JP6595774B2 - Composite material and method for producing the same - Google Patents

Composite material and method for producing the same Download PDF

Info

Publication number
JP6595774B2
JP6595774B2 JP2015036079A JP2015036079A JP6595774B2 JP 6595774 B2 JP6595774 B2 JP 6595774B2 JP 2015036079 A JP2015036079 A JP 2015036079A JP 2015036079 A JP2015036079 A JP 2015036079A JP 6595774 B2 JP6595774 B2 JP 6595774B2
Authority
JP
Japan
Prior art keywords
composite material
concentration
excimer
organic polymer
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015036079A
Other languages
Japanese (ja)
Other versions
JP2016155964A (en
Inventor
政樹 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEIJIN MEDICAL TECHNOLOGIES CO., LTD.
Original Assignee
TEIJIN MEDICAL TECHNOLOGIES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEIJIN MEDICAL TECHNOLOGIES CO., LTD. filed Critical TEIJIN MEDICAL TECHNOLOGIES CO., LTD.
Priority to JP2015036079A priority Critical patent/JP6595774B2/en
Publication of JP2016155964A publication Critical patent/JP2016155964A/en
Application granted granted Critical
Publication of JP6595774B2 publication Critical patent/JP6595774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は複合材料とその製造方法に関し、更に詳しくは、有機ポリマーと無機粒子の複合材料であって、その表層部における無機粒子の濃度が高濃度化されている複合材料と、その製造方法に関する。   The present invention relates to a composite material and a method for producing the same, and more particularly to a composite material of an organic polymer and inorganic particles in which the concentration of inorganic particles in the surface layer is increased, and a method for producing the same. .

有機ポリマー材料に接着性、耐摩耗性、帯電性、撥水性、耐候性、生体適合性などの付加価値を向上させるための手段として、本来のポリマーの特性を保持しつつ異種材料、特に無機材料との複合化や材料表面改質、または両者の組合せ技術が盛んに行われている。無機材料の複合化においてその改質効果を上げるためには、無機材料をできるだけ均一に、多くすることが重要である。
一方、有機ポリマー材料の表面改質方法として、紫外線処理、プラズマ処理、コロナ放電処理、過酸化水素処理、表面への官能基の付与などがある。特許文献1には、フッ素系ポリマーの表面接着性能を改善するために、プラズマエッチング、イオンビームエッチング、コロナ放電処理方法を用いて材料表面粗さを増大させた後に、シリコン性親水性塗膜を形成したことによって表面の親水性を改善することが開示されている。また、非特許文献1には、水又はパーフルオロポリエーテルの存在下でポリプロピレン材料の表面にエキシマ光を照射することにより、ポリプロピレン材料の表面にOH基又はCF基を置換させてポリプロピレン材料の表面を親水性又は疎水性に改質し、このように親水性に改質することで蛋白質の吸着を促進する一方、疎水性に改質することで蛋白質の吸着を抑制する、という内容の研究論文が掲載されている。
さらに、無機材料との複合化と表面処理を組み合わせた技術例として、特許文献2には、疎水性のポリオレフィン系ポリマーでプラズマ処理された基材上に親水性モノマーによるグラフト重合して形成した親水性ポリマーの層により被覆後、ヒドロキシアパタイト(HA)層を安定した状態で積層する方法が開示されている。
As a means to improve the added value of organic polymer materials such as adhesion, wear resistance, chargeability, water repellency, weather resistance and biocompatibility, different materials, especially inorganic materials, while maintaining the original polymer characteristics And the combination of the two, the surface modification of the material, or a combination of the two has been actively conducted. In order to increase the reforming effect in the composite of inorganic materials, it is important to increase the amount of inorganic materials as uniformly as possible.
On the other hand, surface modification methods for organic polymer materials include ultraviolet treatment, plasma treatment, corona discharge treatment, hydrogen peroxide treatment, and functional group imparting to the surface. In Patent Document 1, in order to improve the surface adhesion performance of the fluorine-based polymer, the surface roughness of the material is increased by using plasma etching, ion beam etching, or corona discharge treatment method, and then a silicon hydrophilic coating film is applied. It is disclosed to improve the hydrophilicity of the surface by forming. Non-Patent Document 1 discloses that a polypropylene material surface is irradiated with excimer light in the presence of water or perfluoropolyether to replace the OH group or CF 3 group on the surface of the polypropylene material. Research that the surface is modified to be hydrophilic or hydrophobic, and thus the hydrophilic modification promotes protein adsorption, while the hydrophobic modification modifies protein adsorption. A paper is published.
Furthermore, as an example of technology combining the compounding with an inorganic material and the surface treatment, Patent Document 2 discloses hydrophilicity formed by graft polymerization with a hydrophilic monomer on a substrate plasma-treated with a hydrophobic polyolefin-based polymer. A method of laminating a hydroxyapatite (HA) layer in a stable state after coating with a layer of a conductive polymer is disclosed.

特許第3274669号公報Japanese Patent No. 3274669 特開2000−319010号公報JP 2000-319010 A

佐藤雄二、穴井洋行、村原正隆、論文「エキシマランプを用いたポリプロピレンの光化学的表面改質と蛋白質付着性」、東海大学紀要電子情報学部、vol.3、No.2、2003、pp.41−44.Yuji Sato, Hiroyuki Anai, Masataka Murahara, the paper “Photochemical surface modification and protein adhesion of polypropylene using excimer lamp”, Tokai University Bulletin of Electronic Information Science, vol. 3, no. 2, 2003, pp. 41-44.

有機ポリマーに無機材料をできるだけ多く均一に分散させて材料表面の無機材料の表面積を多くする手段として無機材料をできるだけ微粒子化することが考えられるが、無機微粒子は凝集しやすく均一分散が困難である。更に、無機材料の配合量が増加するにつれて、有機ポリマーの靱性を損なって脆くなったりするなど、本来のポリマーの特性を保持できなくなる。
一方、有機ポリマー材料それ自体の表面を改質する目的で紫外線処理やプラズマ処理する場合は、一時的に表面を親水性に改質できるというものの、表面の親水層は継時的に減少し、親水性を持続することが困難で有用性に乏しいという問題がある。また、過酸化水素処理する場合は、改質効果が殆ど見られないという問題がある。従って、上記特許文献1および2、非特許文献1のようにプラズマ処理やエキシマ光の利用は、有機ポリマー材料の表面に化学的修飾を施したりする前処理の利用に留まっている。
更に、たとえ紫外線処理やプラズマ処理を介しての有機ポリマー表面の化学的修飾による表面改質が可能でも、これらの方法はそれを実現するための複雑な工程を必要とすること、未反応物質の水洗、洗浄に伴う廃液処理などで発生する環境や作業上の問題点、高価な設備が必要であるといった経済上の問題がある。特に、医療器具の用途、特に体内に埋設する有機ポリマー材料の場合は、生体に対する安全性が重視されるため、上記のように有機ポリマー材料の表面を改質するには利用できる物質が極めて制限される。
As a means of increasing the surface area of the inorganic material on the material surface by dispersing the inorganic material as uniformly as possible in the organic polymer, it is possible to make the inorganic material as fine as possible. However, the inorganic fine particles are likely to aggregate and difficult to uniformly disperse. . Furthermore, as the blending amount of the inorganic material increases, the original polymer characteristics cannot be maintained, such as the toughness of the organic polymer being impaired and becoming brittle.
On the other hand, in the case of ultraviolet treatment or plasma treatment for the purpose of modifying the surface of the organic polymer material itself, although the surface can be temporarily modified to hydrophilic, the hydrophilic layer on the surface decreases over time, There is a problem that it is difficult to maintain hydrophilicity and is not useful. Further, when hydrogen peroxide treatment is performed, there is a problem that almost no modification effect is observed. Therefore, the use of plasma treatment and excimer light as in Patent Documents 1 and 2 and Non-Patent Document 1 is limited to the use of pretreatment in which the surface of the organic polymer material is chemically modified.
Furthermore, even if surface modification by chemical modification of the organic polymer surface is possible via ultraviolet treatment or plasma treatment, these methods require complicated steps to achieve this, There are economic problems such as water washing, waste liquid treatment associated with washing, environmental problems and work problems, and the need for expensive equipment. In particular, in the case of organic polymer materials that are embedded in the body, especially in the case of medical device applications, the safety to the living body is important, so the substances that can be used to modify the surface of organic polymer materials as described above are extremely limited Is done.

以上のように、特に有機ポリマーと無機粒子の複合材料において、無機粒子の効能が顕著に発揮されるように複合材料の表面を改質しようとする場合には、無機粒子の添加量の限界があり、また、上述した紫外線処理やプラズマ処理を介した化学的修飾による表面改質には様々な制約があるうえ、修飾によって本来の無機粒子の性能が発揮できない可能性の問題がある。   As described above, especially in the composite material of organic polymer and inorganic particles, when the surface of the composite material is to be modified so that the effectiveness of the inorganic particles is remarkably exhibited, there is a limit to the amount of inorganic particles added. In addition, there are various limitations on the surface modification by chemical modification through the above-described ultraviolet treatment or plasma treatment, and there is a problem that the performance of the original inorganic particles may not be exhibited by the modification.

本発明は上記事情の下になされたもので、その解決しようとする課題は、有機ポリマーと無機粒子との複合材料の表面(表層部)において有機ポリマーの本来の特性を維持しつつ、簡易に、クリーンな状態で無機粒子の効能が顕著に発揮されるように表面(表層部)を改質した複合材料を提供すること、及び、その製造方法を提供することにある。   The present invention has been made under the circumstances described above, and the problem to be solved is easily maintained while maintaining the original characteristics of the organic polymer on the surface (surface layer portion) of the composite material of the organic polymer and the inorganic particles. An object of the present invention is to provide a composite material whose surface (surface layer portion) is modified so that the effect of inorganic particles is remarkably exhibited in a clean state, and to provide a manufacturing method thereof.

上記課題を解決するため、本発明に係る複合材料は、成分Aと成分Bを有する複合材料であって、成分Aがベース材料で有機ポリマー、成分Bが複合成分で無機粒子であり、ある特定の波長領域の紫外線の作用を利用した複合材料の表面への紫外線照射により、複合材料の表層部における成分Bの濃度が、複合材料の表層部の直下部分における成分Bの濃度よりも高濃度化されていることを特徴とするものである。
ここに、「粒子」とは、微細な粒状物に限定されるものではなく、微細な粉状物、鱗片状物、破砕物なども包含する概念の用語である。
また、「成分Bの濃度」とは、一定体積当たりの、
成分Bの質量/(成分Bの質量+成分Aの質量)×100(%)
のことである。
In order to solve the above problems, a composite material according to the present invention is a composite material having component A and component B, wherein component A is a base material and an organic polymer, and component B is a composite component and inorganic particles. The concentration of component B in the surface portion of the composite material is higher than the concentration of component B in the portion immediately below the surface layer portion of the composite material by irradiating the surface of the composite material using the action of ultraviolet light in the wavelength region of It is characterized by being.
Here, the term “particle” is not limited to a fine granular material, but is a conceptual term including a fine powdery material, a scale-like material, a crushed material, and the like.
In addition, “the concentration of component B” means that per certain volume,
Mass of component B / (mass of component B + mass of component A) × 100 (%)
That is.

本発明の複合材料の代表的なものは、有機ポリマーが生体内分解吸収性の有機ポリマーであり、無機粒子がバイオセラミックス粒子である複合材料である。   A typical composite material of the present invention is a composite material in which the organic polymer is a biodegradable and absorbable organic polymer, and the inorganic particles are bioceramic particles.

また、本発明に係る複合材料の製造方法は、成分Aと成分Bを有する複合材料であって、成分Aがベース材料で有機ポリマー、成分Bが複合成分で無機粒子である複合材料の表面に特定の波長領域の紫外線を照射し、複合材料の表層部における成分Bの濃度を、複合材料の表層部の直下部分における成分Bの濃度よりも高濃度化することを特徴とするものである。   The composite material manufacturing method according to the present invention is a composite material having a component A and a component B, wherein the component A is a base material and an organic polymer, and the component B is a composite component and inorganic particles. By irradiating ultraviolet rays in a specific wavelength region, the concentration of component B in the surface layer portion of the composite material is made higher than the concentration of component B in the portion immediately below the surface layer portion of the composite material.

本発明の製造方法においては、照射する紫外線が250nm以下の短波長紫外線であることが好ましい。   In the manufacturing method of this invention, it is preferable that the ultraviolet rays to irradiate are short wavelength ultraviolet rays of 250 nm or less.

本発明の複合材料のように、表面への紫外線照射により、複合材料の表層部における成分Bの濃度が、複合材料の表層部の直下部分における成分Bの濃度よりも高濃度化されたものは、例えば、図4のSEM(走査型電子顕微鏡)画像のように、表層部の成分A(有機ポリマー)の大部分が分解、揮発して凹空部が形成される一方、表層部の成分B(無機粒子)がそのまま残存して、成分B(無機粒子)が露出ないし突出した凹凸表面となり,成分A(有機ポリマー)が分解、揮発して減少した分だけ、表層部における成分B(無機粒子)の濃度が高くなっている。そのため、高濃度化されて表層部に露出ないし突出する成分B(無機粒子)の表面活性や反応性が増し、成分B(無機粒子)の効能が顕著に発揮される。   Like the composite material of the present invention, the concentration of the component B in the surface layer portion of the composite material is made higher than the concentration of the component B in the portion immediately below the surface layer portion of the composite material by ultraviolet irradiation to the surface. For example, as in the SEM (scanning electron microscope) image of FIG. 4, most of the component A (organic polymer) in the surface layer is decomposed and volatilized to form a concave portion, while the component B in the surface layer is formed. Component (B) (inorganic particles) remains as it is, and component B (inorganic particles) becomes an exposed or protruding irregular surface, and component A (organic polymer) decomposes and volatilizes and decreases by component B (inorganic particles). ) Concentration is high. Therefore, the surface activity and reactivity of component B (inorganic particles) that are increased in concentration and exposed or protrude from the surface layer portion are increased, and the effect of component B (inorganic particles) is remarkably exhibited.

例えば、成分A(有機ポリマー)が疎水性であり、成分B(無機粒子)が親水性であって、且つ、成分B(無機粒子)の含有量が成分A(有機ポリマー)よりも少ない疎水性の複合材料である場合は、表面への紫外線照射により表層部の成分A(有機ポリマー)が分解、揮発して減少すればするほど、表層部がつよく親水化され、適度な表面粗さRaを有する凹凸表面が形成されて表面積が増えることと相まって、複合材料表面の濡れ性が大幅に向上する。逆に、複合材料の表層部を疎水性化したい場合は、成分B(無機粒子)として疎水性の無機粒子を成分A(有機ポリマー)に含有させることで可能となる。   For example, component A (organic polymer) is hydrophobic, component B (inorganic particles) is hydrophilic, and the content of component B (inorganic particles) is less than that of component A (organic polymer) In the case of the composite material, the surface layer portion becomes more hydrophilic as the component A (organic polymer) of the surface layer is decomposed, volatilized and reduced by irradiation of the surface with ultraviolet rays, and the appropriate surface roughness Ra is obtained. The wettability of the surface of the composite material is greatly improved in combination with the increase in surface area due to the formation of the uneven surface. On the other hand, when it is desired to make the surface layer portion of the composite material hydrophobic, it is possible to add hydrophobic inorganic particles as component B (inorganic particles) to component A (organic polymer).

このように、本発明の複合材料は、複合材料それ自体の成分B(無機粒子)の濃度が多少低くても、表層部の成分B(無機粒子)が高濃度化されて露出ないし突出し、十分な効能が発揮されるので、複合材料それ自体の成分B(無機粒子)の濃度を下げて成分A(有機ポリマー)の本来の特性(例えば力学的特性)を大幅に変えることなく複合材料の表面改質が可能になる。また、成分B(無機粒子)が高価な物質である場合、材料費を節約することも可能になる。   As described above, the composite material of the present invention is sufficiently exposed or protruded by increasing the concentration of the component B (inorganic particles) in the surface layer even if the concentration of the component B (inorganic particles) of the composite material itself is somewhat low. The surface of the composite material without significantly changing the original properties (for example, mechanical properties) of the component A (organic polymer) by lowering the concentration of the component B (inorganic particles) of the composite material itself. Modification is possible. In addition, when component B (inorganic particles) is an expensive substance, it is possible to save material costs.

また、前述した本発明の複合材料の代表例のように、有機ポリマーが生体内分解吸収性の有機ポリマーであり、無機粒子がバイオセラミックス粒子であるものは、表層部の生体内分解吸収性の有機ポリマーの分解、揮発により、表層部のバイオセラミックス粒子の濃度が高くなり、且つ有機ポリマーが疎水性でバイオセラミックスが親水性の場合は複合材料の表層部が親水化し、しかも、凹凸表面の形成により複合材料の表面積が大幅に増加して表面の濡れ性が良くなるので、この複合材料を、例えば、生体内の骨に接触させて埋設すると、複合材料の表面が瞬時に体液や血液に濡れて血中タンパク質が定着しやすくなり、表層部に露出ないし突出する高濃度のバイオセラミックス粒子が骨伝導能を十分に発揮し、それによって骨組織が複合材料に伝導されて骨再生が促進される。   In addition, as in the above-described representative example of the composite material of the present invention, the organic polymer is a biodegradable and absorbable organic polymer, and the inorganic particles are bioceramic particles. Decomposition and volatilization of the organic polymer increases the concentration of the bioceramic particles in the surface layer, and if the organic polymer is hydrophobic and the bioceramics are hydrophilic, the surface layer of the composite material becomes hydrophilic and forms an uneven surface. This significantly increases the surface area of the composite material and improves the wettability of the surface.For example, when this composite material is embedded in contact with bone in a living body, the surface of the composite material instantly gets wet with body fluids or blood. This makes it easy for blood proteins to settle, and the high-concentration bioceramic particles that are exposed or protrude from the surface layer exhibit sufficient osteoconductivity, thereby combining bone tissue. Bone regeneration is promoted is conducted to the charge.

次に、本発明の製造方法のように、成分A(有機ポリマー)と成分B(無機粒子)を有する複合材料の表面に紫外線を照射すると、複合材料の表層部の成分A(有機ポリマー)が分解、揮発して凹空部が形成される一方、表層部の成分B(無機粒子)がそのまま残存して、成分B(無機粒子)が露出ないし突出した凹凸表面が形成され、成分A(有機ポリマー)が分解、揮発した分だけ、表層部における成分B(無機粒子)の濃度を、表層部の直下部分における成分B(無機粒子)の濃度よりも高濃度化することができる。   Next, when the surface of the composite material having component A (organic polymer) and component B (inorganic particles) is irradiated with ultraviolet rays as in the production method of the present invention, component A (organic polymer) in the surface layer portion of the composite material is Decomposition and volatilization forms a hollow portion, while surface layer component B (inorganic particles) remains as it is, forming an uneven surface with component B (inorganic particles) exposed or protruding, and component A (organic) The concentration of component B (inorganic particles) in the surface layer portion can be made higher than the concentration of component B (inorganic particles) in the portion immediately below the surface layer portion by the amount of decomposition and volatilization of the polymer).

照射する紫外線は250nm以下の短波長紫外線であることが好ましく、このような短波長紫外線はフォトンエネルギーが高いため、表層部における成分A(有機ポリマー)のポリマー分子中の化学結合の大部分を切断し、短波長紫外線の照射で生じた活性酸素と切断したポリマー分子を直ちに反応させて表層部から揮発させることができるので、表層部の成分B(無機粒子)が高濃度化された本発明の複合材料を効率良く製造することができる。   The irradiated ultraviolet rays are preferably short-wavelength ultraviolet rays of 250 nm or less. Since such short-wavelength ultraviolet rays have high photon energy, most of chemical bonds in the polymer molecules of the component A (organic polymer) in the surface layer portion are cut off. In addition, since the active oxygen generated by irradiation with short-wavelength ultraviolet rays and the cut polymer molecules can be reacted immediately and volatilized from the surface layer portion, the component B (inorganic particles) in the surface layer portion is highly concentrated. A composite material can be manufactured efficiently.

(a)はA成分の有機ポリマー中にB成分の無機粒子が分散状態で含有された複合材料の紫外線照射前の模式断面説明図、(b)は本発明に係る紫外線照射後の複合材料の模式断面説明図である。(A) is a schematic cross-sectional explanatory diagram before ultraviolet irradiation of a composite material in which inorganic particles of B component are contained in a dispersed state in an organic polymer of A component, and (b) is a diagram of the composite material after ultraviolet irradiation according to the present invention. It is a schematic cross section explanatory drawing. 本発明の一実施例に係るヒドロキシアパタイト(HA)とポリ−L−乳酸(PLLA)から成る複合材料(HA/PLLA)のXeエキシマUV照射処理前の走査型電子顕微鏡(SEM)画像(倍率10000倍)である。Scanning electron microscope (SEM) image of a composite material (HA / PLLA) composed of hydroxyapatite (HA) and poly-L-lactic acid (PLLA) according to an embodiment of the present invention before Xe excimer UV irradiation treatment (magnification 10,000) Times). 同複合材料(HA/PLLA)のXeエキシマUV照射処理(光量900mJ/cm)後のSEM画像(倍率10000倍)である。It is a SEM image (magnification 10000 times) after Xe excimer UV irradiation processing (light quantity 900mJ / cm < 2 >) of the composite material (HA / PLLA). 同複合材料(HA/PLLA)のXeエキシマUV照射処理(光量2700mJ/cm)後のSEM画像(倍率10000倍)である。It is a SEM image (magnification 10000 times) after Xe excimer UV irradiation processing (light quantity 2700 mJ / cm < 2 >) of the composite material (HA / PLLA). 複合材料(HA/PLLA)のEDXによるCa濃度とHA濃度との関係を示すグラフである。It is a graph which shows the relationship between Ca density | concentration and HA density | concentration by EDX of a composite material (HA / PLLA). XeエキシマUV照射処理をしていない複合材料(HA/PLLA)と、XeエキシマUV照射処理をした複合材料(HA/PLLA)と、XeエキシマUV照射処理後にEOG滅菌をした複合材料(HA/PLLA)についての、フーリエ変換赤外分光光度計(FT−IR)分析の吸収曲線である。Xe excimer UV-irradiated composite material (HA / PLLA), Xe excimer UV-irradiated composite material (HA / PLLA), and Xe excimer UV-irradiated composite material (HA / PLLA) Is an absorption curve of Fourier transform infrared spectrophotometer (FT-IR) analysis. 963mJ/cmの光量でメタルハライド光を照射した複合材料(HA/PLLA)のSEM画像(倍率10000倍)である。It is a SEM image (magnification 10,000 times) of the composite material (HA / PLLA) which irradiated metal halide light with the light quantity of 963 mJ / cm < 2 >. 6542mJ/cmの光量でメタルハライド光を照射した複合材料(HA/PLLA)のSEM画像(倍率10000倍)である。It is a SEM image (magnification 10,000 times) of the composite material (HA / PLLA) irradiated with metal halide light with a light quantity of 6542 mJ / cm 2 . 400w・min/cmのエネルギー量で表面をコロナ放電処理した複合材料(HA/PLLA)のSEM画像(倍率10000倍)である。It is a SEM image (magnification 10,000 times) of the composite material (HA / PLLA) which carried out the corona discharge process on the surface with the energy amount of 400 w * min / cm < 2 >. 2000w・min/cmのエネルギー量で表面をコロナ放電処理した複合材料(HA/PLLA)のSEM画像(倍率10000倍)である。It is a SEM image (magnification 10000 times) of the composite material (HA / PLLA) which carried out the corona discharge process on the surface with the energy amount of 2000 w * min / cm < 2 >. 10000w・min/cmのエネルギー量で表面をコロナ放電処理した複合材料(HA/PLLA)のSEM画像(倍率10000倍)である。It is a SEM image (magnification 10,000 times) of the composite material (HA / PLLA) which surface corona-discharge-treated the surface with the energy amount of 10000 w * min / cm < 2 >. 未処理の酸化チタン(TiO)とポリ塩化ビニル(PVC)から成る複合材料(TiO/PVC)のSEM画像である。SEM images of untreated titanium oxide composite material consisting of (TiO 2) and polyvinyl chloride (PVC) (TiO 2 / PVC ). XeエキシマUVを2138mJ/cmの光量で照射処理した複合材料(TiO/PVC)のSEM画像である。The Xe excimer UV is a SEM image of a composite material irradiation with light quantity of 2138mJ / cm 2 (TiO 2 / PVC). XeエキシマUVを3260mJ/cmの光量で照射処理した複合材料(TiO/PVC)のSEM画像である。The Xe excimer UV is a SEM image of a composite material irradiation with light quantity of 3260mJ / cm 2 (TiO 2 / PVC). 未処理のケイ酸カルシウム(CaSiO)とポリ塩化ビニル(PVC)から成る複合材料(CaSiO/PVC)のSEM画像(倍率10000倍)である。SEM images of a composite material consisting of untreated calcium silicate (CaSiO 3) polyvinyl chloride (PVC) (CaSiO 3 / PVC ) ( magnification 10,000 times). 2138mJ/cmの光量でXeエキシマUV照射処理をした複合材料(CaSiO/PVC)のSEM画像である。SEM images of 2138mJ / cm 2 composite material in which the Xe excimer UV irradiation treatment in quantity (CaSiO 3 / PVC). 3260mJ/cmの光量でXeエキシマUV照射処理をした複合材料(CaSiO/PVC)のSEM画像である。SEM images of 3260mJ / cm 2 composite material in which the Xe excimer UV irradiation treatment in quantity (CaSiO 3 / PVC).

以下、図面を参照して、本発明に係る複合材料とその製造方法を詳細に説明する。   Hereinafter, with reference to the drawings, a composite material and a manufacturing method thereof according to the present invention will be described in detail.

図1の(a)は、A成分の有機ポリマー中にB成分の無機粒子が分散状態で含有された複合材料の紫外線照射前の模式断面説明図、(b)は本発明に係る紫外線照射後の複合材料の模式断面説明図である。   (A) of FIG. 1 is a schematic cross-sectional explanatory diagram before ultraviolet irradiation of a composite material in which inorganic particles of B component are contained in a dispersed state in an organic polymer of A component, and (b) is after ultraviolet irradiation according to the present invention. It is a schematic cross section explanatory drawing of this composite material.

図1の(a)に示すように、紫外線照射前の複合材料は、B成分の無機粒子(以下、単に無機粒子と記す)が、マトリックスポリマーであるA成分の有機ポリマー(以下、単に有機ポリマーと記す)に分散状態で含有されており、無機粒子は複合材料の表面(換言すれば有機ポリマーの表面)に実質的に露出していないので、複合材料の表面は表面粗さRaの極めて小さい略平滑な面となっている。かかる複合材料は、表層部も、表層部の下側部分(表層部を除いたバルク部分)も、無機粒子の濃度は同じである。尚、無機粒子の濃度は、前記定義の通り、一定体積当たりの無機粒子の質量/(無機粒子の質量+有機ポリマーの質量)×100(%)で表されるものである。   As shown in FIG. 1 (a), the composite material before ultraviolet irradiation is an organic polymer of component A (hereinafter simply referred to as organic polymer) in which the inorganic particles of component B (hereinafter simply referred to as inorganic particles) are matrix polymers. And the inorganic particles are not substantially exposed on the surface of the composite material (in other words, the surface of the organic polymer), the surface of the composite material has a very small surface roughness Ra. The surface is substantially smooth. In such a composite material, the concentration of inorganic particles is the same in both the surface layer portion and the lower portion (bulk portion excluding the surface layer portion) of the surface layer portion. In addition, the density | concentration of an inorganic particle is represented by the mass of the inorganic particle per fixed volume / (mass of an inorganic particle + mass of an organic polymer) x100 (%) as the said definition.

この複合材料の表面に、本発明の製造方法に従って紫外線を照射すると、図1の(b)に示すように、複合材料の表層部の有機ポリマーが分解、揮発して凹空部が形成される一方、表層部の無機粒子がそのまま残存して無機粒子が露出ないし突出した適度の表面粗さRaを有する凹凸表面が形成されるため、有機ポリマーが分解、揮発した分だけ、表層部における無機粒子の濃度が、表層部の直下部分(バルク部分)における無機粒子の濃度よりも高濃度化した、本発明の複合材料を得ることができる。上記のように、紫外線照射によって表層部の有機ポリマーが分解、揮発するのは、紫外線の高いフォトンエネルギーによって、表層部における有機ポリマーのポリマー分子中の化学結合の大部分、即ち、ポリマー分子中の化学結合のうち紫外線のフォトンエネルギーよりも小さな結合エネルギーを有する化学結合が切断され、紫外線照射で生じた活性酸素と切断されたポリマー分子が直ちに反応して揮発するからである。   When the surface of the composite material is irradiated with ultraviolet rays according to the manufacturing method of the present invention, as shown in FIG. 1 (b), the organic polymer in the surface layer portion of the composite material is decomposed and volatilized to form a hollow portion. On the other hand, since the inorganic particles in the surface layer remain as they are, and an uneven surface having an appropriate surface roughness Ra where the inorganic particles are exposed or protruded is formed, the inorganic particles in the surface layer portion are only decomposed and volatilized. Thus, the composite material of the present invention can be obtained in which the concentration of is higher than the concentration of inorganic particles in the portion immediately below the surface layer portion (bulk portion). As described above, the organic polymer in the surface layer is decomposed and volatilized by the ultraviolet irradiation. Most of the chemical bonds in the polymer molecule of the organic polymer in the surface layer due to the high photon energy of the ultraviolet ray, that is, in the polymer molecule. This is because a chemical bond having a bond energy smaller than the photon energy of ultraviolet rays is broken among the chemical bonds, and the active oxygen generated by the ultraviolet irradiation and the cut polymer molecules immediately react and volatilize.

従って、複合材料の表面層における無機粒子の高濃度化の程度は、照射する紫外線の波長(換言すれば紫外線のフォトンエネルギー量)と照射光量によって左右され、紫外線の波長が短くなるほど(換言すればフォトンエネルギーが高くなるほど)、また、照射光量が多くなるほど、複合材料の表層部における有機ポリマーの分解、揮発量が増えて、表面層における無機粒子の濃度が高くなる。   Therefore, the degree of increase in the concentration of inorganic particles in the surface layer of the composite material depends on the wavelength of ultraviolet rays to be irradiated (in other words, the amount of photon energy of ultraviolet rays) and the amount of irradiation light, and the shorter the wavelength of ultraviolet rays (in other words, The higher the photon energy) and the greater the amount of irradiation light, the higher the decomposition and volatilization amount of the organic polymer in the surface layer portion of the composite material, and the higher the concentration of inorganic particles in the surface layer.

紫外線としては、メタルハライドランプから放射される200〜450nmの広範囲にわたる紫外線スペクトルを使用することも勿論可能であるが、このものはフォトンエネルギーが大きい短波長の紫外線出力が低いので、これよりもフォトンエネルギーが遥かに大きい250nm以下の短波長紫外線を使用することが好ましい。
そのような250nm以下の短波長紫外線としては、波長が172nmで、695kJ/molのフォトンエネルギーを有するXeエキシマUVや、波長が222nmで、539kJ/molのフォトンエネルギーを有するKrClエキシマUVなどが挙げられる。特に、前者のXeエキシマUVは、その高いフォトンエネルギーによって、有機ポリマー中の化学結合の大部分(結合エネルギーが695kJ/molより高いCとNとの三重結合、CとCとの三重結合、CとOとの二重結合以外の化学結合)を切断して、有機ポリマーを分解、揮発させることができるので、極めて好ましいものである。
Of course, it is possible to use an ultraviolet spectrum over a wide range of 200 to 450 nm emitted from a metal halide lamp, but this has a higher photon energy and a lower short wavelength ultraviolet output, so that the photon energy is higher than this. However, it is preferable to use short wavelength ultraviolet rays of 250 nm or less.
Examples of such short-wavelength ultraviolet rays of 250 nm or less include Xe excimer UV having a photon energy of 695 kJ / mol at a wavelength of 172 nm, and KrCl excimer UV having a photon energy of 539 kJ / mol at a wavelength of 222 nm. . In particular, the former Xe excimer UV, due to its high photon energy, most of the chemical bonds in the organic polymer (C-N triple bonds, C-C triple bonds, C-C triple bonds, C-C triple bonds being higher than 695 kJ / mol, C This is very preferable because the organic polymer can be decomposed and volatilized by cleaving the chemical bond other than the double bond between O and O.

尚、紫外線照射前の複合材料の無機粒子の濃度が均一である場合、紫外線照射後の表層部の無機粒子の濃度は、表層部の直下部分を含むバルク部分全体の無機粒子の均一な濃度よりも高濃度化されることになるが、紫外線照射前の複合材料の無機粒子の濃度が不均一である場合(例えば、複合材料の表面側から裏面側に向かって無機粒子の濃度が変化しているような場合)は、紫外線照射後の表層部の無機粒子の濃度は、表層部の直下部分、換言すれば表層部との界面部分の無機粒子の濃度よりも高濃度化されることになる。   When the concentration of the inorganic particles in the composite material before the ultraviolet irradiation is uniform, the concentration of the inorganic particles in the surface layer portion after the ultraviolet irradiation is more uniform than the uniform concentration of the inorganic particles in the entire bulk portion including the portion immediately below the surface layer portion. However, when the concentration of inorganic particles in the composite material before UV irradiation is not uniform (for example, the concentration of inorganic particles changes from the front side to the back side of the composite material). In such a case, the concentration of the inorganic particles in the surface layer portion after ultraviolet irradiation is higher than the concentration of the inorganic particles in the portion immediately below the surface layer portion, in other words, the interface portion with the surface layer portion. .

ところで、紫外線照射に代えてコロナ放電処理をする場合は、後述する比較例のように、出力を大幅に上げると、表層部における無機粒子の濃度を少しは高濃度化することができるが、高出力を必要とするわりには効果が少ないので、有用性を認めることは難しい。   By the way, when corona discharge treatment is performed instead of ultraviolet irradiation, the concentration of inorganic particles in the surface layer portion can be increased slightly if the output is significantly increased as in the comparative example described later. Usefulness is difficult to recognize because it is less effective when it requires output.

複合材料のA成分の有機ポリマーは特に限定されるものではなく、公知の各種の合成樹脂を使用することができる。その代表的なものを例示すると、生体内分解吸収性のポリマー(ポリ乳酸、ポリ乳酸共重合体(例えば乳酸―グリコール酸共重合体)など)、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリオレフィン、ポリエステル、ポリウレタン、ポリカーボネート、ポリアセタール、ポリアミド、ポリブチレンテレフタレートやポリサルフォン、ポリエーテルエーテルケトン、ポリエーテルイミド、フッ素樹脂に代表されるスーパーエンジニアリングプラスチックなどが挙げられる。   The organic polymer of the component A of the composite material is not particularly limited, and various known synthetic resins can be used. Typical examples are biodegradable and absorbable polymers (polylactic acid, polylactic acid copolymer (eg, lactic acid-glycolic acid copolymer)), polyvinyl chloride, vinyl chloride-vinyl acetate copolymer. , Polyolefins, polyesters, polyurethanes, polycarbonates, polyacetals, polyamides, polybutylene terephthalates, polysulfones, polyether ether ketones, polyether imides, super engineering plastics represented by fluororesins, and the like.

また、B成分の無機粒子も特に限定されるものではなく、例えば、骨伝導、薬効、抗菌、導電、難燃、防滑などの種々の効能や機能を有する無機粒子を使用することができる。その代表的なものを例示すると、骨伝導能を有するバイオセラミックス粒子(ヒドロキシアパタイト、ジカルシウムフォスフェート、トリカルシウムフォスフェート、テトラカルシウムフォスフェート、オクタカルシウムフォスフェート、カルサイト、セラバイタル、ジオプサイトなど)、抗菌、防汚、難燃性効果を付与する酸化チタン、導電性を付与する金属粒子や炭素粒子または繊維、耐火性能を付与する珪酸カルシウム、銀系などの金属イオンの無機抗菌剤などが挙げられる。   Also, the inorganic particles of the component B are not particularly limited, and for example, inorganic particles having various effects and functions such as bone conduction, medicinal effect, antibacterial, electrical conductivity, flame retardancy, and anti-slip can be used. Typical examples are bioceramic particles having osteoconductivity (hydroxyapatite, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcite, serabital, diopsite, etc.) Titanium oxide that imparts antibacterial, antifouling, and flame retardant effects, metal particles or carbon particles or fibers that impart electrical conductivity, calcium silicate that imparts fire resistance, and inorganic antibacterial agents of metal ions such as silver It is done.

次に、本発明の主な実施例について説明する。   Next, main examples of the present invention will be described.

図2は本発明の一実施例に係る複合材料のXeエキシマUV照射処理前のSEM(走査型電子顕微鏡)画像(倍率10000倍)、図3は同複合材料のXeエキシマUV照射処理(光量900mJ/cm)後のSEM画像(倍率10000倍)、図4は同複合材料のXeエキシマUV照射処理(光量2700mJ/cm)後のSEM画像(倍率10000倍)である。 FIG. 2 is an SEM (scanning electron microscope) image of the composite material according to an embodiment of the present invention before Xe excimer UV irradiation treatment (magnification: 10,000 times), and FIG. 3 is an Xe excimer UV irradiation treatment (light quantity: 900 mJ) of the composite material. / Cm 2 ) SEM image (10000 × magnification), FIG. 4 is a SEM image (10000 × magnification) after Xe excimer UV irradiation treatment (light quantity 2700 mJ / cm 2 ) of the composite material.

この実施例の複合材料は、生体内分解吸収性のポリ−L−乳酸(PLLA)60質量部にヒドロキシアパタイト粒子(HA)40質量部を均一な分散状態で含有させた複合材料(HA/PLLA=40/60)であって、XeエキシマUV照射処理前の複合材料は、図2のSEM画像に示すように、表面粗さRaが小さい比較的平坦な表面を有している。しかし、この複合材料(HA/PLLA)の表面にXeエキシマUV(波長172nm、695kJ/mol)を900mJ/cmの光量で照射すると、図3のSEM画像に示すように、複合材料の表層部のPLLAが分解、揮発して凹空部が形成される一方、表層部のHA粒子がそのまま残存して、表面粗さRaが少し大きい凹凸表面となり、更に、XeエキシマUVを2700mJ/cmの光量まで増大して照射すると、表層部のPLLAの分解、揮発量が増加して、図4のSEM画像に示すように、表面粗さRaの大きい凹凸表面が形成され、PLLAが分解、揮発した分だけ、表層部におけるHA粒子の濃度が、表層部の直下部分(バルク部分)におけるHA粒子の濃度よりも高濃度化された複合材料(HA/PLLA)となる。 The composite material of this example is composed of 60 parts by mass of biodegradable poly-L-lactic acid (PLLA) and 40 parts by mass of hydroxyapatite particles (HA) in a uniformly dispersed state (HA / PLLA). = 40/60), and the composite material before the Xe excimer UV irradiation treatment has a relatively flat surface with a small surface roughness Ra, as shown in the SEM image of FIG. However, when the surface of the composite material (HA / PLLA) is irradiated with Xe excimer UV (wavelength: 172 nm, 695 kJ / mol) at a light amount of 900 mJ / cm 2 , as shown in the SEM image of FIG. The PLLA is decomposed and volatilized to form concave voids, while the HA particles in the surface layer remain as they are, resulting in a slightly rough surface with a surface roughness Ra. Further, Xe excimer UV is 2700 mJ / cm 2 . When the irradiation is increased to the amount of light, the amount of decomposition and volatilization of PLLA on the surface layer portion increases, and as shown in the SEM image of FIG. 4, an uneven surface with a large surface roughness Ra is formed, and PLLA is decomposed and volatilized. Therefore, the composite material (HA / PLLA) in which the concentration of HA particles in the surface layer portion is higher than the concentration of HA particles in the portion immediately below the surface layer portion (bulk portion). .

上記のXeエキシマUV照射処理(光量900mJ/cm、光量2700mJ/cm)を行った複合材料(HA/PLLA)の表層部におけるHAの濃度は、以下の方法で求められる。
(1)まず、HA濃度が30wt%、40wt%、60wt%、90wt%の4種類の複合材料(HA/PLLA)を準備し、それぞれの複合材料のエネルギー分散型X線分光法(EDX)によるCa濃度を測定して、HA濃度とCa濃度との関係をプロットすることにより、検量線を求め、Ca濃度とHA濃度との関係式を作成する。Ca濃度とHA濃度の関係は下記表1に示す通りであり、このCa濃度をY軸、HA濃度をX軸として両者の関係をプロットし、検量線を求めたものが図5に示すグラフである。この検量線に基づいて作成される関係式は
y=0.1935x + 14.612
である。
The concentration of HA in the surface layer portion of the composite material (HA / PLLA) subjected to the above Xe excimer UV irradiation treatment (light quantity 900 mJ / cm 2 , light quantity 2700 mJ / cm 2 ) is obtained by the following method.
(1) First, four types of composite materials (HA / PLLA) having HA concentrations of 30 wt%, 40 wt%, 60 wt%, and 90 wt% are prepared, and each composite material is subjected to energy dispersive X-ray spectroscopy (EDX). A calibration curve is obtained by measuring the Ca concentration and plotting the relationship between the HA concentration and the Ca concentration, and a relational expression between the Ca concentration and the HA concentration is created. The relationship between the Ca concentration and the HA concentration is as shown in Table 1 below. The relationship between the Ca concentration and the HA concentration is plotted on the Y axis and the HA axis as the X axis, and the calibration curve is obtained in the graph shown in FIG. is there. The relational expression created based on this calibration curve is y = 0.1935x + 14.612.
It is.

(2)次いでHA濃度が40wt%の複合材料(HA/PLLA)の表面に、照射光量を下記表2に示すように段階的に増加してXeエキシマUVを照射し、それぞれの照射光量でXeエキシマUV照射処理された複合材料のEDXによるCa濃度を測定する。そして、これらのCa濃度を上記関係式のyに代入して、それぞれの複合材料の表層部におけるHA濃度xを求めたところ、下記表2に示す通りであった。
(2) Next, the surface of the composite material (HA / PLLA) having an HA concentration of 40 wt% is irradiated with Xe excimer UV while gradually increasing the irradiation light amount as shown in Table 2 below. The Ca concentration by EDX of the composite material subjected to the excimer UV irradiation treatment is measured. Then, by substituting these Ca concentrations into y in the above relational expression, the HA concentration x in the surface layer portion of each composite material was obtained, and as shown in Table 2 below.

この表2を見ると、XeエキシマUV照射処理をしていない図2の複合材料(HA/PLLA)の表層部におけるHA濃度は37.6wt%であり、光量900mJ/cmでXeエキシマUV照射処理した図3の複合材料(HA/PLLA)の表層部におけるHA濃度は56.9wt%であり、光量2700mJ/cmでXeエキシマUV照射処理した図4の複合材料(HA/PLLA)の表層部におけるHA濃度は72.0wt%であることが判る。そして、この表2から、照射光量が増加するほど、複合材料の表層部におけるHA濃度が高くなり、より高濃度化されることが判る。
尚、EDXのX線入射深度は最大約10μmであるから、表層部の極く浅い部分のHA濃度は定量値よりも更に高濃度化されている可能性がある。
As shown in Table 2, the HA concentration in the surface layer portion of the composite material (HA / PLLA) in FIG. 2 that has not been subjected to the Xe excimer UV irradiation treatment is 37.6 wt%, and the Xe excimer UV irradiation is performed at a light amount of 900 mJ / cm 2. The HA concentration in the surface layer portion of the treated composite material (HA / PLLA) in FIG. 3 is 56.9 wt%, and the surface layer of the composite material (HA / PLLA) in FIG. 4 treated with Xe excimer UV irradiation at a light amount of 2700 mJ / cm 2 . It can be seen that the HA concentration in the part is 72.0 wt%. From Table 2, it can be seen that as the amount of irradiation light increases, the HA concentration in the surface layer portion of the composite material increases and becomes higher.
Since the maximum X-ray incident depth of EDX is about 10 μm, there is a possibility that the HA concentration in the extremely shallow part of the surface layer is higher than the quantitative value.

また、この表2に記載されていない照射光量でXeエキシマUV照射処理をした複合材料(HA/PLLA)の表層部におけるHA濃度は、その複合材料のEDXによるCa濃度を測定し、そのCa濃度を前記の関係式のyに代入してx(HA濃度)を算出することで簡単に求められることは言うまでもない。   Further, the HA concentration in the surface layer portion of the composite material (HA / PLLA) subjected to the Xe excimer UV irradiation treatment with the irradiation light amount not described in Table 2 is measured by measuring the Ca concentration by EDX of the composite material. Needless to say, it can be easily obtained by substituting x into y in the above relational expression and calculating x (HA concentration).

次に、HA濃度が40wt%の複合材料(HA/PLLA)の表面に、照射光量を下記表3に示すように段階的に増加してXeエキシマUVを照射し、それぞれの複合材料についてフーリエ変換赤外分光光度計(FT−IR)分析を行い、HA由来の1032cm−1のピーク高さと、PLLA由来の1756cm−1のピーク高さを調べると共に、双方のピーク比(HA由来のピーク高さ/PLLA由来のピーク高さ)を求めた。その結果を下記表3に示す。
Next, the surface of the composite material (HA / PLLA) having an HA concentration of 40 wt% is irradiated with Xe excimer UV while increasing the irradiation light intensity stepwise as shown in Table 3 below, and Fourier transform is performed for each composite material. infrared spectrophotometer (FT-IR) analyzes, and the peak height of the HA-derived 1032Cm -1, with examining peak heights of PLLA-derived 1756cm -1, both peak ratio (peak height from HA / Peak height derived from PLLA). The results are shown in Table 3 below.

この表3を見れば、XeエキシマUVの照射光量が多くなるほど、PLLA由来の1756cm−1のピークとHA由来の1032cm−1のピークの双方のピーク比(HA由来のピーク高さ/PLLA由来のピーク高さ)が増加している。従って、このピーク比の増加から、XeエキシマUVの照射光量が多くなるほど、表層部におけるHA濃度が高くなることが判る。 Looking at the table 3, Xe as the irradiation light amount of excimer UV increases, peaks both peak ratio of the peak and HA-derived 1032cm -1 of PLLA-derived 1756cm -1 (HA peak derived height / PLLA from Peak height) is increasing. Therefore, it can be seen from this increase in the peak ratio that the HA concentration in the surface layer portion increases as the amount of Xe excimer UV irradiation increases.

図6は、HA濃度が40wt%のXeエキシマUV照射処理をしていない複合材料(HA/PLLA)と、照射光量1800mJ/cmでXeエキシマUV照射処理をした複合材料(HA/PLLA)と、照射光量1800mJ/cmでXeエキシマUV照射処理したのち、体内埋植型の骨固定材への用途を目的としてEOG(エチレンオキシドガス)滅菌した複合材料(HA/PLLA)についての、FT−IR分析の吸収曲線である。 FIG. 6 shows a composite material (HA / PLLA) not subjected to Xe excimer UV irradiation treatment with an HA concentration of 40 wt%, and a composite material (HA / PLLA) subjected to Xe excimer UV irradiation treatment with an irradiation light amount of 1800 mJ / cm 2. FT-IR for a composite material (HA / PLLA) that has been subjected to Xe excimer UV irradiation treatment at an irradiation light amount of 1800 mJ / cm 2 and then sterilized with EOG (ethylene oxide gas) for the purpose of application to an implantable bone fixation material It is an absorption curve of analysis.

この図6の上段の吸収曲線(未処理の複合材料のもの)と、中段の吸収曲線(XeエキシマUV照射処理をした複合材料のもの)を対比すると、HA由来のピーク高さは殆ど変化ないのに対し、PLLA由来のピーク高さはXeエキシマUV照射処理前のPLLA由来のピーク高さの略1/3程度まで減衰しており、このことからXeエキシマUV照射処理を行うと、表層部のPLLAの大半が分解、揮発するのに対し、HAはそのまま残存、露出して、表層部におけるHA濃度が高濃度化されることが判る。更に、中段の吸収曲線には新たな波長におけるピークが見られないことから、XeエキシマUV照射処理による副産物はなく、純粋にPLLAが分解、揮発するのみであることが判る。
そして、中段の吸収曲線(XeエキシマUV照射処理をした複合材料のもの)と下段の吸収曲線(XeエキシマUV照射処理後にEOG滅菌をした複合材料のもの)を対比すると、下段の吸収曲線にはEOG滅菌による副産物由来のピークが見られず、下段の吸収曲線は中段のEOG滅菌をしていない複合材料の吸収曲線とほぼ重なる曲線となっている。このことから、複合材料のEOG滅菌は、XeエキシマUV照射処理に弊害を与えないことが判る。
When the upper absorption curve (of the untreated composite material) in FIG. 6 is compared with the middle absorption curve (of the composite material subjected to the Xe excimer UV irradiation treatment), the peak height derived from HA hardly changes. On the other hand, the peak height derived from PLLA is attenuated to about 1/3 of the peak height derived from PLLA before the Xe excimer UV irradiation treatment. It can be seen that the majority of the PLLA decomposes and volatilizes, whereas HA remains and is exposed as it is, and the HA concentration in the surface layer is increased. Furthermore, since no peak at a new wavelength is observed in the absorption curve in the middle stage, it can be seen that there is no byproduct due to the Xe excimer UV irradiation treatment, and that PLLA is purely decomposed and volatilized.
Then, when comparing the absorption curve in the middle stage (for the composite material subjected to Xe excimer UV irradiation treatment) and the absorption curve in the lower stage (for the composite material subjected to EOG sterilization after the Xe excimer UV irradiation treatment), the absorption curve in the lower stage is The peak derived from the by-product by EOG sterilization is not seen, and the lower absorption curve is a curve that almost overlaps with the absorption curve of the composite material not subjected to EOG sterilization in the middle. From this, it can be seen that EOG sterilization of the composite material does not adversely affect the Xe excimer UV irradiation treatment.

本実施例の複合材料(HA/PLLA)は、親水性のHA粒子が40wt%、疎水性のPLLAが60wt%であるから、複合材料全体としては疎水性である。けれども、XeエキシマUV(波長172nm、695kJ/mol)の照射により、複合材料の表層部の疎水性のPLLAが分解、揮発して減少し、親水性のHA粒子がそのまま残存して露出ないし突出するため、複合材料の表面は親水化する。
これを裏付けるため、複合材料の表面にXeエキシマUVを、下記表4に示すように照射光量を段階的に増加して照射し、それぞれの複合材料表面の水との接触角を接触角計(協和界面科学株式会社製、FACE接触角計CA−A型)で測定した。その結果を下記表4に示す。
また、複合材料の表面にKrClエキシマUV(波長222nm、539kJ/mol)を、下記表5に示すように照射光量を段階的に増加して照射し、それぞれの複合材料表面の水との接触角を測定した。その結果を下記表5に示す。
The composite material (HA / PLLA) of this example is 40% by weight of hydrophilic HA particles and 60% by weight of hydrophobic PLLA. Therefore, the composite material as a whole is hydrophobic. However, by irradiation with Xe excimer UV (wavelength 172 nm, 695 kJ / mol), the hydrophobic PLLA on the surface layer of the composite material is decomposed, volatilized and reduced, and the hydrophilic HA particles remain as they are or are exposed or protruded. Therefore, the surface of the composite material becomes hydrophilic.
In order to support this, Xe excimer UV is irradiated on the surface of the composite material while increasing the amount of irradiation light stepwise as shown in Table 4 below, and the contact angle of each composite material surface with water is measured by a contact angle meter ( Kyowa Interface Science Co., Ltd., FACE contact angle meter CA-A type). The results are shown in Table 4 below.
Further, KrCl excimer UV (wavelength 222 nm, 539 kJ / mol) is irradiated onto the surface of the composite material while increasing the irradiation light amount stepwise as shown in Table 5 below, and the contact angle of each composite material surface with water Was measured. The results are shown in Table 5 below.

上記表4から、XeエキシマUVの照射光量が多くなるほど、複合材料(HA/PLLA)の表面の水との接触角が減少して親水化し、2700mJ/cmの照射光量でXeエキシマUV照射処理をした複合材料では、接触角が6°まで減少して超親水性を呈することが判る。
また、上記表5から、KrClエキシマUV照射処理を行う場合は、KrClエキシマUVのフォトンエネルギーがXeエキシマUVのそれよりも小さいため効果も小さいが、それでも照射光量が多くなるほど複合材料の表面の水との接触角が減少して、複合材料の表層部の親水化が進行し、照射光量が5580mJ/cmまで増加すると接触角は67°まで減少する。
From Table 4 above, as the irradiation light amount of Xe excimer UV increases, the contact angle with water on the surface of the composite material (HA / PLLA) decreases and becomes hydrophilic, and Xe excimer UV irradiation treatment is performed at an irradiation light amount of 2700 mJ / cm 2. It can be seen that the composite material with a reduced contact angle is reduced to 6 ° and exhibits super hydrophilicity.
Further, from Table 5 above, when KrCl excimer UV irradiation treatment is performed, the photon energy of KrCl excimer UV is smaller than that of Xe excimer UV, but the effect is small. However, as the irradiation light quantity increases, the surface water of the composite material increases. When the contact angle with the surface of the composite material decreases and the surface layer portion of the composite material becomes hydrophilic, the contact angle decreases to 67 ° when the irradiation light quantity increases to 5580 mJ / cm 2 .

また、EOG滅菌処理が複合材料(HA/PLLA)の親水性に及ぼす影響を調べるために、光量2700mJ/cmでXeエキシマUV照射処理したのちEOG滅菌処理し10日間脱ガスした複合材料の表面の接触角と、この複合材料を脱ガス後、空気中で防湿包装のもとで1週間保存したもの、および、3ケ月保存したもの、および、6ケ月保存したものの接触角を測定した。その結果を下記表6に示す。更に、比較例として、HAと複合化していないPLLAのみの材料に光量2700mJ/cmでXeエキシマUV照射処理したのちEOG滅菌処理し10日間脱ガスした複合材料の表面の接触角と、この複合材料を1週間保存したものの接触角を測定した。その結果を下記表6に併せて示す。
In addition, in order to investigate the effect of EOG sterilization on the hydrophilicity of the composite material (HA / PLLA), the surface of the composite material that was degassed for 10 days after EOG sterilization treatment with Xe excimer UV irradiation at a light intensity of 2700 mJ / cm 2 And the contact angles of the composite material which was degassed and stored for one week in a moisture-proof package in the air, those stored for three months, and those stored for six months were measured. The results are shown in Table 6 below. Furthermore, as a comparative example, the contact angle of the surface of the composite material which was degassed for 10 days after XE excimer UV irradiation treatment at a light quantity of 2700 mJ / cm 2 on a PLLA-only material not complexed with HA, and this composite The contact angle of the material stored for 1 week was measured. The results are also shown in Table 6 below.

EOG滅菌処理をしない複合材料(HA/PLLA)の表面の接触角は、6°で超親水性を呈するが、EOG滅菌処理した複合材料(10日間脱ガスしたもの)も、その表面の水との接触角が2±1°と超親水性を呈しており、更に、1週間、3ケ月、及び、6カ月間保存した複合材料も、その接触角が2±1°、2±0°、10±3°と超親水性を呈している。このことから、エキシマUV処理された複合材料の表面は、EOGガス滅菌処理によって親水性の低下の影響がない性状であることが判る。
一方、HAと複合化していないPLLAのみの材料はXeエキシマUV照射処理によって表面の接触角は低下して親水性を呈するが、複合材料と同じ照射光量で30±1°までの低下に留まる。また、EOG滅菌処理によって接触角は55±2°まで増加し、更に、1週間保存したPLLAのみの材料では68±5°まで増加し、疎水性の性状に戻る傾向があることが判る。
エキシマUV処理した有機ポリマー表面にはOH、COOHなどのラジカルが形成され、これらが表面の親水化に大きく寄与している。一方、これらのラジカルは継時的に減少し、親水性を長期に持続することが困難である。上記のPLLAのみの材料の結果はこのことを裏付けており、有機ポリマーのみではエキシマUV処理でも親水化と親水性の長期持続限界がある。しかしながら、XeエキシマUV照射処理した複合材料(HA/PLLA)の表面の接触角が超親水性を6カ月間維持したことは、この親水化の効果がOH、COOHなどのラジカルの形成によることのみではなく、本質的に親水性のHAが複合材料(HA/PLLA)の表面で高濃度化されたことにより発現された効果といえる
The contact angle of the surface of the composite material (HA / PLLA) not subjected to EOG sterilization is 6 ° and is superhydrophilic. However, the composite material subjected to EOG sterilization (degassed for 10 days) is also The contact angle of 2 ± 1 ° is super hydrophilic, and composite materials stored for 1 week, 3 months, and 6 months also have contact angles of 2 ± 1 °, 2 ± 0 °, It exhibits a super hydrophilicity of 10 ± 3 °. From this, it can be seen that the surface of the composite material subjected to the excimer UV treatment has a property that is not affected by the decrease in hydrophilicity due to the EOG gas sterilization treatment.
On the other hand, the PLLA-only material that has not been combined with HA exhibits hydrophilicity by reducing the contact angle of the surface by the Xe excimer UV irradiation treatment, but it remains at a decrease of 30 ± 1 ° with the same amount of irradiation as the composite material. It can also be seen that the contact angle increases to 55 ± 2 ° by EOG sterilization treatment, and further increases to 68 ± 5 ° for the PLLA-only material stored for one week, and tends to return to hydrophobic properties.
Radicals such as OH and COOH are formed on the surface of the excimer UV-treated organic polymer, which greatly contributes to the hydrophilicity of the surface. On the other hand, these radicals decrease over time, and it is difficult to maintain hydrophilicity for a long time. The results of the above-mentioned PLLA-only material support this, and organic polymers alone have hydrophilization and hydrophilic long-lasting limits even with excimer UV treatment. However, the surface contact angle of the Xe excimer UV-irradiated composite material (HA / PLLA) maintained superhydrophilicity for 6 months only because this hydrophilic effect is due to the formation of radicals such as OH and COOH. Rather, it can be said that the effect is manifested by increasing the concentration of essentially hydrophilic HA on the surface of the composite material (HA / PLLA).

本実施例の複合材料は、HA濃度が40wt%の複合材料(HA/PLLA)をXeエキシマUV照射処理することにより、表層部のPLLAを分解、揮発させて凹空部を形成する一方、HA粒子をそのまま残存して露出ないし突出させたものであるから、その表面は凹凸表面となっている。このXeエキシマUVの照射光量と、複合材料の表面粗さRaとの関係を調べるために、下記表7に示すように、照射光量を段階的に増加させてXeエキシマUVを、HA濃度が40wt%の複合材料(HA/PLLA)の表面に照射し、それぞれの複合材料の表面粗さRaをJIS B 0601に基づいて測定した。その結果を下記表7に示す。
In the composite material of this example, the composite material (HA / PLLA) having an HA concentration of 40 wt% is subjected to Xe excimer UV irradiation treatment to decompose and volatilize PLLA in the surface layer portion, thereby forming a hollow portion. Since the particles remain exposed or protruded as they are, the surface thereof is an uneven surface. In order to investigate the relationship between the irradiation light amount of the Xe excimer UV and the surface roughness Ra of the composite material, as shown in Table 7 below, the irradiation light amount is increased stepwise to change the Xe excimer UV to an HA concentration of 40 wt. % Of the composite material (HA / PLLA) was irradiated, and the surface roughness Ra of each composite material was measured based on JIS B 0601. The results are shown in Table 7 below.

この表7をみれば、XeエキシマUVの照射光量が多くなるほど、複合材料の表層部におけるPLLAの分解、揮発量が多くなり、表面粗さRaが大きくなることが判る。   From Table 7, it can be seen that as the amount of Xe excimer UV irradiation increases, the amount of decomposition and volatilization of PLLA in the surface layer portion of the composite material increases and the surface roughness Ra increases.

なお、XeエキシマUV照射による複合材料の劣化の有無を調べるために、HA濃度が40wt%の厚さ1mmの複合プレート(HA/PLLA)の表裏両面に、XeエキシマUVを2700mJ/cmの光量で照射し、複合プレートの曲げ強度と、粘度平均分子量を測定した。
その結果、XeエキシマUV照射後の複合プレートは、その曲げ強度が180MPa前後、粘度平均分子量が18万前後であって、XeエキシマUV照射処理前の複合プレートの曲げ強度、粘度平均分子量と殆ど変化していなかった。
このことから、XeエキシマUVを2700mJ/cmの光量で照射した範囲では複合材料の劣化を招かず、HA/PLLAが有する本来の力学的特性を保つことが判る。
In addition, in order to investigate the presence or absence of deterioration of the composite material due to Xe excimer UV irradiation, Xe excimer UV is applied to both sides of the 1 mm thick composite plate (HA / PLLA) with an HA concentration of 40 wt% at a light quantity of 2700 mJ / cm 2 . And the bending strength and viscosity average molecular weight of the composite plate were measured.
As a result, the composite plate after the Xe excimer UV irradiation has a bending strength of about 180 MPa and a viscosity average molecular weight of about 180,000, and almost the same as the bending strength and viscosity average molecular weight of the composite plate before the Xe excimer UV irradiation treatment. I did not.
From this, it can be seen that in the range where Xe excimer UV is irradiated with a light amount of 2700 mJ / cm 2 , the composite material is not deteriorated and the original mechanical properties of HA / PLLA are maintained.

上記のXeエキシマUV照射処理された複合材料(HA/PLLA、HA濃度40wt%)についての、XeエキシマUV照射光量と、材料表面の水との接触角(°)と、FT−IR分析によるピーク比(1032cm−1/1756cm−1)と、EDXによるCa濃度と、それに基づいて換算された表層部のHA濃度を、下記表8にまとめて掲載する。
About the Xe excimer UV irradiation-treated composite material (HA / PLLA, HA concentration 40 wt%), the Xe excimer UV irradiation light amount, the contact angle (°) with water on the material surface, and the peak by FT-IR analysis The ratio (1032 cm −1 / 1756 cm −1 ), the Ca concentration by EDX, and the HA concentration of the surface layer portion converted based on the Ca concentration are listed in Table 8 below.

以上のように、XeエキシマUV照射処理が行われた複合材料(HA/PLLA)は、化学的な修飾を必要とせず、既に体内埋設型の医療器具で実績があるHAとPLLAのみの材料であり、表層部の生体内分解吸収性のPLLA(疎水性)の分解、揮発により、表層部のHA粒子(親水性)の濃度が高くなって複合材料の表層部が副産物を生じることなく親水化すると共に、適度な表面粗さRaの凹凸表面の形成により複合材料の表面積が大幅に増加して表面の濡れ性が良くなる。また、その照射光量によって、複合材料の表面性状が複合材料の劣化を招くことなく調整できる。従って、この複合材料を、例えば、生体内の骨に接触させて埋設すると、表層部に露出ないし突出する高濃度のHA粒子が骨伝導能を十分に発揮し、それによって骨組織が複合材料に伝導されて骨再生が促進されるので、生体内に埋入する骨用インプラント材料等として極めて有用なものである。   As described above, the composite material (HA / PLLA) that has been subjected to the Xe excimer UV irradiation treatment does not require chemical modification, and is a material only of HA and PLLA that has already been proven in implantable medical devices. Yes, the biodegradable and absorbable PLLA (hydrophobic) in the surface layer is decomposed and volatilized, so that the concentration of HA particles (hydrophilic) in the surface layer becomes high and the surface layer of the composite material becomes hydrophilic without generating by-products. At the same time, the surface area of the composite material is greatly increased by the formation of the uneven surface having an appropriate surface roughness Ra, and the wettability of the surface is improved. Further, the surface property of the composite material can be adjusted by the amount of irradiation light without causing deterioration of the composite material. Therefore, for example, when this composite material is embedded in contact with bone in a living body, high concentration HA particles exposed or protruded on the surface layer sufficiently exhibit osteoconductivity, whereby bone tissue becomes composite material. Since conduction and bone regeneration are promoted, it is extremely useful as a bone implant material or the like to be implanted in a living body.

図7は、HA濃度40wt%の複合材料(HA/PLLA)の表面にメタルハライド光(波長200〜450nm)を963mJ/cmの光量で照射処理した複合材料表面のSEM画像(倍率10000倍)であり、図8は、メタルハライド光を6542mJ/cmの光量で照射処理した複合材料のSEM画像(倍率10000倍)である。なお、メタルハライド光照射処理がされない複合材料(HA/PLLA)の表面のSEM画像は、図2のSEM画像と同じであるので省略する。
図8の複合材料は、その表面にHA粒子が多少露出し、表層部におけるHA濃度が少しは高くなっているようであるが、メタルハライド光の照射光量が少ない図7の複合材料は、HA粒子の露出が殆ど見られず、HA濃度が殆ど高くなっていないようである。
FIG. 7 is an SEM image (10,000 × magnification) of the surface of a composite material obtained by irradiating metal halide light (wavelength 200 to 450 nm) with a light amount of 963 mJ / cm 2 on the surface of the composite material (HA / PLLA) having an HA concentration of 40 wt%. FIG. 8 is an SEM image (10,000 × magnification) of a composite material obtained by irradiating metal halide light with a light amount of 6542 mJ / cm 2 . The SEM image of the surface of the composite material (HA / PLLA) that is not subjected to the metal halide light irradiation treatment is the same as the SEM image of FIG.
The composite material of FIG. 8 has some HA particles exposed on its surface, and the HA concentration in the surface layer portion seems to be slightly high, but the composite material of FIG. It seems that the HA concentration is hardly increased.

このメタルハライド光照射処理した図7、図8に示す複合材料と、1280mJ/cmの照射光量でメタルハライド光照射処理した複合材料(HA/PLLA)について、前記と同様にして測定した表面の水との接触角(°)と、FT−IR分析によるピーク比(1032cm−1/1756cm−1)と、EDXによるCa濃度と、それに基づいて換算されたHA濃度と、HA高濃度化の効果の有無を、下記表9にまとめて掲載する。
The composite material shown in FIGS. 7 and 8 subjected to the metal halide light irradiation treatment, and the surface water measured in the same manner as described above for the composite material (HA / PLLA) subjected to the metal halide light irradiation treatment with an irradiation light amount of 1280 mJ / cm 2 Contact angle (°), peak ratio (1032 cm −1 / 1756 cm −1 ) by FT-IR analysis, Ca concentration by EDX, HA concentration converted based on it, and the presence or absence of the effect of increasing HA concentration Are summarized in Table 9 below.

この表9をみれば、メタルハライド光はフォトンエネルギーの大きい短波長紫外線の出力が小さいため、照射光量が少ない場合(1280mJ/cm以下の場合)は、複合材料の親水化も、表層部のPLLAの分解、揮発も、表層部のHA濃度の高濃度化も殆ど見られず、実質的な効果がないことが判る。しかし、照射光量が6542mJ/cmと多くなると、表層部のHA濃度が56.84wt%と高くなり、XeエキシマUVを900mJ/cmの光量で照射した場合に相当する効果が得られることが判る。これより、照射する紫外線は、250nm以下、好ましくは200nm以下のフォトンエネルギーの大きいものが極めて有効であることが判る。 Table 9 shows that metal halide light has a small output of short wavelength ultraviolet rays with a large photon energy. Therefore, when the amount of irradiation light is small (when 1280 mJ / cm 2 or less), the hydrophilicity of the composite material also increases the PLLA of the surface layer portion. The decomposition and volatilization of the surface layer and the increase in the HA concentration in the surface layer are hardly observed, and it can be seen that there is no substantial effect. However, when the irradiation light quantity increases to 6542 mJ / cm 2 , the HA concentration in the surface layer portion increases to 56.84 wt%, and an effect equivalent to that obtained when Xe excimer UV is irradiated with a light quantity of 900 mJ / cm 2 can be obtained. I understand. From this, it can be seen that the ultraviolet rays to be irradiated are extremely effective when the photon energy is 250 nm or less, preferably 200 nm or less.

比較例として、400w・min/cmのエネルギー量で表面をコロナ放電処理した複合材料(HA/PLLA、HA濃度40wt%)のSEM画像(倍率10000倍)を図9に、また、2000w・min/cmのエネルギー量で表面をコロナ放電処理した複合材料のSEM画像(倍率10000倍)を図10に、更に、10000w・min/cmのエネルギー量で表面をコロナ放電処理した複合材料のSEM画像(倍率10000倍)を図11に掲げる。
そして、これらの複合材料とコロナ放電処理をしていない複合材料について、前記と同様にして測定した水との接触角(°)と、FT−IR分析によるピーク比(1032cm−1/1756cm−1)と、EDXによるCa濃度と、それに基づいて換算されたHA濃度と、HA高濃度化の効果の有無を、下記表10にまとめて掲載する。
As a comparative example, an SEM image (magnification 10,000 times) of a composite material (HA / PLLA, HA concentration 40 wt%) whose surface was subjected to corona discharge treatment with an energy amount of 400 w · min / cm 2 is shown in FIG. 9 and 2000 w · min. FIG. 10 shows an SEM image (a magnification of 10,000 times) of the composite material whose surface was corona discharge treated with an energy amount of / cm 2 , and an SEM of the composite material whose surface was corona discharge treated with an energy amount of 10,000 w · min / cm 2. Images (magnification 10,000 times) are listed in FIG.
Then, the composite material that does not these composite materials and corona discharge treatment, contact angle with water was measured in the same manner as the as (°), the peak ratio by FT-IR analysis (1032cm -1 / 1756cm -1 ), Ca concentration by EDX, HA concentration converted based on it, and the presence or absence of the effect of increasing HA concentration are listed in Table 10 below.

図11をみれば、10000w・min/cmのエネルギー量で表面をコロナ放電処理した複合材料の表面には、細かい凹空部が多く形成され、HA粒子がコロナ放電のエネルギー量が少ない図9や図10の複合材料の表面に比べると、HA濃度が多少高くなっているようである。
また、上記表10をみれば、コロナ放電処理により複合材料の接触角が50°近くまで減少してかなり親水化するが、複合材料の表層部におけるHA濃度は、コロナ放電のエネルギー量を10000w・min/cmにしても、未処理の複合材料のHA濃度に比べて7wt%程度高くなるに過ぎない。従って、コロナ放電処理は、複合材料の表面層におけるHAの高濃度化を図る手段として、有用性に欠けるものであるといえる。
Referring to FIG. 11, the surface of the composite material whose surface is subjected to corona discharge treatment with an energy amount of 10000 w · min / cm 2 has many fine concave portions formed therein, and the HA particles have a small amount of corona discharge energy. Compared to the surface of the composite material of FIG. 10, the HA concentration seems to be slightly higher.
Also, from Table 10 above, the contact angle of the composite material is reduced to nearly 50 ° by corona discharge treatment, which makes it considerably hydrophilic. However, the HA concentration in the surface layer portion of the composite material is 10000 w · Even at min / cm 2 , it is only about 7 wt% higher than the HA concentration of the untreated composite material. Therefore, it can be said that the corona discharge treatment is not useful as a means for increasing the concentration of HA in the surface layer of the composite material.

次に、本発明の他の実施例として、塩化ビニル樹脂に酸化チタン粒子を含有させた複合材料(TiO/PVC、TiO濃度14.6wt%)について説明する。
図12は未処理の複合材料(TiO/PVC)のSEM画像、図13はXeエキシマUVを2138mJ/cmの光量で照射処理した複合材料(TiO/PVC)のSEM画像、図14はXeエキシマUVを3260mJ/cmの光量で照射処理した複合材料(TiO/PVC)のSEM画像である。
Next, as another embodiment of the present invention, a composite material (TiO 2 / PVC, TiO 2 concentration 14.6 wt%) in which titanium oxide particles are contained in a vinyl chloride resin will be described.
FIG. 12 is an SEM image of an untreated composite material (TiO 2 / PVC), FIG. 13 is an SEM image of a composite material (TiO 2 / PVC) irradiated with Xe excimer UV at a light intensity of 2138 mJ / cm 2 , and FIG. the Xe excimer UV is a SEM image of a composite material irradiation with light quantity of 3260mJ / cm 2 (TiO 2 / PVC).

この実施例の複合材料(TiO/PVC)は、XeエキシマUV照射処理前は図12のSEM画像に示すように、表面粗さRaが小さい比較的平坦な表面を有している。しかし、その表面にXeエキシマUV(波長172nm、695kJ/mol)を2138mJ/cmの光量で照射すると、図13のSEM画像に示すように、複合材料の表層部のPVCが分解、揮発して凹空部が形成される一方、表層部のTiO粒子がそのまま残存して多少露出し、表面粗さRaが少し大きい凹凸表面となる。そして、XeエキシマUVを3260mJ/cmの光量まで増大して照射すると、表層部のPVCの分解、揮発量が多くなる一方、表層部のTiO粒子が露出ないし突出して、図14のSEM画像に示すように、表面粗さRaの大きい凹凸表面となり、PVCが分解、揮発した分だけ、表層部のTiO濃度が高濃度化される。但し、この複合材料は、それ自体のTiO濃度が14.6wt%と低いので、表層部におけるTiOの高濃度化はそれほど顕著ではない。 The composite material (TiO 2 / PVC) of this example has a relatively flat surface with a small surface roughness Ra as shown in the SEM image of FIG. 12 before the Xe excimer UV irradiation treatment. However, when the surface is irradiated with Xe excimer UV (wavelength 172 nm, 695 kJ / mol) at a light intensity of 2138 mJ / cm 2 , the PVC in the surface layer of the composite material decomposes and volatilizes as shown in the SEM image of FIG. While the hollow portion is formed, the TiO 2 particles in the surface layer portion remain as they are, and are exposed somewhat, resulting in an uneven surface having a slightly large surface roughness Ra. When the Xe excimer UV is irradiated to increase the light amount to 3260 mJ / cm 2 , the decomposition and volatilization amount of PVC in the surface layer portion increases, while the TiO 2 particles in the surface layer portion are exposed or protruded, and the SEM image in FIG. As shown in FIG. 3, the surface becomes a rough surface with a large surface roughness Ra, and the TiO 2 concentration in the surface layer portion is increased by the amount of decomposition and volatilization of PVC. However, since the composite material itself has a low TiO 2 concentration of 14.6 wt%, the increase in the concentration of TiO 2 in the surface layer is not so remarkable.

この複合材料(TiO/PVC)の表面に、下記表11に示すように、照射光量を段階的に増加させてXeエキシマUVを照射し、前記の接触角計を用いて、それぞれの複合材料表面の水との接触角を測定した。その結果を下記表11に示す。
As shown in Table 11 below, the surface of this composite material (TiO 2 / PVC) is irradiated with Xe excimer UV while gradually increasing the amount of irradiation light, and each of the composite materials is irradiated using the contact angle meter. The contact angle of the surface with water was measured. The results are shown in Table 11 below.

この表11を見ると、XeエキシマUV照射処理をしていない複合材料(TiO/PVC)の接触角が82.5°と大きくて疎水性を呈しているが、XeエキシマUVの照射光量が多くなるほど、接触角が小さくなり、3260mJ/cmの光量でXeエキシマUV照射処理をした複合材料は、接触角が24°まで減少して親水化が顕著に進行したことが判る。
この複合材料(TiO/PVC)は、複合材料それ自体のTiOの濃度が14.6wt%と低いため、3260mJ/cmの光量でXeエキシマUV照射処理をしたときの表層部のTiO濃度の上昇は1%程度であるが、それでも表11に示すように接触角が大幅に小さくなって顕著な濡れ性改善効果が得られるということは注目すべきである。
As shown in Table 11, the contact angle of the composite material (TiO 2 / PVC) not subjected to the Xe excimer UV irradiation treatment is as large as 82.5 ° and is hydrophobic, but the irradiation light amount of the Xe excimer UV is It can be seen that the contact angle decreases as the increase increases, and the hydrophilicity of the composite material subjected to the Xe excimer UV irradiation treatment with a light amount of 3260 mJ / cm 2 is significantly reduced by decreasing the contact angle to 24 °.
The composite material (TiO 2 / PVC), because the composite material concentration of TiO 2 itself is as low as 14.6 wt%, TiO 2 in the surface portion of when the Xe excimer UV irradiation treatment in light quantity of 3260mJ / cm 2 The increase in concentration is about 1%, but it should be noted that, as shown in Table 11, the contact angle is greatly reduced and a significant wettability improvement effect is obtained.

酸化チタンは、光(紫外線)エネルギーを受けると活性を帯び、強い酸化作用を発揮することから抗菌、防汚・防雲等の効果を有する。XeエキシマUV照射処理された上記の複合材料(TiO/PVC)は、TiO粒子が表層部に露出ないし突出しているため、この複合材料は、それらの効果を有するシートなどの用途に好適である。 Titanium oxide is active when it receives light (ultraviolet light) energy, and exhibits a strong oxidizing action, and thus has antibacterial, antifouling and anticlouding effects. Since the above-mentioned composite material (TiO 2 / PVC) subjected to the Xe excimer UV irradiation treatment has TiO 2 particles exposed or protruded on the surface layer portion, this composite material is suitable for applications such as a sheet having these effects. is there.

次に、本発明のもう一つの実施例として、塩化ビニル樹脂に珪酸カルシウムを含有させた複合材料(CaSiO/PVC、CaSiO濃度 32wt%)について説明する。
図15は未処理の複合材料(CaSiO/PVC)のSEM画像、図16はXeエキシマUVを2138mJ/cmの光量で照射処理した複合材料(CaSiO/PVC)のSEM画像、図17はXeエキシマUVを3260mJ/cmの光量で照射処理した複合材料(CaSiO/PVC)のSEM画像である。
Next, as another embodiment of the present invention, a composite material (CaSiO 3 / PVC, CaSiO 3 concentration 32 wt%) in which calcium silicate is contained in a vinyl chloride resin will be described.
FIG. 15 is an SEM image of an untreated composite material (CaSiO 3 / PVC), FIG. 16 is an SEM image of a composite material (CaSiO 3 / PVC) irradiated with Xe excimer UV at a light intensity of 2138 mJ / cm 2 , and FIG. the Xe excimer UV is a SEM image of a composite material irradiation with light quantity of 3260mJ / cm 2 (CaSiO 3 / PVC).

この実施例の複合材料(CaSiO/PVC)は、XeエキシマUV照射処理前は図15のSEM画像に示すように、CaSiOが露出していない比較的平坦な表面を有している。しかし、その表面にXeエキシマUV(波長172nm、695kJ/mol)を2138mJ/cmの光量で照射すると、図16のSEM画像に示すように、複合材料の表層部のPVCが分解、揮発して小さな凹空部が形成される一方、表層部のCaSiO粒子が多少露出して、表面粗さRaが比較的小さい凹凸表面となる。そして、XeエキシマUVを3260mJ/cmの光量まで増大して照射すると、表層部のPVCの分解、揮発量が多くなって凹空部が大きくなる一方、表層部のCaSiO粒子が露出ないし突出して、図17のSEM画像に示すように、表面粗さRaの大きい凹凸表面となり、PVCが分解、揮発した分だけ、表層部のCaSiO濃度が高濃度化された複合材料(CaSiO/PVC)となる。 The composite material (CaSiO 3 / PVC) of this example has a relatively flat surface on which CaSiO 3 is not exposed as shown in the SEM image of FIG. 15 before the Xe excimer UV irradiation treatment. However, when the surface is irradiated with Xe excimer UV (wavelength 172 nm, 695 kJ / mol) at a light intensity of 2138 mJ / cm 2 , the PVC in the surface layer of the composite material decomposes and volatilizes as shown in the SEM image of FIG. While a small concave portion is formed, the CaSiO 3 particles in the surface layer portion are somewhat exposed, resulting in an uneven surface with a relatively small surface roughness Ra. When the Xe excimer UV is irradiated to increase the light amount to 3260 mJ / cm 2 , the decomposition and volatilization amount of PVC in the surface layer portion increases and the hollow portion increases, while the CaSiO 3 particles in the surface layer portion are exposed or protruded. As shown in the SEM image of FIG. 17, the composite material (CaSiO 3 / PVC) has a concavo-convex surface with a large surface roughness Ra, and the CaSiO 3 concentration in the surface layer is increased by the amount of decomposition and volatilization of PVC. )

このXeエキシマUV照射処理された複合材料(CaSiO/PVC)は、CaSiO粒子が表層部に露出ないし突出して燃焼を抑制する耐火性能を有するため、難燃部材などの用途に好適である。 This Xe excimer UV-irradiated composite material (CaSiO 3 / PVC) is suitable for uses such as a flame retardant member because CaSiO 3 particles are exposed to or protrude from the surface layer portion and have a fire resistance that suppresses combustion.

Claims (8)

生体内分解吸収性の有機ポリマー及びバイオセラミックス粒子を含む複合材料であって、
前記生体内分解吸収性の有機ポリマーと、前記生体内分解吸収性の有機ポリマーに分散させた前記バイオセラミックス粒子とを含む複合材料を調製し、前記複合材料への紫外線照射により、前記複合材料の紫外線照射部における前記バイオセラミックス粒子の濃度が、紫外線照射前よりも高められていることを特徴とする複合材料。
A composite material comprising biodegradable and absorbable organic polymer and bioceramic particles,
A composite material comprising the biodegradable and absorbable organic polymer and the bioceramic particles dispersed in the biodegradable and absorbable organic polymer is prepared, and the composite material is irradiated with ultraviolet rays to form the composite material . A composite material characterized in that the concentration of the bioceramic particles in the ultraviolet irradiation part is higher than that before the ultraviolet irradiation.
前記複合材料の紫外線照射部における表面粗さが紫外線照射前よりも増大していることを特徴とする請求項1に記載の複合材料。 2. The composite material according to claim 1, wherein the surface roughness of the composite material at an ultraviolet irradiation portion is greater than that before the ultraviolet irradiation. 前記複合材料において前記バイオセラミックス粒子が前記生体内分解吸収性の有機ポリマー中に均一に分散していることを特徴とする請求項1または2に記載の複合材料。 The composite material according to claim 1, wherein the bioceramic particles are uniformly dispersed in the biodegradable and absorbable organic polymer in the composite material. 前記バイオセラミックス粒子を構成するバイオセラミックスが、ヒドロキシアパタイト、ジカルシウムフォスフェート、トリカルシウムフォスフェート、テトラカルシウムフォスフェート、オクタカルシウムフォスフェート、カルサイト、セラバイタル、またはジオプサイトであることを特徴とする請求項1から3のいずれかに記載の複合材料。   The bioceramics constituting the bioceramic particles are hydroxyapatite, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcite, serabital, or diopsite. Item 4. The composite material according to any one of Items 1 to 3. 前記生体内分解吸収性の有機ポリマーがポリ乳酸またはポリ乳酸共重合体であることを特徴とする請求項1から4のいずれかに記載の複合材料。   The composite material according to any one of claims 1 to 4, wherein the biodegradable and absorbable organic polymer is polylactic acid or a polylactic acid copolymer. 前記生体内分解吸収性の有機ポリマーが乳酸−グリコール酸共重合体であることを特徴とする請求項1から4のいずれかに記載の複合材料。   The composite material according to any one of claims 1 to 4, wherein the biodegradable and absorbable organic polymer is a lactic acid-glycolic acid copolymer. バイオセラミックス粒子を生体内分解吸収性の有機ポリマー中に分散させて複合材料を調製する工程と、
前記複合材料に紫外線を照射することにより前記複合材料の紫外線作用照射部における前記バイオセラミックス粒子の濃度を紫外線照射前よりも高める工程と、
を含むことを特徴とするバイオセラミックス粒子と生体内分解吸収性の有機ポリマーとを含む複合材料の製造方法。
A step of preparing a composite material by dispersing bioceramic particles in a biodegradable and absorbable organic polymer;
A step of increasing the concentration of the bioceramics particles in the ultraviolet action irradiation portion of the composite material than before the ultraviolet irradiation by irradiating ultraviolet light to the composite material,
A method for producing a composite material comprising bioceramic particles and a biodegradable and absorbable organic polymer.
紫外線が波長250nm以下の短波長紫外線であることを特徴とする請求項7に記載の複合材料の製造方法。
The method for producing a composite material according to claim 7, wherein the ultraviolet rays are short-wavelength ultraviolet rays having a wavelength of 250 nm or less.
JP2015036079A 2015-02-26 2015-02-26 Composite material and method for producing the same Active JP6595774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015036079A JP6595774B2 (en) 2015-02-26 2015-02-26 Composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015036079A JP6595774B2 (en) 2015-02-26 2015-02-26 Composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016155964A JP2016155964A (en) 2016-09-01
JP6595774B2 true JP6595774B2 (en) 2019-10-23

Family

ID=56825089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036079A Active JP6595774B2 (en) 2015-02-26 2015-02-26 Composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6595774B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3174147B2 (en) * 1992-06-05 2001-06-11 日本原子力研究所 Surface modification method of fluororesin by ultraviolet laser light
JP2000129018A (en) * 1998-10-26 2000-05-09 Dainippon Printing Co Ltd Production of synthetic resin molding having photocatalysis
DE19916467C5 (en) * 1999-04-12 2007-05-16 Ticona Gmbh Process for the production of electrically conductive layers on the surface of plastic molded parts by laser energy and the article produced therewith
JP4184652B2 (en) * 2001-11-27 2008-11-19 タキロン株式会社 Organic-inorganic composite porous body and method for producing the same
JP2005085554A (en) * 2003-09-05 2005-03-31 Polyplastics Co Conductive resin molding and its manufacturing method

Also Published As

Publication number Publication date
JP2016155964A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
Jaganathan et al. Radiation-induced surface modification of polymers for biomaterial application
Çaykara et al. Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces
Lu et al. Surface modification of biomaterials using plasma immersion ion implantation and deposition
Kizuki et al. Apatite-forming PEEK with TiO 2 surface layer coating
Ahad et al. Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) for control of biocompatibility
US6407156B1 (en) Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
JP2012514062A (en) Highly water-repellent material with nano-sized irregularities and post-treatment
Ma et al. Plasma for biomedical decontamination: From plasma-engineered to plasma-active antimicrobial surfaces
JP5525231B2 (en) Method for producing thermal spray material and method for producing thermal spray coating
Reynamartínez et al. Use of cold plasma technology in biomaterials and their potential utilization in controlled administration of active substances
JP6595774B2 (en) Composite material and method for producing the same
Vesel Deposition of Chitosan on Plasma-Treated Polymers—A Review
Novotná et al. Tuning surface chemistry of polyetheretherketone by gold coating and plasma treatment
Unosson et al. Stability and prospect of UV/H2O2 activated titania films for biomedical use
JP2014515422A5 (en)
WO2012177535A2 (en) Biodegradable photocatalytic nanocomposite microsponges of polylactic acid
Vasilets et al. Regulation of the biological properties of medical polymer materials with the use of a gas-discharge plasma and vacuum ultraviolet radiation
Ahad et al. Polycarbonate polymer surface modification by extreme ultraviolet (EUV) radiation
Fink et al. The “artificial ostrich eggshell” project: Sterilizing polymer foils for food industry and medicine
Oh et al. Visible light irradiation-mediated drug elution activity of nitrogen-doped TiO2 nanotubes
Hashimoto et al. Titanium dioxide/ultra high molecular weight polyethylene composite for bone-repairing applications: preparation and biocompatibility
KR102260974B1 (en) Method for light-curable nanosilica ceramic composites for titanium oxide photocatalyst and devices prepared therefrom, catalyst by the same
Petisco-Ferrero et al. Surface functionalization of an osteoconductive filler by plasma polymerization of poly (ε-caprolactone) and poly (acrylic acid) films
JP5344451B2 (en) Polymer resin molded body and method for producing the same
Agrawal et al. Plasma Irradiation of Polymers: Surface to Biological Mitigation

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190927

R150 Certificate of patent or registration of utility model

Ref document number: 6595774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250