JP6597020B2 - Polypropylene fiber manufacturing method and high-strength polypropylene fiber - Google Patents

Polypropylene fiber manufacturing method and high-strength polypropylene fiber Download PDF

Info

Publication number
JP6597020B2
JP6597020B2 JP2015146868A JP2015146868A JP6597020B2 JP 6597020 B2 JP6597020 B2 JP 6597020B2 JP 2015146868 A JP2015146868 A JP 2015146868A JP 2015146868 A JP2015146868 A JP 2015146868A JP 6597020 B2 JP6597020 B2 JP 6597020B2
Authority
JP
Japan
Prior art keywords
less
polypropylene
dtex
yarn
polypropylene fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015146868A
Other languages
Japanese (ja)
Other versions
JP2017025446A (en
Inventor
正樹 藤江
友義 山下
裕信 池田
純哉 今北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57949217&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6597020(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2015146868A priority Critical patent/JP6597020B2/en
Priority to EP16830300.6A priority patent/EP3327189A4/en
Priority to PCT/JP2016/070497 priority patent/WO2017018195A1/en
Priority to CN201680038234.2A priority patent/CN107709640B/en
Priority to US15/743,565 priority patent/US10870929B2/en
Publication of JP2017025446A publication Critical patent/JP2017025446A/en
Application granted granted Critical
Publication of JP6597020B2 publication Critical patent/JP6597020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

本発明は、産業資材用、建造物や自動車などの内装用、医療・衛生用、衣料用などに用いられるポリプロピレン繊維の製造方法と高強度のポリプロピレン繊維に関する。   The present invention relates to a method for producing polypropylene fibers used for industrial materials, interiors such as buildings and automobiles, medical / hygiene, and clothing, and high-strength polypropylene fibers.

ポリプロピレン繊維は、撥水性、非吸収性に優れ、低比重であるため軽くて、また耐薬品性に優れているなどの特性を有していることから、産業資材用、建造物や自動車などの内装用、医療・衛生用、衣料用などに広く用いられている。特に産業資材用途では軽さと強度を活かしてロープ、養生ネット、水平ネットなど幅広く用いられているが、更なる高強度化が求められている。   Polypropylene fiber has characteristics such as excellent water repellency and non-absorbability, low specific gravity, light weight, and excellent chemical resistance, so it can be used for industrial materials, buildings, automobiles, etc. Widely used for interior, medical / hygiene, clothing, etc. Especially for industrial materials, it is widely used for ropes, curing nets, horizontal nets, etc., taking advantage of lightness and strength.

ポリプロピレン繊維の強度は延伸条件に大きく依存することが知られている。特に延伸倍率を高くするとポリプロピレン繊維の強度は大きく向上する。しかし、通常の延伸速度で高倍率に延伸しようとすると毛羽・糸切れが頻発してしまうため安定的に生産するのが難しくなる。そこで延伸速度を遅くして可能な限りの高倍率で延伸することにより高強度化する試みがなされている。   It is known that the strength of polypropylene fibers is greatly dependent on the drawing conditions. In particular, when the draw ratio is increased, the strength of the polypropylene fiber is greatly improved. However, when trying to draw at a high magnification at a normal drawing speed, fluff and yarn breakage occur frequently, making it difficult to produce stably. Therefore, attempts have been made to increase the strength by stretching at a high magnification as much as possible by slowing the stretching speed.

例えば、特許第5607827号公報(特許文献1)ではポリプロピレンを溶融押出し、ポリプロピレンのガラス転移温度以上でかつガラス転移温度+15℃以下の温度まで急冷する紡糸工程、該温度で保冷する保冷工程、及び延伸工程を含むポリプロピレン繊維の製造方法が提案されている。この方法では、1.6GPa以上の高強度になることが記載されているが、延伸は手回し延伸機で極めて低速度で延伸しており、さらに0℃で数日保冷するなど工業的には難しいと考えられる。   For example, in Japanese Patent No. 5607817 (Patent Document 1), a spinning process in which polypropylene is melt-extruded and rapidly cooled to a temperature not lower than the glass transition temperature of the polypropylene and not higher than the glass transition temperature + 15 ° C., a cold-retaining process in which the temperature is kept at that temperature, and stretching A method for producing a polypropylene fiber including a process has been proposed. In this method, it is described that the strength becomes 1.6 GPa or more, but the stretching is performed at a very low speed with a hand-drawing stretcher, and it is industrially difficult to keep at 0 ° C. for several days. it is conceivable that.

また、特開2003−293216号公報(特許文献2)では、繊維表面の曲面に沿って形成された筋状の粗面構造を有する、単繊維強度が9cN/dtexのコンクリート補強用のポリプロピレン繊維が提案されている。しかし、これも延伸速度は50m/分程度の速度で行っており生産性に劣る。   Further, in Japanese Patent Application Laid-Open No. 2003-293216 (Patent Document 2), a polypropylene fiber for concrete reinforcement having a streaky rough surface structure formed along a curved surface of a fiber surface and having a single fiber strength of 9 cN / dtex is disclosed. Proposed. However, this is also inferior in productivity because the stretching speed is about 50 m / min.

また例えば、特開2002−180347号公報(特許文献3)では、両端が加圧水でシールされた容器内に、延伸媒体として0.3〜0.5MPa程度の加圧飽和水蒸気が充填された延伸槽を用いて、結晶性高分子物質を延伸処理する方法が記載されている。この手法では9.7cN/dtex以上の高強度ポリプロピレン繊維の製造が可能である。しかし、この手法では通常の熱板延伸などに比べて、特殊で高価な加圧飽和水蒸気延伸装置が必要であり、更に加圧飽和水蒸気延伸では繊維の投入量が制限されてしまうという問題があるため、大量生産には不向きである。   Further, for example, in Japanese Patent Application Laid-Open No. 2002-180347 (Patent Document 3), a drawing tank in which pressurized saturated water vapor of about 0.3 to 0.5 MPa is filled as a drawing medium in a container sealed at both ends with pressurized water. Describes a method of stretching a crystalline polymer material using a slag. This technique makes it possible to produce high-strength polypropylene fibers of 9.7 cN / dtex or higher. However, this method requires a special and expensive pressurized saturated steam stretching apparatus as compared with normal hot plate stretching, and further, there is a problem that the input amount of fiber is limited in the pressurized saturated steam stretching. Therefore, it is not suitable for mass production.

更に特開2009−007727号公報(特許文献4)では、アイソタクチックペンタッド率が94%以上のポリプロピレンを溶融紡糸して得られた未延伸糸を、温度120℃〜150℃で延伸倍率3〜10倍で前延伸した後、温度170℃〜190℃、変形速度1.5〜15倍/分で、延伸倍率1.2〜3.0倍の後延伸することより、繊維強度が7cN/dtex以上で、表面が凹凸構造をもつポリプロピレン繊維の製造方法が記載されている。この技術では後延伸での変形速度が極めて遅いため、高強度のポリプロピレン繊維を高生産で製造することは困難である。   Furthermore, in JP 2009-007727 A (Patent Document 4), an undrawn yarn obtained by melt spinning polypropylene having an isotactic pentad ratio of 94% or more is drawn at a temperature of 120 ° C. to 150 ° C. at a draw ratio of 3 After pre-stretching at 10 to 10 times, the fiber strength is 7 cN / h by post-stretching at a temperature of 170 ° C. to 190 ° C. and a deformation rate of 1.5 to 15 times / min and a draw ratio of 1.2 to 3.0 times. A method for producing a polypropylene fiber having a concavo-convex structure with a dtex or more is described. In this technique, since the deformation rate in post-drawing is extremely slow, it is difficult to produce high-strength polypropylene fibers with high production.

特許第5607827号公報Japanese Patent No. 5,607,827 特開2003−293216号公報JP 2003-293216 A 特開2002−180347号公報JP 2002-180347 A 特開2009−007727号公報JP 2009-007727 A

本発明の目的は、延伸途中の糸を均一構造に制御することで、毛羽や束切れが少なく、高強度なポリプロピレン繊維及び同繊維の製造方法を提供することにある。   An object of the present invention is to provide a high-strength polypropylene fiber and a method for producing the fiber with less fluff and bundle breakage by controlling the yarn in the drawing process to have a uniform structure.

本発明のポリプロピレン繊維の製造方法は、ポリプロピレン未延伸糸を2段以上で延伸する延伸工程を含むポリプロピレン繊維の製造方法であって、1段目の延伸終了時点の工程糸を、小角X散乱測定による赤道方向の強度に対する子午線方向の強度比が1.01以上1.60以下の範囲とし、続いて2段目以降の延伸を行うポリプロピレン繊維の製造方法である。   The method for producing a polypropylene fiber of the present invention is a method for producing a polypropylene fiber including a drawing step in which a polypropylene undrawn yarn is drawn in two or more stages, and the process yarn at the end of the first stage drawing is measured by small angle X scattering measurement. This is a method for producing a polypropylene fiber in which the meridian direction strength ratio to the equator direction strength is in the range of 1.01 to 1.60, and then the second and subsequent steps are stretched.

本発明のポリプロピレン繊維の製造方法は、1段目の延伸終了時の前記工程糸を、DSC測定による168℃以上174℃以下の融解ピークに対する、160℃以上166℃以下の融解ピークの面積比が50%以上57.5%以下の範囲とすることが好ましい。   In the method for producing a polypropylene fiber of the present invention, the area ratio of the melting peak of 160 ° C. or more and 166 ° C. or less with respect to the melting peak of 168 ° C. or more and 174 ° C. or less of the process yarn at the end of the first stage drawing is measured. A range of 50% or more and 57.5% or less is preferable.

本発明のポリプロピレン繊維の製造方法は、1段目の延伸倍率を5倍以上15倍以下とすることが好ましい。   In the method for producing a polypropylene fiber of the present invention, the draw ratio of the first stage is preferably 5 times or more and 15 times or less.

本発明のポリプロピレン繊維の製造方法は、1段目に延伸する糸温度を110℃以上160℃以下として延伸することが好ましい。   In the method for producing a polypropylene fiber of the present invention, it is preferable that the yarn temperature to be drawn in the first stage is drawn at 110 ° C. to 160 ° C.

本発明のポリプロピレン繊維の製造方法は、前記未延伸糸の結晶構造の割合が40質量%以下であり、複屈折値が0.1×10-3以上2.5×10-3以下であることが好ましい。 In the method for producing polypropylene fiber of the present invention, the proportion of the crystal structure of the undrawn yarn is 40% by mass or less, and the birefringence value is 0.1 × 10 −3 or more and 2.5 × 10 −3 or less. Is preferred.

本発明のポリプロピレン繊維の製造方法は、前記ポリプロピレン未延伸糸が、メルトフローレートが12g/分以上28g/分以下のポリプロピレン樹脂を融解し、ポリプロピレン樹脂の融点の80℃以上150℃以下の温度で紡糸ノズルの吐出孔から吐出し、次いで冷却固化して、200m/分以上500m/分以下で引き取る未延伸糸であることが好ましい。 In the method for producing a polypropylene fiber of the present invention, the polypropylene undrawn yarn melts a polypropylene resin having a melt flow rate of 12 g / min to 28 g / min, and the melting point of the polypropylene resin is 80 ° C. to 150 ° C. The undrawn yarn is preferably an undrawn yarn that is discharged from a discharge hole of a spinning nozzle, then cooled and solidified, and taken up at 200 m / min to 500 m / min.

本発明のポリプロピレン繊維は、引張強度が6.5cN/dtex以上10cN/dtex以下、引張弾性率が85cN/dtex以上170cN/dtex以下であり、単繊維繊度が3.5dtex以上20dtex以下である。 The polypropylene fiber of the present invention has a tensile strength of 6.5 cN / dtex to 10 cN / dtex, a tensile modulus of 85 cN / dtex to 170 cN / dtex , and a single fiber fineness of 3.5 dtex to 20 dtex.

本発明によれば、上記各種条件の下で延伸途中の糸を均一構造に制御することにより、毛羽や束切れが少ない、上述のとおりの高強度でかつ高弾性率をもつポリプロピレン繊維を提供することができる。   According to the present invention, a polypropylene fiber having high strength and high elastic modulus as described above with less fluff and bundle breakage is obtained by controlling the yarn in the middle of stretching under a uniform structure under the various conditions described above. be able to.

以下、本発明について詳細に説明する。
●未延伸糸構造と延伸性について
紡糸後に延伸を2段以上で行う延伸工程を含むポリプロピレン繊維の製造工程において、1段目の延伸終了時点の工程糸を均質な構造に近づけることが重要である。一般的に2段目以降の延伸では1段目に比べて高温で延伸処理が行われる。1段目の延伸までに形成された伸び切り鎖以外の不均質な構造は、高温延伸である2段目以降の延伸では分子鎖の回転運動や非晶鎖の引き伸ばしが起こるため、効率的に伸び切り鎖を形成させることが難しい。また1段目の延伸終了時点の工程糸が不均質であれば、2段目以降の延伸で分子鎖への張力分布が不均一になるため、毛羽や糸切れが頻発する。
Hereinafter, the present invention will be described in detail.
● Undrawn yarn structure and drawability In the polypropylene fiber manufacturing process, which includes a drawing process in which drawing is performed in two or more stages after spinning, it is important that the process yarn at the end of the first stage of drawing be close to a homogeneous structure. . In general, in the second and subsequent stages, the stretching process is performed at a higher temperature than in the first stage. The inhomogeneous structure other than the stretched chain formed before the first stage stretching is efficient because the molecular chain rotational movement and the amorphous chain stretching occur in the second and subsequent stages, which are high-temperature stretching. It is difficult to form an extended chain. Further, if the process yarn at the end of the first stage of stretching is inhomogeneous, the tension distribution to the molecular chain becomes non-uniform in the second and subsequent stages of stretching, and thus fluff and thread breakage occur frequently.

本発明では、ポリプロピレン未延伸糸を2段以上で延伸する延伸工程を含むポリプロピレン繊維の製造方法であって、1段目の延伸終了時点の工程糸は、小角X散乱測定での赤道方向の強度に対する子午線方向の強度比が1.01以上1.60以下であることが必要である。ラメラ構造が積層されたポリプロピレン工程糸では、小角X線散乱測定において子午線方向にピークが観測される。すなわち本発明で得られる1段目終了時点の工程糸は、ラメラ構造の割合が少ない構造である。強度比が1.60以下であれば、前記工程糸のラメラ構造の割合が少なく、2段目以降の延伸において毛羽や糸切れが低減でき、安定的に延伸ができ、伸び切り鎖を形成させ易くなり、高強度のポリプロピレンが得られ易くなる。1段目の延伸終了時点の工程糸は、小角X散乱測定での赤道方向の強度に対する子午線方向の強度比は、1.02以上1.40以下であることがより好ましく、1.03以上1.25以下がさらに好ましい。   In this invention, it is a manufacturing method of the polypropylene fiber including the extending | stretching process of extending | stretching a polypropylene undrawn thread | yarn in 2 steps | paragraphs, Comprising: The process thread | yarn at the time of completion | finish of the 1st step | stretching is strength of the equator direction by a small angle X scattering measurement It is necessary that the intensity ratio in the meridian direction with respect to is 1.01 to 1.60. In a polypropylene process yarn with a laminated lamella structure, a peak is observed in the meridian direction in small-angle X-ray scattering measurement. That is, the process yarn obtained at the end of the first stage obtained in the present invention has a structure with a small ratio of the lamellar structure. If the strength ratio is 1.60 or less, the ratio of the lamellar structure of the process yarn is small, fluff and yarn breakage can be reduced in the second and subsequent stretches, stable stretching is possible, and stretched chains are formed. It becomes easy to obtain a high-strength polypropylene. In the process yarn at the end of the first stage of stretching, the meridian direction intensity ratio with respect to the equatorial intensity in the small angle X scattering measurement is more preferably 1.02 or more and 1.40 or less, and 1.03 or more and 1 More preferred is .25 or less.

1段目の延伸終了時点の工程糸は、DSC測定において168℃以上174℃以下の融解ピークに対する、160℃以上166℃以下の融解ピークの面積比が57.5%以下であることが好ましい。168℃以上174℃以下の融解ピークは伸び切り鎖の融解に起因し、160℃以上166℃以下の融解ピークはラメラ構造や伸び切り鎖に転移できなかった構造の融解に起因すると考えられる。すなわち168℃以上174℃以下の融解ピークに対する、160℃以上166℃以下の融解ピークの面積比が小さいほど、より均一な構造であるといえる。DSC測定において168℃以上174℃以下の融解ピークに対する、160℃以上166℃以下の融解ピークの面積比が57.5%以下であれば、不均質構造の割合が低いため、2段目以降の延伸において毛羽や糸切れが少なくできる。2段目以降の延伸で伸び切り鎖を形成でき易くなるため、最終的なポリプロピレン繊維の強度が向上する。DSC測定において168℃以上174℃以下の融解ピークに対する、160℃以上166℃以下の融解ピークの前記面積比は57%以下がより好ましく、56.5%以下がさらに好ましい。   The process yarn at the end of the first stage of drawing preferably has an area ratio of a melting peak of 160 ° C. or higher and 166 ° C. or lower to a melting peak of 168 ° C. or higher and 174 ° C. or lower in DSC measurement of 57.5% or lower. It is considered that the melting peak at 168 ° C. or more and 174 ° C. or less is caused by melting of the extended chain, and the melting peak at 160 ° C. or more and 166 ° C. or less is caused by melting of the lamellar structure or the structure that could not be transferred to the extended chain. That is, it can be said that the smaller the area ratio of the melting peak at 160 ° C. or higher and 166 ° C. or lower with respect to the melting peak at 168 ° C. or higher and 174 ° C. or lower, the more uniform the structure. In DSC measurement, if the area ratio of the melting peak at 160 ° C. or higher and 166 ° C. or lower with respect to the melting peak at 168 ° C. or higher and 174 ° C. or lower is 57.5% or lower, the ratio of the heterogeneous structure is low. Fluffing and yarn breakage can be reduced during stretching. Since the stretched chain can be easily formed by the second and subsequent stretching, the strength of the final polypropylene fiber is improved. In the DSC measurement, the area ratio of the melting peak of 160 ° C. to 166 ° C. with respect to the melting peak of 168 ° C. to 174 ° C. is more preferably 57% or less, and further preferably 56.5% or less.

本発明における紡糸終了時点での未延伸糸の結晶構造の割合は40質量%以下が好ましい。未延伸糸の結晶構造の割合は、広角X線回折(リガク社製Ultrax18、波長λ=1.54Å)を用いて確認することができる。ポリプロピレンの構造には、結晶構造であるα晶、β晶及びγ晶と、非晶構造のほかに、結晶と非晶の中間構造であるメゾ構造があることが知られている。本発明に関わるα晶では回折角=14.1度、16.9度、18.6度、21.6度に4本の鋭いピークが観測され、非晶構造では回折角=16度にブロードなアモルファスピークが、メゾ構造では回折角=15度と21度にややブロードなピークが観測され(非特許文献 Macromolecules 2005、38、8749−8754)、波形分離することでそれぞれの構造の割合を算出することができる。具体的には未延伸糸の広角X線回折パターンについて、回折角=14.1度、16.9度、18.6度、21.6度(結晶性成分)、16度(非晶性成分)、15度、21度(メゾ構造成分)にそれぞれピークを設置して波形分離を行い、結晶性成分のピーク積分強度の和をすべてのピーク積分強度で除すことで、結晶性成分の割合を算出することができる。   The proportion of the crystal structure of the undrawn yarn at the end of spinning in the present invention is preferably 40% by mass or less. The proportion of the crystal structure of the undrawn yarn can be confirmed using wide-angle X-ray diffraction (Ultrag 18 manufactured by Rigaku Corporation, wavelength λ = 1.54 mm). It is known that the structure of polypropylene includes a mesostructure which is an intermediate structure between crystal and amorphous, in addition to α, β and γ crystals which are crystal structures and an amorphous structure. In the α crystal according to the present invention, four sharp peaks are observed at diffraction angles = 14.1, 16.9, 18.6, and 21.6, and the diffraction angle is broad at 16 degrees in the amorphous structure. In the mesostructure, slightly broad peaks are observed at diffraction angles = 15 degrees and 21 degrees (Non-patent Documents Macromolecules 2005, 38, 8749-8754), and the proportion of each structure is calculated by waveform separation. can do. Specifically, for wide-angle X-ray diffraction patterns of undrawn yarns, diffraction angles = 14.1 degrees, 16.9 degrees, 18.6 degrees, 21.6 degrees (crystalline component), 16 degrees (amorphous component) ), 15 degrees and 21 degrees (mesostructured component), respectively, by separating the waveforms and separating the waveforms, and dividing the sum of the peak integrated intensities of the crystalline components by all the peak integrated intensities, the ratio of the crystalline components Can be calculated.

未延伸糸の結晶構造の割合は延伸性の観点から、40質量%以下であることが好ましく、20質量%以下がさらに好ましい。一般的に結晶構造であるα晶は折り畳み構造を取る。後の延伸工程でこの折り畳み構造は伸び切り鎖へと変換されるが、メゾ構造や非晶構造に比べて、一度形成された折り畳み構造を伸び切り鎖へと変換するのはエネルギー的に不利である。結果として、メゾ構造や非晶構造に比べて、α晶の場合は延伸性が低下する。   The proportion of the crystal structure of the undrawn yarn is preferably 40% by mass or less, and more preferably 20% by mass or less from the viewpoint of drawability. In general, the α crystal, which is a crystal structure, has a folded structure. Although this folded structure is converted into an elongated chain in a later stretching step, it is energetically disadvantageous to convert the folded structure once formed into an elongated chain, compared to a mesostructure or an amorphous structure. is there. As a result, in the case of the α crystal, the stretchability is lowered as compared with the mesostructure and the amorphous structure.

本発明の未延伸糸の複屈折値は0.1×10-3以上2.5×10-3以下であることが好ましい。複屈折値はポリプロピレン分子の配向状態を定量化したものであり、複屈折値が小さいほど分子配向が低いことを示している。未延伸糸の分子配向が小さければ、後の延伸工程で高倍率に延伸することが可能であり、高強度なポリプロピレン繊維を得ることができる。複屈折値が2.5×10-3以下であれば、延伸工程で高倍率に延伸することができ、得られるポリプロピレン繊維の強度が向上し易い。また、複屈折値が0.1×10-3以上であれば、工業的に得ることが可能である。前記観点から、未延伸糸の複屈折値は0.3×10-3以上2.2×10-3以下であることがより好ましく、0.5×10-3以上2.0×10-3以下であることがさらに好ましい。 The birefringence value of the undrawn yarn of the present invention is preferably 0.1 × 10 −3 or more and 2.5 × 10 −3 or less. The birefringence value is a quantification of the orientation state of polypropylene molecules, and the smaller the birefringence value, the lower the molecular orientation. If the molecular orientation of the undrawn yarn is small, it can be drawn at a high magnification in a subsequent drawing step, and a high-strength polypropylene fiber can be obtained. If the birefringence value is 2.5 × 10 −3 or less, it can be stretched at a high magnification in the stretching step, and the strength of the resulting polypropylene fiber is likely to be improved. Further, if the birefringence value is 0.1 × 10 −3 or more, it can be obtained industrially. From the above viewpoint, the birefringence value of the undrawn yarn is more preferably 0.3 × 10 −3 or more and 2.2 × 10 −3 or less, and 0.5 × 10 −3 or more and 2.0 × 10 −3 or less. More preferably, it is as follows.

●原料について
本発明のポリプロピレン繊維の原料であるポリプロピレン樹脂のメルトフローレート(以下、MFRという。) 〔JIS K 7201に従って温度230℃、荷重2.16kg、時間10分間の条件で測定〕は、12g/分以上28g/分以下であることが好ましい。MFRが12g/分以上であれば、溶融粘度が上昇が少なく、紡糸線上での張力が高くならないため、配向結晶化が抑制される。そのため得られる未延伸糸は結晶構造の割合が高くならず、複屈折値は小さくできる。
● About raw material The melt flow rate (hereinafter referred to as MFR) of the polypropylene resin which is the raw material of the polypropylene fiber of the present invention (measured in accordance with JIS K 7201 at a temperature of 230 ° C., a load of 2.16 kg, and a time of 10 minutes) is 12 g. It is preferably at least 28 g / min. If the MFR is 12 g / min or more, the melt viscosity does not increase so much and the tension on the spinning line does not increase, and orientation crystallization is suppressed. Therefore, the undrawn yarn obtained does not have a high crystal structure ratio, and the birefringence value can be reduced.

一方、MFRが28g/分以下であれば、溶融粘度は低下せず、紡糸線張力が低下しない。しかし、一般的にMFRが高いポリプロピレン樹脂は分子量が低いため、ポリプロピレン樹脂の結晶化速度が速くなり、得られる未延伸糸は結晶構造の割合が高くなる。そのため、ポリプロピレン樹脂のMFRは14g/分以上25g/分以下であることが好ましく、16g/分以上22g/分以下がさらに好ましい。   On the other hand, if the MFR is 28 g / min or less, the melt viscosity does not decrease and the spinning line tension does not decrease. However, since a polypropylene resin having a high MFR generally has a low molecular weight, the crystallization speed of the polypropylene resin is increased, and the resulting undrawn yarn has a higher crystal structure ratio. Therefore, the MFR of the polypropylene resin is preferably 14 g / min or more and 25 g / min or less, and more preferably 16 g / min or more and 22 g / min or less.

本発明に用いるポリプロピレン樹脂のアイソタクチックペンタッド率は94%以上99%以下であることが好ましい。94%以上であればポリプロピレン繊維は均一な結晶構造を形成し易くなり、一方で99%以下であれば工業的にポリプロピレンを得ることができる。   The isotactic pentad ratio of the polypropylene resin used in the present invention is preferably 94% or more and 99% or less. If it is 94% or more, the polypropylene fiber can easily form a uniform crystal structure, while if it is 99% or less, polypropylene can be industrially obtained.

ポリプロピレン樹脂の分子量分布は5以下であることが好ましい。分子量分布が5以下であれば、ポリプロピレン繊維は均一な結晶構造を取り易くなり、繊維強度が向上する。前記観点から、分子量分布は4以下がさらに好ましい。   The molecular weight distribution of the polypropylene resin is preferably 5 or less. If the molecular weight distribution is 5 or less, the polypropylene fiber is likely to have a uniform crystal structure, and the fiber strength is improved. From the above viewpoint, the molecular weight distribution is more preferably 4 or less.

本発明に用いるポリプロピレン樹脂には、本発明の効果を妨げない範囲内で、更に酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、顔料、可塑剤などの添加剤を適宜必要に応じて添加してもよい。   In the polypropylene resin used in the present invention, an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizer, a nucleating agent, an epoxy stabilizer, a lubricant, an antibacterial agent, as long as the effects of the present invention are not hindered. Additives such as flame retardants, antistatic agents, pigments, plasticizers and the like may be added as necessary.

●紡糸
上述のようなポリプロピレン原料を押し出し機に投入して混練、融解した後、ギアポンプにて定量的に紡糸ノズルの吐出孔から吐出させる。紡糸温度はポリプロピレン原料の融点から60℃高い温度以上150℃高い温度以下で行うのが好ましい。前記紡糸温度は、ポリプロピレン原料の前記融点から60℃高い温度以上であれば、紡糸線上の溶融粘度が増加し難く、配向結晶化が抑制されるため、得られる未延伸糸の結晶構造の割合の増加と複屈折値の増加とが抑制できる。そのため延伸性が向上し、繊維強度が向上する。一方、前記紡糸温度は、ポリプロピレン原料の融点よりも150℃高い温度以下であれば、原料自体の分解が進行し難いため強度が低下し難い。前記紡糸温度は、融点から80℃高い温度以上120℃高い温度以下がより好ましい。
Spinning After the above polypropylene raw material is put into an extruder and kneaded and melted, it is quantitatively discharged from the discharge hole of the spinning nozzle by a gear pump. The spinning temperature is preferably 60 ° C. to 150 ° C. higher than the melting point of the polypropylene raw material. If the spinning temperature is 60 ° C. or higher from the melting point of the polypropylene raw material, the melt viscosity on the spinning line is difficult to increase, and orientation crystallization is suppressed. The increase and the increase of the birefringence value can be suppressed. Therefore, stretchability is improved and fiber strength is improved. On the other hand, if the spinning temperature is 150 ° C. or higher than the melting point of the polypropylene raw material, the raw material itself hardly decomposes and the strength is not easily lowered. The spinning temperature is more preferably from 80 ° C. to 120 ° C. higher than the melting point.

ノズルから吐出するポリマーの吐出量は1ホール当たり、0.3g/分以上3g/分以下が好ましい。吐出量が0.3g/分以上であれば、クエンチ筒での冷風により糸揺れが顕著にならないため、フィラメント間での融着やガイドへの接触が起こり難く、安定的に未延伸糸を得ることができる。一方、吐出量が3g/分以下であれば、クエンチ筒での冷風の影響を受けにくくなり、また、樹脂の冷却も可能となるため、引取りの際にフィラメント間での融着が起こり難く、所望の未延伸糸が安定して得ることができる。前記吐出量は0.5g/分以上2.5g/分以下が好ましく、1.0g/分以上2.0g/分以下がさらに好ましい。   The amount of polymer discharged from the nozzle is preferably 0.3 g / min or more and 3 g / min or less per hole. If the discharge amount is 0.3 g / min or more, the yarn sway does not become noticeable due to the cold air in the quench cylinder, so that fusion between filaments and contact with the guide hardly occur, and an undrawn yarn is stably obtained. be able to. On the other hand, if the discharge amount is 3 g / min or less, it becomes difficult to be affected by the cold air in the quench cylinder, and the resin can be cooled, so that fusion between filaments hardly occurs at the time of take-up. The desired undrawn yarn can be obtained stably. The discharge rate is preferably 0.5 g / min to 2.5 g / min, and more preferably 1.0 g / min to 2.0 g / min.

ノズルから押し出された繊維は、クエンチ筒で10℃以上40℃以下の冷風を当てて急冷される。冷風は繊維の冷却が進行して、糸揺れによる繊維の融着が起きないという観点から、クエンチ筒内への冷風の吹出し速度は0.5m/秒以上5m/秒以下の範囲が好ましい。その後、冷却固化した繊維に、適宜オイリング装置を使って油剤を付与する。   The fiber extruded from the nozzle is quenched by applying a cold air of 10 ° C. or more and 40 ° C. or less in a quench cylinder. From the viewpoint that the cooling of the fiber progresses and the fiber does not melt due to the yarn sway, the blowing speed of the cold air into the quench cylinder is preferably in the range of 0.5 m / second to 5 m / second. Thereafter, an oil agent is appropriately applied to the cooled and solidified fiber using an oiling device.

紡糸ドラフトは5倍以上150倍以下であることが好ましい。ここで紡糸ドラフトは、引取り速度(m/分)を吐出線速度(m/分)で除した値である。紡糸ドラフトが5倍以上であれば、紡糸線上の張力が付与されるため、安定的に未延伸糸を得ることができる。一方、紡糸ドラフトが150倍以下であれば、紡糸線上で張力が高くなり過ぎず、配向結晶化が抑制され、得られる未延伸糸は低結晶化度、低配向になるため、延伸性が向上する。   The spinning draft is preferably 5 to 150 times. Here, the spinning draft is a value obtained by dividing the take-up speed (m / min) by the discharge linear speed (m / min). If the spinning draft is 5 times or more, the tension on the spinning line is applied, so that an undrawn yarn can be stably obtained. On the other hand, if the spinning draft is 150 times or less, the tension on the spinning line will not be too high, orientation crystallization will be suppressed, and the resulting undrawn yarn will have low crystallinity and low orientation, improving drawability. To do.

引取り速度は200m/分以上500m/分以下が好ましい。200m/分以上であれば生産性が十分確保できる。一方、巻取速度が500m/分以下であれば、紡糸線上の張力が高くならず、目的の未延伸構造を得ることができる。引取り速度は250m/分以上450m/分以下であることがより好ましい。   The take-up speed is preferably 200 m / min or more and 500 m / min or less. If it is 200 m / min or more, sufficient productivity can be secured. On the other hand, if the winding speed is 500 m / min or less, the tension on the spinning line does not increase, and the desired unstretched structure can be obtained. The take-up speed is more preferably 250 m / min or more and 450 m / min or less.

●延伸
未延伸糸の延伸は、一度巻き取った未延伸糸をオフラインで行っても良いし、紡糸工程から一旦巻き取ることなしにそのまま引き続いて行っても良い。また延伸には熱板延伸、熱ロール延伸、熱風炉延伸など公知の方法で延伸することができる。変形速度を下げるという観点からは、熱板または熱風炉で延伸することが好ましい。ここで変形速度は巻取ロールの速度から供給ロールの速度を引いた値を、熱板または熱風炉の長さで除して算出することができる。熱ロールを用いた際の変形速度を実際に求めることは難しいが、熱ロールから離れた瞬間に延伸されるため、熱板や熱風炉延伸と比較して変形速度が速くなる。延伸は1段で、又は2段以上に分割して行うことができる。変形速度を下げるという観点から2段以上に分割して延伸することが好ましく、工程の簡略化の観点から延伸は2段で行うのがより好ましい。
● Drawing The undrawn yarn may be drawn off-line after the unwinded yarn is wound once, or may be continuously continued without being wound once from the spinning process. The stretching can be performed by a known method such as hot plate stretching, hot roll stretching, hot stove stretching, or the like. From the viewpoint of lowering the deformation rate, it is preferable to stretch with a hot plate or a hot air furnace. Here, the deformation speed can be calculated by dividing the value obtained by subtracting the speed of the supply roll from the speed of the winding roll by the length of the hot plate or the hot stove. Although it is difficult to actually determine the deformation speed when using a hot roll, since the film is stretched at the moment it is separated from the hot roll, the deformation speed is higher than that of hot plate or hot-blast furnace stretching. Stretching can be performed in one stage or divided into two or more stages. From the viewpoint of lowering the deformation rate, it is preferable to divide and stretch in two or more stages, and from the viewpoint of simplifying the process, it is more preferable to perform the stretching in two stages.

2段に分割して延伸する際の、1段目の延伸温度は110℃以上160℃以下であることが好ましい。延伸温度とは、延伸される繊維の温度である。1段目の延伸温度が110℃以上であれば、ポリプロピレンの結晶分散温度より高温であるため、延伸性が向上する。前記延伸温度が160℃以下であれば、ポリプロピレン未延伸糸の融点以下であるため溶融破断が起こり難く、延伸性が安定する。前記延伸温度は120℃以上155℃以下がより好ましく、130℃以上150℃以下がさらに好ましい。   When stretching in two stages, the first stage stretching temperature is preferably 110 ° C. or higher and 160 ° C. or lower. The drawing temperature is the temperature of the drawn fiber. If the first stage stretching temperature is 110 ° C. or higher, the stretchability is improved because the temperature is higher than the crystal dispersion temperature of polypropylene. When the drawing temperature is 160 ° C. or lower, the melting point of the polypropylene undrawn yarn is less than the melting point, so that melt fracture hardly occurs and the drawability is stabilized. The stretching temperature is more preferably 120 ° C. or higher and 155 ° C. or lower, and further preferably 130 ° C. or higher and 150 ° C. or lower.

延伸の前に繊維を予備加熱してもよい。延伸前の予備加熱には、加熱ロールや、熱板、熱風炉などを使用することができる。予備加熱する繊維の温度は50℃以上120℃以下が好ましく、60℃以上110℃以下がより好ましい。
1段目の延伸倍率は5倍以上15倍以下で行うのが好ましい。延伸倍率が5倍以上であれば、高配向したポリプロピレン繊維を得られ易くなり、高強度のポリプロピレン繊維が得られ易い。延伸倍率が15倍以下であれば、毛羽や束切れが少なくなり、安定的に高強度のポリプロピレン繊維を得ることができる。前記延伸倍率は、5.5倍以上12倍以下が好ましく、6倍以上10倍以下がさらに好ましい。
The fiber may be preheated before stretching. For preheating before stretching, a heating roll, a hot plate, a hot stove, or the like can be used. The temperature of the preheated fiber is preferably 50 ° C. or higher and 120 ° C. or lower, and more preferably 60 ° C. or higher and 110 ° C. or lower.
The first stage draw ratio is preferably 5 to 15 times. If the draw ratio is 5 times or more, highly oriented polypropylene fibers can be easily obtained, and high strength polypropylene fibers can be easily obtained. If the draw ratio is 15 times or less, fluff and bundle breakage are reduced, and high-strength polypropylene fibers can be stably obtained. The draw ratio is preferably 5.5 to 12 times, more preferably 6 to 10 times.

1段目と2段目の延伸は、1段目の延伸を終了して一度巻き取ってから、2段目の延伸を行ってもよいし、連続で行うこともできる。生産性の観点からは、1段目と2段目の延伸を連続して行うのが好ましい。
2段目の延伸倍率は1.01倍以上2.00倍以下で延伸するのが好ましい。延伸倍率が1.01倍以上であれば延伸の効果が発現し、2.00倍以下であれば、糸切れや束切れが起こり難く、安定した延伸ができる。最終段の延伸倍率は1.05倍以上1.6倍以下がより好ましく、1.1倍以上1.4倍以下がさらに好ましい。
The first stage and the second stage of stretching may be performed once after the first stage of stretching is completed and wound up once, or may be performed continuously. From the viewpoint of productivity, it is preferable to continuously perform the first and second stage stretching.
The second stage draw ratio is preferably 1.01 to 2.00 times. If the draw ratio is 1.01 times or more, the effect of drawing is expressed, and if it is 2.00 times or less, yarn breakage or bundle breakage hardly occurs and stable drawing can be performed. The draw ratio of the final stage is more preferably from 1.05 times to 1.6 times, and even more preferably from 1.1 times to 1.4 times.

2段目の延伸温度は140℃以上180℃以下が好ましい。延伸温度が140℃以上であれば、前段までに形成された結晶構造を、最終段の延伸でさらに変形させることが可能である。そのため高配向した結晶鎖、非晶鎖であるポリプロピレン繊維が得られる。前記延伸温度が180℃以下であれば、分子緩和が起こり難く、結晶鎖及び非晶鎖が十分に配向する。前記延伸温度は145℃以上175℃以下がより好ましく、150℃以上168℃以下がさらに好ましい。   The stretching temperature in the second stage is preferably 140 ° C. or higher and 180 ° C. or lower. If the stretching temperature is 140 ° C. or higher, the crystal structure formed up to the previous stage can be further deformed by the final stage stretching. Therefore, a polypropylene fiber having a highly oriented crystal chain and amorphous chain can be obtained. When the stretching temperature is 180 ° C. or lower, molecular relaxation is unlikely to occur, and crystal chains and amorphous chains are sufficiently oriented. The stretching temperature is more preferably 145 ° C. or higher and 175 ° C. or lower, and further preferably 150 ° C. or higher and 168 ° C. or lower.

2段目の延伸の前に繊維を予備加熱してもよい。延伸前の予備加熱は加熱ロールや、熱板、熱風炉などを使用することができる。予備加熱する繊維の温度は100℃以上140℃以下が好ましく、110℃以上130℃以下がさらに好ましい。   The fiber may be preheated before the second stage drawing. For the preheating before stretching, a heating roll, a hot plate, a hot stove, or the like can be used. The temperature of the preheated fiber is preferably 100 ° C. or higher and 140 ° C. or lower, and more preferably 110 ° C. or higher and 130 ° C. or lower.

2段目の変形速度は1(1/秒)以上10(1/秒)以下であることが好ましい。変形速度が1(1/秒)以上であれば、延伸中に分子緩和が起こり難く、高配向な結晶鎖及び非晶鎖を得ることができる。変形速度が10(1/秒)以下であれば、無理に分子鎖を引き延ばすことがなく、糸切れや束切れが起こり難い。前記変形速度は1.5(1/秒)以上8(1/秒)以下がより好ましく、2(1/秒)以上7(1/秒)以下がさらに好ましい。   The deformation speed of the second stage is preferably 1 (1 / second) or more and 10 (1 / second) or less. When the deformation rate is 1 (1 / second) or more, molecular relaxation hardly occurs during stretching, and highly oriented crystal chains and amorphous chains can be obtained. When the deformation speed is 10 (1 / second) or less, the molecular chain is not forcibly stretched, and breakage of the yarn and bundle breakage hardly occur. The deformation speed is more preferably 1.5 (1 / second) to 8 (1 / second), and further preferably 2 (1 / second) to 7 (1 / second).

2段目の延伸速度は100m/分以上1000m/分以下であることが好ましい。ここで延伸速度とは、延伸する際の引取りロール速度のことである。延伸速度が100m/分以上であれば生産性が十分確保できる。一方、延伸速度が1000m/分以下であれば、変形速度が速くなり過ぎないため、糸切れが少なくできる。2段目の延伸速度は、150m/分以上800m/分以下が好ましく、200m/分以上600m/分以下がさらに好ましい。   The stretching speed in the second stage is preferably 100 m / min or more and 1000 m / min or less. Here, the stretching speed is the take-up roll speed when stretching. If the stretching speed is 100 m / min or more, sufficient productivity can be secured. On the other hand, if the drawing speed is 1000 m / min or less, the deformation speed does not become too fast, and therefore yarn breakage can be reduced. The stretching speed of the second stage is preferably 150 m / min or more and 800 m / min or less, and more preferably 200 m / min or more and 600 m / min or less.

●最終糸の物性
本発明で得られるポリプロピレン繊維は毛羽が少なく、破断強度が6.5cN/dtex以上13cN/dtex以下と高強度のポリプロピレン繊維が得られる。破断強度が6.5cN/dtex以上であれば、ロープ、養生ネット、水平ネットなどに用いた場合、強度は十分あるため、ポリプロピレン繊維を多量に用いる必要がなく、軽量にすることができる。一方、13cN/dtex以下であれば、この強度のポリプロピレン繊維を工業的に得ることが可能である。前記観点から、ポリプロピレン繊維の強度は7cN/dtex以上13cN/dtex以下がより好ましく、8cN/dtex以上13cN/dtex以下がさらに好ましい。
-Physical property of final yarn The polypropylene fiber obtained by the present invention has few fluffs, and a high strength polypropylene fiber having a breaking strength of 6.5 cN / dtex to 13 cN / dtex can be obtained. If the breaking strength is 6.5 cN / dtex or more, the strength is sufficient when used for ropes, curing nets, horizontal nets, etc., so that it is not necessary to use a large amount of polypropylene fiber, and the weight can be reduced. On the other hand, if it is 13 cN / dtex or less, this strength polypropylene fiber can be industrially obtained. From the above viewpoint, the strength of the polypropylene fiber is more preferably 7 cN / dtex or more and 13 cN / dtex or less, and further preferably 8 cN / dtex or more and 13 cN / dtex or less.

本発明のポリプロピレン繊維の初期弾性率は85cN/dtex以上200cN/dtex以下と高弾性率である。初期弾性率が85cN/dtex以上であれば、ロープ、養生ネット、水平ネットなどに用いた場合、ポリプロピレン繊維を多量に用いる必要がなく、軽量にすることができる。一方、200cN/dtex以下であればこの初期弾性率のポリプロピレン繊維を工業的に得ることは可能である。前記初期弾性率は110cN/dtex以上200cN/dtex以下がより好ましく、120cN/dtex以上200cN/dtex以下がさらに好ましい。   The initial elastic modulus of the polypropylene fiber of the present invention is a high elastic modulus of 85 cN / dtex or more and 200 cN / dtex or less. If the initial elastic modulus is 85 cN / dtex or more, when used for a rope, a curing net, a horizontal net, etc., it is not necessary to use a large amount of polypropylene fiber, and the weight can be reduced. On the other hand, if it is 200 cN / dtex or less, it is possible to industrially obtain a polypropylene fiber having this initial elastic modulus. The initial elastic modulus is more preferably 110 cN / dtex or more and 200 cN / dtex or less, and further preferably 120 cN / dtex or more and 200 cN / dtex or less.

本発明のポリプロピレン繊維の破断伸度は10%以上30%以下が好ましい。前記破断伸度が10%以上であれば、ポリプロピレン繊維を加工処理する際に工程通過性が良好となる。一方破断伸度が30%以下であれば、得られる加工品の形態安定性が良好となる。本発明のポリプロピレン繊維の破断伸度は11%以上25%以下が好ましく、13%以上20%以下である。   The breaking elongation of the polypropylene fiber of the present invention is preferably 10% or more and 30% or less. When the breaking elongation is 10% or more, the process passability is good when the polypropylene fiber is processed. On the other hand, if the breaking elongation is 30% or less, the shape stability of the obtained processed product is good. The breaking elongation of the polypropylene fiber of the present invention is preferably 11% or more and 25% or less, and 13% or more and 20% or less.

本発明のポリプロピレン繊維の単繊維繊度は1dtex以上20dtex以下が好ましい。前記単繊維繊度が1dtex以上であれば、加工する際の工程通過性が良好となり、更に加工品の摩耗性も良好となる。単繊維繊度が20dtex以下であれば、繊維内の構造均質性が悪化し難く、高強度・高弾性率のポリプロピレン繊維が得られ易くなる。前記単繊維繊度は3dtex以上15dtex以下がより好ましく、3.5dtex以上10dtex以下がさらに好ましい。   The single fiber fineness of the polypropylene fiber of the present invention is preferably 1 dtex or more and 20 dtex or less. If the single fiber fineness is 1 dtex or more, the process passability during processing is good, and the workability of the processed product is also good. When the single fiber fineness is 20 dtex or less, the structural homogeneity within the fiber is hardly deteriorated, and a polypropylene fiber having high strength and high elastic modulus is easily obtained. The single fiber fineness is more preferably 3 dtex or more and 15 dtex or less, and further preferably 3.5 dtex or more and 10 dtex or less.

以下、実施例1〜7及び比較例1〜4を参照しながら本発明を具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。実施例においてポリプロピレン樹脂の融点、未延伸糸の広角X線回折、複屈折値、1段目終了時点での工程糸の小角X線散乱測定、DSC測定、最終繊維の繊維強度、単繊維繊度は、以下に述べる方法で測定した。   EXAMPLES Hereinafter, although this invention is demonstrated concretely, referring Examples 1-7 and Comparative Examples 1-4, this invention is not limited to a following example at all. In Examples, the melting point of polypropylene resin, wide-angle X-ray diffraction of undrawn yarn, birefringence value, small-angle X-ray scattering measurement of process yarn at the end of the first stage, DSC measurement, fiber strength of final fiber, single fiber fineness are Measured by the method described below.

(ポリプロピレンの融点)
ポリプロピレン樹脂の融点はDSC装置(エスアイアイ・ナノテクノロジー社製DSC220)を用いて算出した。ポリプロピレン樹脂ペレットを細かく切断してサンプルパンに10mg投入した。窒素雰囲気中で昇温速度10℃/分で室温から240℃で測定を行った。得られたDSCカーブのピークトップの温度を融点とした。
(Melting point of polypropylene)
The melting point of the polypropylene resin was calculated using a DSC apparatus (DSC220 manufactured by SII Nano Technology). The polypropylene resin pellet was finely cut and 10 mg was put into a sample pan. The measurement was performed from room temperature to 240 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere. The peak top temperature of the obtained DSC curve was taken as the melting point.

(未延伸糸の広角X線回折)
未延伸糸の構造解析は広角X線回折測定装置(リガク社製Ultrax18、波長λ=1.54Å)を用いて行った。未延伸糸を約5cmになるように切断して、30mgとなるように調製した。繊維を1軸方向に引き揃えて、サンプルホルダーに取り付けた。管電圧は40kV、管電流は200mA、照射時間は30分で測定した。
得られた2次元回折像を、全方位について1次元プロファイルを切り出した後、バックグランドを差し引いて、最終的な1次元プロファイルとした。結晶成分の割合については、上述した方法で実施した。なお、フィッティングしたピーク関数は、ガウス関数とローレンツ関数の重ね合わせである疑似フォークト関数を用い、ガウス関数とローレンツ関数の比を1:1に固定した。
(Wide-angle X-ray diffraction of undrawn yarn)
The structural analysis of the undrawn yarn was performed using a wide-angle X-ray diffractometer (Ultrag 18 manufactured by Rigaku Corporation, wavelength λ = 1.54 mm). The undrawn yarn was cut to about 5 cm to prepare 30 mg. The fibers were aligned in one axial direction and attached to the sample holder. The tube voltage was 40 kV, the tube current was 200 mA, and the irradiation time was 30 minutes.
From the obtained two-dimensional diffraction image, a one-dimensional profile was cut out in all directions, and then the background was subtracted to obtain a final one-dimensional profile. About the ratio of the crystal component, it implemented by the method mentioned above. The fitting peak function was a pseudo-Forked function, which is a superposition of a Gaussian function and a Lorentz function, and the ratio of the Gauss function to the Lorentz function was fixed at 1: 1.

(未延伸糸の複屈折値)
未延伸糸の複屈折値は偏光顕微鏡(ニコン社製ECLIPSE E600)を用いて算出した。波長が546nmになるように干渉フィルターを入れて、レタデーション測定を行った。得られたレタデーションを繊維直径で除することで、複屈折値を算出した。繊維直径は未延伸糸の繊度と密度(0.91g/cm3 )から算出した。5回測定を行い、平均値を使用した。
(Birefringence value of undrawn yarn)
The birefringence value of the undrawn yarn was calculated using a polarizing microscope (ECLIPSE E600 manufactured by Nikon Corporation). An interference filter was inserted so that the wavelength was 546 nm, and retardation measurement was performed. The birefringence value was calculated by dividing the obtained retardation by the fiber diameter. The fiber diameter was calculated from the fineness and density (0.91 g / cm 3 ) of the undrawn yarn. Five measurements were taken and the average value was used.

(小角X線散乱による強度比)
1段目終了時点での工程糸の構造解析は小角X線散乱測定装置(リガク社製Ultrax18、波長λ=1.54Å)と、DSC測定装置(エスアイアイ・ナノテクノロジー社製DSC220)を用いて行った。小角X線散乱測定では未延伸糸を約5cmになるように切断して、50mgになるように調製した。繊維を1軸方向に引き揃えて、サンプルホルダーに取り付けた。管電圧は40kV、管電流は200mA、照射時間は30分で測定した。得られた2次元回折像について、赤道方向ではβ=70度〜110度の範囲を2θ=0.2度〜2度の範囲について1次元プロファイルを得た。子午線方向ではβ=160度〜200度の範囲を、2θ=0.2度〜2度の範囲について1次元プロファイルを得た。それぞれの2θについて子午線方向の1次元プロファイルを、赤道方向の1次元プロファイルで除した最大値を、赤道方向の強度に対する子午線方向の強度比(小角X線散乱による強度比)とした。
(Intensity ratio by small angle X-ray scattering)
The structural analysis of the process yarn at the end of the first stage uses a small-angle X-ray scattering measurement device (Rigaku Ultra18, wavelength λ = 1.54 mm) and a DSC measurement device (SII Nanotechnology DSC220). went. In small-angle X-ray scattering measurement, the undrawn yarn was cut to about 5 cm and prepared to 50 mg. The fibers were aligned in one axial direction and attached to the sample holder. The tube voltage was 40 kV, the tube current was 200 mA, and the irradiation time was 30 minutes. For the obtained two-dimensional diffraction image, a one-dimensional profile was obtained in the range of β = 70 degrees to 110 degrees in the equator direction and in the range of 2θ = 0.2 degrees to 2 degrees. In the meridian direction, a one-dimensional profile was obtained for β = 160 ° to 200 ° and for 2θ = 0.2 ° to 2 °. For each 2θ, the maximum value obtained by dividing the one-dimensional profile in the meridian direction by the one-dimensional profile in the equator direction was used as the intensity ratio in the meridian direction to the intensity in the equator direction (intensity ratio by small-angle X-ray scattering).

(DSCピーク比)
1段目終了時点での工程糸のDSC測定は、ポリプロピレン工程糸を細かく切断してサンプルパンに10mg投入して行った。窒素雰囲気中で昇温速度10℃/分で室温から240℃で測定を行った。得られたDSCプロファイルについて、168℃〜174℃の間と、160℃〜166℃の間とにそれぞれピークを設置して波形分離を行い、面積比を算出した。なお、波形分離に用いた関数は、ガウス関数とローレンツ関数の重ね合わせである疑似フォークト関数を用い、ガウス関数とローレンツ関数の比を1:1に固定した。
DSCピーク比は、160℃〜166℃の融解ピークの面積を、168℃〜174℃の融解ピークの面積で除した値とした。
(DSC peak ratio)
The DSC measurement of the process yarn at the end of the first stage was performed by finely cutting the polypropylene process yarn and adding 10 mg to the sample pan. The measurement was performed from room temperature to 240 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere. The obtained DSC profile was subjected to waveform separation with peaks placed between 168 ° C. and 174 ° C. and between 160 ° C. and 166 ° C., and the area ratio was calculated. The function used for waveform separation was a pseudo-Forked function, which is a superposition of a Gaussian function and a Lorentz function, and the ratio of the Gaussian function to the Lorentz function was fixed at 1: 1.
The DSC peak ratio was a value obtained by dividing the area of the melting peak at 160 ° C. to 166 ° C. by the area of the melting peak at 168 ° C. to 174 ° C.

(単繊維繊度)
単繊維繊度は、ポリプロピレン繊維束の総繊度をフィラメント数で割ることで算出した。ポリプロピレン繊維束の総繊度は、100mをサンプリングしてその質量を100倍した値を用いた。
(Single fiber fineness)
The single fiber fineness was calculated by dividing the total fineness of the polypropylene fiber bundle by the number of filaments. As the total fineness of the polypropylene fiber bundle, a value obtained by sampling 100 m and multiplying its mass by 100 was used.

(繊維強度、初期弾性率、伸度)
繊維強度、初期弾性率、伸度はJIS L 1013に準じて行った。引張試験機(島津社製AG−IS)を用い、試料長200mm、引張速度100%/分の条件で歪−応力曲線を雰囲気温度20℃、相対湿度65%の条件下で測定し、破断点の値から伸度を、破断点での応力から強度を求めた。初期弾性率は歪―応力曲線の傾きから算出した。5回測定を行い、平均値を使用した。
(Fiber strength, initial elastic modulus, elongation)
Fiber strength, initial elastic modulus, and elongation were measured according to JIS L 1013. Using a tensile tester (Shimadzu AG-IS), the strain-stress curve was measured under the conditions of a sample length of 200 mm and a tensile speed of 100% / min under the conditions of an ambient temperature of 20 ° C. and a relative humidity of 65%. The elongation was determined from the value of, and the strength was determined from the stress at the breaking point. The initial elastic modulus was calculated from the slope of the strain-stress curve. Five measurements were taken and the average value was used.

各実施例1〜7及び比較例1〜4の測定データ及びそれらの評価は全て表1及び表2に示した。
(実施例1)
ポリプロピレン樹脂(プライムポリマー社製 Y2000GV、樹脂の融点=169.8℃、MFR=18g/分(230℃、荷重2.16kg、10分))を溶融紡糸装置の押し出し機に投入し、280℃で溶融混練し、280℃の樹脂を吐出孔径が0.5mmφ、吐出孔数が36ホールの紡糸ノズルから45.3g/分の吐出量(1ホール当たり1.26g/分)で吐出した。20℃の冷風を繊維に当てて冷却固化したのち、油剤を付着して、300m/分の引取り速度でボビンに巻き取って未延伸糸を得た。未延伸糸の結晶構造の割合は0%であり、メゾ構造の割合が53.0%、非晶構造の割合が47.0%であり、複屈折値は0.88×10-3と、低結晶性でかつ低配向であった。得られた未延伸糸を熱ロールで糸温度が85℃になるように予備加熱を行い、1段目の延伸を糸温度が145℃、延伸倍率が6.0倍で熱板延伸を行った。1段目の延伸終了時点での工程糸の構造解析を行ったところ、表1に示すように小角X散乱測定による赤道方向の強度に対する子午線方向の強度比は1.45であり、DSC測定による168℃〜174℃の融解ピークに対する、160℃〜166℃の融解ピークの面積比は54.6%と、不均質構造の割合が少なかった。連続して更に糸温度が120℃になるように熱ロールで予備加熱を行い、2段目の延伸を糸温度が165℃、延伸倍率が1.2倍、変形速度が2.78(1/秒)で熱板延伸を行った。延伸速度は300m/分で行いポリプロピレン繊維を得た。得られた繊維の強度は6.7cN/dtex、初期弾性率は86.1cN/dtexと強度、弾性率ともに高く、毛羽が少なかった。伸度は21.8%、単繊維繊度は5.8dtexだった。これらの結果を表1及び表2に示す。
Tables 1 and 2 show all the measurement data of Examples 1 to 7 and Comparative Examples 1 to 4 and their evaluations.
Example 1
A polypropylene resin (Y2000GV manufactured by Prime Polymer Co., Ltd., melting point of resin = 169.8 ° C., MFR = 18 g / min (230 ° C., load 2.16 kg, 10 min)) was charged into the extruder of the melt spinning apparatus at 280 ° C. After melt-kneading, a resin at 280 ° C. was discharged from a spinning nozzle having a discharge hole diameter of 0.5 mmφ and a discharge hole number of 36 holes at a discharge rate of 45.3 g / min (1.26 g / min per hole). After cooling and solidifying by applying cold air of 20 ° C. to the fiber, an oil agent was adhered and wound on a bobbin at a take-up speed of 300 m / min to obtain an undrawn yarn. The ratio of the crystal structure of the undrawn yarn is 0%, the ratio of the meso structure is 53.0%, the ratio of the amorphous structure is 47.0%, and the birefringence value is 0.88 × 10 −3 . Low crystallinity and low orientation. The obtained undrawn yarn was preheated with a hot roll so that the yarn temperature was 85 ° C., and the first stage of drawing was hot plate drawn at a yarn temperature of 145 ° C. and a draw ratio of 6.0 times. . When structural analysis of the process yarn at the end of the first stage of drawing was performed, as shown in Table 1, the intensity ratio in the meridian direction to the intensity in the equator direction by small angle X scattering measurement was 1.45, and by DSC measurement. The area ratio of the melting peak at 160 ° C. to 166 ° C. with respect to the melting peak at 168 ° C. to 174 ° C. was 54.6%, and the ratio of the heterogeneous structure was small. Continuously, preheating is performed with a hot roll so that the yarn temperature becomes 120 ° C., and the second stage of drawing is performed at a yarn temperature of 165 ° C., a draw ratio of 1.2 times, and a deformation rate of 2.78 (1 / Second). The drawing speed was 300 m / min to obtain polypropylene fibers. The strength of the obtained fiber was 6.7 cN / dtex, the initial elastic modulus was 86.1 cN / dtex, both strength and elastic modulus were high, and there were few fluffs. The elongation was 21.8% and the single fiber fineness was 5.8 dtex. These results are shown in Tables 1 and 2.

(実施例2)
2段目の延伸を糸温度が165℃、延伸倍率が1.66倍、変形速度が6.63(1/秒)とした以外は実施例1と同様にして単繊維繊度が4.2dtexのポリプロピレン繊維を得た。その結果を表1及び表2に示す。得られたポリプロピレン繊維は毛羽が少なかった。
(Example 2)
The single fiber fineness is 4.2 dtex in the same manner as in Example 1 except that the second stage drawing is performed at a yarn temperature of 165 ° C., a draw ratio of 1.66 times, and a deformation rate of 6.63 (1 / second). Polypropylene fibers were obtained. The results are shown in Tables 1 and 2. The obtained polypropylene fiber had few fuzz.

(実施例3)
1段目の延伸を糸温度が145℃、延伸倍率が8.0倍とした以外は実施例1と同様にして単繊維繊度は4.4dtexのポリプロピレン繊維を得た。その結果を表1及び表2に示す。得られたポリプロピレン繊維は毛羽が少なかった。
(Example 3)
A polypropylene fiber having a single fiber fineness of 4.4 dtex was obtained in the same manner as in Example 1 except that the first stage drawing was performed at a yarn temperature of 145 ° C. and a draw ratio of 8.0 times. The results are shown in Tables 1 and 2. The obtained polypropylene fiber had few fuzz.

(実施例4)
2段目の延伸を糸温度が165℃、延伸倍率が1.5倍、変形速度が5.56(1/秒)とした以外は実施例1と同様にして単繊維繊度が4.7dtexのポリプロピレン繊維を得た。その結果を表1及び表2に示す。得られたポリプロピレン繊維の毛羽は少なかった。
Example 4
The single fiber fineness is 4.7 dtex in the same manner as in Example 1 except that the second stage of drawing was performed at a yarn temperature of 165 ° C., a draw ratio of 1.5 times, and a deformation rate of 5.56 (1 / second). Polypropylene fibers were obtained. The results are shown in Tables 1 and 2. The resulting polypropylene fibers had few fuzz.

(実施例5)
1段目の延伸の糸温度を135℃、2段目の延伸の延伸倍率を1.5倍、変形速度が5.56(1/秒)とした以外は実施例1と同様にして単繊維繊度は4.6dtexのポリプロピレン繊維を得た。その結果を表1及び表2に示す。得られたポリプロピレン繊維は毛羽が少なかった。
(Example 5)
Single fiber as in Example 1 except that the yarn temperature for the first stage drawing was 135 ° C., the draw ratio for the second stage drawing was 1.5 times, and the deformation rate was 5.56 (1 / second). A polypropylene fiber having a fineness of 4.6 dtex was obtained. The results are shown in Tables 1 and 2. The obtained polypropylene fiber had few fuzz.

(実施例6)
1段目の延伸の延伸倍率を8.0倍熱板延伸を行い、2段目の延伸の糸温度が165℃、延伸倍率が1.35倍、変形速度が4.32(1/秒)で熱板延伸を行った以外は実施例1と同様にして単繊維繊度は3.9dtexのポリプロピレン繊維を得た。その結果を表1及び表2に示す。得られたポリプロピレン繊維は毛羽が少なかった。
(Example 6)
The first stage of draw ratio is 8.0 times hot plate, and the second stage of draw temperature is 165 ° C, draw ratio is 1.35 times, deformation rate is 4.32 (1 / second) A polypropylene fiber having a single fiber fineness of 3.9 dtex was obtained in the same manner as in Example 1 except that hot plate stretching was performed. The results are shown in Tables 1 and 2. The obtained polypropylene fiber had few fuzz.

(実施例7)
1段目の延伸の糸温度が155℃、延伸倍率が8.0倍とした以外は実施例1と同様にして単繊維繊度は4.4dtexのポリプロピレン繊維を得た。その結果を表1及び表2に示す。得られたポリプロピレン繊維は毛羽が少なかった。
(Example 7)
A polypropylene fiber having a single fiber fineness of 4.4 dtex was obtained in the same manner as in Example 1 except that the yarn temperature of the first stage drawing was 155 ° C. and the draw ratio was 8.0 times. The results are shown in Tables 1 and 2. The obtained polypropylene fiber had few fuzz.

(比較例1)
1段目の延伸の延伸倍率を4.0倍とし、2段目の延伸の延伸倍率が1.8倍、変形速度が7.41(1/秒)とした以外は実施例1と同様にして単繊維繊度は5.8dtexのポリプロピレン繊維を得た。その結果を表1及び表2に示す。得られたポリプロピレン繊維の強度は4.5cN/dtex、初期弾性率は65.4cN/dtexと、強度、弾性率ともに低く、毛羽が多かった。
(Comparative Example 1)
The same as in Example 1 except that the draw ratio of the first-stage drawing was 4.0 times, the draw ratio of the second-stage drawing was 1.8 times, and the deformation rate was 7.41 (1 / second). Thus, a polypropylene fiber having a single fiber fineness of 5.8 dtex was obtained. The results are shown in Tables 1 and 2. The obtained polypropylene fiber had a strength of 4.5 cN / dtex and an initial elastic modulus of 65.4 cN / dtex, both strength and elastic modulus being low, and having a lot of fluff.

(比較例2)
1段目の延伸の延伸倍率を4.0倍とし、2段目の延伸の延伸倍率を2.0倍、変形速度が8.33(1/秒)とした以外は実施例1と同様にして単繊維繊度は5.1dtexのポリプロピレン繊維を得た。その結果を表1及び表2に示す。得られたポリプロピレン繊維の強度は5.8cN/dtex、初期弾性率は81.6cN/dtexと強度、弾性率が低く、毛羽が多かった。
(Comparative Example 2)
The same as Example 1 except that the draw ratio of the first-stage drawing was 4.0 times, the draw ratio of the second-stage drawing was 2.0 times, and the deformation rate was 8.33 (1 / second). Thus, a polypropylene fiber having a single fiber fineness of 5.1 dtex was obtained. The results are shown in Tables 1 and 2. The resulting polypropylene fiber had a strength of 5.8 cN / dtex, an initial elastic modulus of 81.6 cN / dtex, low strength and elastic modulus, and a lot of fluff.

(比較例3)
1段目の延伸の延伸倍率を4.0倍とし、2段目の延伸の延伸倍率を2.5倍、変形速度が10(1/秒)とした以外は実施例1と同様にしてポリプロピレン繊維を製造しようとしたが、糸切れが発生し最終繊維を得ることができなかった。
(Comparative Example 3)
Polypropylene in the same manner as in Example 1 except that the draw ratio of the first-stage drawing was 4.0 times, the draw ratio of the second-stage drawing was 2.5 times, and the deformation rate was 10 (1 / second). An attempt was made to produce a fiber, but yarn breakage occurred and the final fiber could not be obtained.

(比較例4)
1段目の延伸の糸温度を155℃とし、2段目の延伸の延伸倍率を1.5倍、変形速度が5.56(1/秒)とした以外は実施例1と同様にしてポリプロピレン維繊を製造しようとしたが、糸切れが発生し最終繊維を得ることができなかった。
(Comparative Example 4)
Polypropylene in the same manner as in Example 1 except that the yarn temperature for the first drawing was 155 ° C., the draw ratio for the second drawing was 1.5 times, and the deformation rate was 5.56 (1 / second). An attempt was made to produce a fiber, but yarn breakage occurred and the final fiber could not be obtained.

Figure 0006597020
Figure 0006597020

Figure 0006597020
Figure 0006597020

Claims (7)

ポリプロピレン未延伸糸を2段以上で延伸する延伸工程を含むポリプロピレン繊維の製造方法であって、1段目の延伸終了時点の工程糸を、小角X散乱測定による赤道方向の強度に対する子午線方向の強度比が1.01以上1.60以下の範囲とし、続いて2段目以降の延伸を行うポリプロピレン繊維の製造方法。   A method for producing a polypropylene fiber comprising a drawing step in which a polypropylene undrawn yarn is drawn in two or more stages, wherein the process yarn at the end of the first stage drawing has a strength in the meridian direction relative to the strength in the equator direction by small angle X scattering measurement. A method for producing a polypropylene fiber, wherein the ratio is in the range of 1.01 or more and 1.60 or less, and then the second and subsequent steps are drawn. 1段目の延伸終了時の前記工程糸を、DSC測定による168℃以上174℃以下の融解ピークに対する、160℃以上166℃以下の融解ピークの面積比が50%以上57.5%以下の範囲とする、請求項1に記載のポリプロピレン繊維の製造方法。   The process yarn at the end of the first stage of stretching is in a range where the area ratio of the melting peak at 160 ° C. or higher and 166 ° C. or lower with respect to the melting peak at 168 ° C. or higher and 174 ° C. or lower is 50% or higher and 57.5% or lower. The method for producing a polypropylene fiber according to claim 1. 1段目の延伸倍率を5倍以上15倍以下とする、請求項1又は2に記載のポリプロピレン繊維の製造方法。   The manufacturing method of the polypropylene fiber of Claim 1 or 2 which makes the draw ratio of the 1st step 5 times or more and 15 times or less. 1段目に延伸する糸温度を110℃以上160℃以下として延伸する、請求項1〜3のいずれか一項に記載のポリプロピレン繊維の製造方法。   The method for producing a polypropylene fiber according to any one of claims 1 to 3, wherein the yarn temperature of the first stage is set to 110 ° C or higher and 160 ° C or lower. 前記未延伸糸は、結晶構造の割合が40質量%以下であり、複屈折値が0.1×10−3以上2.5×10−3以下である請求項1〜4のいずれか一項に記載のポリプロピレン繊維の製造方法。 5. The undrawn yarn has a crystal structure ratio of 40% by mass or less and a birefringence value of 0.1 × 10 −3 or more and 2.5 × 10 −3 or less. The manufacturing method of the polypropylene fiber as described in any one of. 前記ポリプロピレン未延伸糸は、メルトフローレートが12g/分以上28g/分以下のポリプロピレン樹脂を融解し、ポリプロピレン樹脂の融点の80℃以上150℃以下の温度で紡糸ノズルの吐出孔から吐出し、次いで冷却固化して、200m/分以上500m/分以下で引取る未延伸糸である、請求項1〜5のいずれか一項に記載のポリプロピレン繊維の製造方法。 The polypropylene undrawn yarn melts a polypropylene resin having a melt flow rate of 12 g / min or more and 28 g / min or less and discharges it from a discharge hole of a spinning nozzle at a temperature of 80 ° C. or more and 150 ° C. or less of the melting point of the polypropylene resin. The manufacturing method of the polypropylene fiber as described in any one of Claims 1-5 which is an undrawn thread | yarn which is solidified by cooling and taken up at 200 m / min or more and 500 m / min or less. 引張強度が6.5cN/dtex以上10cN/dtex以下、引張弾性率が85cN/dtex以上170cN/dtex以下であり、単繊維繊度が3.5dtex以上20dtex以下であるポリプロピレン繊維。 A polypropylene fiber having a tensile strength of 6.5 cN / dtex or more and 10 cN / dtex or less, a tensile modulus of 85 cN / dtex or more and 170 cN / dtex or less , and a single fiber fineness of 3.5 dtex or more and 20 dtex or less.
JP2015146868A 2015-07-24 2015-07-24 Polypropylene fiber manufacturing method and high-strength polypropylene fiber Expired - Fee Related JP6597020B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015146868A JP6597020B2 (en) 2015-07-24 2015-07-24 Polypropylene fiber manufacturing method and high-strength polypropylene fiber
EP16830300.6A EP3327189A4 (en) 2015-07-24 2016-07-12 Polypropylene fiber and method for manufacturing polypropylene fiber
PCT/JP2016/070497 WO2017018195A1 (en) 2015-07-24 2016-07-12 Polypropylene fiber and method for manufacturing polypropylene fiber
CN201680038234.2A CN107709640B (en) 2015-07-24 2016-07-12 Polypropylene fiber and method for producing the same
US15/743,565 US10870929B2 (en) 2015-07-24 2016-07-12 Polypropylene fiber and method for manufacturing polypropylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015146868A JP6597020B2 (en) 2015-07-24 2015-07-24 Polypropylene fiber manufacturing method and high-strength polypropylene fiber

Publications (2)

Publication Number Publication Date
JP2017025446A JP2017025446A (en) 2017-02-02
JP6597020B2 true JP6597020B2 (en) 2019-10-30

Family

ID=57949217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015146868A Expired - Fee Related JP6597020B2 (en) 2015-07-24 2015-07-24 Polypropylene fiber manufacturing method and high-strength polypropylene fiber

Country Status (1)

Country Link
JP (1) JP6597020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952690B2 (en) 2017-05-18 2021-03-23 Samsung Electronics Co., Ltd. X-ray input apparatus, X-ray imaging apparatus having the same, and method of controlling the X-ray input apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183421A (en) * 1996-12-24 1998-07-14 Tokuyama Corp Production of polypropylene fiber
JP2002020926A (en) * 2000-07-04 2002-01-23 Mitsubishi Rayon Co Ltd Method for producing polypropylene multifilament yarn
UA97393C2 (en) * 2007-03-26 2012-02-10 Курарэй Ко., Лтд. Polypropylene fiber, method of producing the same, hydraulic composition, rope, sheet-shaped fiber structure, composite material and molded product
JP5096203B2 (en) * 2007-05-25 2012-12-12 株式会社クラレ Method for producing polypropylene fiber having excellent heat resistance and strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952690B2 (en) 2017-05-18 2021-03-23 Samsung Electronics Co., Ltd. X-ray input apparatus, X-ray imaging apparatus having the same, and method of controlling the X-ray input apparatus

Also Published As

Publication number Publication date
JP2017025446A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
KR102054035B1 (en) Braid
WO2012002749A2 (en) Polyester fiber and method for preparing same
JP6838282B2 (en) Polypropylene fiber and manufacturing method of polypropylene fiber
US10870929B2 (en) Polypropylene fiber and method for manufacturing polypropylene fiber
JP6676895B2 (en) Method for producing polypropylene fiber and polypropylene fiber obtained by the same method
KR102127495B1 (en) Poly(ethyleneterephthalate) Yarn, Method for Manufacturing The Same, and Tire Cord Manufactured Using The Same
JP6597020B2 (en) Polypropylene fiber manufacturing method and high-strength polypropylene fiber
KR101235255B1 (en) Manufacturing method of high strength polyethylene multifilament drawn fibers containing nano silica particles
JP6676896B2 (en) Method for producing undrawn polypropylene yarn and method for producing polypropylene fiber
JP6458873B2 (en) Polyolefin fiber and method for producing the same
JP2018127739A (en) Polyphenylene sulfide fiber for food filter and method for producing the same
JP5758847B2 (en) High strength and high modulus polypropylene fiber and method for producing the same
KR101143721B1 (en) High Gravity Polyester Multi-filament and Its manufacturing Method
JP5661027B2 (en) Manufacturing method of core-sheath fiber
JP2017193806A (en) Polypropylene fiber and manufacturing method of the polypropylene fiber
KR101772586B1 (en) A polypropylene fiber with high tenacity and low shrinkage and its manufacturing process
JP2017172084A (en) Highly functional braid comprising polyethylene multifilament
JP6142265B2 (en) Polymethylpentene monofilament and method for producing the same
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JP2023111771A (en) Biodegradable polyester fiber and manufacturing method thereof
TW202229672A (en) High strength polyethylene yarn having improved shrinkage and method for manufacturing the same
JPH0321647B2 (en)
JPH0327118A (en) Polyamide monofilament and production thereof
KR20150055119A (en) Poly(ethyleneterephthalate) drawn fiber and poly(ethyleneterephthalate) drawn fiber and tire-cord
JP2002194616A (en) High strength polyethylene fiber

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R151 Written notification of patent or utility model registration

Ref document number: 6597020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

LAPS Cancellation because of no payment of annual fees