JP6600816B2 - Catalyst evaluation apparatus and evaluation method - Google Patents

Catalyst evaluation apparatus and evaluation method Download PDF

Info

Publication number
JP6600816B2
JP6600816B2 JP2016079344A JP2016079344A JP6600816B2 JP 6600816 B2 JP6600816 B2 JP 6600816B2 JP 2016079344 A JP2016079344 A JP 2016079344A JP 2016079344 A JP2016079344 A JP 2016079344A JP 6600816 B2 JP6600816 B2 JP 6600816B2
Authority
JP
Japan
Prior art keywords
electrode
catalyst
gas
pipe
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016079344A
Other languages
Japanese (ja)
Other versions
JP2017190969A (en
Inventor
真也 菊住
信治 吉野
康通 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016079344A priority Critical patent/JP6600816B2/en
Publication of JP2017190969A publication Critical patent/JP2017190969A/en
Application granted granted Critical
Publication of JP6600816B2 publication Critical patent/JP6600816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、触媒評価装置と触媒評価方法に関する。特に、燃料電池に使用される触媒の評価を行うための触媒評価装置と触媒評価方法に関するものである。   The present invention relates to a catalyst evaluation apparatus and a catalyst evaluation method. In particular, the present invention relates to a catalyst evaluation apparatus and a catalyst evaluation method for evaluating a catalyst used in a fuel cell.

固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)は、発電反応を起こす電解質膜の両外面に触媒層、ガス拡散層の順に接合して膜電極接合体を構成し、それらをセパレータで挟みこんだものを一つの単セルとして、必要な個数の前記単セルを積み上げて構成されている。   In the polymer electrolyte fuel cell (PEFC), a membrane electrode assembly is formed by joining a catalyst layer and a gas diffusion layer in this order on both outer surfaces of an electrolyte membrane that causes a power generation reaction, and sandwiching them with a separator. A single unit cell is used as a single unit, and a necessary number of unit cells are stacked.

近年、前記の電解質膜としては、プロトン導電性イオン交換膜が用いられ、特にスルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜が基本特性に優れるため広く検討されている。   In recent years, proton conductive ion exchange membranes have been used as the electrolyte membrane, and in particular, cation exchange membranes made of perfluorocarbon polymers having sulfonic acid groups are widely studied because of their excellent basic characteristics.

この固体高分子型燃料電池に水素を含有する燃料ガスと空気など酸素を含有する酸化剤ガスを供給し、前記電解質膜を介して燃料ガスと酸化剤ガスとを電気化学的に反応させることで、電力、熱、及び水を同時に発生させるものである。   A fuel gas containing hydrogen and an oxidant gas containing oxygen such as air are supplied to the polymer electrolyte fuel cell, and the fuel gas and the oxidant gas are reacted electrochemically through the electrolyte membrane. , Electricity, heat and water are generated simultaneously.

固体高分子型燃料電池においては、下記式1、式2の反応が起こり、電気エネルギが発生する。   In the polymer electrolyte fuel cell, reactions of the following formulas 1 and 2 occur, and electric energy is generated.

負極では H → 2H + 2e・・・(式1)
正極では 1/2O + 2H + 2e → HO・・・(式2)
負極での反応で発生した水素イオン(H:プロトン)は前記の電解質膜内を移動し、正極での反応に使用される。
H 2 for the negative electrode → 2H + + 2e (Formula 1)
In the positive electrode 1 / 2O 2 + 2H + + 2e - → H 2 O ··· ( Equation 2)
Hydrogen ions (H + : protons) generated by the reaction at the negative electrode move through the electrolyte membrane and are used for the reaction at the positive electrode.

このような電極反応は触媒層で行われる。触媒層は触媒担持カーボンと電解質から構成されており,カーボンに担持した触媒と電解質との界面で電極反応が行われる。また,触媒層内のカーボンのつながりが電子の通り道となり,電解質のつながりが水素イオンの通り道となる。なお,担持する触媒は正極,負極とも白金が多いが,正極の活性向上や負極の耐CO性向上のために白金系合金触媒を用いる場合もある。   Such an electrode reaction is performed in the catalyst layer. The catalyst layer is composed of catalyst-supported carbon and an electrolyte, and an electrode reaction is performed at the interface between the catalyst supported on the carbon and the electrolyte. In addition, the carbon connection in the catalyst layer becomes an electron path, and the electrolyte connection becomes a hydrogen ion path. The supported catalyst contains a large amount of platinum for both the positive electrode and the negative electrode, but a platinum-based alloy catalyst may be used to improve the activity of the positive electrode or the CO resistance of the negative electrode.

このように触媒の性能は燃料電池の性能に直結する。また触媒に用いられている白金等の金属は非常に高価な材料であるため、開発の早い段階で、かつより少ない使用量で、触媒性能を見極めることが重要となる。   Thus, the performance of the catalyst is directly linked to the performance of the fuel cell. Further, since metals such as platinum used for the catalyst are very expensive materials, it is important to determine the catalyst performance at an early stage of development and with a smaller amount of use.

触媒の評価は、回転ディスク電極(Rotating Disk Electrode)を用いた触媒単体の評価(RDE法)や、膜電極接合体(MEA)を作製し、単セル構造にて発電評価する方法がある。   The evaluation of the catalyst includes a method of evaluating a single catalyst using a rotating disk electrode (RDE method) and a method of producing a membrane electrode assembly (MEA) and evaluating power generation with a single cell structure.

しかしながら、RDE法での評価では、RDE法によって得られる触媒活性値から期待された非常に高い特性値が得られる。しかし、実際に、膜電極接合体(MEA)を作製し、単セル構造にて発電評価した際には、その高い特性値が得られないことが多い。他の要因が含まれていると思われる。   However, in the evaluation by the RDE method, a very high characteristic value expected from the catalyst activity value obtained by the RDE method can be obtained. However, when a membrane electrode assembly (MEA) is actually manufactured and evaluated for power generation in a single cell structure, the high characteristic value is often not obtained. It seems that other factors are included.

また、実際に、膜電極接合体(MEA)を作製し、単セル構造にて発電評価する方法においては、市販の単セルとして、日本自動車研究所(JARI)製の標準セルがある。しかし、電極面積が25cmもあるため、評価のために多くの触媒が必要となる。また、セルを構成するための部品が多いため、評価結果から触媒の影響のみを考察することは困難である。 Moreover, in the method of actually producing a membrane electrode assembly (MEA) and evaluating power generation with a single cell structure, there is a standard cell manufactured by Japan Automobile Research Institute (JARI) as a commercially available single cell. However, since the electrode area is as large as 25 cm 2 , many catalysts are required for evaluation. Moreover, since there are many parts for constituting the cell, it is difficult to consider only the influence of the catalyst from the evaluation results.

また、単セル構造を構成せずに発電評価する方法として、平面上に正極、負極を配置することが提案されている(特許文献1)。特許文献1の構造を図5の断面図に示す。特許文献1では、電解質膜50を隔壁53により二つの領域に分ける。一方の領域に、触媒層51を印刷すると共に陰極56を配置する。他方の領域には、燃料電池の陽極側の構成と同一の触媒層52を印刷すると共に陽極55を配置する。陰極56が配置された領域には水素を、陽極55が配置された他方の領域には、酸素含有ガス(例えば、空気)を供給する。こうすれば燃料電池を構成することができ、発電特性を評価できる。   Further, as a method for evaluating power generation without constituting a single cell structure, it has been proposed to arrange a positive electrode and a negative electrode on a plane (Patent Document 1). The structure of Patent Document 1 is shown in the sectional view of FIG. In Patent Document 1, the electrolyte membrane 50 is divided into two regions by a partition wall 53. In one area, the catalyst layer 51 is printed and the cathode 56 is disposed. In the other region, the same catalyst layer 52 as that on the anode side of the fuel cell is printed and the anode 55 is disposed. Hydrogen is supplied to the region where the cathode 56 is arranged, and oxygen-containing gas (for example, air) is supplied to the other region where the anode 55 is arranged. In this way, a fuel cell can be constructed and power generation characteristics can be evaluated.

特許第4624528号Japanese Patent No. 4624528

しかしながら、特許文献1の構成では、隔壁53により電解質膜50の平面方向に領域を分割し陽極55、陰極56を配置しており、実際の燃料電池が電解質膜50の膜厚方向に発電をするのとは構造が異なる。   However, in the configuration of Patent Document 1, the region is divided in the plane direction of the electrolyte membrane 50 by the partition wall 53 and the anode 55 and the cathode 56 are arranged, and the actual fuel cell generates power in the thickness direction of the electrolyte membrane 50. The structure is different.

また供給したガスを拡散する機構、電極に荷重をかける構造がないため、正確な発電特性が測定出来ない。   In addition, since there is no mechanism for diffusing the supplied gas and a structure for applying a load to the electrodes, it is impossible to measure accurate power generation characteristics.

本発明は、係る課題に鑑みてなされたものであり、触媒の発電特性を簡易に、精度が高く、かつ少量の触媒量で測定することができる触媒の評価装置と評価方法を提供することを目的とする。   The present invention has been made in view of such problems, and provides a catalyst evaluation apparatus and an evaluation method capable of measuring the power generation characteristics of a catalyst simply, with high accuracy, and with a small amount of catalyst. Objective.

上記目的を達成するために、第1ガス流路を有するパイプ構造の第1電極と、平面構造の第2電極と、触媒を保持する載置台と、上記第1電極と上記第2電極間の電気的特性を測定する測定部と、を含む触媒の評価装置を用いる。第1ガス流路を有するパイプ構造の第1電極に第1ガスを流す第1工程と、平面構造の第2電極に第2ガスを供給する第2工程と、上記第1電極と上記第2電極と間に被測定対象の触媒を挟み、上記第1電極と上記第2電極と間の電気特性を測定する触媒の評価方法を用いる。   To achieve the above object, a first electrode having a pipe structure having a first gas flow path, a second electrode having a planar structure, a mounting table for holding a catalyst, and between the first electrode and the second electrode And a catalyst evaluation apparatus including a measurement unit for measuring electrical characteristics. A first step of flowing a first gas to a first electrode of a pipe structure having a first gas flow path; a second step of supplying a second gas to a second electrode of a planar structure; the first electrode and the second A catalyst evaluation method is used in which a catalyst to be measured is sandwiched between electrodes, and electrical characteristics between the first electrode and the second electrode are measured.

また、第1ガス流路を有するパイプ構造の第1電極に第1ガスを流す第1工程と、平面構造の第2電極に第2ガスを供給する第2工程と、上記第1電極と上記第2電極と間に被測定対象の触媒を挟み、上記第1電極と上記第2電極と間の電気特性を測定する触媒の評価方法を用いる。   A first step of flowing a first gas to a first electrode of a pipe structure having a first gas flow path; a second step of supplying a second gas to a second electrode of a planar structure; the first electrode; A catalyst evaluation method is used in which a catalyst to be measured is sandwiched between second electrodes, and electrical characteristics between the first electrode and the second electrode are measured.

この構成によれば、パイプ構造の電極にガス流路とガス拡散機能を備え、かつ電極面積を小さくすることが可能となる。またパイプ構造の電極を可動式とすることで、測定時に荷重変動が出来るため、正確な発電特性が、少量の触媒で可能となる。   According to this configuration, an electrode having a pipe structure is provided with a gas flow path and a gas diffusion function, and the electrode area can be reduced. In addition, by making the electrode of the pipe structure movable, the load can be varied during measurement, so that accurate power generation characteristics can be achieved with a small amount of catalyst.

本実施の形態の触媒評価装置の電極部の模式図Schematic diagram of electrode part of catalyst evaluation apparatus of the present embodiment 本実施の形態の被検体の模式図Schematic diagram of the subject of the present embodiment 本実施の形態の触媒評価装置の電極と被検体の配置関係の模式図Schematic diagram of arrangement relationship between electrode and subject of catalyst evaluation apparatus of this embodiment 本実施の形態の触媒評価装置の模式図Schematic diagram of catalyst evaluation apparatus of the present embodiment 従来の燃料電池発電特性評価装置の模式図Schematic diagram of a conventional fuel cell power generation characteristic evaluation device 実施例の測定結果(電圧値)を示す図The figure which shows the measurement result (voltage value) of an Example 実施例の測定結果(抵抗値)を示す図The figure which shows the measurement result (resistance value) of an Example

以下、本発明の実施の形態を図1〜図4に基づいて説明する。
<触媒評価装置の電極部>
図1に本実施の形態の触媒評価装置のパイプ型電極ユニット10の模式図を示す。
パイプ型電極ユニット10は、パイプ型電極1、ガス流路9a、9b、多孔質体11、樹脂ブロック2、排気ブロック3、パッドゴム4を含む。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
<Electrode part of catalyst evaluation device>
FIG. 1 shows a schematic diagram of a pipe-type electrode unit 10 of the catalyst evaluation apparatus of the present embodiment.
The pipe-type electrode unit 10 includes a pipe-type electrode 1, gas flow paths 9 a and 9 b, a porous body 11, a resin block 2, an exhaust block 3, and a pad rubber 4.

パイプ型電極1は、電気伝導のある材料で構成されている。パイプ型電極1は、パイプ形状になっている。パイプ型電極1は、ガス流路9aと多孔質体11とを備えている。   The pipe-type electrode 1 is made of an electrically conductive material. The pipe-type electrode 1 has a pipe shape. The pipe-type electrode 1 includes a gas flow path 9 a and a porous body 11.

多孔質体11(第2多孔質体)は、パイプ型電極1の先端にあり、焼結金属のような電気伝導がある多孔質体である。多孔質体11は、供給されてきたガスを拡散する役割と、反応により発生した電子を伝導する役割を併せ持つ。   The porous body 11 (second porous body) is a porous body at the tip of the pipe-type electrode 1 and having electrical conductivity such as a sintered metal. The porous body 11 has a role of diffusing the supplied gas and a role of conducting electrons generated by the reaction.

ガス流路9aは、反応に必要なガスを供給する役割を持つ。   The gas flow path 9a has a role of supplying a gas necessary for the reaction.

樹脂ブロック2は、電気絶縁材料で構成されており、パイプ型電極1と排気ブロック3を、お互いに電気的に絶縁した状態で接続する。   The resin block 2 is made of an electrically insulating material, and connects the pipe-type electrode 1 and the exhaust block 3 while being electrically insulated from each other.

排気ブロック3は、電気伝導のある材料で構成されており、ガス流路9b、パッドゴム4(カバー)が備えられている。   The exhaust block 3 is made of an electrically conductive material, and includes a gas flow path 9b and a pad rubber 4 (cover).

ガス流路9bは、反応で使用されなかったガスを排気する役割を持つ。   The gas flow path 9b has a role of exhausting a gas not used in the reaction.

パッドゴム4は電解質膜5(後述)と密着し、供給したガスや反応で使用されなかったガスがガス流路9a,9b外へ漏洩することを防ぐ役割を持つカバーである。   The pad rubber 4 is a cover that is in close contact with the electrolyte membrane 5 (described later) and has a role to prevent the supplied gas and the gas not used in the reaction from leaking out of the gas flow paths 9a and 9b.

<被検体20>
図2に、検査する対象物である被検体20の模式断面を示す。
<Subject 20>
FIG. 2 shows a schematic cross section of a subject 20 that is an object to be examined.

被検査対象である被検体20は、触媒層22を電気伝導のある多孔質体21(第1多孔質体)に保持させたものである。   The subject 20 to be inspected is obtained by holding the catalyst layer 22 on the porous body 21 (first porous body) having electrical conductivity.

触媒層22は、触媒担持カーボンと電解質から構成されており,カーボンに担持した触媒と電解質との界面で電極反応が行われる。また,触媒層内のカーボンのつながりが電子の通り道となり,電解質のつながりが水素イオンの通り道となる。なお,担持する触媒は正極,負極とも白金が多いが,正極の活性向上や負極の耐CO性向上のために白金系合金触媒を用いる場合もある。   The catalyst layer 22 is composed of catalyst-supported carbon and an electrolyte, and an electrode reaction is performed at the interface between the catalyst supported on the carbon and the electrolyte. In addition, the carbon connection in the catalyst layer becomes an electron path, and the electrolyte connection becomes a hydrogen ion path. The supported catalyst contains a large amount of platinum for both the positive electrode and the negative electrode, but a platinum-based alloy catalyst may be used to improve the activity of the positive electrode or the CO resistance of the negative electrode.

多孔質体21は、電気伝導のある材料で構成されており、触媒層22へガスを拡散供給する役割と反応により発生した電子を伝達する役割を持つ。   The porous body 21 is made of an electrically conductive material, and has a role of diffusing and supplying gas to the catalyst layer 22 and a role of transmitting electrons generated by the reaction.

触媒層22は、厚み数μm〜数十μmのため、直接単体での取り扱いは難しいが、多孔質体21に保持させることで取り扱いが容易になる。また、直接、電解質膜5(図3)に触媒層22を塗工しないため、電解質膜5の再利用が可能となる。   Since the catalyst layer 22 has a thickness of several μm to several tens of μm, it is difficult to directly handle the catalyst layer 22 alone, but the catalyst layer 22 is easily handled by being held on the porous body 21. Moreover, since the catalyst layer 22 is not directly applied to the electrolyte membrane 5 (FIG. 3), the electrolyte membrane 5 can be reused.

多孔質体21は、必須構成要素でなく、用いることが好ましい。   The porous body 21 is not an essential component and is preferably used.

<触媒評価装置の電極と被検体の配置関係>
図3に本実施の形態のパイプ型電極ユニット10の先端部10aと、被検体20との配置関係の断面図を示す。パイプ型電極ユニット10の先端部10aは、図1に示すパイプ型電極ユニット10の先端部を拡大した模式図である。
<Relationship between the electrode of the catalyst evaluation apparatus and the specimen>
FIG. 3 shows a cross-sectional view of the arrangement relationship between the distal end portion 10a of the pipe-type electrode unit 10 and the subject 20 in the present embodiment. The tip portion 10a of the pipe-type electrode unit 10 is an enlarged schematic view of the tip portion of the pipe-type electrode unit 10 shown in FIG.

上記構成においては被検体20を挟み込むようにお互いが対峙する位置に、パイプ型電極ユニット10の先端部10a、電解質膜5、触媒層6、ガス拡散層7、平面型電極8が配置されている。   In the above configuration, the tip portion 10a of the pipe-type electrode unit 10, the electrolyte membrane 5, the catalyst layer 6, the gas diffusion layer 7, and the planar electrode 8 are arranged at positions that face each other so as to sandwich the subject 20. .

電解質膜5として、プロトン導電性イオン交換膜が用いられる。特に、スルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜が、基本特性に優れるため好ましい。負極での反応で発生した水素イオン(H:プロトン)は電解質膜5内を移動し、正極での反応に使用される。 A proton conductive ion exchange membrane is used as the electrolyte membrane 5. In particular, a cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is preferable because of its excellent basic characteristics. Hydrogen ions (H + : protons) generated by the reaction at the negative electrode move through the electrolyte membrane 5 and are used for the reaction at the positive electrode.

触媒層6は、触媒担持カーボンと電解質から構成されており,触媒担持カーボンと電解質との界面で電極反応が行われる。また,触媒層6の内のカーボンのつながりが電子の通り道となり,電解質のつながりが水素イオンの通り道となる。なお,担持する触媒は正極,負極とも白金が多いが,正極の活性向上や負極の耐CO性向上のために白金系合金触媒を用いる場合もある。   The catalyst layer 6 is composed of catalyst-carrying carbon and an electrolyte, and an electrode reaction is performed at the interface between the catalyst-carrying carbon and the electrolyte. Further, the carbon connection in the catalyst layer 6 becomes a path for electrons, and the connection for electrolyte becomes a path for hydrogen ions. The supported catalyst contains a large amount of platinum for both the positive electrode and the negative electrode, but a platinum-based alloy catalyst may be used to improve the activity of the positive electrode or the CO resistance of the negative electrode.

ガス拡散層7は、電気伝導のある材料で構成されている。ガス拡散層7は、触媒層6へガスを拡散供給する役割と、反応により発生した電子を平面型電極8へ伝達する役割とを持つ。   The gas diffusion layer 7 is made of an electrically conductive material. The gas diffusion layer 7 has a role of diffusing and supplying gas to the catalyst layer 6 and a role of transmitting electrons generated by the reaction to the planar electrode 8.

<プロセス>
パイプ型電極1のガス流路9aより供給されたガスは、被検体20で反応に使用された後に排気ブロック3のガス流路9bより排出される。
<Process>
The gas supplied from the gas flow path 9 a of the pipe-type electrode 1 is discharged from the gas flow path 9 b of the exhaust block 3 after being used for the reaction in the subject 20.

また排気ブロック3に備えられたパッドゴム4は、電解質膜5に密着しており、ガス流路9a,9b外へのガス漏洩を防ぐ。   The pad rubber 4 provided in the exhaust block 3 is in close contact with the electrolyte membrane 5, and prevents gas leakage outside the gas flow paths 9a and 9b.

平面型電極8は、メッシュ状の金属や焼結金属のような電気伝導がある多孔質体で構成されており、側面もしくは底面より供給されたガスはガス拡散層7を通り触媒層6へ供給される(図示せず)。   The planar electrode 8 is composed of a porous body having electrical conductivity such as a mesh metal or sintered metal, and the gas supplied from the side surface or the bottom surface is supplied to the catalyst layer 6 through the gas diffusion layer 7. (Not shown).

上記の構成で、固体高分子型燃料電池40が、パイプ型電極1と平面型電極8の間に構成される。つまり、触媒層6、ガス拡散層7、電解質膜5、被検体20、多孔質体11で固体高分子型燃料電池40が構成される。   With the above configuration, the polymer electrolyte fuel cell 40 is configured between the pipe electrode 1 and the planar electrode 8. That is, the polymer electrolyte fuel cell 40 is configured by the catalyst layer 6, the gas diffusion layer 7, the electrolyte membrane 5, the subject 20, and the porous body 11.

パイプ型電極1のガス流路9aより供給されたガスは、多孔質体11を通り被検体20に供給される。平面型電極8より供給されたガスは、ガス拡散層7を通り触媒層6へそれぞれ供給される。このように電解質膜5を狭持する被検体20と触媒層6において電気化学反応が行われ、発電状態になる。   The gas supplied from the gas flow path 9 a of the pipe-type electrode 1 passes through the porous body 11 and is supplied to the subject 20. The gas supplied from the planar electrode 8 passes through the gas diffusion layer 7 and is supplied to the catalyst layer 6. In this way, an electrochemical reaction is performed between the analyte 20 and the catalyst layer 6 holding the electrolyte membrane 5, and a power generation state is established.

なおパイプ型電極1、多孔質体11および平面型電極8は電気抵抗を低減するために、金、白金などでメッキ処理することが望ましい。   The pipe electrode 1, the porous body 11, and the planar electrode 8 are preferably plated with gold, platinum or the like in order to reduce electrical resistance.

パイプ型電極1と平面型電極8の対峙している部分、すなわちパイプ型電極1の先端の多孔質体11の面積の部分が、電極として作用する。パイプ型電極1の先端の多孔質体11の面積は1mm以上1cm以下であること望ましく、面積が1mmより小さい場合、電極を被検体に正確に対峙させることが困難となり、正確な測定を実施することができない。面積が1cmより大きい場合、測定に必要な触媒量が増えてしまう。 A portion where the pipe-type electrode 1 and the planar electrode 8 are opposed to each other, that is, a portion of the area of the porous body 11 at the tip of the pipe-type electrode 1 acts as an electrode. The area of the porous body 11 at the tip of the pipe-type electrode 1 is desirably 1 mm 2 or more and 1 cm 2 or less. When the area is smaller than 1 mm 2 , it becomes difficult to accurately face the electrode to the subject, and accurate measurement is performed. Can not be carried out. When the area is larger than 1 cm 2 , the amount of catalyst necessary for measurement increases.

平面型電極8の面積(パイプ型電極1と対向する面の面積)はパイプ型電極1の先端の多孔質体11の面積(平面型電極8と対向する面の面積)より大きければ良い。   The area of the planar electrode 8 (the area of the surface facing the pipe electrode 1) may be larger than the area of the porous body 11 at the tip of the pipe electrode 1 (the area of the surface facing the planar electrode 8).

尚、被検体20の触媒層22を、パイプ型電極1の先端の多孔質体11に直接保持させても良い。その場合、パイプ型電極1、多孔質体11、電解質膜5、触媒層6、ガス拡散層7、平面型電極8を、お互いが対峙する位置に配置する。   Note that the catalyst layer 22 of the subject 20 may be directly held on the porous body 11 at the tip of the pipe-type electrode 1. In that case, the pipe-type electrode 1, the porous body 11, the electrolyte membrane 5, the catalyst layer 6, the gas diffusion layer 7, and the planar electrode 8 are arranged at positions facing each other.

<触媒評価装置>
図4に本実施の形態の触媒評価装置30の断面図を示す。
<Catalyst evaluation device>
FIG. 4 shows a cross-sectional view of the catalyst evaluation apparatus 30 of the present embodiment.

パイプ型電極1と平面型電極8の間に電子負荷31と抵抗計32と電圧計33とを、それぞれ並列に接続する。電極間の電気的特性を評価する。   An electronic load 31, an ohmmeter 32, and a voltmeter 33 are connected in parallel between the pipe-type electrode 1 and the planar electrode 8, respectively. Evaluate the electrical characteristics between the electrodes.

また、被検体20、電解質膜5、触媒層6、ガス拡散層7は平面型電極8上に積層し、パイプ型電極1により狭持される場所に配置する。   In addition, the subject 20, the electrolyte membrane 5, the catalyst layer 6, and the gas diffusion layer 7 are stacked on the planar electrode 8 and are disposed in a place sandwiched by the pipe electrode 1.

パイプ型電極ユニット10は、パイプ型電極1と多孔質体11、樹脂ブロック2、排気ブロック3から構成され、排気ブロック3において、パイプ型電極ユニット10の可動手段35と接続されている。   The pipe-type electrode unit 10 includes a pipe-type electrode 1, a porous body 11, a resin block 2, and an exhaust block 3, and is connected to the movable means 35 of the pipe-type electrode unit 10 in the exhaust block 3.

パイプ型電極ユニット10の可動手段35によりパイプ型電極ユニット10を可動させ、多孔質体11を被検体20に接触させ平面型電極8の方向に所定の圧力を加える。   The pipe-type electrode unit 10 is moved by the moving means 35 of the pipe-type electrode unit 10, the porous body 11 is brought into contact with the subject 20, and a predetermined pressure is applied in the direction of the planar electrode 8.

上記配置において触媒の評価をするには、パイプ型電極1側、平面型電極8側にそれぞれガスを供給する。ガス容器34は、平面型電極8側にガスを供給する。   In order to evaluate the catalyst in the above arrangement, gas is supplied to the pipe electrode 1 side and the planar electrode 8 side, respectively. The gas container 34 supplies gas to the planar electrode 8 side.

その結果、前記2つの電極間に固体高分子型燃料電池40が構成され発電状態となる。固体高分子型燃料電池40から取り出す電流を変化させた時の抵抗値および電圧値を測定する。なお、評価する触媒層22は固体高分子型燃料電池40に位置するので、ガス容器34は、評価する触媒層22を保持する載置台と言える。   As a result, the polymer electrolyte fuel cell 40 is configured between the two electrodes and enters a power generation state. A resistance value and a voltage value when the current taken out from the polymer electrolyte fuel cell 40 is changed are measured. Since the catalyst layer 22 to be evaluated is located in the polymer electrolyte fuel cell 40, the gas container 34 can be said to be a mounting table for holding the catalyst layer 22 to be evaluated.

本測定においては電子負荷31、抵抗計32、電圧計33を用いている。測定から得られる電流値、抵抗値、電圧値から被検体20の発電特性評価が出来る。   In this measurement, an electronic load 31, an ohmmeter 32, and a voltmeter 33 are used. The power generation characteristics of the subject 20 can be evaluated from the current value, resistance value, and voltage value obtained from the measurement.

被検体20を、電解質膜5上に複数個並べて配置しても良く、パイプ型電極ユニット10の可動手段35によりパイプ型電極ユニット10を可動させて評価が出来、被検体以外の条件を同一にした発電特性評価が可能である。   A plurality of specimens 20 may be arranged side by side on the electrolyte membrane 5, and the evaluation can be performed by moving the pipe-type electrode unit 10 by the moving means 35 of the pipe-type electrode unit 10, and the conditions other than the specimen can be made the same. Power generation characteristics can be evaluated.

尚、図4においては、多孔質体11と被検体20の位置関係が明確になるように、それぞれ間隔をあけて記載しているが、実際に測定を行う場合には、多孔質体11と被検体20とは接触して配置されている。   In FIG. 4, the positional relationship between the porous body 11 and the subject 20 is illustrated so as to be clear from each other. However, when the measurement is actually performed, It is arranged in contact with the subject 20.

また、説明を容易にするためにパイプ型電極1に水素ガス(H)を供給して負極に、平面型電極8側に酸素ガス(O)を供給して正極としている。しかし、実際に評価を行う場合には、被検体20に応じて、それぞれ供給するガスを入れ替えてパイプ型電極1を正極に、平面型電極8を負極としても良い。 For ease of explanation, hydrogen gas (H 2 ) is supplied to the pipe-type electrode 1 to supply the negative electrode, and oxygen gas (O 2 ) is supplied to the planar electrode 8 side to form a positive electrode. However, when the evaluation is actually performed, the pipe-type electrode 1 may be used as the positive electrode and the planar electrode 8 may be used as the negative electrode by switching the supplied gas according to the subject 20.

<効果>
本発明によれば、可動式のパイプ型電極ユニット10を用いて測定を実施する事により、少量の触媒で精度の高い発電特性評価が可能である。
(実施例)
<測定装置の作製>
パイプ型電極1はステンレス鋼材(SUS304)で製作した。多孔質体11として先端に焼結金属(型番:ステンレスエレメント,SMC社製)を溶接した。パイプ型電極1の先端は直径6mmの円とした。
<Effect>
According to the present invention, by performing measurement using the movable pipe-type electrode unit 10, it is possible to evaluate power generation characteristics with high accuracy with a small amount of catalyst.
(Example)
<Production of measuring device>
The pipe-type electrode 1 was made of a stainless steel material (SUS304). A sintered metal (model number: stainless steel element, manufactured by SMC) was welded to the tip as the porous body 11. The tip of the pipe-type electrode 1 was a circle having a diameter of 6 mm.

パイプ型電極1を、ポリフェニレンサルファイド樹脂(Poly Phenylene Sulfide Resin)で製作した樹脂ブロック2を介して、ステンレス鋼材(SUS304)で製作した排気ブロック3に固定した。また、排気ブロック3にはパッドゴム4(型番:KPP−20−F,コガネイ社製)を取り付けた。   The pipe-type electrode 1 was fixed to an exhaust block 3 made of a stainless steel material (SUS304) through a resin block 2 made of polyphenylene sulfide resin (Polyphenylene Sulfide Resin). A pad rubber 4 (model number: KPP-20-F, manufactured by Koganei) was attached to the exhaust block 3.

平面型電極8は金属メッシュ(型番:アブソルタ,竹中金網社製)を用いて36cmの面積で製作した。ステンレス鋼材(SUS304)で製作したガス容器34にシール材を介して取り付けた。 The planar electrode 8 was manufactured with an area of 36 cm 2 using a metal mesh (model number: Absolta, manufactured by Takenaka Wire Mesh Co., Ltd.). It attached to the gas container 34 manufactured with the stainless steel material (SUS304) through the sealing material.

平面型電極8上に、ガス拡散層7(型番:FCPJGDL,パナソニック社製)を形成した。その上に、触媒担持カーボン(型番:TEC10E50E,田中貴金属工業社製)とイオノマ(型番:Aquivion,Solvay Solexis社製)を混合して製作した触媒インクをスプレー塗工し、触媒層6を形成した。その上に、電解質膜5(型番:NR−211,DUPONT社製)を形成した。   A gas diffusion layer 7 (model number: FCPJGDL, manufactured by Panasonic Corporation) was formed on the planar electrode 8. A catalyst ink prepared by mixing catalyst-supported carbon (model number: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and ionomer (model number: Aquivion, Solvay Solexis Co., Ltd.) was spray-coated to form a catalyst layer 6. . On top of this, an electrolyte membrane 5 (model number: NR-211, manufactured by DUPONT) was formed.

パイプ型電極ユニット10の可動手段35として水平方向の可動用にXYロボット(型番:ROBO CYLINDER、IAI社製)、垂直方向の可動用にエアスライドテーブル(型番:MXQ8−20Z−M9NV,SMC社製)を用意した。パイプ型電極ユニット10の押し圧力測定手段として感圧素子(型番:LMA−A−20N,共和電業社製)を用いて7.5kgf/cm2に調整した。   The movable means 35 of the pipe-type electrode unit 10 is an XY robot (model number: ROBO CYLINDER, manufactured by IAI) for moving in the horizontal direction, and an air slide table (model number: MXQ8-20Z-M9NV, manufactured by SMC) for moving in the vertical direction. ) Was prepared. A pressure-sensitive element (model number: LMA-A-20N, manufactured by Kyowa Dengyo Co., Ltd.) was used as a pressing pressure measuring unit of the pipe-type electrode unit 10 to adjust to 7.5 kgf / cm 2.

パイプ型電極ユニット10と平面型電極8を取り付けたガス容器34にはヒータを取り付けて80℃に加熱した。   A heater was attached to the gas container 34 to which the pipe-type electrode unit 10 and the planar electrode 8 were attached, and heated to 80 ° C.

<被測定対象の作成>
多孔質体21としてガス拡散層(型番:FCPJGDL,パナソニック社製)を用意した。触媒インクとして、触媒担持カーボン(型番:TEC10E50E,田中貴金属工業社製)とイオノマ(型番:Aquivion,Solvay Solexis社製)を混合して製作した。多孔質体21上へ触媒インクを塗布し、触媒層22を作製し、被検体20とした。
<Create measurement target>
A gas diffusion layer (model number: FCPJGDL, manufactured by Panasonic Corporation) was prepared as the porous body 21. A catalyst-supporting carbon (model number: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and an ionomer (model number: Aquivion, manufactured by Solvay Solexis) were mixed as a catalyst ink. A catalyst ink was applied onto the porous body 21 to produce a catalyst layer 22, which was used as the specimen 20.

塗布量が異なるものを2種類準備した。7.5μL(白金量:0.6mg/cm相当)を塗布したものを被検体A、2.0μL(白金量:0.16mg/cm2相当)を塗布したものを被検体Bとした。 Two types with different coating amounts were prepared. Sample A was coated with 7.5 μL (platinum amount: 0.6 mg / cm 2 equivalent), and sample B was coated with 2.0 μL (platinum amount: 0.16 mg / cm 2 equivalent).

<被測定対象の設置>
被検体A、被検体Bを個別に電解質膜5上に配置した。
<Installation of measurement target>
A subject A and a subject B were individually arranged on the electrolyte membrane 5.

<発電特性の測定方法>
電子負荷31(型番:LSA−165V1 ,TEXIO社製)、抵抗計32と電圧計33として両方の機能を持つ低抵抗計(型番:3566 ,鶴賀電機社製)を用意した。まずは、XYロボットによりパイプ型電極ユニット10を被検体Aに位置合わせをし、エアスライドテーブルで所定の荷重をかけた。パイプ型電極1のガス流路9a側に加湿した水素ガスを供給し負極として、平面型電極8側に加湿した空気を供給して正極として発電をさせた。ガス露点はいずれも65℃とした。電子負荷31により取り出す電流値を変化させたときの電圧値と抵抗値の変化をプロットした。
<Measurement method of power generation characteristics>
A low resistance meter (model number: 3566, manufactured by Tsuruga Electric Co., Ltd.) having both functions was prepared as an electronic load 31 (model number: LSA-165V1, manufactured by TEXIO), an ohmmeter 32 and a voltmeter 33. First, the pipe electrode unit 10 was aligned with the subject A by an XY robot, and a predetermined load was applied by an air slide table. Humidified hydrogen gas was supplied to the gas flow path 9a side of the pipe-type electrode 1 as a negative electrode, and humidified air was supplied to the planar electrode 8 side to generate power as a positive electrode. The gas dew point was 65 ° C. for all. The change of the voltage value and the resistance value when the current value taken out by the electronic load 31 is changed is plotted.

引き続いてエアスライドテーブル、XYロボットを用いてパイプ型電極ユニット10を被検体Bに位置合わせをし、被検体Aと同様の測定を実施した。   Subsequently, the pipe-type electrode unit 10 was aligned with the subject B using an air slide table and an XY robot, and the same measurement as the subject A was performed.

また被検体Aについては発電状態と非発電状態を繰返し実施するエージングを実施し、1回目のデータと4回目(エージング後)のデータを取得した。
その結果を図6、図7に示す。
In addition, the subject A was subjected to aging in which the power generation state and the non-power generation state were repeatedly performed, and the first data and the fourth data (after aging) were acquired.
The results are shown in FIGS.

図6は、横軸を電子負荷により取り出した単位面積当たりの電流量(A/cm)、縦軸に電圧値(V)をプロットしたものである。 In FIG. 6, the horizontal axis represents a current amount (A / cm 2 ) per unit area taken out by an electronic load, and the vertical axis represents a voltage value (V).

図7は、横軸を電子負荷により取り出した単位面積当たりの電流量(A/cm)、縦軸に抵抗値(Ω)をプロットしたものである。 In FIG. 7, the horizontal axis represents the amount of current per unit area (A / cm 2 ) taken out by the electronic load, and the vertical axis represents the resistance value (Ω).

インク塗布量の異なる2つの被検体で、発電性能を比較した。触媒塗布量が少ない場合、発電電圧が低くなる傾向が確認できた。   The power generation performance was compared between two specimens with different ink application amounts. When the amount of catalyst applied was small, it was confirmed that the generated voltage tends to be low.

また、被検体Aのエージング効果の確認においても、エージングを実施することにより電圧は上昇、抵抗値は下降している。一般的な単セル構造にて発電評価する方法でも、初期発電特性が、不十分でエージングすることで、発電性能が向上すると言われている。   Also, in the confirmation of the aging effect of the subject A, the voltage is increased and the resistance value is decreased by performing aging. Even in a method for evaluating power generation with a general single cell structure, it is said that the power generation performance is improved by aging due to insufficient initial power generation characteristics.

このことにより本測定方法は、少量の触媒で発電性能を簡易かつ精度良く測定することが出来る。また単セル構造での発電評価と同様な結果が得ることが出来ることが確認できた。   Thus, this measurement method can easily and accurately measure the power generation performance with a small amount of catalyst. In addition, it was confirmed that the same result as the power generation evaluation in the single cell structure can be obtained.

<効果>実施の形態の触媒の評価装置、評価方法は、少量の触媒で発電性能を簡易かつ精度良く測定することが可能である。触媒の性能向上は固体高分子型燃料電池の耐久性や発電性能の向上に直結し、触媒開発では性能の早期見極めは重要である。固体高分子型燃料電池は、低温で動作し、出力電流密度が高く小型化できるという特徴を有し、家庭用コジェネレーションシステム、燃料電池自動車、移動体通信の基地局などの用途に対し有望視されている。燃料電池の触媒だけでなく、種々の触媒の評価をすることができる。   <Effect> The catalyst evaluation apparatus and evaluation method of the embodiment can easily and accurately measure the power generation performance with a small amount of catalyst. Improving the performance of the catalyst is directly linked to improving the durability and power generation performance of the polymer electrolyte fuel cell, and early identification of the performance is important in catalyst development. Solid polymer fuel cells are characterized by their low-temperature operation, high output current density, and miniaturization, and promise for applications such as home cogeneration systems, fuel cell vehicles, and mobile communication base stations. Has been. In addition to fuel cell catalysts, various catalysts can be evaluated.

本願触媒の評価装置、評価方法は、燃料電池だけでなく、種々の分野で使用される触媒の評価をすることができる。   The catalyst evaluation apparatus and the evaluation method of the present application can evaluate not only the fuel cell but also a catalyst used in various fields.

1 パイプ型電極
2 樹脂ブロック
3 排気ブロック
4 パッドゴム
5 電解質膜
6 触媒層
7 ガス拡散層
8 平面型電極
9a ガス流路
9b ガス流路
10 パイプ型電極ユニット
10a 先端部
11 多孔質体
20 被検体
21 多孔質体
22 触媒層
30 触媒評価装置
31 電子負荷
32 抵抗計
33 電圧計
34 ガス容器
35 可動手段
40 固体高分子型燃料電池
50 電解質膜
51 触媒層
52 触媒層
53 隔壁
55 陽極
56 陰極
A,B 被検体
DESCRIPTION OF SYMBOLS 1 Pipe type electrode 2 Resin block 3 Exhaust block 4 Pad rubber 5 Electrolyte membrane 6 Catalyst layer 7 Gas diffusion layer 8 Planar electrode 9a Gas flow path 9b Gas flow path 10 Pipe type electrode unit 10a Tip part 11 Porous body 20 Subject 21 Porous body 22 Catalyst layer 30 Catalyst evaluation device 31 Electronic load 32 Resistance meter 33 Voltmeter 34 Gas container 35 Movable means 40 Solid polymer fuel cell 50 Electrolyte membrane 51 Catalyst layer 52 Catalyst layer 53 Partition wall 55 Anode 56 Cathodes A and B Subject

Claims (8)

第1ガス流路を有するパイプ構造の第1電極と、
触媒を間に挟んで、前記第1電極と対峙する平面構造の第2電極と、
前記第2電極を上面に保持する載置台と、
前記第1電極と前記第2電極間の電気的特性を測定する測定部と、を含む触媒の評価装置。
A first electrode of a pipe structure having a first gas flow path;
A second electrode having a planar structure facing the first electrode with a catalyst interposed therebetween ;
A mounting table for holding the second electrode on the upper surface ;
An apparatus for evaluating a catalyst, comprising: a measurement unit that measures electrical characteristics between the first electrode and the second electrode.
前記触媒は、第1多孔質体に保持されている請求項1記載の触媒の評価装置。 The catalyst evaluation apparatus according to claim 1, wherein the catalyst is held in a first porous body. 前記第2電極と前記触媒との間に、ガス拡散層と触媒層と電解質膜とが配置されている請求項1または2記載の触媒の評価装置。 The catalyst evaluation apparatus according to claim 1 or 2, wherein a gas diffusion layer, a catalyst layer, and an electrolyte membrane are disposed between the second electrode and the catalyst. 前記第1電極は、その先端に電気伝導を有する第2多孔質体を備えた請求項1〜3のいずれか1項に記載の燃料電池用の触媒の評価装置。 The said 1st electrode is an evaluation apparatus of the catalyst for fuel cells of any one of Claims 1-3 provided with the 2nd porous body which has electrical conduction in the front-end | tip. 前記第2電極は、前記第1電極と対向する面の面積が大きい請求項1〜4のいずれか1項に記載の燃料電池用の触媒の評価装置。 5. The fuel cell catalyst evaluation apparatus according to claim 1, wherein the second electrode has a large surface area facing the first electrode. 6. 前記第1電極の先端と前記第2電極との間を覆うカバーがさらにある請求項1〜5のいずれか1項に記載の燃料電池用の触媒の評価装置。 The apparatus for evaluating a fuel cell catalyst according to any one of claims 1 to 5, further comprising a cover that covers a space between a tip of the first electrode and the second electrode. 前記第1電極と前記第2電極と前記触媒とで燃料電池を形成する請求項1〜6のいずれか1項に記載の燃料電池用の触媒の評価装置。 The fuel cell catalyst evaluation apparatus according to any one of claims 1 to 6, wherein a fuel cell is formed by the first electrode, the second electrode, and the catalyst. 1ガス流路を有するパイプ構造の第1電極に第1ガスを流す第1工程と、
平面構造の第2電極に第2ガスを供給する第2工程と、
前記第1電極と前記第2電極と間に被測定対象の触媒を挟み、前記第1電極と前記第2電極と間の電気特性を測定する測定工程と、を有する触媒の評価方法。
A first step of flowing a first gas through a first electrode of a pipe structure having a first gas flow path;
A second step of supplying a second gas to the second electrode having a planar structure;
A catalyst evaluation method comprising: a measurement step of sandwiching a catalyst to be measured between the first electrode and the second electrode and measuring electrical characteristics between the first electrode and the second electrode.
JP2016079344A 2016-04-12 2016-04-12 Catalyst evaluation apparatus and evaluation method Active JP6600816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016079344A JP6600816B2 (en) 2016-04-12 2016-04-12 Catalyst evaluation apparatus and evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016079344A JP6600816B2 (en) 2016-04-12 2016-04-12 Catalyst evaluation apparatus and evaluation method

Publications (2)

Publication Number Publication Date
JP2017190969A JP2017190969A (en) 2017-10-19
JP6600816B2 true JP6600816B2 (en) 2019-11-06

Family

ID=60085091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016079344A Active JP6600816B2 (en) 2016-04-12 2016-04-12 Catalyst evaluation apparatus and evaluation method

Country Status (1)

Country Link
JP (1) JP6600816B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250770A (en) * 1975-10-21 1977-04-23 Hitachi Plant Eng & Constr Co Ltd Apparent specific electric resistance measuring device
JPH0227618B2 (en) * 1980-06-09 1990-06-19 Berorususukii Horitehinichesukii Inst
JPH05205762A (en) * 1992-01-23 1993-08-13 Fuji Electric Co Ltd Device for evaluating characteristics of unit fuel cell
JP3251245B2 (en) * 1998-06-10 2002-01-28 松下電器産業株式会社 Method for evaluating semiconductor substrate and method for managing manufacturing process of semiconductor device
US20020019054A1 (en) * 1998-09-04 2002-02-14 Judit E. Puskas Characterization of heterogeneous catalysts by electrical measurements
WO2002006807A2 (en) * 2000-07-19 2002-01-24 Nuvant Systems, Inc. High throughput screening device for combinatorial chemistry
JP4624528B2 (en) * 2000-08-01 2011-02-02 トヨタ自動車株式会社 Fuel cell component performance evaluation apparatus and performance evaluation method
JP2005044716A (en) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd Fuel cell inspection device and method
DE202004018521U1 (en) * 2004-11-29 2005-06-02 H.I.A.T. Ggmbh Active test fuel cell for characterizing and quantifying fuel cell components comprises a receiver housing having housing plates with one plate coupled to a piston-cylinder unit which penetrates the housing plate
JP2008243404A (en) * 2007-03-26 2008-10-09 Toyota Motor Corp Power generation inspection system for fuel cell
JP2013167609A (en) * 2012-02-17 2013-08-29 Mitsubishi Paper Mills Ltd Electrode set for measuring ac impedance of separator for electrochemical element and method for measuring ac impedance of separator for electrochemical element
JP2013224934A (en) * 2012-03-21 2013-10-31 National Institute For Materials Science Sensor element for measuring trace quantity of samples

Also Published As

Publication number Publication date
JP2017190969A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
Inaba et al. Benchmarking high surface area electrocatalysts in a gas diffusion electrode: measurement of oxygen reduction activities under realistic conditions
Klingele et al. A completely spray-coated membrane electrode assembly
US8617770B2 (en) Electrodes containing oxygen evolution reaction catalysts
CN105228741A (en) Catalyst and use the electrode catalyst layer of this catalyst, membrane-electrode assembly and fuel cell
CN105518917A (en) Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
US10090532B2 (en) Method for producing fuel cell electrode
US20080138695A1 (en) Fuel Cell
US20090068519A1 (en) Fuel cell and method of manufacturing the same
US9673467B2 (en) Membrane electrode assembly and fuel cell
JP2008135274A (en) Method of manufacturing fuel cell
KR20200074539A (en) Durability testing method and device for membrane electrode assembly of fuel cell
EP1622218A1 (en) Method for supporting catalyst for polymer electrolyte fuel cell and membrane electrode assembly
JP6600816B2 (en) Catalyst evaluation apparatus and evaluation method
Hsieh et al. Effects of anode and cathode perforated flow field plates on proton exchange membrane fuel cell performance
Glass et al. Effect of the cathode catalyst layer thickness on the performance in direct methanol fuel cells
JP2002110190A (en) Fuel cell
Yi et al. Performance Improvement of Wave‐Like PEMFC Stack with Compound Membrane Electrode Assembly
JP5570878B2 (en) Catalyst layer and catalyst paste for polymer electrolyte fuel cell
EP2157643B1 (en) Polymer electrolyte fuel cell
KR100705553B1 (en) Process for forming catalyst layers on a proton exchange membrane within membrane electrode assembly for fuel cell
KR100432523B1 (en) The grid type bipolar plate for performance testing of fuel cells, and its manufacturing method
KR101724730B1 (en) Activity measurement method for electrode of fuel cell
KR102686557B1 (en) Cell for performance evaluation of catalyst layer for fuel cell and method of performance evaluation of catalyst layer for fuel cell using the same
GB2567226A (en) Fuel cell or electrolyser assembly
KR101540514B1 (en) Voltage measuring apparatus for Solid oxide fuel cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R151 Written notification of patent or utility model registration

Ref document number: 6600816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151