JP6598209B2 - Voltage detector - Google Patents

Voltage detector Download PDF

Info

Publication number
JP6598209B2
JP6598209B2 JP2016038331A JP2016038331A JP6598209B2 JP 6598209 B2 JP6598209 B2 JP 6598209B2 JP 2016038331 A JP2016038331 A JP 2016038331A JP 2016038331 A JP2016038331 A JP 2016038331A JP 6598209 B2 JP6598209 B2 JP 6598209B2
Authority
JP
Japan
Prior art keywords
cell
battery
voltage
abnormality
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016038331A
Other languages
Japanese (ja)
Other versions
JP2017158269A (en
Inventor
真吾 槌矢
誠二 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2016038331A priority Critical patent/JP6598209B2/en
Publication of JP2017158269A publication Critical patent/JP2017158269A/en
Application granted granted Critical
Publication of JP6598209B2 publication Critical patent/JP6598209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電圧検出装置に関する。   The present invention relates to a voltage detection device.

下記特許文献1には、バイパス抵抗とスイッチング素子との直列回路からなり、組電池の各電池セルに並列接続された複数の放電回路と、電池セルのセル電圧を検出する電圧検出回路と、各電池セルのセル電圧に基づいて当該セル電圧が均一となるように各スイッチング素子を制御するセルバランス制御装置において、互いに隣り合う一対の電池セルに接続された放電回路を異なるデューティ比で制御し、この際の一対の電池セルのセル電圧の差分が所定の判定しきい値(例えば1,3V)を越えると、セル電圧を検出するために各電池セルの端子から引き出された配線に断線が発生したと判定するセルバランス制御装置が開示されている。   Patent Document 1 below includes a series circuit of a bypass resistor and a switching element, a plurality of discharge circuits connected in parallel to each battery cell of the assembled battery, a voltage detection circuit that detects a cell voltage of the battery cell, In the cell balance control device that controls each switching element so that the cell voltage becomes uniform based on the cell voltage of the battery cell, the discharge circuits connected to the pair of adjacent battery cells are controlled with different duty ratios, If the difference between the cell voltages of the pair of battery cells at this time exceeds a predetermined determination threshold (for example, 1, 3 V), a disconnection occurs in the wiring drawn from the terminals of each battery cell in order to detect the cell voltage. A cell balance control device that determines that the above has occurred is disclosed.

このように上記配線に断線が発生した場合、一対の電池セルのセル電圧は互いに異なる変化傾向を示す。すなわち、一対のセル電圧の一方は、徐々に低下して最終的に低電圧側電池異常判定閾値(例えば0.6V)よりも低下し、一対のセル電圧の他方は、徐々に上昇して最終的に高電圧側電池異常判定閾値(例えば4.5V)よりも上昇する。したがって、上記セルバランス制御装置は、セル電圧を検出するための配線が断線した場合に、セル電圧が低電圧側電池異常判定閾値あるいは/及び高電圧側電池異常判定閾値を越えたことによる電池異常(組電池の異常)として車両の走行を制御する車両走行ECUに通知する。そして、車両走行ECUは、バッテリECUを介して配線の断線発生の通知を受けると、車両の走行を禁止する措置を取る。   Thus, when a disconnection occurs in the wiring, the cell voltages of the pair of battery cells show different change trends. That is, one of the pair of cell voltages gradually decreases and finally decreases below a low-voltage side battery abnormality determination threshold (for example, 0.6 V), and the other of the pair of cell voltages gradually increases and finally In particular, it rises above the high-voltage side battery abnormality determination threshold (for example, 4.5 V). Therefore, the cell balance control device, when the wiring for detecting the cell voltage is disconnected, causes the battery abnormality due to the cell voltage exceeding the low voltage side battery abnormality determination threshold or / and the high voltage side battery abnormality determination threshold. This is notified to the vehicle travel ECU that controls the travel of the vehicle as (abnormality of assembled battery). And vehicle travel ECU will take the measure which prohibits travel of a vehicle, if notification of the occurrence of disconnection of wiring is received via battery ECU.

特開2013−085354号公報JP 2013-085354 A

ところで、セル電圧を検出するための配線(セル電圧検出用配線)の断線と電池異常(組電池の異常)とは別の事象であり、重要性も異なる。すなわち、電池セルが過充電又は過放電されるような電池異常(組電池の異常)の場合は緊急性を要する異常であり、車両の走行を禁止する措置が適当であるが、セル電圧検出用配線の断線は、組電池自身の異常ではないので、緊急性が電池異常(組電池の異常)よりも大幅に低いため、車両を停止させても問題ない場所や修理工場までの所定の距離を走行させる退避走行を行うことが可能である。したがって、セル電圧検出用配線の断線と電池異常(組電池の異常)とを識別して検知することは、車両のより適切な走行制御を実現する上で極めて重要である。   By the way, disconnection of wiring for detecting a cell voltage (wiring for cell voltage detection) and battery abnormality (abnormality of a battery pack) are different events and are also different in importance. That is, in the case of a battery abnormality (abnormality of the assembled battery) in which the battery cell is overcharged or overdischarged, it is an abnormality that requires urgency, and measures for prohibiting vehicle travel are appropriate. Since the disconnection of the wiring is not an abnormality of the assembled battery itself, the urgency is significantly lower than the abnormality of the battery (abnormality of the assembled battery). It is possible to perform evacuation traveling. Therefore, identifying and detecting disconnection of the cell voltage detection wiring and battery abnormality (abnormality of the assembled battery) is extremely important in realizing more appropriate traveling control of the vehicle.

本発明は、上述した事情に鑑みてなされたものであり、車両のより適切な走行制御を実現することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to realize more appropriate traveling control of a vehicle.

上記目的を達成するために、本発明では、電圧検出装置に係る第1の解決手段として、複数の電池セルに各々並列接続され、かつバイパス抵抗とスイッチング素子との直列回路からなる複数の放電回路と、複数の前記電池セルの各端子の端子電圧を伝送する複数の伝送線路と、該伝送線路から入力された前記端子電圧に基づいて複数の前記電池セルのセル電圧を検出するセル電圧検出部とを備えた電圧検出装置において、隣り合う一対の電池セルの放電回路をそれぞれ異なるデューティ比で放電状態とした場合に前記一対の電池セルに関する前記電池セル自身の電圧と前記電池セル自身の電圧を含む一対のセル電圧の差に基づいて前記一対の電池セルに関する前記伝送線路の断線または、前記電池セル自身の異常とを識別して判定する異常判定部を備える、という手段を採用する。   In order to achieve the above object, in the present invention, as a first solution means for a voltage detection device, a plurality of discharge circuits each connected in parallel to a plurality of battery cells and comprising a series circuit of a bypass resistor and a switching element A plurality of transmission lines that transmit terminal voltages of the terminals of the plurality of battery cells, and a cell voltage detection unit that detects the cell voltages of the plurality of battery cells based on the terminal voltages input from the transmission lines When the discharge circuits of a pair of adjacent battery cells are discharged at different duty ratios, the voltage of the battery cell itself and the voltage of the battery cell itself are related to the pair of battery cells. An abnormality judgment that identifies and determines disconnection of the transmission line relating to the pair of battery cells or abnormality of the battery cell itself based on a difference between the pair of cell voltages including Comprising a part, to adopt a means of.

本発明では、電圧検出装置に係る第2の解決手段として、上記第1の解決手段において、前記異常判定部は、前記電池セル自身の電圧が異常の場合、前記一対のセル電圧の差が所定の断線しきい値を越えた場合に、前記伝送線路の断線を判定する、という手段を採用する。   In the present invention, as a second solving means relating to the voltage detecting device, in the first solving means, the abnormality determining unit determines that a difference between the pair of cell voltages is predetermined when the voltage of the battery cell itself is abnormal. A means is adopted in which the disconnection of the transmission line is determined when the disconnection threshold value is exceeded.

本発明では、電圧検出装置に係る第3の解決手段として、上記第1の解決手段において、前記異常判定部は、前記電池セル自身の電圧が異常の場合、前記一対のセル電圧の差が所定のしきい値を越えない場合は電池セル自身の異常を判定する、という手段を採用する。   In the present invention, as a third solving means relating to the voltage detecting device, in the first solving means, the abnormality determining unit is configured such that when the voltage of the battery cell itself is abnormal, a difference between the pair of cell voltages is predetermined. If the threshold value of the battery cell is not exceeded, a means is adopted in which an abnormality of the battery cell itself is determined.

本発明では、電圧検出装置に係る第4の解決手段として、上記第1の解決手段において、前記異常判定部は、前記電池セル自身の電圧が下限側電池異常しきい値以下の場合、あるいは上限側電池異常しきい値以上の場合に前記電池セル自身の電圧を異常と判定する、という手段を採用する。   In the present invention, as a fourth solving means relating to the voltage detection device, in the first solving means, the abnormality determination unit may be configured such that the voltage of the battery cell itself is equal to or lower than a lower limit battery abnormality threshold, or an upper limit. A means is adopted in which the voltage of the battery cell itself is determined to be abnormal when it is equal to or greater than the side battery abnormal threshold.

本発明によれば、隣り合う一対の電池セルの放電回路をそれぞれ異なるデューティ比で放電状態とした場合における電池セル自身の電圧と電池セル自身の電圧を含む一対のセル電圧の差に基づいて一対の電池セルに関する伝送線路の断線または電池セル自身の異常とを識別して判定するので、車両のより適切な走行制御を実現することができる。  According to the present invention, a pair of battery cells based on a difference between a voltage of the battery cell itself and a pair of cell voltages including the voltage of the battery cell when the discharge circuits of a pair of adjacent battery cells are discharged at different duty ratios. Therefore, it is possible to realize more appropriate traveling control of the vehicle because the transmission line disconnection or the abnormality of the battery cell itself is identified and determined.

本発明の一実施形態に係るセルバランス制御装置Aの構成を示す回路図である。It is a circuit diagram which shows the structure of the cell balance control apparatus A which concerns on one Embodiment of this invention. 本発明の一実施形態に係るセルバランス制御装置Aの全体動作を示すタイミングチャートである。It is a timing chart which shows the whole operation | movement of the cell balance control apparatus A which concerns on one Embodiment of this invention. 本発明の一実施形態における断線検知処理を示すフローチャートである。It is a flowchart which shows the disconnection detection process in one Embodiment of this invention. 本発明の一実施形態における一対のセル電圧V1,V2及び差電圧ΔV1を示すタイミングチャートである。It is a timing chart which shows a pair of cell voltage V1, V2 and difference voltage (DELTA) V1 in one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態について説明する。
本実施形態に係るセルバランス制御装置Aは、図1に示すように、組電池を構成する合計12個の電池セルC1〜C12の電圧(セル電圧)を検出する装置であり、所定サイズのプリント基板上に実装された12個の放電回路B1〜B12、13本の伝送線路S1〜S13、13個のCRフィルタF1〜F13、12個のセル電圧検出部D1〜D12、温度センサTS、マイコンM(異常判定部)及び絶縁素子IRを備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the cell balance control device A according to the present embodiment is a device that detects voltages (cell voltages) of a total of twelve battery cells C1 to C12 that constitute an assembled battery, and prints of a predetermined size. 12 discharge circuits B1 to B12 mounted on the substrate, 13 transmission lines S1 to S13, 13 CR filters F1 to F13, 12 cell voltage detectors D1 to D12, temperature sensor TS, microcomputer M (Abnormality determination unit) and an insulating element IR.

12個の電池セルC1〜C12は、一列に直列接続された直列回路を構成しており、電池セルC1のマイナス端子が組電池のマイナス端子であり、また電池セルC12のプラス端子が組電池のプラス端子である。すなわち、12個の電池セルC1〜C12は、電池セルC1→電池セルC2→(中略)→電池セルC11→電池セルC12の順に直列接続されており、各電池セルC1〜C12のセル電圧の合計値が組電池の出力電圧となる。   The twelve battery cells C1 to C12 constitute a series circuit connected in series in a line, the negative terminal of the battery cell C1 is the negative terminal of the assembled battery, and the positive terminal of the battery cell C12 is the assembled battery. Positive terminal. That is, twelve battery cells C1 to C12 are connected in series in the order of battery cell C1 → battery cell C2 → (omitted) → battery cell C11 → battery cell C12, and the total cell voltage of each battery cell C1 to C12. The value is the output voltage of the battery pack.

12個の放電回路B1〜B12は、上記12個の電池セルC1〜C12に各々並列接続されており、各々にバイパス抵抗とスイッチング素子との直列回路である。これら放電回路B1〜B12は、スイッチング素子がON状態になると放電状態となり、スイッチング素子がOFF状態になると非放電状態となる。   The twelve discharge circuits B1 to B12 are respectively connected in parallel to the twelve battery cells C1 to C12, and each is a series circuit of a bypass resistor and a switching element. The discharge circuits B1 to B12 are in a discharge state when the switching element is turned on, and are in a non-discharge state when the switching element is turned off.

すなわち、放電回路B1は電池セルC1に並列接続され、放電回路B2は電池セルC2に並列接続されている。放電回路B3は電池セルC3に並列接続され、放電回路B4は電池セルC4に並列接続されている。放電回路B5は電池セルC5に並列接続され、放電回路B6は電池セルC6に並列接続されている。放電回路B7は電池セルC7に並列接続され、放電回路B8は電池セルC8に並列接続されている。放電回路B9は電池セルC9に並列接続され、放電回路B10は電池セルC10に並列接続されている。また、放電回路B11は電池セルC11に並列接続され、放電回路B12は電池セルC12に並列接続されている。   That is, the discharge circuit B1 is connected in parallel to the battery cell C1, and the discharge circuit B2 is connected in parallel to the battery cell C2. The discharge circuit B3 is connected in parallel to the battery cell C3, and the discharge circuit B4 is connected in parallel to the battery cell C4. The discharge circuit B5 is connected in parallel to the battery cell C5, and the discharge circuit B6 is connected in parallel to the battery cell C6. The discharge circuit B7 is connected in parallel to the battery cell C7, and the discharge circuit B8 is connected in parallel to the battery cell C8. The discharge circuit B9 is connected in parallel to the battery cell C9, and the discharge circuit B10 is connected in parallel to the battery cell C10. Further, the discharge circuit B11 is connected in parallel to the battery cell C11, and the discharge circuit B12 is connected in parallel to the battery cell C12.

13本の伝送線路S1〜S13は、12個の電池セルC1〜C12の各端子の端子電圧を12個のセル電圧検出部D1〜D12に伝送するための配線(セル電圧検出用配線)であり、12個の電池セルC1〜C12の各端子(合計13個)と12個のセル電圧検出部D1〜D12の各入力端(合計13個)とを相互に接続する。   The 13 transmission lines S1 to S13 are wires (cell voltage detection wires) for transmitting the terminal voltages of the 12 battery cells C1 to C12 to the 12 cell voltage detectors D1 to D12. The terminals (total 13) of the twelve battery cells C1 to C12 and the input terminals (total 13) of the twelve cell voltage detectors D1 to D12 are connected to each other.

すなわち、伝送線路S1は電池セルC1のプラス端子とセル電圧検出部D1の一方の入力端1aとを接続し、伝送線路S2は電池セルC1のマイナス端子と電池セルC2のプラス端子との接続点とセル電圧検出部D1の他方の入力端1b及びセル電圧検出部D2の一方の入力端2aとを接続する。   That is, the transmission line S1 connects the positive terminal of the battery cell C1 and one input end 1a of the cell voltage detector D1, and the transmission line S2 is a connection point between the negative terminal of the battery cell C1 and the positive terminal of the battery cell C2. And the other input terminal 1b of the cell voltage detection unit D1 and one input terminal 2a of the cell voltage detection unit D2.

伝送線路S3は、電池セルC2のマイナス端子と電池セルC3のプラス端子との接続点とセル電圧検出部D2の他方の入力端2b及びセル電圧検出部D3の一方の入力端3aとを接続し、図示しない伝送線路S4は、電池セルC3のマイナス端子と電池セルC4のプラス端子との接続点とセル電圧検出部D3の他方の入力端3b及び図示しないセル電圧検出部D4の一方の入力端4aとを接続する。   The transmission line S3 connects a connection point between the negative terminal of the battery cell C2 and the positive terminal of the battery cell C3, the other input end 2b of the cell voltage detection unit D2, and one input end 3a of the cell voltage detection unit D3. The transmission line S4 (not shown) includes a connection point between the negative terminal of the battery cell C3 and the positive terminal of the battery cell C4, the other input terminal 3b of the cell voltage detector D3, and one input terminal of the cell voltage detector D4 (not shown). 4a is connected.

また、図示しない伝送線路S5は、電池セルC4のマイナス端子と電池セルC5のプラス端子との接続点と同じく図示しないセル電圧検出部D4の他方の入力端4b及びセル電圧検出部D5の一方の入力端5aとを接続し、図示しない伝送線路S6は、電池セルC5のマイナス端子と電池セルC6のプラス端子との接続点と同じく図示しないセル電圧検出部D5の他方の入力端5b及びセル電圧検出部D6の一方の入力端6aとを接続する。   Further, the transmission line S5 (not shown) is connected to the other input terminal 4b of the cell voltage detector D4 (not shown) and one of the cell voltage detectors D5 as well as the connection point between the minus terminal of the battery cell C4 and the plus terminal of the battery cell C5. The transmission line S6 (not shown) is connected to the input terminal 5a, and the other input terminal 5b of the cell voltage detector D5 (not shown) and the cell voltage are connected to the negative terminal of the battery cell C5 and the positive terminal of the battery cell C6. One input terminal 6a of the detection unit D6 is connected.

図示しない伝送線路S7は、電池セルC6のマイナス端子と電池セルC7のプラス端子との接続点と同じく図示しないセル電圧検出部D6の他方の入力端6b及びセル電圧検出部D7の一方の入力端7aとを接続し、図示しない伝送線路S8は、電池セルC7のマイナス端子と電池セルC8のプラス端子との接続点と同じく図示しないセル電圧検出部D7の他方の入力端7b及びセル電圧検出部D8の一方の入力端8aとを接続する。   The transmission line S7 (not shown) is connected to the other input terminal 6b of the cell voltage detector D6 (not shown) and one input terminal of the cell voltage detector D7 as well as the connection point between the negative terminal of the battery cell C6 and the positive terminal of the battery cell C7. The transmission line S8 (not shown) is connected to the other input terminal 7b of the cell voltage detector D7 (not shown) and the cell voltage detector as well as the connection point between the minus terminal of the battery cell C7 and the plus terminal of the battery cell C8. One input terminal 8a of D8 is connected.

図示しない伝送線路S9は、電池セルC8のマイナス端子と電池セルC9のプラス端子との接続点と同じく図示しないセル電圧検出部D8の他方の入力端8b及びセル電圧検出部D9の一方の入力端9aとを接続し、同じく図示しない伝送線路S10は、電池セルC9のマイナス端子と電池セルC10のプラス端子との接続点と同じく図示しないセル電圧検出部D9の他方の入力端9b及びセル電圧検出部D10の一方の入力端10aとを接続する。   The transmission line S9 (not shown) is connected to the other input terminal 8b of the cell voltage detector D8 (not shown) and one input terminal of the cell voltage detector D9 as well as the connection point between the negative terminal of the battery cell C8 and the positive terminal of the battery cell C9. The transmission line S10 (not shown) is connected to the other input terminal 9b of the cell voltage detector D9 (not shown) and the cell voltage detection, similarly to the connection point between the minus terminal of the battery cell C9 and the plus terminal of the battery cell C10. One input terminal 10a of the part D10 is connected.

図示しない伝送線路S11は、電池セルC10のマイナス端子と電池セルC11のプラス端子との接続点と同じく図示しないセル電圧検出部D10の他方の入力端10b及びセル電圧検出部D11の一方の入力端11aとを接続し、伝送線路S12は、電池セルC11のマイナス端子と電池セルC12のプラス端子との接続点と図示しないセル電圧検出部D11の他方の入力端11b及びセル電圧検出部D12の一方の入力端12aとを接続する。また、伝送線路S13は、電池セルC12のマイナス端子とセル電圧検出部D12の他方の入力端12bとを接続する。   The transmission line S11 (not shown) is connected to the other input terminal 10b of the cell voltage detector D10 (not shown) and one input terminal of the cell voltage detector D11 as well as the connection point between the negative terminal of the battery cell C10 and the positive terminal of the battery cell C11. 11a, the transmission line S12 is connected to the connection point between the negative terminal of the battery cell C11 and the positive terminal of the battery cell C12, the other input terminal 11b of the cell voltage detection unit D11 (not shown), and one of the cell voltage detection unit D12. Are connected to the input terminal 12a. The transmission line S13 connects the negative terminal of the battery cell C12 and the other input end 12b of the cell voltage detection unit D12.

13個のCRフィルタF1〜F12は、13本の伝送線路S1〜S13に各々設けられたノイズ除去用のローパスフィルタであり、フィルタ抵抗及びフィルタコンデンサから構成されている。上記フィルタ抵抗は、13本の伝送線路S1〜S13の各々に直列に接続されており、また上記フィルタコンデンサは、一端が13本の伝送線路S1〜S13の各々に、また他端がGND(接地電位)に接続されている。   The thirteen CR filters F1 to F12 are noise-removing low-pass filters provided in the thirteen transmission lines S1 to S13, respectively, and are composed of a filter resistor and a filter capacitor. The filter resistor is connected in series to each of the 13 transmission lines S1 to S13. The filter capacitor has one end connected to each of the 13 transmission lines S1 to S13 and the other end connected to GND (grounding). Potential).

すなわち、CRフィルタF1は伝送線路S1に設けられており、CRフィルタF2は伝送線路S2に設けられており、CRフィルタF3は伝送線路S3に設けられており、CRフィルタF4は伝送線路S4に設けられており、CRフィルタF5は伝送線路S5に設けられており、CRフィルタF6は伝送線路S6に設けられており、CRフィルタF7は伝送線路S7に設けられており、CRフィルタF8は伝送線路S8に設けられており、CRフィルタF9は伝送線路S9に設けられており、CRフィルタF10は伝送線路S10に設けられており、CRフィルタF11は伝送線路S11に設けられており、CRフィルタF12は伝送線路S12に設けられており、またCRフィルタF13は伝送線路S13に設けられている。   That is, the CR filter F1 is provided on the transmission line S1, the CR filter F2 is provided on the transmission line S2, the CR filter F3 is provided on the transmission line S3, and the CR filter F4 is provided on the transmission line S4. The CR filter F5 is provided on the transmission line S5, the CR filter F6 is provided on the transmission line S6, the CR filter F7 is provided on the transmission line S7, and the CR filter F8 is provided on the transmission line S8. CR filter F9 is provided in transmission line S9, CR filter F10 is provided in transmission line S10, CR filter F11 is provided in transmission line S11, and CR filter F12 is provided in transmission line S10. The CR filter F13 is provided on the transmission line S13.

12個のセル電圧検出部D1〜D12は、12個の電池セルC1〜C12に対応して設けられており、各伝送線路S1〜S13から入力される各電池セルC1〜C12の端子電圧に基づいて各電池セルC1〜C12の端子間電圧を検出する。すなわち、各セル電圧検出部D1〜D12は、13本の伝送線路S1〜S13から入力される各電池セルC1〜C12の各端子電圧の差分(差電圧)をセル電圧V1〜V12として検出してマイコンMに出力する。   The twelve cell voltage detection units D1 to D12 are provided corresponding to the twelve battery cells C1 to C12, and are based on the terminal voltages of the battery cells C1 to C12 input from the transmission lines S1 to S13. The inter-terminal voltage of each of the battery cells C1 to C12 is detected. That is, each cell voltage detection part D1-D12 detects the difference (difference voltage) of each terminal voltage of each battery cell C1-C12 input from 13 transmission lines S1-S13 as cell voltage V1-V12. Output to the microcomputer M.

すなわち、セル電圧検出部D1は、伝送線路S1と伝送線路S2とから入力される一対の端子電圧に基づいて電池セルC1のセル電圧V1を検出し、セル電圧検出部D2は、伝送線路S2と伝送線路S3とから入力される一対の端子電圧に基づいて電池セルC2のセル電圧V2を検出する。セル電圧検出部D3は、伝送線路S3と伝送線路S4とから入力される一対の端子電圧に基づいて電池セルC3のセル電圧V3を検出し、セル電圧検出部D4は、伝送線路S4と伝送線路S5とから入力される一対の端子電圧に基づいて電池セルC4のセル電圧V4を検出する。   That is, the cell voltage detection unit D1 detects the cell voltage V1 of the battery cell C1 based on a pair of terminal voltages input from the transmission line S1 and the transmission line S2, and the cell voltage detection unit D2 is connected to the transmission line S2. The cell voltage V2 of the battery cell C2 is detected based on a pair of terminal voltages input from the transmission line S3. The cell voltage detection unit D3 detects the cell voltage V3 of the battery cell C3 based on a pair of terminal voltages input from the transmission line S3 and the transmission line S4, and the cell voltage detection unit D4 includes the transmission line S4 and the transmission line. The cell voltage V4 of the battery cell C4 is detected based on the pair of terminal voltages input from S5.

セル電圧検出部D5は、伝送線路S5と伝送線路S6とから入力される一対の端子電圧に基づいて電池セルC5のセル電圧V5を演算し、セル電圧検出部D6は、伝送線路S6と伝送線路S7とから入力される一対の端子電圧に基づいて電池セルC6のセル電圧V6を検出する。セル電圧検出部D7は、伝送線路S7と伝送線路S8とから入力される一対の端子電圧に基づいて電池セルC7のセル電圧V7を検出し、セル電圧検出部D8は、伝送線路S8と伝送線路S9とから入力される一対の端子電圧に基づいて電池セルC8のセル電圧V8を検出する。   The cell voltage detector D5 calculates the cell voltage V5 of the battery cell C5 based on a pair of terminal voltages input from the transmission line S5 and the transmission line S6, and the cell voltage detector D6 includes the transmission line S6 and the transmission line. Based on the pair of terminal voltages input from S7, the cell voltage V6 of the battery cell C6 is detected. The cell voltage detector D7 detects the cell voltage V7 of the battery cell C7 based on a pair of terminal voltages input from the transmission line S7 and the transmission line S8, and the cell voltage detector D8 includes the transmission line S8 and the transmission line. The cell voltage V8 of the battery cell C8 is detected based on the pair of terminal voltages input from S9.

セル電圧検出部D9は、伝送線路S9と伝送線路S10とから入力される一対の端子電圧に基づいて電池セルC9のセル電圧V9を検出し、セル電圧検出部D10は、伝送線路S10と伝送線路S11とから入力される一対の端子電圧に基づいて電池セルC10のセル電圧V10を検出し、セル電圧検出部D11は、伝送線路S11と伝送線路S12とから入力される一対の端子電圧に基づいて電池セルC11のセル電圧V11を検出し、セル電圧検出部D12は、伝送線路S12と伝送線路S13とから入力される一対の端子電圧に基づいて電池セルC12のセル電圧V12を検出する。   The cell voltage detection unit D9 detects the cell voltage V9 of the battery cell C9 based on a pair of terminal voltages input from the transmission line S9 and the transmission line S10. The cell voltage detection unit D10 includes the transmission line S10 and the transmission line. The cell voltage V10 of the battery cell C10 is detected based on the pair of terminal voltages input from S11, and the cell voltage detector D11 is based on the pair of terminal voltages input from the transmission line S11 and the transmission line S12. The cell voltage V11 of the battery cell C11 is detected, and the cell voltage detector D12 detects the cell voltage V12 of the battery cell C12 based on a pair of terminal voltages input from the transmission line S12 and the transmission line S13.

温度センサTSは、各素子が実装された上記プリント基板の温度(基板温度)を検出し、当該基板温度を示す温度信号をマイコンMに出力する。この温度センサTSは、プリント基板上において温度上昇によって破壊や誤動作が懸念されるセル電圧検出部D1〜D12やマイコンMの近傍に実装されている。このような温度センサTSは、例えばサーミスタである。   The temperature sensor TS detects the temperature (substrate temperature) of the printed circuit board on which each element is mounted, and outputs a temperature signal indicating the substrate temperature to the microcomputer M. The temperature sensor TS is mounted on the printed circuit board in the vicinity of the cell voltage detection units D1 to D12 and the microcomputer M, which are liable to be destroyed or malfunction due to temperature rise. Such a temperature sensor TS is, for example, a thermistor.

マイコンMは、CPU(Central Processing Unit)やメモリ、入出力インターフェイス等が一体的に組み込まれた所謂ワンチップマイコンであり、内部メモリに記憶された電圧検知プログラムを実行することにより所定の機能を発揮する。このマイコンMは、各セル電圧検出部D1〜D12から入力されるセル電圧V1〜V12を所定のサンプリング周期でサンプリングすることにより、セル電圧V1〜V12のサンプル値を順次取得する。   The microcomputer M is a so-called one-chip microcomputer in which a CPU (Central Processing Unit), a memory, an input / output interface, etc. are integrated, and exhibits a predetermined function by executing a voltage detection program stored in the internal memory. To do. The microcomputer M sequentially acquires sample values of the cell voltages V1 to V12 by sampling the cell voltages V1 to V12 input from the cell voltage detection units D1 to D12 at a predetermined sampling period.

また、このマイコンMは、当該サンプル値を内部メモリに記憶すると共に上記電圧検知プログラムに従った所定の処理を施すことにより、各電池セルC1〜C12の充電状態のバランス制御処理、また各伝送線路S1〜S13や各電池セルC1〜C12の診断処理を行う。   In addition, the microcomputer M stores the sample value in an internal memory and performs a predetermined process according to the voltage detection program, thereby performing a balance control process for the state of charge of each of the battery cells C1 to C12, and each transmission line. Diagnosis processing of S1-S13 and each battery cell C1-C12 is performed.

すなわち、マイコンMは、各放電回路B1〜B12を制御することにより複数の電池セルC1〜C12の充電バランスを調整する充電バランス調整部として機能する。マイコンMは、電池セルC1〜C12のセル電圧V1〜V12が均等になるように各放電回路B1〜B12を制御する。   That is, the microcomputer M functions as a charge balance adjustment unit that adjusts the charge balance of the plurality of battery cells C1 to C12 by controlling the discharge circuits B1 to B12. The microcomputer M controls the discharge circuits B1 to B12 so that the cell voltages V1 to V12 of the battery cells C1 to C12 are equal.

また、マイコンMは、各伝送線路S1〜S13や各電池セルC1〜C12の診断処理を行う異常判定部としても機能する。このマイコンMは、各放電回路B1〜B12のスイッチング素子に開閉信号を出力することにより、互いに隣り合う一対の電池セルの放電回路を異なるデューティ比で放電状態とし、この状態における上記一対の電池セルに関する一対のセル電圧の変化傾向に基づいて、上記一対の電池セルに関する伝送線路の断線(断線異常)と一対の電池セル自身の異常(電池異常)とを識別する。   In addition, the microcomputer M also functions as an abnormality determination unit that performs a diagnosis process on each of the transmission lines S1 to S13 and the battery cells C1 to C12. The microcomputer M outputs an open / close signal to the switching elements of the discharge circuits B1 to B12 to place the discharge circuits of a pair of adjacent battery cells in a discharged state with different duty ratios, and the pair of battery cells in this state Based on the change tendency of the pair of cell voltages, the disconnection (disconnection abnormality) of the transmission line related to the pair of battery cells and the abnormality (battery abnormality) of the pair of battery cells themselves are identified.

また、このマイコンMは絶縁素子IRを介して外部のバッテリECUと通信可能に接続されており、上記断線異常と電池異常との識別結果を外部のバッテリECUに通知する。絶縁素子IRは、マイコンMとバッテリECUとのアイソレーションをとるための素子であり、例えばフォトカプラである。   The microcomputer M is connected to an external battery ECU through an insulating element IR so as to be communicable, and notifies the external battery ECU of the identification result between the disconnection abnormality and the battery abnormality. The insulating element IR is an element for isolating the microcomputer M and the battery ECU, and is, for example, a photocoupler.

次に、本実施形態に係るセルバランス制御装置Aの動作について、図2〜図4を参照して説明する。   Next, the operation of the cell balance control apparatus A according to the present embodiment will be described with reference to FIGS.

本実施形態に係るセルバランス制御装置Aにおいて、マイコンMは、図2に示すように、一定周期で交互に繰り返す異常検出期間と実放電期間とにおいて各伝送線路S1〜S13の異常診断と各セル電圧V1〜V12の均一化を交互に行う。すなわち、マイコンMは、時刻t1〜t2の異常検出期間(例えば150ms)において、隣り合う一対の電池セルに接続された放電回路のスイッチング素子をそれぞれ異なるデューティ比で制御する。   In the cell balance control apparatus A according to the present embodiment, as shown in FIG. 2, the microcomputer M performs an abnormality diagnosis of each transmission line S <b> 1 to S <b> 13 and each cell in an abnormality detection period and an actual discharge period that are alternately repeated at a constant period. The voltages V1 to V12 are alternately made uniform. That is, the microcomputer M controls the switching elements of the discharge circuit connected to the pair of adjacent battery cells with different duty ratios in the abnormality detection period (for example, 150 ms) from time t1 to time t2.

例えば、マイコンMは、この時刻t1〜t2の異常検出期間において、奇数番目の電池セルC1、C3、…、C11に接続された放電回路B1、B3、…、B11のスイッチング素子T1、T3、…、T11を4%のデューティ比(第1のデューティ比)でON/OFFさせると共に、偶数番目の電池セルC2、C4、…、C12に接続された放電回路B2、B4、…、B12のスイッチング素子T2、T4、…、T12を96%のデューティ比(第2のデューティ比)でON/OFFさせる。   For example, the microcomputer M switches the switching elements T1, T3,... Of the discharge circuits B1, B3,..., B11 connected to the odd-numbered battery cells C1, C3,. , T11 is turned ON / OFF at a duty ratio (first duty ratio) of 4%, and switching elements of discharge circuits B2, B4,..., B12 connected to even-numbered battery cells C2, C4,. T2, T4,..., T12 are turned ON / OFF at a 96% duty ratio (second duty ratio).

ここで、13本の伝送線路S1〜S13の何れかに断線が発生した場合、当該断線した線路に関係すると共に互いに隣り合う一対の電池セルのセル電圧(一対のセル電圧)は、上述したように一対の放電回路を異なるデューティ比で制御した場合に、各伝送線路S1〜S13にCRフィルタF1〜F12が設けられている関係で逆の変化傾向を示し、最終的には各電池セルC1〜C12の電池異常しきい値を越える。   Here, when a disconnection occurs in any of the 13 transmission lines S1 to S13, the cell voltages (a pair of cell voltages) related to the disconnected line and adjacent to each other are as described above. When the pair of discharge circuits are controlled at different duty ratios, the reverse change tendency is shown because the CR filters F1 to F12 are provided in the transmission lines S1 to S13, and finally each battery cell C1 to The battery abnormality threshold of C12 is exceeded.

上記電池異常しきい値は、各電池セルC1〜C12の異常を判定するために設定された下限側電池異常しきい値Vmin及び上限側電池異常しきい値Vmaxであり、各電池セルC1〜C12が正常な場合には到達し得ないセル電圧である。   The battery abnormality threshold values are the lower limit battery abnormality threshold value Vmin and the upper limit battery abnormality threshold value Vmax that are set to determine the abnormality of the battery cells C1 to C12, and each of the battery cells C1 to C12. This is a cell voltage that cannot be reached in the case of normal.

また、断線が発生した場合における上記一対のセル電圧の差電圧に着目すると、上記異常検出期間の開始時刻t1以降において徐々に増加して断線しきい値ΔVthを越える。上記差電圧は合計11個存在し、差電圧ΔV1は一対のセル電圧V1,V2に関するものであり、差電圧ΔV2は一対のセル電圧V2,V3に関するものであり、(中略)、差電圧ΔV11は一対のセル電圧V11,V12に関するものである。   When attention is paid to the difference voltage between the pair of cell voltages when the disconnection occurs, it gradually increases after the start time t1 of the abnormality detection period and exceeds the disconnection threshold value ΔVth. There are a total of 11 difference voltages, the difference voltage ΔV1 is related to the pair of cell voltages V1 and V2, the difference voltage ΔV2 is related to the pair of cell voltages V2 and V3, (omitted), and the difference voltage ΔV11 is This relates to the pair of cell voltages V11 and V12.

上記断線しきい値ΔVthは、上記一対のセル電圧が互いに逆の変化傾向で変化した場合における差電圧であり、かつ上記一対のセル電圧が電池異常しきい値に到達する前の差電圧として設定される。すなわち、13本の伝送線路S1〜S13の何れかに断線が発生した場合、一対のセル電圧は、互いに逆の変化傾向で変化して断線しきい値ΔVthを越え、その後で下限側電池異常しきい値Vminあるいは上限側電池異常しきい値Vmaxを越えることになる。   The disconnection threshold value ΔVth is a difference voltage when the pair of cell voltages change in opposite directions, and is set as a difference voltage before the pair of cell voltages reach the battery abnormality threshold value. Is done. That is, when a disconnection occurs in any of the 13 transmission lines S1 to S13, the voltage of the pair of cells changes with the opposite tendency of change and exceeds the disconnection threshold value ΔVth, and then the lower limit battery abnormality occurs. It exceeds the threshold value Vmin or the upper limit battery abnormality threshold value Vmax.

例えば、電池セルC1と電池セルC2との接続点とセル電圧検出部D1及びセル電圧検出部D2とを接続する伝送線路S2に断線が生じた場合、この伝送線路S2に関係すると共に互いに隣り合う一対の電池セルは、電池セルC1と電池セルC2とである。   For example, when a disconnection occurs in the transmission line S2 that connects the connection point between the battery cell C1 and the battery cell C2 and the cell voltage detection unit D1 and the cell voltage detection unit D2, the transmission line S2 is related to and adjacent to the transmission line S2. The pair of battery cells are a battery cell C1 and a battery cell C2.

図2に示すように、上記異常検出期間の開始時刻t1以降、つまり上記一対の電池セルC1、C2に関する一対の放電回路B1、B2を異なるデューティ比で制御を開始して以降、上記一対の電池セルC1、C2に関する一対のセル電圧V1、V2のうち、一方のセル電圧V1は徐々に上昇し、また他方のセル電圧V2は徐々に低下する。そして、一対のセル電圧V1、V2の差電圧ΔV1が断線しきい値ΔVth以上となり、その上で一方のセル電圧V1が下限側電池異常しきい値Vminに到達し、また他方のセル電圧V2が上限側電池異常しきい値Vmaxに到達する。   As shown in FIG. 2, after the start time t1 of the abnormality detection period, that is, after the control of the pair of discharge circuits B1, B2 related to the pair of battery cells C1, C2 at different duty ratios, the pair of batteries Of the pair of cell voltages V1 and V2 related to the cells C1 and C2, one cell voltage V1 gradually increases, and the other cell voltage V2 gradually decreases. The difference voltage ΔV1 between the pair of cell voltages V1 and V2 becomes equal to or greater than the disconnection threshold value ΔVth, and then one cell voltage V1 reaches the lower limit battery abnormality threshold value Vmin, and the other cell voltage V2 is The upper limit battery abnormality threshold value Vmax is reached.

マイコンMは、異常検出期間の開始時刻t1以降、各セル電圧V1〜V12を順次取り込むと共に互いに隣り合う一対の電池セルの差電圧ΔV1〜ΔV11を順次演算する。そして、図3に示すフローチャートに沿って内部メモリに記憶された各セル電圧V1〜V12及び各差電圧ΔV1〜ΔV11に関する識別処理を実行することにより、上記一対の電池セルに関する伝送線路の断線(断線異常)と上記一対の電池セル自身の異常(電池異常)とを識別する。   The microcomputer M sequentially takes in the cell voltages V1 to V12 after the start time t1 of the abnormality detection period and sequentially calculates the difference voltages ΔV1 to ΔV11 between a pair of adjacent battery cells. Then, by performing identification processing relating to the cell voltages V1 to V12 and the differential voltages ΔV1 to ΔV11 stored in the internal memory according to the flowchart shown in FIG. 3, the disconnection (disconnection) of the transmission line relating to the pair of battery cells. An abnormality) and an abnormality of the pair of battery cells themselves (battery abnormality).

すなわち、マイコンMは、各セル電圧V1〜V12の中で上限側電池異常しきい値Vmaxを越えたものが存在するか否かを判断する(ステップS1)。そして、マイコンMは、この判断が「Yes」の場合つまり上限側電池異常しきい値Vmaxを越えたセル電圧を含む一対のセル電圧が互いに逆の変化傾向で変化し、その上で当該一対のセル電圧の差電圧が断線しきい値ΔVthを越えたか否か判断する(ステップS2)。例えば、セル電圧V1を含む一対のセル電圧は一対のセル電圧V1、V2であり、セル電圧V2を含む一対のセル電圧は一対のセル電圧V1、V2及び一対のセル電圧V2、V3である。   That is, the microcomputer M determines whether or not any of the cell voltages V1 to V12 exceeds the upper limit battery abnormality threshold value Vmax (step S1). When the determination is “Yes”, that is, the pair of cell voltages including the cell voltage exceeding the upper limit battery abnormality threshold value Vmax changes in a reverse tendency, and then the pair of cell voltages It is determined whether or not the cell voltage difference voltage exceeds the disconnection threshold value ΔVth (step S2). For example, the pair of cell voltages including the cell voltage V1 is a pair of cell voltages V1 and V2, and the pair of cell voltages including the cell voltage V2 is a pair of cell voltages V1 and V2 and a pair of cell voltages V2 and V3.

例えばセル電圧V1が上限側電池異常しきい値Vmaxを越えた場合、マイコンMは、一対のセル電圧V1、V2及び一対のセル電圧V2、V3について、2つの差電圧V1、V2が互いに逆の変化傾向を示し、その上で断線しきい値ΔVthを越えたか否か判断する。そして、マイコンMは、ステップS2の判断が「Yes」の場合において、一方の差電圧V1が断線しきい値ΔVthを越えた場合は伝送線路B2が断線したと判定し、他方の差電圧V2が断線しきい値ΔVthを越えた場合には、伝送線路B3が断線したと判定する(ステップS3)。   For example, when the cell voltage V1 exceeds the upper limit battery abnormality threshold value Vmax, the microcomputer M determines that the two differential voltages V1 and V2 are opposite to each other with respect to the pair of cell voltages V1 and V2 and the pair of cell voltages V2 and V3. A change tendency is shown, and it is determined whether or not the disconnection threshold value ΔVth is exceeded. Then, when the determination in step S2 is “Yes”, the microcomputer M determines that the transmission line B2 is disconnected when one of the difference voltages V1 exceeds the disconnection threshold value ΔVth, and the other difference voltage V2 is When the disconnection threshold value ΔVth is exceeded, it is determined that the transmission line B3 is disconnected (step S3).

なお、マイコンMは、ステップS2の判断が「No」の場合、つまりセル電圧V1が上限側電池異常しきい値Vmaxを越えたものの、一対のセル電圧が互いに逆の変化傾向で変化せず、また一対のセル電圧の差電圧ΔV1、ΔV2が何れも断線しきい値ΔVthを越得ない場合には、セル電圧V1に対応する電池セルC1が異常になったと判定する(ステップS4)。   The microcomputer M determines that the determination in step S2 is “No”, that is, the cell voltage V1 exceeds the upper limit battery abnormality threshold value Vmax, but the pair of cell voltages do not change with a reverse change tendency. If neither the difference voltage ΔV1 or ΔV2 between the pair of cell voltages exceeds the disconnection threshold value ΔVth, it is determined that the battery cell C1 corresponding to the cell voltage V1 has become abnormal (step S4).

また、マイコンMは、ステップS1の判断が「No」の場合には、各セル電圧V1〜V12の中で下限側電池異常しきい値Vminを越えたものが存在するか否かを判断する(ステップS5)。そして、マイコンMは、このステップS5における判断が「Yes」の場合、つまり下限側電池異常しきい値Vminを越えたセル電圧を含む一対のセル電圧の差電圧が互いに逆の変化傾向を示し、その上で断線しきい値ΔVthを越えたか否か判断する(ステップS6)。   Further, when the determination in step S1 is “No”, the microcomputer M determines whether or not any of the cell voltages V1 to V12 exceeds the lower limit battery abnormality threshold value Vmin ( Step S5). When the determination in step S5 is “Yes”, that is, the microcomputer M indicates that the difference voltage between the pair of cell voltages including the cell voltage exceeding the lower limit battery abnormality threshold value Vmin tends to be opposite to each other, Then, it is determined whether or not the disconnection threshold value ΔVth has been exceeded (step S6).

例えばセル電圧V2が下限側電池異常しきい値Vminを越えた場合、マイコンMは、一対のセル電圧V1、V2及び一対のセル電圧V2、V3について、2つの差電圧V1、V2が互いに逆の変化傾向を示し、その上で断線しきい値ΔVthを越えたか否か判断する。そして、マイコンMは、ステップS6の判断が「Yes」の場合において、一方の差電圧V1が断線しきい値ΔVthを越えた場合は伝送線路B2が断線したと判定し、他方の差電圧V2が断線しきい値ΔVthを越えた場合には、伝送線路B3が断線したと判定する(ステップS7)。   For example, when the cell voltage V2 exceeds the lower limit battery abnormality threshold value Vmin, the microcomputer M determines that the two differential voltages V1 and V2 are opposite to each other with respect to the pair of cell voltages V1 and V2 and the pair of cell voltages V2 and V3. A change tendency is shown, and it is determined whether or not the disconnection threshold value ΔVth is exceeded. Then, when the determination in step S6 is “Yes”, the microcomputer M determines that the transmission line B2 is disconnected when one of the difference voltages V1 exceeds the disconnection threshold value ΔVth, and the other difference voltage V2 is If the disconnection threshold value ΔVth is exceeded, it is determined that the transmission line B3 is disconnected (step S7).

なお、マイコンMは、ステップS6の判断が「No」の場合、つまりセル電圧V2が下限側電池異常しきい値Vminを越えたものの、一対のセル電圧が互いに逆の変化傾向で変化せず、また一対のセル電圧の差電圧ΔV1、ΔV2が何れも断線しきい値ΔVthを越得ない場合には、セル電圧V2に対応する電池セルC2が異常になったと判定する(ステップS8)。   If the determination in step S6 is “No”, that is, the cell voltage V2 has exceeded the lower limit battery abnormality threshold value Vmin, the microcomputer M does not change with the opposite trend of the pair of cell voltages. If neither the difference voltage ΔV1 or ΔV2 between the pair of cell voltages exceeds the disconnection threshold value ΔVth, it is determined that the battery cell C2 corresponding to the cell voltage V2 has become abnormal (step S8).

また、マイコンMは、上述したステップS5における判断が「No」の場合、つまり各セル電圧V1〜V12の中に上限側電池異常しきい値Vmax及び下限側電池異常しきい値Vminのいずれをも超えるものが存在しない場合には、各電池セルC1〜C12及び各伝送線路S2〜S12は正常であると判定する(ステップS9)。   Further, when the determination in step S5 described above is “No”, the microcomputer M includes both the upper limit battery abnormality threshold value Vmax and the lower limit battery abnormality threshold value Vmin in each of the cell voltages V1 to V12. When there is nothing exceeding, it determines with each battery cell C1-C12 and each transmission line S2-S12 being normal (step S9).

このような本実施形態に係るセルバランス制御装置Aによれば、互いに隣り合う一対の電池セルに関する伝送線路の断線(断線異常)と同じく互いに隣り合う一対の電池セル自身の異常(電池異常)とを切り分けて検知することが可能である。例えばマイコンMが断線異常と電池異常との識別結果を外部のバッテリECUを介して車両の走行を制御する他のECU(図示略)に通知することによって、当該他のECUは、電池異常の場合は車両を停止させる制御を行い、断線異常の場合は自車両を退避走行させる退避走行制御が行うことが可能になる。したがって、このセルバランス制御装置Aによれば、車両のより適切な走行制御を実現することができる。   According to such a cell balance control apparatus A according to the present embodiment, the abnormality (battery abnormality) of a pair of adjacent battery cells as well as the disconnection (disconnection abnormality) of the transmission line related to the pair of adjacent battery cells. Can be detected separately. For example, when the microcomputer M notifies the other ECU (not shown) that controls the traveling of the vehicle via the external battery ECU of the discrimination result between the disconnection abnormality and the battery abnormality, Performs control for stopping the vehicle, and in the case of disconnection abnormality, it is possible to perform retreat traveling control for retreating the host vehicle. Therefore, according to this cell balance control apparatus A, more appropriate traveling control of the vehicle can be realized.

なお、マイコンMは、時刻t1〜t2の異常検出期間における異常検出処理が終了すると、次の時刻t2−t3の実放電期間(例えば500ms)において、温度センサTSから得られる基板温度Ta及び各電池セルC1〜C12の電圧検出結果V1〜V2に基づいて、各電池セルC1〜C12の電圧が均一となるように各放電回路B1〜B12のスイッチング素子T1〜T12を制御する。   When the abnormality detection process in the abnormality detection period from time t1 to t2 is completed, the microcomputer M determines the substrate temperature Ta and each battery obtained from the temperature sensor TS in the next actual discharge period (for example, 500 ms) at time t2-t3. Based on the voltage detection results V1 to V2 of the cells C1 to C12, the switching elements T1 to T12 of the discharge circuits B1 to B12 are controlled so that the voltages of the battery cells C1 to C12 are uniform.

そして、マイコンMは、時刻t2〜t3の実放電期間におけるセルバランス制御が終了すると、次の時刻t3−t4の異常検出期間において、上述した時刻t1〜t2の異常検出期間とは異なり、奇数番目の電池セルC1、C3、…、C11に接続された放電回路B1、B3、…、B11のスイッチング素子T1、T3、…、T11を96%のデューティ比でON/OFFさせると共に、偶数番目の電池セルC2、C4、…、C12に接続された放電回路B2、B4、…、B12のスイッチング素子T2、T4、…、T12を4%のデューティ比でON/OFFさせることにより異常検出処理を行う。   Then, when the cell balance control in the actual discharge period from time t2 to t3 ends, the microcomputer M differs from the abnormality detection period from time t1 to t2 in the next abnormality detection period from time t3 to t4. , And B11 switching elements T1, T3,..., T11 connected to the battery cells C1, C3,. The abnormality detection processing is performed by turning on / off the switching elements T2, T4,..., T12 of the discharge circuits B2, B4,..., B12 connected to the cells C2, C4,.

すなわち、マイコンMは、異常検出期間毎に第1のデューティ比と第2のデューティ比を交互に切り替えて異常検出処理を行うことにより、隣り合う電池セルの一方が過放電状態となることを防止する。なお、図2に示すように、第1のデューティ比と第2のデューティ比の値を入れ替えても、電池セルC1のセル電圧V1と電池セルC2のセル電圧V2の変化傾向が逆転するだけであり、時刻t1〜t2の異常検出期間と同様に伝送線路S2〜S12の断線を検知することができる。   That is, the microcomputer M performs an abnormality detection process by alternately switching the first duty ratio and the second duty ratio for each abnormality detection period, thereby preventing one of adjacent battery cells from being overdischarged. To do. In addition, as shown in FIG. 2, even if the values of the first duty ratio and the second duty ratio are switched, the change tendency of the cell voltage V1 of the battery cell C1 and the cell voltage V2 of the battery cell C2 is only reversed. Yes, disconnection of the transmission lines S2 to S12 can be detected as in the abnormality detection period at times t1 to t2.

なお、本発明は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態は本発明をセルバランス制御装置Aに適用した場合に関するものであるが、本発明はこれに限定されない。本発明は、例えば複数の電池セルのセル電圧を単純に検出するだけの電圧検出装置にも適用可能である。
In addition, this invention is not limited to the said embodiment, For example, the following modifications can be considered.
(1) Although the above embodiment relates to a case where the present invention is applied to the cell balance control apparatus A, the present invention is not limited to this. The present invention is also applicable to a voltage detection device that simply detects cell voltages of a plurality of battery cells, for example.

(2)上記実施形態では、互いに隣り合う一対の電池セルにおける一対のセル電圧の差電圧ΔV1〜ΔV11を断線しきい値ΔVthと比較することにより各伝送線路S2〜S12の断線を判定したが、本発明はこれに限定されない。例えば、互いに隣り合う一対の電池セルの放電回路を異なるデューティ比で放電状態とした場合において、上記一対のセル電圧が複数のサンプル値に亘って逆の変化傾向を示すか否かに基づいて各伝送線路S2〜S12の断線を判定してもよい。 (2) In the above embodiment, the disconnection of each transmission line S2 to S12 is determined by comparing the difference voltage ΔV1 to ΔV11 of a pair of cell voltages in a pair of adjacent battery cells with the disconnection threshold ΔVth. The present invention is not limited to this. For example, when the discharge circuits of a pair of battery cells adjacent to each other are in a discharge state with different duty ratios, each of the pair of cell voltages is based on whether or not they exhibit opposite change trends over a plurality of sample values. The disconnection of the transmission lines S2 to S12 may be determined.

A セルバランス制御装置
B1〜B12 放電回路
C1〜C12 電池セル
D1〜D12 セル電圧検出部
F1〜F12 CRフィルタ
M マイコン(異常判定部)
S1〜S13 伝送線路
A cell balance control device B1 to B12 discharge circuit C1 to C12 battery cell D1 to D12 cell voltage detection unit F1 to F12 CR filter M microcomputer (abnormality determination unit)
S1 to S13 Transmission line

Claims (3)

複数の電池セルに各々並列接続され、かつバイパス抵抗とスイッチング素子との直列回路からなる複数の放電回路と、複数の前記電池セルの各端子の端子電圧を伝送する複数の伝送線路と、該伝送線路から入力された前記端子電圧に基づいて複数の前記電池セルのセル電圧を検出するセル電圧検出部とを備えた電圧検出装置において、
隣り合う一対の電池セルの放電回路をそれぞれ異なるデューティ比で放電状態において、各セル電圧の中で上限側電池異常しきい値を越えた前記セル電圧が存在する場合に前記一対の電池セルに関する前記電池セル自身の電圧と前記電池セル自身の電圧を含む一対のセル電圧の差に基づいて前記一対の電池セルに関する前記伝送線路の断線または、前記電池セル自身の異常とを識別して判定する異常判定部を備えることを特徴とする電圧検出装置。
A plurality of discharge circuits each connected in parallel to a plurality of battery cells and comprising a series circuit of a bypass resistor and a switching element; a plurality of transmission lines for transmitting terminal voltages of the terminals of the plurality of battery cells; and the transmission In a voltage detection apparatus comprising a cell voltage detection unit that detects a cell voltage of the plurality of battery cells based on the terminal voltage input from a line,
The discharge circuit of a pair of adjacent battery cells is in a discharge state with a different duty ratio , and the cell voltage related to the pair of battery cells is present when the cell voltage that exceeds the upper-limit battery abnormality threshold is present in each cell voltage. An abnormality that identifies and determines disconnection of the transmission line or an abnormality of the battery cell itself with respect to the pair of battery cells based on a difference between the voltage of the battery cell itself and a pair of cell voltages including the voltage of the battery cell itself A voltage detection apparatus comprising a determination unit.
前記異常判定部は、各セル電圧の中で上限側電池異常しきい値を越えた前記セル電圧が存在する場合、前記一対のセル電圧の差が所定の断線しきい値を越えた場合に、前記伝送線路の断線を判定することを特徴とする請求項1に記載の電圧検出装置。 The abnormality determination unit, when there is the cell voltage exceeding the upper limit battery abnormality threshold in each cell voltage, when the difference between the pair of cell voltages exceeds a predetermined disconnection threshold, The voltage detection device according to claim 1, wherein disconnection of the transmission line is determined. 前記異常判定部は、各セル電圧の中で上限側電池異常しきい値を越えた前記セル電圧が存在する場合、前記一対のセル電圧の差が所定のしきい値を越えない場合は電池セル自身の異常を判定することを特徴とする請求項1に記載の電圧検出装置。
When the cell voltage exceeding the upper-limit battery abnormality threshold exists in each cell voltage , the abnormality determination unit is a battery cell if the difference between the pair of cell voltages does not exceed a predetermined threshold. The voltage detection apparatus according to claim 1, wherein the abnormality is determined.
JP2016038331A 2016-02-29 2016-02-29 Voltage detector Expired - Fee Related JP6598209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038331A JP6598209B2 (en) 2016-02-29 2016-02-29 Voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038331A JP6598209B2 (en) 2016-02-29 2016-02-29 Voltage detector

Publications (2)

Publication Number Publication Date
JP2017158269A JP2017158269A (en) 2017-09-07
JP6598209B2 true JP6598209B2 (en) 2019-10-30

Family

ID=59810859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038331A Expired - Fee Related JP6598209B2 (en) 2016-02-29 2016-02-29 Voltage detector

Country Status (1)

Country Link
JP (1) JP6598209B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988436B2 (en) * 2017-12-19 2022-01-05 株式会社デンソー Battery control device
CN110011387A (en) * 2019-05-14 2019-07-12 深圳市道通智能航空技术有限公司 A kind of battery balanced control method, device and balance control system
JP7240972B2 (en) * 2019-06-28 2023-03-16 株式会社デンソーテン Disconnection detection device and disconnection detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624907B2 (en) * 2011-02-17 2014-11-12 本田技研工業株式会社 Power storage device, disconnection detection device, vehicle, and disconnection detection method
JP5918961B2 (en) * 2011-10-07 2016-05-18 株式会社ケーヒン Cell balance control device
JP5811874B2 (en) * 2012-02-02 2015-11-11 ミツミ電機株式会社 Battery protection circuit, battery protection device, and battery pack
JP2015033283A (en) * 2013-08-06 2015-02-16 Fdk株式会社 Balance correction device and electrical storage device

Also Published As

Publication number Publication date
JP2017158269A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
US9142981B2 (en) Cell balance control unit
JP5231677B2 (en) Cell balance circuit abnormality diagnosis apparatus and method
US8841915B2 (en) Battery voltage monitoring apparatus
JP6477593B2 (en) Battery pack monitoring system
JP5928509B2 (en) Battery monitoring device
JP5974849B2 (en) Battery monitoring device
US9863993B2 (en) Storage battery monitoring device with wiring disconnection detection
JP2019158539A (en) Battery monitoring device
JP6598209B2 (en) Voltage detector
JP5503430B2 (en) Battery pack with output stop switch
JP4693761B2 (en) Assembled battery system
JP6414601B2 (en) Integrated circuit with built-in state monitoring unit and power supply device including the integrated circuit
JP6016754B2 (en) Battery voltage detector
JP2006197790A (en) Power supply apparatus
JP6708011B2 (en) Battery pack
JP2017112677A (en) Battery pack monitoring system
JP2017112677A5 (en)
JP6853884B2 (en) Battery monitoring device
WO2017056409A1 (en) Voltage detection circuit and electricity storage system
JP2017167050A (en) Voltage detector
EP3534485B1 (en) Battery pack, battery management system, and method therefor
JP2013179751A (en) Battery pack control device
JP6697305B2 (en) Voltage detector
US10444263B2 (en) Battery monitoring system
JP6507989B2 (en) Battery monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190925

R150 Certificate of patent or registration of utility model

Ref document number: 6598209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees