JP6600227B2 - Method for producing fractionated fish oil - Google Patents

Method for producing fractionated fish oil Download PDF

Info

Publication number
JP6600227B2
JP6600227B2 JP2015212156A JP2015212156A JP6600227B2 JP 6600227 B2 JP6600227 B2 JP 6600227B2 JP 2015212156 A JP2015212156 A JP 2015212156A JP 2015212156 A JP2015212156 A JP 2015212156A JP 6600227 B2 JP6600227 B2 JP 6600227B2
Authority
JP
Japan
Prior art keywords
mass
fish oil
fatty acid
cooling
triacylglycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015212156A
Other languages
Japanese (ja)
Other versions
JP2017082095A (en
Inventor
実 加瀬
真平 福原
勇樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2015212156A priority Critical patent/JP6600227B2/en
Publication of JP2017082095A publication Critical patent/JP2017082095A/en
Application granted granted Critical
Publication of JP6600227B2 publication Critical patent/JP6600227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、分別魚油の製造方法、並びに魚油の分別方法に関する。   The present invention relates to a method for producing fractionated fish oil and a method for fractionating fish oil.

天然に産出する油脂は固有の脂肪酸組成をもち、且つトリアシルグリセロールにおける脂肪酸のグリセリンとの結合位置は特有の規則性でその配置が決まっている。例えば、魚油に多く含まれるω3系高度不飽和脂肪酸は、グリセロールの2位に多く分布することが知られている。また、ヒト母乳では、パルミチン酸がグリセロールの2位に多く分布し、不飽和脂肪酸や中鎖脂肪酸が主として1,3位に分布している。   Naturally produced fats and oils have a unique fatty acid composition, and the positions of binding of fatty acids to glycerin in triacylglycerol are determined by specific regularity. For example, it is known that ω3 polyunsaturated fatty acids that are abundant in fish oil are distributed in the second position of glycerol. In human breast milk, palmitic acid is mostly distributed at the 2nd position of glycerol, and unsaturated fatty acids and medium chain fatty acids are mainly distributed at the 1st and 3rd positions.

これに対して、栄養学的改善や物性改良、或いは代替を目的としてグリセリンの特定の位置に特定の脂肪酸を組み込んだ所謂構造脂質が種々提案されている。例えば、グリセリド構造の1位および/または3位にn−3系長鎖多価不飽和脂肪酸を多くもつ油脂であって、n−3系長鎖多価不飽和脂肪酸の総量の40モル%未満がグリセリドの2位に結合したトリグリセリドからなる血中脂質濃度を低減する作用のある油脂(特許文献1)、sn−2位にパルミチン酸、sn−1,3位にオレイン酸やドコサヘキサエン酸(C22:6、DHA)を有する母乳代替脂(非特許文献1)等が報告されている。
前記特許文献等によれば、ω3系高度不飽和脂肪酸はトリアシルグリセロールの2位よりも1位,3位への結合率が高い方がヒト体内での生理機能発現に有利であり、また、パルミチン酸を2位に有するトリアシルグリセロールはヒト母乳代替脂としても有用である。
On the other hand, various so-called structured lipids in which a specific fatty acid is incorporated at a specific position of glycerin have been proposed for the purpose of nutritional improvement, physical property improvement, or substitution. For example, an oil having a large amount of n-3 long-chain polyunsaturated fatty acids at the 1-position and / or 3-position of the glyceride structure, and less than 40 mol% of the total amount of n-3 long-chain polyunsaturated fatty acids Is a fat or oil comprising triglyceride bonded to the 2nd position of glyceride (Patent Document 1), palmitic acid at the sn-2 position, oleic acid or docosahexaenoic acid at the sn-1,3 position (C22) : 6, DHA), breast milk substitute fat (Non-patent Document 1) and the like have been reported.
According to the above-mentioned patent documents and the like, ω3 polyunsaturated fatty acid is more advantageous for expression of physiological functions in the human body when the binding rate to the 1st and 3rd positions is higher than the 2nd position of triacylglycerol, Triacylglycerol having palmitic acid at position 2 is also useful as a human breast milk substitute fat.

特開平9−13075号公報JP-A-9-13075 特開2002−180083号公報Japanese Patent Laid-Open No. 2002-180083

J Am Oil Chem Soc、2013年、第90巻、p.1311−1318J Am Oil Chem Soc, 2013, 90, p. 1311-1318 JAOCS、1998年、第75巻第6号、p.733−736JAOCS, 1998, Vol. 75, No. 6, p. 733-736

しかしながら、前記特許文献1及び非特許文献1では、1,3位置特異性のリパーゼを利用したエステル交換又はアシドリシスによりsn-1,3位の脂肪酸を目的の脂肪酸に変換して油脂が製造されるため、コストが高くなる原因となる。
一方、特許文献2や非特許文献2のように、魚油を分別して、魚油に含まれるω3系高度不飽和脂肪酸を濃縮する方法が知られているが、sn-1,3位のω3系高度不飽和脂肪酸の濃縮を図るものではない。
本発明は、斯かる実情に鑑み、グリセロールの2位にパルミチン酸が多く結合し、且つ1,3位に結合したω3系高度不飽和脂肪酸の割合が高いトリアシルグリセロールを製造する新たな方法を提供しようとするものである。
However, in Patent Document 1 and Non-Patent Document 1, fats and oils are produced by converting the sn-1,3-position fatty acid to the target fatty acid by transesterification or acidolysis using a 1,3-position specific lipase. For this reason, the cost becomes high.
On the other hand, as disclosed in Patent Document 2 and Non-Patent Document 2, a method of separating fish oil and concentrating ω3 highly unsaturated fatty acid contained in fish oil is known. It is not intended to concentrate unsaturated fatty acids.
In view of such circumstances, the present invention provides a new method for producing triacylglycerol in which a large amount of ω3 highly unsaturated fatty acid having a large amount of palmitic acid bonded to the 2-position of glycerol and bonded to the 1- and 3-positions. It is something to be offered.

本発明者らは、上記課題に鑑み鋭意検討したところ、所定の条件下、魚油を二段階に分けて溶剤分別を行うことで高融点グリセリドを分別可能であり、ヒト体温近傍で溶融する油脂であって、グリセロールの2位にパルミチン酸が多く結合し、且つω3系高度不飽和脂肪酸の多くが1,3位に結合したトリアシルグリセロールに富む油脂を高い収率で回収できることを見出した。   The inventors of the present invention have intensively studied in view of the above problems, and are capable of fractionating high melting point glycerides by performing solvent fractionation in two stages under predetermined conditions, and are fats and oils that melt near human body temperature. Thus, it has been found that oils rich in triacylglycerol in which a large amount of palmitic acid is bonded to the 2-position of glycerol and many of the ω3 polyunsaturated fatty acids are bonded to the 1,3-positions can be recovered in a high yield.

すなわち、本発明は、次の工程(1)、(2)及び(3):
(1)魚油を有機溶剤に溶解し、次いで冷却する工程、
(2)工程(1)において析出した固体部を液体部から分離し、液体部を得る工程、
(3)工程(2)で得た液体部を再び有機溶剤に溶解し、次いで工程(1)における冷却温度よりも低い温度に冷却した後、析出した固体部を得る工程、
を含む、分別魚油の製造方法を提供するものである。
また、本発明は、次の工程(1)、(2)及び(3):
(1)魚油を有機溶剤に溶解し、次いで冷却する工程、
(2)工程(1)において析出した固体部を液体部から分離し、液体部を得る工程、
(3)工程(2)で得た液体部を再び有機溶剤に溶解し、次いで工程(1)における冷却温度よりも低い温度に冷却した後、析出した固体部と液体部とを分離する工程、
を含む、魚油の分別方法を提供するものである。
That is, the present invention includes the following steps (1), (2) and (3):
(1) A step of dissolving fish oil in an organic solvent and then cooling it,
(2) The step of separating the solid part deposited in step (1) from the liquid part to obtain the liquid part,
(3) The step of obtaining the precipitated solid part after dissolving the liquid part obtained in step (2) in the organic solvent again and then cooling to a temperature lower than the cooling temperature in step (1).
The manufacturing method of the fractionated fish oil containing is provided.
The present invention also includes the following steps (1), (2) and (3):
(1) A step of dissolving fish oil in an organic solvent and then cooling it,
(2) The step of separating the solid part deposited in step (1) from the liquid part to obtain the liquid part,
(3) The step of separating the liquid part obtained by dissolving the liquid part obtained in the step (2) again in an organic solvent and then cooling to a temperature lower than the cooling temperature in the step (1),
And a method for fractionating fish oil.

本発明によれば、グリセロールの2位にパルミチン酸が多く結合し、且つ1,3位に結合したω3系高度不飽和脂肪酸の割合が高いトリアシルグリセロールに富む分別魚油が簡便に得られる。この分別魚油は、ヒト母乳中のトリアシルグリセロール構造に類似し、且つヒト体温近傍で溶融するため、ヒト母乳代替脂としても有用である。   According to the present invention, a fractionated fish oil rich in triacylglycerol, in which a large amount of palmitic acid is bonded to the 2-position of glycerol and the ratio of ω3 polyunsaturated fatty acids bonded to the 1- and 3-positions, is easily obtained. Since this fractionated fish oil is similar to the triacylglycerol structure in human breast milk and melts near human body temperature, it is also useful as a human breast milk substitute fat.

本発明の分別魚油の製造方法では、(1)魚油を有機溶剤に溶解し、次いで冷却する工程と、(2)工程(1)において析出した固体部を液体部から分離し、液体部を得る工程と、(3)工程(2)で得た液体部を再び有機溶剤に溶解し、次いで工程(1)における冷却温度よりも低い温度に冷却した後、析出した固体部を得る工程、とを有する。
また、本発明の魚油の分別方法では、(1)魚油を有機溶剤に溶解し、次いで冷却する工程と、(2)工程(1)において析出した固体部を液体部から分離し、液体部を得る工程と、(3)工程(2)で得た液体部を再び有機溶剤に溶解し、次いで工程(1)における冷却温度よりも低い温度に冷却した後、析出した固体部と液体部とを分離する工程、とを有する。
なお、本明細書において「油」と「油脂」は同義であり、油(油脂)を構成する物質にはトリアシルグリセロールのみならずモノアシルグリセロールやジアシルグリセロールも含まれる。すなわち、本発明において油(油脂)は、モノアシルグリセロール、ジアシルグリセロール及びトリアシルグリセロールのいずれか1種以上を含むものである。
In the method for producing fractionated fish oil according to the present invention, (1) a step of dissolving fish oil in an organic solvent and then cooling, and (2) separating the solid portion precipitated in step (1) from the liquid portion to obtain a liquid portion. A step of (3) dissolving the liquid part obtained in step (2) in an organic solvent again, and then cooling to a temperature lower than the cooling temperature in step (1) to obtain a precipitated solid part. Have.
In the method for fractionating fish oil of the present invention, (1) a step of dissolving fish oil in an organic solvent and then cooling, and (2) separating the solid portion deposited in step (1) from the liquid portion, And (3) the liquid part obtained in step (2) is dissolved again in an organic solvent, and then cooled to a temperature lower than the cooling temperature in step (1), and then the precipitated solid part and liquid part are Separating.
In this specification, “oil” and “oil / fat” are synonymous, and substances constituting the oil (oil / fat) include not only triacylglycerol but also monoacylglycerol and diacylglycerol. That is, in the present invention, the oil (oil / fat) contains at least one of monoacylglycerol, diacylglycerol, and triacylglycerol.

本発明の方法に供する魚油とは、水産動物油脂であり、例えば、ニシン、サンマ、サバ、カツオ、マグロ、イワシ、イカ、たら肝臓等の原料から採取することができる。
本発明の方法に供する魚油は、原料となる魚体等から搾油して得られる所謂粗魚油(原油)であってもよく、また、当該粗魚油に、油脂に対して行われる精製処理のうち1又は2以上の処理を施した油脂であってもよい。
油脂に対して行われる精製処理としては、油脂に水、場合によっては更に酸を添加混合して、リン脂質やたんぱく質等のガム質を除去する脱ガム処理;油脂にアルカリを添加混合して、遊離脂肪酸を除去するアルカリ脱酸処理;油脂に水を接触させ、油水分離を行う操作を行う水洗処理;油脂に活性白土や活性炭等の吸着剤を接触させ、有色成分を除去する脱色処理がある。また、アルカリを使用せずに、油脂を蒸留して、脂肪酸や環境汚染物質等の軽質の副生物を除去する蒸留処理や、この他に、低温で、油脂から固形分を分離する脱ロウ処理等がある。
The fish oil to be used in the method of the present invention is a marine animal fat, and can be collected from raw materials such as herring, saury, mackerel, bonito, tuna, sardine, squid and cod liver.
The fish oil used in the method of the present invention may be so-called crude fish oil (crude oil) obtained by squeezing from a fish body or the like as a raw material, and 1 of the refining treatment performed on the crude fish oil. Or the fats and oils which performed the 2 or more process may be sufficient.
As a purification treatment performed on fats and oils, water is added to fats and oils, and in some cases, an acid is further added and mixed to remove gums such as phospholipids and proteins; Alkaline deoxidation treatment to remove free fatty acids; Water washing treatment that makes oil contact with water and oil-water separation; Decolorization treatment that removes colored components by bringing oil and fat into contact with an adsorbent such as activated clay or activated carbon . In addition, a distillation process that removes light by-products such as fatty acids and environmental pollutants by distilling fats and oils without using alkali, and a dewaxing process that separates solids from fats and oils at low temperatures. Etc.

本発明の方法に供する魚油は、トリアシルグリセロールを含む。
魚油中、トリアシルグリセロールの含有量は、78質量%以上であることが好ましく、魚油の劣化抑制の点から、更に78〜100質量%、更に88〜100質量%、更に90〜99.5質量%、更に92〜99質量%であることが好ましい。
また、魚油はジアシルグリセロールを含んでもよく、魚油中、ジアシルグリセロールの含有量は、0〜19質量%であることが好ましく、更に0〜9質量%、更に0.1〜7質量%、更に0.2〜5質量%であることが好ましい。
また、魚油中のモノアシルグリセロールの含有量は、0〜10質量%、更に0〜5質量%、更に0〜3質量%であることが好ましい。
The fish oil subjected to the method of the present invention contains triacylglycerol.
In the fish oil, the content of triacylglycerol is preferably 78% by mass or more, and from the viewpoint of suppressing deterioration of the fish oil, it is further 78 to 100% by mass, further 88 to 100% by mass, and further 90 to 99.5% by mass. %, More preferably 92 to 99% by mass.
The fish oil may contain diacylglycerol, and the content of diacylglycerol in the fish oil is preferably 0 to 19% by mass, more preferably 0 to 9% by mass, further 0.1 to 7% by mass, and further 0 It is preferable that it is 2-5 mass%.
The content of monoacylglycerol in fish oil is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and further preferably 0 to 3% by mass.

本発明の方法に供する魚油を構成する脂肪酸中、ω3系高度不飽和脂肪酸の含有量は、本発明の効果が有効に発揮される点から、20質量%以上、更に25質量%以上であることが好ましい。尚、ω3系高度不飽和脂肪酸としては、エイコサペンタエン酸(C20:5、EPA)、ドコサヘキサエン酸(C22:6、DHA)が好ましい。
また、魚油を構成する脂肪酸中のドコサヘキサエン酸の含有量は、本発明の効果が有効に発揮される点から、19質量%以上、更に22質量%以上、更に25質量%以上であることが好ましい。
また、魚油を構成する脂肪酸中のパルミチン酸の含有量は、同様の点から、10質量%以上、更に13質量%以上、更に16質量%以上であることが好ましい。
なお、本明細書における脂肪酸量は遊離脂肪酸換算量である。
The content of the ω3 polyunsaturated fatty acid in the fatty acid constituting the fish oil to be subjected to the method of the present invention is 20% by mass or more, and further 25% by mass or more from the viewpoint that the effect of the present invention is effectively exhibited. Is preferred. As the ω3 highly unsaturated fatty acid, eicosapentaenoic acid (C20: 5, EPA) and docosahexaenoic acid (C22: 6, DHA) are preferable.
Further, the content of docosahexaenoic acid in the fatty acid constituting the fish oil is preferably 19% by mass or more, more preferably 22% by mass or more, and further preferably 25% by mass or more from the viewpoint that the effect of the present invention is effectively exhibited. .
Moreover, it is preferable that content of the palmitic acid in the fatty acid which comprises fish oil is 10 mass% or more from the same point, Furthermore, 13 mass% or more, Furthermore, it is 16 mass% or more.
In addition, the fatty acid amount in this specification is a free fatty acid equivalent amount.

魚油を構成する残余の脂肪酸は、特に限定されず、飽和脂肪酸又は不飽和脂肪酸のいずれであってもよい。飽和脂肪酸又は不飽和脂肪酸の炭素数は、12〜24、更に14〜24のものが好ましい。   The remaining fatty acid constituting the fish oil is not particularly limited, and may be either a saturated fatty acid or an unsaturated fatty acid. The saturated fatty acid or unsaturated fatty acid preferably has 12 to 24, more preferably 14 to 24 carbon atoms.

〔工程(1)〕
本工程は、魚油を有機溶剤に溶解し、次いで冷却する工程である。
本発明で用いられる有機溶剤は、魚油が溶解する溶剤であれば良く、例えばメタノール、ヘキサン、アセトン、メチルエチルケトン等が挙げられる。これらは組み合わせて用いても良い。なかでも、析出させた高融点成分を分離しやすくする点から、ヘキサン、アセトンが好ましく、アセトンがより好ましい。
有機溶剤の使用量は、工業的生産性の点から、魚油100質量部に対して10質量部以上が好ましく、更に30〜1000質量部、更に50〜500質量部が好ましい。
[Step (1)]
In this step, fish oil is dissolved in an organic solvent and then cooled.
The organic solvent used in the present invention may be any solvent that can dissolve fish oil, and examples thereof include methanol, hexane, acetone, and methyl ethyl ketone. These may be used in combination. Of these, hexane and acetone are preferable and acetone is more preferable from the viewpoint of easily separating the precipitated high melting point component.
The amount of the organic solvent used is preferably 10 parts by mass or more, more preferably 30 to 1000 parts by mass, and further preferably 50 to 500 parts by mass with respect to 100 parts by mass of fish oil from the viewpoint of industrial productivity.

魚油を有機溶剤に溶解する温度は、後に析出させる高融点成分を一旦十分に溶解しておく観点より、20℃以上が好ましく、30℃〜70℃がより好ましい。   The temperature at which the fish oil is dissolved in the organic solvent is preferably 20 ° C. or higher, more preferably 30 ° C. to 70 ° C., from the viewpoint of sufficiently dissolving the high melting point component to be precipitated later.

工程(1)における冷却温度は、透明な油相が濁り始める温度、すなわち魚油の中の高融点成分が結晶化して析出する温度であり、有機溶剤の種類等によって好適な範囲を設定できる。なかでも、結晶として析出した高融点成分を容易に分離できる点、2段目分別固体部の融点を25〜42℃にする点から、アセトンを溶剤として用いた場合は15℃〜0℃が好ましく、ヘキサンを溶剤として用いた場合は5℃〜−5℃が好ましい。   The cooling temperature in the step (1) is a temperature at which the transparent oil phase starts to become cloudy, that is, a temperature at which a high melting point component in the fish oil crystallizes and precipitates, and a suitable range can be set depending on the type of the organic solvent and the like. Among them, the high melting point component precipitated as crystals can be easily separated, and the melting point of the second-stage fractionated solid part is set to 25 to 42 ° C. When acetone is used as a solvent, 15 ° C to 0 ° C is preferable. When hexane is used as a solvent, 5 ° C to -5 ° C is preferable.

冷却時間は、冷却温度にて析出するべき結晶を十分に析出させる点から、0.1時間以上、更に0.2〜200時間、更に0.5〜100時間が好ましい。なお、ここでの時間は、魚油が冷却温度範囲内にある時間の合計を意味する。   The cooling time is preferably 0.1 hours or more, more preferably 0.2 to 200 hours, and further preferably 0.5 to 100 hours from the viewpoint of sufficiently depositing crystals to be precipitated at the cooling temperature. In addition, the time here means the sum total of the time when fish oil exists in a cooling temperature range.

魚油の冷却温度範囲に至るまでの冷却速度は、析出させた高融点成分を分離しやすくする点、生産性向上の点から10℃/h以下が好ましく、工業生産性の点から、0.1℃/h以上が好ましい。   The cooling rate up to the cooling temperature range of fish oil is preferably 10 ° C./h or less from the viewpoint of facilitating separation of the precipitated high melting point component and improving productivity, and from the viewpoint of industrial productivity, 0.1 C / h or more is preferable.

冷却操作は、ジャケット冷却、熱交換器等により行うことができる。
冷却操作は、静置下で行なっても、撹拌下で行ってもよい。析出した結晶の分散を良好に保つ点から、撹拌下で行うことが好ましい。撹拌の程度は、装置によって異なるが、析出した結晶の破砕を抑制できる条件を選択することが好ましい。
The cooling operation can be performed by jacket cooling, a heat exchanger, or the like.
The cooling operation may be performed under standing or under stirring. From the viewpoint of maintaining good dispersion of the precipitated crystals, it is preferably carried out under stirring. The degree of stirring varies depending on the apparatus, but it is preferable to select conditions that can suppress the crushing of the precipitated crystals.

〔工程(2)〕
本工程は、工程(1)において析出した固体部を液体部から分離し、液体部を得る工程である。
固体部の液体部からの分離は、例えば、静置分離、濾過、遠心分離等の方法により行うことができる。なかでも、操作性の点から濾過が好ましい。
液体部から分離した固体部は、前記有機溶剤で洗浄することが好ましい。洗浄に用いる有機溶剤は、析出させた高融点成分に対して10質量%以上、更に20〜200質量%、更に30〜100質量%が好ましい。
固液分離時の温度、洗浄に用いる有機溶剤の温度は、魚油の冷却時と同じ温度であることが好ましい。
[Step (2)]
This step is a step of separating the solid portion deposited in step (1) from the liquid portion to obtain the liquid portion.
Separation of the solid part from the liquid part can be performed, for example, by a method such as stationary separation, filtration, and centrifugation. Especially, filtration is preferable from the point of operativity.
The solid part separated from the liquid part is preferably washed with the organic solvent. The organic solvent used for washing is preferably 10% by mass or more, more preferably 20 to 200% by mass, and further preferably 30 to 100% by mass with respect to the deposited high melting point component.
The temperature at the time of solid-liquid separation and the temperature of the organic solvent used for washing are preferably the same as those at the time of cooling fish oil.

工程(2)において、固体部として分別により除去される高融点成分としては、パルミチン酸が40質量%以上、更に44質量%以上結合したトリアシルグリセロールが挙げられる。高融点成分の融点は40℃以上、更に45℃以上であることが好ましい。
高融点成分は、魚油中に含まれる高融点成分の濃度により異なるが、魚油に対して0.2〜6質量%、更に0.4〜4質量%、更に0.6〜3質量%除去されることが製造効率の点から好ましい。
Examples of the high melting point component removed by fractionation as a solid part in the step (2) include triacylglycerol to which palmitic acid is bonded in an amount of 40% by mass or more, and further 44% by mass or more. The melting point of the high melting point component is preferably 40 ° C. or higher, more preferably 45 ° C. or higher.
The high melting point component varies depending on the concentration of the high melting point component contained in the fish oil, but is 0.2 to 6% by mass, further 0.4 to 4% by mass, and further 0.6 to 3% by mass with respect to the fish oil. Is preferable from the viewpoint of production efficiency.

〔工程(3)〕
本工程は、工程(2)で得た液体部を再び有機溶剤に溶解し、次いで工程(1)における冷却温度よりも低い温度に冷却した後、分別魚油の製造方法では、析出した固体部を得る工程であり、魚油の分別方法では、析出した固体部と液体部とを分離する工程である。
有機溶剤は、前記と同様に、ヘキサン、アセトンが好ましく、アセトンがより好ましい。
工程(3)における有機溶剤の使用量は、工業的生産性の点から、工程(2)で得た液体部100質量部に対して10質量部以上が好ましく、更に30〜1000質量部、更に50〜500質量部が好ましい。
[Step (3)]
In this step, the liquid part obtained in step (2) is dissolved again in an organic solvent, and then cooled to a temperature lower than the cooling temperature in step (1). Then, in the method for producing fractionated fish oil, the precipitated solid part is In the method for separating fish oil, the solid portion and the liquid portion that are precipitated are separated.
As described above, the organic solvent is preferably hexane or acetone, more preferably acetone.
The amount of the organic solvent used in the step (3) is preferably 10 parts by mass or more with respect to 100 parts by mass of the liquid part obtained in the step (2) from the viewpoint of industrial productivity, and further 30 to 1000 parts by mass, 50-500 mass parts is preferable.

液体部を有機溶剤に溶解する温度は、前記と同様に10℃以上、更に20〜70℃が好ましい。   The temperature at which the liquid part is dissolved in the organic solvent is preferably 10 ° C. or higher, and more preferably 20 to 70 ° C. as described above.

工程(3)における冷却温度は、工程(1)における冷却温度よりも低い温度である。一段目の分別よりも低い温度で二段目の分別を行なうことで、2段目分別固体部として所望量のパルミチン酸、エイコサペンタエン酸及びドコサヘキサエン酸が結合した分別魚油が得られるという利点がある。冷却温度は、析出した高融点成分を容易に分離できる点、2段目分別固体部の融点を25〜42℃にする点から、工程(1)における冷却温度よりも3℃以上低い温度であることが好ましく、更に5℃〜30℃低い温度であることが好ましく、更に7℃〜25℃低い温度であることが好ましい。
また、工程(3)における冷却温度は、同様の点から、アセトンを溶剤として用いた場合は0℃〜−15℃、ヘキサンを溶剤として用いた場合は−5℃〜−20℃の温度範囲内が好ましい。
The cooling temperature in the step (3) is lower than the cooling temperature in the step (1). By performing the second-stage fractionation at a temperature lower than that of the first-stage fractionation, there is an advantage that a fractionated fish oil in which desired amounts of palmitic acid, eicosapentaenoic acid and docosahexaenoic acid are bound as the second-stage fractionated solid part can be obtained. . The cooling temperature is a temperature that is 3 ° C. or more lower than the cooling temperature in the step (1) in that the precipitated high melting point component can be easily separated and the melting point of the second-stage fractionated solid part is 25 to 42 ° C. It is preferable that the temperature is lower by 5 ° C to 30 ° C, more preferably 7 ° C to 25 ° C.
The cooling temperature in the step (3) is within the temperature range of 0 ° C. to −15 ° C. when acetone is used as a solvent and −5 ° C. to −20 ° C. when hexane is used as a solvent. Is preferred.

冷却時間は、冷却温度にて析出するべき結晶を十分に析出させる点から、0.1時間以上、更に0.2〜200時間、更に0.5〜100時間が好ましい。なお、ここでの時間は、工程(2)で得た液体部が冷却温度範囲内にある時間の合計を意味する。   The cooling time is preferably 0.1 hours or more, more preferably 0.2 to 200 hours, and further preferably 0.5 to 100 hours from the viewpoint of sufficiently depositing crystals to be precipitated at the cooling temperature. In addition, time here means the sum total of the time when the liquid part obtained at the process (2) exists in the cooling temperature range.

液体部の冷却温度範囲に至るまでの冷却速度は、析出させた高融点成分を分離しやすくする点、生産性向上の点から10℃/h以下が好ましく、工業生産性の点から、0.1℃/h以上が好ましい。   The cooling rate up to the cooling temperature range of the liquid part is preferably 10 ° C./h or less from the viewpoint of easy separation of the deposited high melting point component and from the viewpoint of productivity improvement, and from the viewpoint of industrial productivity, from the point of view of industrial productivity. 1 ° C./h or more is preferable.

冷却操作は、前記と同様に、ジャケット冷却、熱交換器等により行うことができる。
また、冷却操作は、静置下で行なっても、撹拌下で行ってもよいが、析出した結晶の分散を良好に保つ点から、撹拌下で行うことが好ましい。撹拌の程度は、装置によって異なるが、析出した結晶の破砕を抑制できる条件を選択することが好ましい。
The cooling operation can be performed by jacket cooling, a heat exchanger or the like as described above.
In addition, the cooling operation may be performed under standing or under stirring, but it is preferable to perform under cooling from the viewpoint of maintaining good dispersion of the precipitated crystals. The degree of stirring varies depending on the apparatus, but it is preferable to select conditions that can suppress the crushing of the precipitated crystals.

固液分離は、例えば、静置分離、濾過、遠心分離等の方法により行うことができる。なかでも、操作性の点、結晶部の洗浄が容易である点から濾過が好ましい。
また、析出した固体部は、前記と同様に、有機溶剤で洗浄することが好ましい。
固液分離時の温度、洗浄に用いる有機溶剤の温度は、工程(2)で得た液体部の冷却温度と同じ温度であることが好ましい。
Solid-liquid separation can be performed by methods such as stationary separation, filtration, and centrifugation, for example. Among these, filtration is preferable from the viewpoint of operability and easy cleaning of the crystal part.
Moreover, it is preferable to wash | clean the depositing solid part with the organic solvent similarly to the above.
The temperature at the time of solid-liquid separation and the temperature of the organic solvent used for washing are preferably the same as the cooling temperature of the liquid part obtained in step (2).

かくして、固体部として分別魚油が得られる。工程(2)で得た液体部の魚油に対する回収率(歩留まり)は、0.2〜6質量%、更には0.4〜5質量%、更には0.6〜4質量%が好ましい。
一方、工程(3)で固液分離を行って析出した固体部と分離した液体部は、ω3系高度不飽和脂肪酸を含む魚油として使用できる。そのため、本発明の方法によれば、魚油に含まれるω3系高度不飽和脂肪酸をロスすることなく、有効に利用することができる。
Thus, fractionated fish oil is obtained as a solid part. The recovery rate (yield) of the liquid part obtained in the step (2) with respect to fish oil is preferably 0.2 to 6% by mass, more preferably 0.4 to 5% by mass, and further preferably 0.6 to 4% by mass.
On the other hand, the solid part separated by solid-liquid separation in the step (3) and the separated liquid part can be used as fish oil containing ω3 highly unsaturated fatty acid. Therefore, according to the method of the present invention, the ω3 polyunsaturated fatty acid contained in fish oil can be effectively used without loss.

また、分別魚油の、本発明の方法に供する魚油に対する回収率(歩留まり)は、魚油のパルミチン酸、エイコサペンタエン酸、ドコサヘキサエン酸濃度に依存するが、1〜12質量%、更には2〜9質量%、更には3〜7質量%が好ましい。   Further, the recovery rate (yield) of the fractionated fish oil to the fish oil used in the method of the present invention depends on the concentrations of palmitic acid, eicosapentaenoic acid and docosahexaenoic acid in the fish oil, but is 1 to 12% by mass, and further 2 to 9% by mass. %, More preferably 3 to 7% by mass.

本発明の製造方法により得られる分別魚油は、グリセロールの2位にパルミチン酸が多く結合し、且つ1,3位に結合したω3系高度不飽和脂肪酸の割合が高いトリアシルグリセロールに富む。
トリアシルグリセロールの2位に結合した脂肪酸の総質量中、パルミチン酸の含有量は、30質量%以上であることが好ましく、更に40質量%以上、更に45質量%以上であることが好ましい。
また、トリアシルグリセロールに結合したω3系高度不飽和脂肪酸(エイコサペンタエン酸+ドコサヘキサエン酸)の総質量に対する、1,3位に結合したω3系高度不飽和脂肪酸の割合(1,3位EPA+DHA含有率)は、60質量%以上、更に65〜95質量%であることが好ましい。
The fractionated fish oil obtained by the production method of the present invention is rich in triacylglycerol in which a large amount of palmitic acid is bonded to the 2nd position of glycerol and the ratio of ω3 highly unsaturated fatty acids bonded to the 1st and 3rd positions is high.
In the total mass of fatty acids bonded to the 2-position of triacylglycerol, the content of palmitic acid is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 45% by mass or more.
Also, the ratio of the ω3 highly unsaturated fatty acid bonded to the 1,3-position to the total mass of the ω3 highly unsaturated fatty acid (eicosapentaenoic acid + docosahexaenoic acid) bonded to the triacylglycerol (1,3-position EPA + DHA content) ) Is preferably 60% by mass or more, and more preferably 65 to 95% by mass.

また、トリアシルグリセロールに結合したドコサヘキサエン酸の総質量に対する、1,3位に結合したドコサヘキサエン酸の割合(1,3位DHA含有率)は、55質量%以上、更に60〜95質量%であることが好ましい。
また、トリアシルグリセロールに結合したエイコサペンタエン酸の総質量に対する、1,3位に結合したエイコサペンタエン酸の割合(1,3位EPA含有率)は、65質量%以上、更に70〜95質量%であることが好ましい。
なお、トリアシルグリセロールの1,3位の脂肪酸組成は、トリアシルグリセロールを構成する全ての脂肪酸組成と、トリアシルグリセロールの2位に結合している脂肪酸の組成を分析することで求めることができる。詳細は後記実施例に記載した。
The ratio of docosahexaenoic acid bonded to the 1,3-position (content of 1,3-position DHA) to the total mass of docosahexaenoic acid bonded to triacylglycerol is 55% by mass or more, and further 60 to 95% by mass. It is preferable.
In addition, the ratio of the eicosapentaenoic acid bonded to the 1,3-position to the total mass of the eicosapentaenoic acid bonded to the triacylglycerol (1,3-position EPA content) is 65% by mass or more, and further 70 to 95% by mass. It is preferable that
The fatty acid composition at the 1st and 3rd positions of triacylglycerol can be determined by analyzing the composition of all fatty acids constituting the triacylglycerol and the composition of fatty acids bound to the 2nd position of triacylglycerol. . Details are described in Examples below.

分別魚油を構成する脂肪酸中のドコサヘキサエン酸の含有量は、分別魚油の融点からの点から、5質量%以上、更に7〜17質量%、更に9〜14質量%であることが好ましい。また、分別魚油を構成する脂肪酸中、エイコサペンタエン酸の含有量は、同様の点から、1質量%以上、更に1.5〜5質量%、更に2〜4質量%であることが好ましい。   The content of docosahexaenoic acid in the fatty acid constituting the fractionated fish oil is preferably 5% by mass or more, further 7 to 17% by mass, and further 9 to 14% by mass from the point of melting point of the fractionated fish oil. Moreover, it is preferable that content of eicosapentaenoic acid in the fatty acid which comprises fractionated fish oil is 1 mass% or more, 1.5-5 mass%, and also 2-4 mass% from the same point.

分別魚油中のトリアシルグリセロールの含有量は、油脂の工業的生産性の点、油脂の劣化抑制の点から、90質量%以上、更に94質量%以上であることが好ましい。   The content of triacylglycerol in the fractionated fish oil is preferably 90% by mass or more and more preferably 94% by mass or more from the viewpoint of industrial productivity of fats and oils and suppression of deterioration of fats and oils.

分別魚油の酸価(AV)は、油脂の劣化抑制の点から、10mgKOH/g以下、更に5mgKOH/g以下であることが好ましい。   The acid value (AV) of the fractionated fish oil is preferably 10 mgKOH / g or less, more preferably 5 mgKOH / g or less, from the viewpoint of suppressing the deterioration of fats and oils.

本発明の製造方法により得られる分別魚油はヒト体温近傍で溶融する。すなわち、分別魚油の融点は、42℃未満であり、好ましくは25〜41℃、より好ましくは27〜40℃である。   The fractionated fish oil obtained by the production method of the present invention melts near the human body temperature. That is, the melting point of the fractionated fish oil is less than 42 ° C, preferably 25 to 41 ° C, more preferably 27 to 40 ° C.

本発明の製造方法、並びに分別法により得られる分別魚油は、一般の食用油脂と同様に使用でき、油脂を用いた各種飲食物に広範に適用することができる。なかでも、ヒト母乳代替脂として有用である。   The fractionated fish oil obtained by the production method and the fractionation method of the present invention can be used in the same manner as general edible fats and oils, and can be widely applied to various foods and drinks using fats and oils. Among them, it is useful as a human breast milk substitute fat.

本発明の実施の形態及び好ましい実施の形態を以下に例示する。   Embodiments and preferred embodiments of the present invention will be exemplified below.

<1>次の工程(1)、(2)及び(3):
(1)魚油を有機溶剤に溶解し、次いで冷却する工程、
(2)工程(1)において析出した固体部を液体部から分離し、液体部を得る工程、
(3)工程(2)で得た液体部を再び有機溶剤に溶解し、次いで工程(1)における冷却温度よりも低い温度に冷却した後、析出した固体部を得る工程、
を含む、分別魚油の製造方法。
<1> Next steps (1), (2) and (3):
(1) A step of dissolving fish oil in an organic solvent and then cooling it,
(2) The step of separating the solid part deposited in step (1) from the liquid part to obtain the liquid part,
(3) The step of obtaining the precipitated solid part after dissolving the liquid part obtained in step (2) in the organic solvent again and then cooling to a temperature lower than the cooling temperature in step (1).
A method for producing fractionated fish oil, comprising:

<2>次の工程(1)、(2)及び(3):
(1)魚油を有機溶剤に溶解し、次いで冷却する工程、
(2)工程(1)において析出した固体部を液体部から分離し、液体部を得る工程、
(3)工程(2)で得た液体部を再び有機溶剤に溶解し、次いで工程(1)における冷却温度よりも低い温度に冷却した後、析出した固体部と液体部とを分離する工程、
を含む、魚油の分別方法。
<3>魚油が、トリアシルグリセロールを好ましくは78質量%以上、より好ましくは88質量%以上、更に好ましくは90質量%以上、更に好ましくは92質量%以上含有し、また、好ましくは100質量%以下、より好ましくは99.5質量%以下、更に好ましくは99質量%以下含有し、また、好ましくは78〜100質量%、より好ましくは88〜100質量%、更に好ましくは90〜99.5質量%、更に好ましくは92〜99質量%含有する<1>又は<2>に記載の方法。
<4>魚油が、ジアシルグリセロールを好ましくは0〜19質量%、より好ましくは0〜9質量%、更に好ましくは0.1〜7質量%、更に好ましくは0.2〜5質量%含有する<1>〜<3>のいずれか1に記載の方法。
<5>魚油が、モノアシルグリセロールを好ましくは0〜10質量%、より好ましくは0〜5質量%、更に好ましくは0〜3質量%含有する<1>〜<4>のいずれか1に記載の方法。
<6>魚油が、魚油を構成する脂肪酸中にω3系高度不飽和脂肪酸を好ましくは20質量%以上、より好ましくは25質量%以上含有する<1>〜<5>のいずれか1に記載の方法。
<7>魚油が、魚油を構成する脂肪酸中にドコサヘキサエン酸を好ましくは19質量%以上、より好ましくは22質量%以上、更に好ましくは25質量%以上含有する<1>〜<6>のいずれか1に記載の方法。
<8>魚油が、魚油を構成する脂肪酸中にパルミチン酸を好ましくは10質量%以上、より好ましくは13質量%以上、更に好ましくは16質量%以上含有する<1>〜<7>のいずれか1に記載の方法。
<9>有機溶剤が、好ましくは魚油が溶解する溶剤であり、より好ましくはメタノール、ヘキサン、アセトン及びメチルエチルケトンから選ばれる1種又は2種以上であり、更に好ましくはヘキサン、アセトン又はこれらの組み合わせであり、更に好ましくはアセトンである<1>〜<8>のいずれか1に記載の方法。
<10>工程(1)における有機溶剤の使用量が、魚油100質量部に対して、好ましくは10質量部以上、より好ましくは30〜1000質量部、更に好ましくは50〜500質量部である<1>〜<9>のいずれか1に記載の方法。
<11>工程(1)において、魚油を有機溶剤に溶解する温度が、好ましくは20℃以上、より好ましくは30℃〜70℃である<1>〜<10>のいずれか1に記載の方法。
<12>工程(1)における冷却温度が、アセトンを溶剤として用いた場合は好ましくは15℃〜0℃であり、ヘキサンを溶剤として用いた場合は好ましくは5℃〜−5℃である<1>〜<11>のいずれか1に記載の方法。
<13>工程(1)における冷却時間が、好ましくは0.1時間以上、より好ましくは0.2〜200時間、更に好ましくは0.5〜100時間である<1>〜<12>のいずれか1に記載の方法。
<14>魚油の冷却温度範囲に至るまでの冷却速度が、好ましくは10℃/h以下であり、また、好ましくは0.1℃/h以上である<1>〜<13>のいずれか1に記載の方法。
<15>工程(2)において、固体部として分別により除去される高融点成分が、好ましくはパルミチン酸が40質量%以上、より好ましくは44質量%以上結合したトリアシルグリセロールである<1>〜<14>のいずれか1に記載の方法。
<16>高融点成分の融点が、好ましくは40℃以上、より好ましくは45℃以上である<15>に記載の方法。
<17>工程(2)において、固体部として分別により除去される高融点成分は、魚油に対して、好ましくは0.2〜6質量%、より好ましくは0.4〜4質量%、更に好ましくは0.6〜3質量%除去される<1>〜<16>のいずれか1に記載の方法。
<18>工程(3)における冷却温度が、工程(1)における冷却温度よりも好ましくは3℃以上低い温度であり、より好ましくは5℃〜30℃低い温度であり、更に好ましくは7℃〜25℃低い温度である<1>〜<17>のいずれか1に記載の方法。
<19>工程(3)における冷却温度が、アセトンを溶剤として用いた場合は好ましくは0℃〜−15℃であり、ヘキサンを溶剤として用いた場合は好ましくは−5℃〜−20℃である<1>〜<18>のいずれか1に記載の方法。
<20>工程(3)における有機溶剤の使用量が、工程(2)で得た液体部100質量部に対して好ましくは10質量部以上、より好ましくは30〜1000質量部、更に好ましくは50〜500質量部である<1>〜<19>のいずれか1に記載の方法。
<21>工程(3)において、液体部を有機溶剤に溶解する温度が、好ましくは10℃以上、より好ましくは20〜70℃である<1>〜<20>のいずれか1に記載の方法。<22>工程(3)における冷却時間が、好ましくは0.1時間以上、より好ましくは0.2〜200時間、更に好ましくは0.5〜100時間である<1>〜<21>のいずれか1に記載の方法。
<23>液体部の冷却温度範囲に至るまでの冷却速度が、好ましくは10℃/h以下であり、また、好ましくは0.1℃/h以上である<1>〜<22>のいずれか1に記載の方法。
<24>工程(2)で得た液体部の魚油に対する回収率(歩留まり)が、好ましくは0.2〜6質量%、より好ましくは0.4〜5質量%、更に好ましくは0.6〜4質量%である<1>〜<23>のいずれか1に記載の方法。
<25>分別魚油の、工程(1)に供する魚油に対する回収率(歩留まり)が、好ましくは1〜12質量%、より好ましくは2〜9質量%、更に好ましくは3〜7質量%である<1>〜<24>のいずれか1に記載の方法。
<26>分別魚油が、トリアシルグリセロールの2位に結合した脂肪酸の総質量中にパルミチン酸を好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは45質量%以上含み、且つトリアシルグリセロールに結合したω3系高度不飽和脂肪酸の総質量に対する、1,3位に結合したω3系高度不飽和脂肪酸の割合が好ましくは60質量%以上、より好ましくは65〜95質量%のものである<1>〜<25>のいずれか1に記載の方法。
<27>分別魚油が、トリアシルグリセロールに結合したドコサヘキサエン酸の総質量に対する、1,3位に結合したドコサヘキサエン酸の割合(1,3位DHA含有率)が好ましくは55質量%以上、より好ましくは60〜95質量%のものである<1>〜<26>のいずれか1に記載の方法。
<28>分別魚油が、トリアシルグリセロールに結合したエイコサペンタエン酸の総質量に対する、1,3位に結合したエイコサペンタエン酸の割合(1,3位EPA含有率)が好ましくは65質量%以上、より好ましくは70〜95質量%のものである<1>〜<27>のいずれか1に記載の方法。<29>分別魚油が、分別魚油を構成する脂肪酸中にドコサヘキサエン酸を好ましくは5質量%以上、より好ましくは7〜17質量%、更に好ましくは9〜14質量%含有する<1>〜<28>のいずれか1に記載の方法。
<30>分別魚油が、分別魚油を構成する脂肪酸中にエイコサペンタエン酸を好ましくは1質量%以上、より好ましくは1.5〜5質量%、更に好ましくは2〜4質量%含有する<1>〜<29>のいずれか1に記載の方法。
<31>分別魚油が、トリアシルグリセロールを好ましくは90質量%以上、より好ましくは94質量%以上含有する<1>〜<30>のいずれか1に記載の方法。
<32>分別魚油の酸価(AV)が、好ましくは10mgKOH/g以下、より好ましくは5mgKOH/g以下である<1>〜<31>のいずれか1に記載の方法。
<33>分別魚油の融点が、好ましくは42℃未満であり、より好ましくは25〜41℃、更に好ましくは27〜40℃である<1>〜<32>のいずれか1に記載の方法。
<34>工程(3)で析出した固体部と分離した液体部を、ω3系高度不飽和脂肪酸を含む魚油として使用する<1>〜<33>のいずれか1に記載の方法。
<2> Next steps (1), (2) and (3):
(1) A step of dissolving fish oil in an organic solvent and then cooling it,
(2) The step of separating the solid part deposited in step (1) from the liquid part to obtain the liquid part,
(3) The step of separating the liquid part obtained by dissolving the liquid part obtained in the step (2) again in an organic solvent and then cooling to a temperature lower than the cooling temperature in the step (1),
A method for separating fish oil, including
<3> Fish oil preferably contains triacylglycerol in an amount of 78% by mass or more, more preferably 88% by mass or more, still more preferably 90% by mass or more, still more preferably 92% by mass or more, and preferably 100% by mass. Or less, more preferably 99.5% by mass or less, still more preferably 99% by mass or less, preferably 78 to 100% by mass, more preferably 88 to 100% by mass, still more preferably 90 to 99.5% by mass. %, More preferably 92 to 99% by mass, The method according to <1> or <2>.
<4> Fish oil preferably contains diacylglycerol in an amount of 0 to 19% by mass, more preferably 0 to 9% by mass, still more preferably 0.1 to 7% by mass, and still more preferably 0.2 to 5% by mass < The method according to any one of 1> to <3>.
<5> The fish oil preferably contains 0 to 10% by mass, more preferably 0 to 5% by mass, and further preferably 0 to 3% by mass of monoacylglycerol, according to any one of <1> to <4>. the method of.
<6> The fish oil according to any one of <1> to <5>, wherein the fatty acid constituting the fish oil preferably contains ω3 highly unsaturated fatty acid in an amount of 20% by mass or more, more preferably 25% by mass or more. Method.
<7> Any of <1> to <6>, wherein the fish oil contains docosahexaenoic acid in the fatty acid constituting the fish oil, preferably 19% by mass or more, more preferably 22% by mass or more, and even more preferably 25% by mass or more. The method according to 1.
<8> Any of <1> to <7>, wherein the fish oil contains palmitic acid in the fatty acid constituting the fish oil, preferably 10% by mass or more, more preferably 13% by mass or more, and still more preferably 16% by mass or more. The method according to 1.
<9> The organic solvent is preferably a solvent in which fish oil dissolves, more preferably one or more selected from methanol, hexane, acetone and methyl ethyl ketone, and even more preferably hexane, acetone or a combination thereof. The method according to any one of <1> to <8>, which is more preferably acetone.
<10> The amount of the organic solvent used in step (1) is preferably 10 parts by mass or more, more preferably 30 to 1000 parts by mass, and even more preferably 50 to 500 parts by mass with respect to 100 parts by mass of fish oil. The method according to any one of 1> to <9>.
<11> The method according to any one of <1> to <10>, wherein the temperature at which the fish oil is dissolved in the organic solvent is preferably 20 ° C. or higher, more preferably 30 ° C. to 70 ° C. .
<12> The cooling temperature in step (1) is preferably 15 ° C. to 0 ° C. when acetone is used as the solvent, and preferably 5 ° C. to −5 ° C. when hexane is used as the solvent. The method according to any one of> to <11>.
<13> Any of <1> to <12>, wherein the cooling time in step (1) is preferably 0.1 hour or more, more preferably 0.2 to 200 hours, and still more preferably 0.5 to 100 hours. The method according to claim 1.
<14> Any one of <1> to <13>, wherein the cooling rate until the fish oil reaches the cooling temperature range is preferably 10 ° C./h or less, and preferably 0.1 ° C./h or more. The method described in 1.
<15> In step (2), the high melting point component removed by fractionation as a solid part is preferably triacylglycerol to which palmitic acid is bonded in an amount of 40% by mass or more, more preferably 44% by mass or more. The method according to any one of <14>.
<16> The method according to <15>, wherein the melting point of the high melting point component is preferably 40 ° C. or higher, more preferably 45 ° C. or higher.
<17> In the step (2), the high melting point component removed by fractionation as a solid part is preferably 0.2 to 6% by mass, more preferably 0.4 to 4% by mass, and still more preferably based on fish oil. Is a method according to any one of <1> to <16>, wherein 0.6 to 3% by mass is removed.
<18> The cooling temperature in the step (3) is preferably a temperature 3 ° C. or more lower than the cooling temperature in the step (1), more preferably a temperature lower by 5 ° C. to 30 ° C., more preferably 7 ° C. to The method according to any one of <1> to <17>, which is a temperature lower by 25 ° C.
<19> The cooling temperature in step (3) is preferably 0 ° C. to −15 ° C. when acetone is used as the solvent, and preferably −5 ° C. to −20 ° C. when hexane is used as the solvent. The method according to any one of <1> to <18>.
<20> The amount of the organic solvent used in the step (3) is preferably 10 parts by mass or more, more preferably 30 to 1000 parts by mass, and still more preferably 50 with respect to 100 parts by mass of the liquid part obtained in the step (2). The method of any one of <1>-<19> which is -500 mass parts.
<21> The method according to any one of <1> to <20>, wherein the temperature at which the liquid part is dissolved in the organic solvent in the step (3) is preferably 10 ° C or higher, more preferably 20 to 70 ° C. . <22> Any of <1> to <21>, wherein the cooling time in step (3) is preferably 0.1 hour or more, more preferably 0.2 to 200 hours, and still more preferably 0.5 to 100 hours. The method according to claim 1.
<23> Any one of <1> to <22>, wherein the cooling rate until reaching the cooling temperature range of the liquid part is preferably 10 ° C./h or less, and preferably 0.1 ° C./h or more. The method according to 1.
The recovery rate (yield) of the liquid part obtained in <24> step (2) with respect to fish oil is preferably 0.2 to 6% by mass, more preferably 0.4 to 5% by mass, and still more preferably 0.6 to The method according to any one of <1> to <23>, which is 4% by mass.
The recovery rate (yield) of <25> fractionated fish oil to the fish oil used in step (1) is preferably 1 to 12% by mass, more preferably 2 to 9% by mass, and even more preferably 3 to 7% by mass < The method according to any one of 1> to <24>.
<26> The fractionated fish oil contains palmitic acid in the total mass of the fatty acid bonded to the 2-position of triacylglycerol, preferably 30% by mass or more, more preferably 40% by mass or more, and still more preferably 45% by mass or more, and The ratio of the ω3 highly unsaturated fatty acid bonded to the 1,3-position to the total mass of the ω3 highly unsaturated fatty acid bonded to triacylglycerol is preferably 60% by mass or more, more preferably 65 to 95% by mass The method according to any one of <1> to <25>.
<27> The proportion of docosahexaenoic acid bonded to the 1,3-position to the total mass of docosahexaenoic acid bonded to triacylglycerol in the fractionated fish oil (1,3-position DHA content) is preferably 55% by mass or more, more preferably <60> is a method according to any one of <1> to <26>, which is 60 to 95% by mass.
<28> The ratio of eicosapentaenoic acid bonded to the 1,3-position to the total mass of eicosapentaenoic acid bonded to triacylglycerol is preferably 65% by mass or more. The method according to any one of <1> to <27>, more preferably 70 to 95% by mass. <29> The fractionated fish oil contains docosahexaenoic acid in the fatty acid constituting the fractionated fish oil, preferably 5% by mass or more, more preferably 7 to 17% by mass, and even more preferably 9 to 14% by mass. <1> to <28 The method of any one of>.
<30> The fractionated fish oil contains eicosapentaenoic acid in the fatty acid constituting the fractionated fish oil, preferably 1% by mass or more, more preferably 1.5 to 5% by mass, and even more preferably 2 to 4% by mass <1>. ~ The method according to any one of <29>.
<31> The method according to any one of <1> to <30>, wherein the fractionated fish oil preferably contains 90% by mass or more, more preferably 94% by mass or more of triacylglycerol.
<32> The method according to any one of <1> to <31>, wherein the acid value (AV) of the fractionated fish oil is preferably 10 mgKOH / g or less, more preferably 5 mgKOH / g or less.
<33> The method according to any one of <1> to <32>, wherein the melting point of the fractionated fish oil is preferably less than 42 ° C, more preferably 25 to 41 ° C, and still more preferably 27 to 40 ° C.
<34> The method according to any one of <1> to <33>, wherein the liquid part separated from the solid part precipitated in the step (3) is used as a fish oil containing an ω3 highly unsaturated fatty acid.

以下の実施例において「%」は「質量%」を意味する。
〔分析方法〕
(i)構成脂肪酸組成の測定
日本油化学会編「基準油脂分析試験法2003年版」中の「メチルエステル化法(三フッ化ホウ素メタノール法)(2.4.1.2−1996)」に従って脂肪酸メチルエステルを調製し、得られたサンプルを、ガスクロマトグラフィー(GLC)に供して、構成脂肪酸の分析を行った。
In the following examples, “%” means “mass%”.
[Analysis method]
(I) Measurement of constituent fatty acid composition According to “Methyl esterification method (boron trifluoride methanol method) (2.4.1.2-1996)” in “Standard oil analysis method 2003 edition” edited by Japan Oil Chemists' Society Fatty acid methyl ester was prepared, and the obtained sample was subjected to gas chromatography (GLC) to analyze constituent fatty acids.

(ii)グリセリド組成の測定
「グリセリド組成」は、ガラス製サンプル瓶に、サンプル10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学製)0.5mLを加え、密栓した後、70℃で15分間加熱した。これに蒸留水1.0mL、ヘキサン2.0mLを加えて、混合後、ヘキサン層をガスクロマトグラフィー(GLC)に供して、グリセリド組成の分析を行った。
(Ii) Measurement of glyceride composition The “glyceride composition” is obtained by adding 10 mg of a sample and 0.5 mL of a trimethylsilylating agent (“silylating agent TH”, manufactured by Kanto Chemical) to a glass sample bottle and sealing it at 70 ° C. Heated for 15 minutes. Distilled water (1.0 mL) and hexane (2.0 mL) were added thereto, and after mixing, the hexane layer was subjected to gas chromatography (GLC) to analyze the glyceride composition.

(iii)酸価(AV)の測定
日本油化学会編「基準油脂分析試験法2003年版」中の「酸価(2.3.1−1996)」に従って測定した。
(iii) Measurement of Acid Value (AV) The acid value (AV) was measured according to “Acid Value (2.3.1-1996)” in “Standard Oil Analysis Test Method 2003” edited by Japan Oil Chemists' Society.

(iv)融点の測定
高感度型示差走査熱量計(DSC7020、SII製)を用いて、融点を測定した。分析条件は、試料5mgを70℃で5分保持し溶解後、20℃/分の速度で−40℃まで冷却し5分保持し固化させた。その後、20℃/分の速度で融点予想より30℃低い温度まで昇温した。次いで、0.5℃/分の速度で昇温し、溶解終了温度を融点とした。
(Iv) Measurement of melting point The melting point was measured using a high-sensitivity differential scanning calorimeter (DSC7020, manufactured by SII). The analysis conditions were that 5 mg of the sample was held at 70 ° C. for 5 minutes and dissolved, then cooled to −40 ° C. at a rate of 20 ° C./minute, held for 5 minutes and solidified. Thereafter, the temperature was raised to a temperature 30 ° C. lower than expected at the melting point at a rate of 20 ° C./min. Next, the temperature was raised at a rate of 0.5 ° C./min, and the melting end temperature was taken as the melting point.

(v)2位の脂肪酸組成及び1,3位の脂肪酸組成の測定
高濃度のエタノール存在下で高い1,(3)位選択性を示し、既存リパーゼ剤で脂肪酸選択性が低いノボザイム435(ノボザイムズジャパン製)を用いた。グリセリドの1,3位結合脂肪酸を分解することで2−モノグリセリドの脂肪酸組成を求め、1,3位の脂肪酸組成を算出した。
試料150mgとエタノール1.5gを混合し、ノボザイム435を66mg加えて30℃で3時間反応させた。その後、リパーゼを濾別して、エタノールを減圧留去することで反応液を得た。
続いて、固相カラム(Sep−Pak Silica WAT051900、日本ウォーターズ製)を使って、2−モノグリセリドを分画した。固相カラムをヘキサン80%、ジエチルエーテル20%の混合溶剤10mLでコンデショニングした。ヘキサン80%、ジエチルエーテル20%の混合溶剤1mLに反応液100mg溶解し、固相カラムに通液した。次いで、ヘキサン80%、ジエチルエーテル20%の混合溶剤30mL通液し遊離脂肪酸及びジグリセリドを分離した。その後、メタノールを10mL通液した。メタノールを減圧留去して2−モノグリセリド画分を回収した。その後、トリヘンイコサノイン(和光純薬工業製)を内部標準として、構成脂肪酸組成の測定と同じ操作を行い2−モノグリセリド画分の構成脂肪酸の分析を行った。
この結果を用いて、1,3位の構成脂肪酸組成(%)及び1,3位含有率(%)を次式(1)、(2)より算出した。
1,3位の構成脂肪酸組成(%)={グリセリドの構成脂肪酸組成(%)×3−2位モノグリセリドの構成脂肪酸組成(%)}/2・・・・(1)
(V) Measurement of fatty acid composition at the 2nd position and fatty acid composition at the 1st and 3rd positions Novozyme 435 (Novozyme) which shows high 1, (3) position selectivity in the presence of high concentration of ethanol and low fatty acid selectivity with existing lipase agents Zymes Japan) was used. The fatty acid composition of 2-monoglyceride was calculated | required by decomposing | disassembling the 1, 3-position coupling | bonding fatty acid of a glyceride, and the fatty acid composition of the 1, 3-position was computed.
150 mg of the sample and 1.5 g of ethanol were mixed, 66 mg of Novozyme 435 was added and reacted at 30 ° C. for 3 hours. Thereafter, the lipase was filtered off and ethanol was distilled off under reduced pressure to obtain a reaction solution.
Subsequently, 2-monoglyceride was fractionated using a solid phase column (Sep-Pak Silica WAT051900, manufactured by Nihon Waters). The solid phase column was conditioned with 10 mL of a mixed solvent of 80% hexane and 20% diethyl ether. 100 mg of the reaction solution was dissolved in 1 mL of a mixed solvent of 80% hexane and 20% diethyl ether, and passed through a solid phase column. Subsequently, 30 mL of a mixed solvent of 80% hexane and 20% diethyl ether was passed through to separate free fatty acids and diglycerides. Thereafter, 10 mL of methanol was passed. Methanol was distilled off under reduced pressure to recover a 2-monoglyceride fraction. Thereafter, using trihenicosanoin (manufactured by Wako Pure Chemical Industries, Ltd.) as an internal standard, the same operation as the measurement of the constituent fatty acid composition was performed to analyze the constituent fatty acids of the 2-monoglyceride fraction.
Using this result, the constituent fatty acid composition (%) at positions 1 and 3 and the content (%) at positions 1 and 3 were calculated from the following formulas (1) and (2).
1st and 3rd constituent fatty acid composition (%) = {constituent fatty acid composition of glyceride (%) × 3rd constituent fatty acid composition of monoglyceride (%)} / 2 (1)

1,3位含有率(%)={1,3位の構成脂肪酸組成(%)×2}/{グリセリドの構成脂肪酸組成(%)×3}×100・・・・(2) 1,3-position content rate (%) = {constituent fatty acid composition of the 1,3-position (%) × 2} / {constituent fatty acid composition of glyceride (%) × 3} × 100 (2)

〔原料油脂〕
原料油脂として、表1に示す蒸留カツオマグロ油及びマグロ原油を用いた。
原料油脂の脂肪酸組成、2位に結合する脂肪酸の総質量中のパルミチン酸の含有量(2位パルミチン酸)、EPA、DHAの1,3位含有率、酸価(AV)、グリセリド組成、及び融点を表1に示す。なお、蒸留カツオマグロ油の融点は、不明瞭であった。
[Raw oil]
Distilled bonito tuna oil and tuna crude oil shown in Table 1 were used as raw material fats and oils.
Fatty acid composition of raw oil and fat, content of palmitic acid in the total mass of fatty acid bonded to the 2-position (2-position palmitic acid), EPA, DHA 1- and 3-position content, acid value (AV), glyceride composition, and The melting points are shown in Table 1. The melting point of distilled skipjack tuna oil was unclear.

Figure 0006600227
Figure 0006600227

〔実施例1〕
表1に示す蒸留カツオマグロ油を原料油脂とし、1段目アセトン分別を5℃で行った。得られた液体画分を用いて、2段目アセトン分別を−5℃で行った。
1段目アセトン分別は、2Lビーカーに蒸留カツオマグロ油200gとアセトン(特級、和光純薬工業製)400mLを加えて、混合しながら40℃で溶解した。次いで、5℃恒温室内に静置した。70時間後、ブフナー漏斗を用いて、定性濾紙NO.2(ADVANTEC製)で減圧濾過を行った。固体部は5℃に冷却した200mLのアセトンで洗浄しながら、再度減圧濾過した。洗浄濾液は先に分離した液体部に加えた。固体部及び液体部を含むアセトン溶液をそれぞれ減圧留去して、固体画分及び液体画分の歩留まりを求め分析を行った。
[Example 1]
Distilled bonito tuna oil shown in Table 1 was used as a raw oil and fat, and the first-stage acetone fractionation was performed at 5 ° C. Using the obtained liquid fraction, second-stage acetone fractionation was performed at -5 ° C.
In the first stage acetone fractionation, 200 g of distilled bonito tuna oil and 400 mL of acetone (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) were added to a 2 L beaker and dissolved at 40 ° C. while mixing. Subsequently, it left still in a 5 degreeC thermostat. After 70 hours, using a Buchner funnel, qualitative filter paper NO. The solution was filtered under reduced pressure using 2 (manufactured by ADVANTEC). The solid part was filtered under reduced pressure again while washing with 200 mL of acetone cooled to 5 ° C. The washing filtrate was added to the previously separated liquid portion. The acetone solution containing the solid part and the liquid part was distilled off under reduced pressure, and the yields of the solid fraction and the liquid fraction were determined and analyzed.

続いて、2段目アセトン分別は、上記で得られた液体部99.5gとアセトン(特級、和光純薬工業製)200mLを加えて、混合しながら40℃で溶解した。次いで、ジャケット温度を−5℃にしたセパラブルフラスコに入れた。4時間静置後、ブフナー漏斗を用いて、定性濾紙NO.2(ADVANTEC製)で減圧濾過を行った。固体部は−5℃に冷却した200mLのアセトンで洗浄しながら、再度減圧濾過した。洗浄濾液は先に分離した液体部に加えた。固体部及び液体部アセトン溶液をそれぞれ減圧留去して、固体画分及び液体画分の歩留まりを求め分析を行った。   Subsequently, in the second-stage acetone fractionation, 99.5 g of the liquid part obtained above and 200 mL of acetone (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved at 40 ° C. while mixing. Subsequently, it put into the separable flask which made jacket temperature -5 degreeC. After standing for 4 hours, using a Buchner funnel, qualitative filter paper NO. The solution was filtered under reduced pressure using 2 (manufactured by ADVANTEC). The solid part was filtered again under reduced pressure while washing with 200 mL of acetone cooled to −5 ° C. The washing filtrate was added to the previously separated liquid portion. The solid part and liquid part acetone solutions were distilled off under reduced pressure, and the yields of the solid fraction and the liquid fraction were determined and analyzed.

〔実施例2〕
表1に示すマグロ原油を原料油脂とし、1段目アセトン分別を5℃で行った。得られた液体画分を用いて、2段目アセトン分別を−5℃で行った。
1段目アセトン分別は、撹拌翼100×100mmを取り付けた2Lジャケット冷却式セパラブルフラスコ(内径130mm)に、表1に示すマグロ原油300gとアセトン(特級、和光純薬工業製)900mLを加えた。50r/分で撹拌しながら40℃で溶解後、30℃まで冷却した。次いで、0.5℃/分の速度で冷却し、5℃まで冷却した。2時間後、ブフナー漏斗を用いて、定性濾紙NO.2(ADVANTEC製)で減圧濾過を行った。固体部は5℃に冷却した300mLのアセトンで洗浄しながら、再度減圧濾過した。洗浄濾液は先に分離した液体部に加えた。固体部及び液体部を含むアセトン溶液をそれぞれ減圧留去して、固体画分及び液体画分の歩留まりを求め分析を行った。
[Example 2]
The tuna crude oil shown in Table 1 was used as a raw oil and fat, and the first stage acetone fractionation was performed at 5 ° C. Using the obtained liquid fraction, second-stage acetone fractionation was performed at -5 ° C.
In the first stage acetone fractionation, 300 g of tuna crude oil and 900 mL of acetone (special grade, manufactured by Wako Pure Chemical Industries) shown in Table 1 were added to a 2 L jacket cooled separable flask (inner diameter 130 mm) equipped with a stirring blade 100 × 100 mm. . It melt | dissolved at 40 degreeC, stirring at 50 r / min, and cooled to 30 degreeC. Subsequently, it cooled at the speed | rate of 0.5 degree-C / min, and cooled to 5 degreeC. After 2 hours, using a Buchner funnel, qualitative filter paper NO. The solution was filtered under reduced pressure using 2 (manufactured by ADVANTEC). The solid part was filtered again under reduced pressure while washing with 300 mL of acetone cooled to 5 ° C. The washing filtrate was added to the previously separated liquid portion. The acetone solution containing the solid part and the liquid part was distilled off under reduced pressure, and the yields of the solid fraction and the liquid fraction were determined and analyzed.

続いて、2段目アセトン分別は、撹拌翼100×100mmを取り付けた2Lジャケット冷却式セパラブルフラスコ(内径130mm)に、上記で得られた液体部280gとアセトン(特級、和光純薬工業製)840mLを加えた。50r/分で撹拌しながら30℃で溶解後、20℃まで冷却した。次いで、0.5℃/分の速度で冷却し、−5℃まで冷却した。2時間後、ブフナー漏斗を用いて、定性濾紙NO.2(ADVANTEC製)で減圧濾過を行った。固体部は−5℃に冷却した280mLのアセトンで洗浄しながら、再度減圧濾過した。洗浄濾液は先に分離した液体部に加えた。固体部及び液体部を含むアセトン溶液をそれぞれ減圧留去して、固体画分及び液体画分の歩留まりを求め分析を行った。   Subsequently, in the second-stage acetone fractionation, 280 g of the liquid part obtained above and acetone (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) were placed on a 2 L jacket cooled separable flask (inner diameter 130 mm) equipped with a stirring blade 100 × 100 mm. 840 mL was added. It melt | dissolved at 30 degreeC, stirring at 50 r / min, and cooled to 20 degreeC. Subsequently, it cooled at the speed | rate of 0.5 degree-C / min, and cooled to -5 degreeC. After 2 hours, using a Buchner funnel, qualitative filter paper NO. The solution was filtered under reduced pressure using 2 (manufactured by ADVANTEC). The solid part was filtered again under reduced pressure while washing with 280 mL of acetone cooled to −5 ° C. The washing filtrate was added to the previously separated liquid portion. The acetone solution containing the solid part and the liquid part was distilled off under reduced pressure, and the yields of the solid fraction and the liquid fraction were determined and analyzed.

〔実施例3〕
1段目アセトン分別を10℃で行い、得られた液体画分を用いて、2段目アセトン分別を−10℃で行った。他の条件は実施例2と同じ操作を行い、固体画分及び液体画分の歩留まりを求め分析を行った。
Example 3
First-stage acetone fractionation was performed at 10 ° C., and second-stage acetone fractionation was performed at −10 ° C. using the obtained liquid fraction. Other conditions were the same as in Example 2, and the yields of the solid fraction and the liquid fraction were determined and analyzed.

〔実施例4〕
分別に用いる溶剤をヘキサンとし、1段目ヘキサン分別を0℃で行い、得られた液体画分を用いて、2段目ヘキサン分別は−15℃で行った。他の条件は、実施例2と同じ操作を行い、固体画分及び液体画分の歩留まりを求め分析を行った。1段目ヘキサン分別の固体画分は、融点が51.5℃と高く、エタノール中においても30℃では固化してしまうため、1,3位の脂肪酸組成及び2位脂肪酸組成の測定は困難であった。
Example 4
The solvent used for fractionation was hexane, the first-stage hexane fractionation was performed at 0 ° C., and the second-stage hexane fractionation was performed at −15 ° C. using the obtained liquid fraction. The other conditions were the same as in Example 2, and the yields of the solid fraction and the liquid fraction were determined and analyzed. The solid fraction of the first-stage hexane fraction has a high melting point of 51.5 ° C. and solidifies at 30 ° C. even in ethanol, so it is difficult to measure the 1,3-position fatty acid composition and the 2-position fatty acid composition. there were.

〔比較例1〕
表1に示す蒸留カツオマグロ油を原料油脂として、無溶剤分別を5℃で行った。
無溶剤分別は、遠心分離用910mL広口ボトル(日立工機製)に蒸留カツオマグロ油を500g加えて、40℃で溶解した。次いで、20℃に冷却した遠心分離機(CR22GIII;日立工機製)で回転数5000r/分、30分の条件で遠心分離したが、結晶析出は観察されなかった。10℃に冷却した遠心分離機で回転数5000r/分、60分間遠心分離した。続いて、5℃に冷却した遠心分離機で回転数5000r/分、60分間遠心分離し、得られた固体画分及び液体画分の歩留まりを求め分析を行った。
[Comparative Example 1]
Solvent-free fractionation was performed at 5 ° C. using the distilled bonito tuna oil shown in Table 1 as a raw material fat.
Solvent-free fractionation was performed by adding 500 g of distilled bonito tuna oil to a 910 mL wide-mouth bottle (manufactured by Hitachi Koki) for centrifugation and dissolving at 40 ° C. Subsequently, the sample was centrifuged with a centrifuge (CR22GIII; manufactured by Hitachi Koki Co., Ltd.) cooled to 20 ° C. at a rotation speed of 5000 r / min for 30 minutes, but no crystal precipitation was observed. Centrifugation was performed for 60 minutes at a rotational speed of 5000 r / min with a centrifuge cooled to 10 ° C. Subsequently, the sample was centrifuged for 60 minutes at a rotational speed of 5000 r / min with a centrifuge cooled to 5 ° C., and the yields of the obtained solid fraction and liquid fraction were determined and analyzed.

〔比較例2〕
10℃に冷却した遠心分離機で回転数5000r/分、60分の条件で遠心分離して固液分離した他は、比較例1と同じ操作を行い、固体画分及び液体画分の歩留まりを求め分析を行った。
[Comparative Example 2]
The same procedure as in Comparative Example 1 was performed except that the solid-liquid separation was performed by centrifuging at 5000 rpm for 60 minutes with a centrifuge cooled to 10 ° C., and the yield of the solid fraction and the liquid fraction was increased. Analysis was performed.

〔比較例3〕
表1に示すマグロ原油を原料油脂として、1段目無溶剤分別は5℃で行い、得られた液体画分を用いて、2段目無溶剤分別は−5℃で行った。
1段目無溶剤分別は、撹拌翼100×100mmを取り付けた2Lジャケット冷却式セパラブルフラスコ(内径130mm)に表1に示すマグロ原油1500gを入れた。50r/分で撹拌しながら40℃で溶解後、30℃まで冷却した。次いで、0.5℃/分の速度で冷却し、5℃まで冷却した。2時間後、ブフナー漏斗を用いて、定性濾紙NO.2(ADVANTEC製)で減圧濾過を行った。分離した固体画分及び液体画分の歩留まりを求め分析を行った。
[Comparative Example 3]
Using the tuna crude oil shown in Table 1 as a raw oil and fat, the first-stage solvent-free fractionation was performed at 5 ° C., and the obtained liquid fraction was used for the second-stage solvent-free fractionation at −5 ° C.
In the first-stage solvent-free fractionation, 1500 g of tuna crude oil shown in Table 1 was placed in a 2 L jacket cooled separable flask (inner diameter 130 mm) equipped with a stirring blade 100 × 100 mm. It melt | dissolved at 40 degreeC, stirring at 50 r / min, and cooled to 30 degreeC. Subsequently, it cooled at the speed | rate of 0.5 degree-C / min, and cooled to 5 degreeC. After 2 hours, using a Buchner funnel, qualitative filter paper NO. 2 (ADVANTEC) was subjected to vacuum filtration. The yield of the separated solid fraction and liquid fraction was determined and analyzed.

続いて、2段目無溶剤分別は、撹拌翼100×100mmを取り付けた2Lジャケット冷却式セパラブルフラスコ(内径130mm)に、上記で得られた液体画分850gを入れた。50r/分で撹拌しながら30℃で溶解後、20℃まで冷却した。次いで、0.5℃/分の速度で冷却し、−5℃まで冷却した。2時間後、ブフナー漏斗を用いて、定性濾紙NO.2(ADVANTEC製)で減圧濾過を行った。分離した固体画分及び液体画分の歩留まりを求め分析を行った。   Subsequently, in the second-stage solvent-free fractionation, 850 g of the liquid fraction obtained above was put into a 2 L jacket cooled separable flask (inner diameter 130 mm) equipped with a stirring blade 100 × 100 mm. It melt | dissolved at 30 degreeC, stirring at 50 r / min, and cooled to 20 degreeC. Subsequently, it cooled at the speed | rate of 0.5 degree-C / min, and cooled to -5 degreeC. After 2 hours, using a Buchner funnel, qualitative filter paper NO. The solution was filtered under reduced pressure using 2 (manufactured by ADVANTEC). The yield of the separated solid fraction and liquid fraction was determined and analyzed.

〔比較例4〕
表1に示すマグロ原油を原料油脂として、アセトン分別を−5℃で行った。
アセトン分別は、撹拌翼100×100mmを取り付けた2Lジャケット冷却式セパラブルフラスコ(内径130mm)に表1に示すマグロ原油300gとアセトン(特級、和光純薬工業製)900mLを加えた。50r/分で撹拌しながら40℃で溶解後、30℃まで冷却した。次いで、0.5℃/分の速度で冷却し、−5℃まで冷却した。2時間後、ブフナー漏斗を用いて、定性濾紙NO.2(ADVANTEC製)で減圧濾過を行った。固体部は−5℃に冷却した300mLのアセトンで洗浄しながら、再度減圧濾過した。洗浄濾液は先に分離した液体部に加えた。固体部及び液体部を含むアセトン溶液をそれぞれ減圧留去して、固体画分及び液体画分の歩留まりを求め分析を行った。
[Comparative Example 4]
Acetone fractionation was performed at -5 ° C using tuna crude oil shown in Table 1 as raw material fat.
For acetone fractionation, 300 g of tuna crude oil and 900 mL of acetone (special grade, manufactured by Wako Pure Chemical Industries) shown in Table 1 were added to a 2 L jacket-cooled separable flask (inner diameter 130 mm) equipped with a stirring blade 100 × 100 mm. It melt | dissolved at 40 degreeC, stirring at 50 r / min, and cooled to 30 degreeC. Subsequently, it cooled at the speed | rate of 0.5 degree-C / min, and cooled to -5 degreeC. After 2 hours, using a Buchner funnel, qualitative filter paper NO. The solution was filtered under reduced pressure using 2 (manufactured by ADVANTEC). The solid part was filtered again under reduced pressure while washing with 300 mL of acetone cooled to −5 ° C. The washing filtrate was added to the previously separated liquid portion. The acetone solution containing the solid part and the liquid part was distilled off under reduced pressure, and the yields of the solid fraction and the liquid fraction were determined and analyzed.

実施例及び比較例の分析値と歩留まりを表2に示す。 Table 2 shows analysis values and yields of the examples and comparative examples.

Figure 0006600227
Figure 0006600227

表2より明らかなように、原料油脂を二段階の溶剤分別を行うと、グリセリドの2位にパルミチン酸が40%以上と高く結合し、且つ1,3位DHA含有率が60%以上と高い、ヒト母乳中のトリアシルグリセロール構造と考えられている油脂が得られた。また、斯かる油脂の融点は25〜41℃であり、体温近傍で溶融することが確認された。
これに対して、無溶剤分別と一段階の溶剤分別では高融点グリセリドを分別できず、所望の油脂は得られなかった。
As is clear from Table 2, when the raw oil / fat is subjected to two-stage solvent fractionation, palmitic acid is bound to the 2nd position of the glyceride as high as 40% or more, and the 1,3-position DHA content is as high as 60% or more. An oil which is considered to be a triacylglycerol structure in human breast milk was obtained. Moreover, melting | fusing point of such fats and oils was 25-41 degreeC, and it was confirmed that it melt | dissolves near body temperature.
On the other hand, high melting point glycerides could not be separated by solvent-free fractionation and one-step solvent fractionation, and the desired fats and oils could not be obtained.

Claims (6)

次の工程(1)、(2)及び(3):
(1)カツオ及び/又はマグロから採取した魚油を有機溶剤に溶解し、次いで冷却する工程、
(2)工程(1)において析出した固体部を液体部から分離し、液体部を得る工程、
(3)工程(2)で得た液体部を再び有機溶剤に溶解し、次いで工程(1)における冷却温度よりも低い温度に冷却した後、析出した固体部を得る工程、
を含む、分別魚油の製造方法であって、分別魚油が、トリアシルグリセロールの2位に結合した脂肪酸の総質量中にパルミチン酸を30質量%以上含み、且つトリアシルグリセロールに結合したω3系高度不飽和脂肪酸の総質量に対する、1,3位に結合したω3系高度不飽和脂肪酸の割合が60質量%以上のものであり、融点が25〜41℃である製造方法。
Next steps (1), (2) and (3):
(1) A step of dissolving fish oil collected from bonito and / or tuna in an organic solvent and then cooling it,
(2) The step of separating the solid part deposited in step (1) from the liquid part to obtain the liquid part,
(3) The step of obtaining the precipitated solid part after dissolving the liquid part obtained in step (2) in the organic solvent again and then cooling to a temperature lower than the cooling temperature in step (1).
A fractionated fish oil comprising 30% by mass or more of palmitic acid in the total mass of fatty acid bound to the 2-position of triacylglycerol and bound to triacylglycerol. The manufacturing method whose ratio of the omega-3 type | system | group highly unsaturated fatty acid couple | bonded with the 1st, 3rd position with respect to the gross mass of an unsaturated fatty acid is 60 mass% or more, and melting | fusing point is 25-41 degreeC .
前記魚油が、魚油を構成する脂肪酸中にドコサヘキサエン酸を19質量%以上含むものである、請求項1記載の分別魚油の製造方法。 The method for producing fractionated fish oil according to claim 1, wherein the fish oil contains 19 mass% or more of docosahexaenoic acid in a fatty acid constituting the fish oil. 工程(3)における冷却温度が、工程(1)における冷却温度よりも3℃以上低い温度である請求項1又は2記載の分別魚油の製造方法。   The method for producing fractionated fish oil according to claim 1 or 2, wherein the cooling temperature in the step (3) is lower by 3 ° C or more than the cooling temperature in the step (1). 有機溶剤がアセトン、ヘキサン又はこれらの組み合わせである請求項1〜3のいずれか1項記載の分別魚油の製造方法。   The method for producing fractionated fish oil according to any one of claims 1 to 3, wherein the organic solvent is acetone, hexane, or a combination thereof. 前記魚油がトリアシルグリセロールを78質量%以上含有するものである請求項1〜4のいずれか1項記載の分別魚油の製造方法。 The method for producing fractionated fish oil according to any one of claims 1 to 4, wherein the fish oil contains 78% by mass or more of triacylglycerol. 次の工程(1)、(2)及び(3):
(1)カツオ及び/又はマグロから採取した魚油を有機溶剤に溶解し、次いで冷却する工程、
(2)工程(1)において析出した固体部を液体部から分離し、液体部を得る工程、
(3)工程(2)で得た液体部を再び有機溶剤に溶解し、次いで工程(1)における冷却温度よりも低い温度に冷却した後、析出した固体部と液体部とを分離する工程、
を含む、魚油の分別方法であって、前記析出した固体部が、トリアシルグリセロールの2位に結合した脂肪酸の総質量中にパルミチン酸を30質量%以上含み、且つトリアシルグリセロールに結合したω3系高度不飽和脂肪酸の総質量に対する、1,3位に結合したω3系高度不飽和脂肪酸の割合が60質量%以上のもので、融点が25〜41℃のものである分別方法。
Next steps (1), (2) and (3):
(1) A step of dissolving fish oil collected from bonito and / or tuna in an organic solvent and then cooling it,
(2) The step of separating the solid part deposited in step (1) from the liquid part to obtain the liquid part,
(3) The step of separating the liquid part obtained by dissolving the liquid part obtained in the step (2) again in an organic solvent and then cooling to a temperature lower than the cooling temperature in the step (1),
The oily fractionation method comprising: a ω3 in which the precipitated solid part contains 30% by mass or more of palmitic acid in the total mass of fatty acid bonded to the 2-position of triacylglycerol and bonded to triacylglycerol. A fractionation method in which the ratio of the ω3 highly unsaturated fatty acid bonded to the 1,3-position to the total mass of the highly unsaturated fatty acid is 60% by mass or more and the melting point is 25 to 41 ° C.
JP2015212156A 2015-10-28 2015-10-28 Method for producing fractionated fish oil Active JP6600227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015212156A JP6600227B2 (en) 2015-10-28 2015-10-28 Method for producing fractionated fish oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015212156A JP6600227B2 (en) 2015-10-28 2015-10-28 Method for producing fractionated fish oil

Publications (2)

Publication Number Publication Date
JP2017082095A JP2017082095A (en) 2017-05-18
JP6600227B2 true JP6600227B2 (en) 2019-10-30

Family

ID=58710741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015212156A Active JP6600227B2 (en) 2015-10-28 2015-10-28 Method for producing fractionated fish oil

Country Status (1)

Country Link
JP (1) JP6600227B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107629873B (en) * 2017-08-28 2020-08-25 浙江海洋大学 Method for enriching fish oil EPA and DHA through low-temperature crystallization

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136858A (en) * 1975-05-19 1976-11-26 Asahi Denka Kogyo Kk Method of producing hard butter
JPS5915492A (en) * 1982-07-19 1984-01-26 日本油脂株式会社 Condensation separation for highly unsaturated fatty acid
JPS6293234A (en) * 1985-10-21 1987-04-28 Terumo Corp Purified fish oil and its production
JPH04252298A (en) * 1990-05-17 1992-09-08 Unilever Nv Manufacture of intermediate fraction by fractional crystallization involving recirculation of stearin and olein fractions through transesterification process
JPH07274825A (en) * 1994-03-31 1995-10-24 Snow Brand Milk Prod Co Ltd Easily absorbable beverage or food and method for producing the same
JP3985035B2 (en) * 1995-09-14 2007-10-03 独立行政法人産業技術総合研究所 (N-6) Docosapentaenoic Acid-Containing Oil and Fat, Method for Producing the Oil and Use, and Use
JP2008278781A (en) * 2007-05-09 2008-11-20 Osaka City Method for producing triacylglycerol having higher dha content at 1, 3 positions than that at 2 position

Also Published As

Publication number Publication date
JP2017082095A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
EP1560803B1 (en) Lipase-catalysed esterification of marine oil
JP4647212B2 (en) Extraction and dewaxing of lipids from oilseeds and microbial sources
CA2803477C (en) Process for separating polyunsaturated fatty acids from long chain unsaturated or less saturated fatty acids
EP2659780B2 (en) Omega 3 concentrate
EP0870006A1 (en) Polyunsaturated fatty acid and fatty acid ester mixtures free of sterols and phosphorous compounds
KR20180011083A (en) Long-chain polyunsaturated fatty acids from natural oils
Lembke Production techniques for omega-3 concentrates
WO2009020406A1 (en) Methods of making lipid substances, lipid substances made thereby and uses thereof
JPH0789944B2 (en) Method for producing oil and fat composition for confectionery
JP6600227B2 (en) Method for producing fractionated fish oil
KR20070063033A (en) Process for producing concentrate of unsaturated fatty acid
JP3656863B2 (en) Process for producing fats and oils having a high content of highly unsaturated fatty acid residues
JP5816075B2 (en) Method for producing oil and fat composition
JP2011078328A (en) Method for producing unsaturated fatty acids
KR20240043414A (en) Concentration method of omega-3 unsaturated fatty acids using low-temperature crystallization and enzymatic esterification
WO2020009593A1 (en) A crystalline form of insulin glargine with a stoichiometric content of zinc and the method of its preparation
US20130261326A1 (en) Procedure for stabilising polyunsaturated fatty acids with metal hydrides
Eyskens et al. Fractionation of fatty acid alkyl ester mixtures and opportunities for large-scale separation
JP2013523910A (en) Dry fractionation method for transesterified oil / fat composition (Dryfractionation methodforesterified oil and fat composition)
Van Boeckel Bulk separation procedures
Hata Studies on the development of EPA ethyl ester for a drug
Huey New Palm Oil Products by Enzymatic Interesterification and Dry Fractionation
Lembke 1 9 Production Techniques for Omega-3

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191004

R151 Written notification of patent or utility model registration

Ref document number: 6600227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250