destination of the UE 20 using the authentication processing request from the AAA server 31 as a trigger. I can do things. As a result, the HSS 12 can acquire the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20.

これにより、HSS12が再開後に、UE20がMMEの変更を伴う移動をした場合であっても、HSS12は、移動後のUE20に関する移動管理を行うMME14から、UE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを受信することができる。これにより、AAAサーバ31は、HSS12の再開後であっても、HSS12からUE20に関するPGW IDを取得することができるため、UE20は、移動前後で同じPGWへアクセスすることが可能となり、そのPGWをアンカーポイントとして3GPP通信エリアからNon−3GPP通信エリアへ正常にハンドオーバすることができる。その結果、UEは、移動先でも同じPGWを介して外部ネットワークからサービスを受け続けることができる。   As a result, even if the UE 20 moves with the change of the MME after the HSS 12 resumes, the HSS 12 establishes a PDN Connection used for communication with the UE 20 from the MME 14 that performs the mobility management related to the UE 20 after the movement. The PGW ID of the PGW 11 being received can be received. As a result, the AAA server 31 can acquire the PGW ID related to the UE 20 from the HSS 12 even after the HSS 12 is restarted. Therefore, the UE 20 can access the same PGW before and after the movement. As an anchor point, a normal handover can be performed from the 3GPP communication area to the Non-3GPP communication area. As a result, the UE can continue to receive services from the external network via the same PGW even at the movement destination.

更に、この実施の形態5では、HSS12が再開し、MMEがRESET信号を受けた直後に、MMEと何ら通信をせず、UE20が3GPP通信エリアからNon−3GPP通信エリアへ移動した場合においても、AAAサーバ31はUE20との通信に用いるPDN Connectionを確立しているPGW11のPGW IDを取得することが可能となり同様の効果を奏する。   Further, in the fifth embodiment, immediately after the HSS 12 is restarted and the MME receives the RESET signal, the UE 20 does not communicate with the MME and the UE 20 moves from the 3GPP communication area to the Non-3GPP communication area. The AAA server 31 can acquire the PGW ID of the PGW 11 that has established the PDN Connection used for communication with the UE 20, and has the same effect.

なお、実施の形態2においては、移動管理装置100として主にMMEを用いて説明したが、図9に示すように、MMEの替りにSGSN110及びSGSN111が用いられてもよい。この場合、図2におけるMME13は、SGSN110に置き換えられ、MME14は、SGSN111に置き換えられる。さらに、図2におけるeNB40及びeNB41は、RNC130及びRNC131に置き換えられる。また、図2におけるHSS12は、HLR120に置き換えられる。その場合、UE20は、TAU処理の替りにRAU(Routing Area Update)処理を実行し、RAU RequestをRNCを介してSGSN111に送信する。   In the second embodiment, the MME is mainly used as the mobility management apparatus 100. However, as shown in FIG. 9, SGSN 110 and SGSN 111 may be used instead of the MME. In this case, the MME 13 in FIG. 2 is replaced with the SGSN 110, and the MME 14 is replaced with the SGSN 111. Furthermore, eNB 40 and eNB 41 in FIG. 2 are replaced with RNC 130 and RNC 131. Further, the HSS 12 in FIG. 2 is replaced with the HLR 120. In that case, UE20 performs RAU (Routing Area Update) process instead of TAU process, and transmits RAU Request to SGSN111 via RNC.

上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、移動通信システムを構成する各ノード装置における処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。   In the above-described embodiments, the present invention has been described as a hardware configuration, but the present invention is not limited to this. The present invention can also realize processing in each node device constituting the mobile communication system by causing a CPU (Central Processing Unit) to execute a computer program.

上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。   In the above example, the program can be stored and supplied to a computer using various types of non-transitory computer readable media. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (for example, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (for example, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)) are included. The program may also be supplied to the computer by various types of transitory computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

10 移動通信端末
11 PGW
12 HSS
13 MME
14 MME
15 通信部
16 制御部
20 UE
21 3GPP通信部
22 Non−3GPP通信部
31 AAAサーバ
32 IPアクセス装置
40 eNB
41 eNB
50 SGW
60 SGW
70 PCRF
71 AAA Proxy
72 vPCRF
73 hPCRF
100 移動管理装置
110 SGSN
111 SGSN
120 HLR
130 RNC
131 RNC
10 Mobile communication terminal 11 PGW
12 HSS
13 MME
14 MME
15 Communication unit 16 Control unit 20 UE
21 3GPP communication unit 22 Non-3GPP communication unit 31 AAA server 32 IP access device 40 eNB
41 eNB
50 SGW
60 SGW
70 PCRF
71 AAA Proxy
72 vPCRF
73 hPCRF
100 mobility management device 110 SGSN
111 SGSN
120 HLR
130 RNC
131 RNC

Claims (2)

端末のPDN (Packet Data Network) コネクションに係るPDNゲートウェイの識別子を保持していた加入者情報を管理する装置の再開後リセット手順が実行された場合であって、
前記端末のnon-3GPPアクセスへのハンドオーバが許可されている場合に、
TAU/RAU (Tracking Area Update/Routing Area Update) リクエスト、前記端末から無線アクセスネットワークノードを介して受信すると、
前記識別子を、前記装置に送信する、
コアネットワークノード
When a reset procedure is executed after restart of the device that manages the subscriber information that holds the identifier of the PDN gateway related to the PDN (Packet Data Network) connection of the terminal,
When handover to non-3GPP access of the terminal is permitted,
When a TAU / RAU (Tracking Area Update / Routing Area Update) request is received from the terminal via the radio access network node,
The identifier, and transmits to the device,
Core network node .
端末のPDN (Packet Data Network) コネクションに係るPDNゲートウェイの識別子を保持していた加入者情報を管理する装置の再開後リセット手順が実行された場合であって、  When a reset procedure is executed after restart of the device that manages the subscriber information that holds the identifier of the PDN gateway related to the PDN (Packet Data Network) connection of the terminal,
前記端末のnon-3GPPアクセスへのハンドオーバが許可されている場合に、  When handover to non-3GPP access of the terminal is permitted,
前記端末が、TAU/RAU (Tracking Area Update/Routing Area Update) リクエストを、コアネットワークノードに、無線アクセスネットワークノードを介して送信することで、    The terminal transmits a TAU / RAU (Tracking Area Update / Routing Area Update) request to the core network node via the radio access network node.
前記コアネットワークノードが、前記識別子を、前記装置に送信する、    The core network node transmits the identifier to the device;
方法。Method.
JP2016200291A 2016-10-11 2016-10-11 Core network node and method Active JP6601876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016200291A JP6601876B2 (en) 2016-10-11 2016-10-11 Core network node and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016200291A JP6601876B2 (en) 2016-10-11 2016-10-11 Core network node and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015193034A Division JP6025232B1 (en) 2015-09-30 2015-09-30 Mobile communication system, MME, communication method, and program

Publications (3)

Publication Number Publication Date
JP2017069960A JP2017069960A (en) 2017-04-06
JP2017069960A5 JP2017069960A5 (en) 2018-11-01
JP6601876B2 true JP6601876B2 (en) 2019-11-06

Family

ID=58492965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016200291A Active JP6601876B2 (en) 2016-10-11 2016-10-11 Core network node and method

Country Status (1)

Country Link
JP (1) JP6601876B2 (en)

Also Published As

Publication number Publication date
JP2017069960A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
US10070288B2 (en) Method for dynamically switching mobile network, subscription manager, and user equipment
US8855045B2 (en) Method and system for controlling establishment of local IP access
JP6568231B2 (en) Method and apparatus for controlling establishment of user plane bearer
US11064541B2 (en) Terminal apparatus, mobility management entity (MME), and communication control method
JP5800025B2 (en) Mobile communication network system, communication control method and program thereof
WO2015062098A1 (en) Network selection method and core network device
WO2014166089A1 (en) Method and device for congestion control
WO2009117879A1 (en) Method for indicating the bearer management of the service gateway
WO2011157189A2 (en) Method, device and system for reporting location
WO2014194672A1 (en) Method and device for inter-system reselection or switching processing
CN107404715B (en) Position information providing method and device
EP2790457A1 (en) Method and device for processing local access connection
RU2662397C1 (en) Method of processing data, device, terminal, object of mobility control and system
WO2012113153A1 (en) Packet data network (pdn) connection establishment method and equipment
WO2017028637A1 (en) Gateway recovery processing method and device
JP6025232B1 (en) Mobile communication system, MME, communication method, and program
CN102014452B (en) Method and system for implementing mobility of local IP (Internet Protocol) access connection
US11343754B2 (en) Terminal apparatus, mobility management entity (MME), and communication control method
JP6601876B2 (en) Core network node and method
JP2021057924A (en) Gateway device and control method
US20240163784A1 (en) User equipment (ue) and communication control method performed by ue
EP4322690A1 (en) User equipment (ue) and communication control method executed by ue
JP2016174339A (en) Communication path establishing method
WO2016112774A1 (en) Position update method and mobility management unit
WO2016074468A1 (en) Optimal switching method supporting multiple pdn connections, network node and system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191003

R150 Certificate of patent or registration of utility model

Ref document number: 6601876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150