JP6593870B2 - Thermoelectric conversion material, thermoelectric power generation element using the same, and Peltier cooling element - Google Patents

Thermoelectric conversion material, thermoelectric power generation element using the same, and Peltier cooling element Download PDF

Info

Publication number
JP6593870B2
JP6593870B2 JP2015154340A JP2015154340A JP6593870B2 JP 6593870 B2 JP6593870 B2 JP 6593870B2 JP 2015154340 A JP2015154340 A JP 2015154340A JP 2015154340 A JP2015154340 A JP 2015154340A JP 6593870 B2 JP6593870 B2 JP 6593870B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
merit
thermoelectric
dimensionless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015154340A
Other languages
Japanese (ja)
Other versions
JP2016039372A (en
Inventor
晃一郎 末國
敏郎 高畠
道広 太田
祐太 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015154340A priority Critical patent/JP6593870B2/en
Publication of JP2016039372A publication Critical patent/JP2016039372A/en
Application granted granted Critical
Publication of JP6593870B2 publication Critical patent/JP6593870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、熱電変換材料、およびそれを用いた熱電発電素子、ペルチェ冷却用素子に関する。   The present invention relates to a thermoelectric conversion material, a thermoelectric power generation element using the material, and a Peltier cooling element.

熱電変換とは、固体素子を用いて熱エネルギーと電気エネルギーを相互変換する技術である。熱エネルギーを電気エネルギーに変換する技術を熱電発電と呼び、熱電効果の1つであるゼーベック効果に基づく。一方、電気エネルギーから熱エネルギーへの変換はペルチェ効果に由来し、冷却や精密温調に応用されている。これらの発電装置や温調装置は、機械的な可動部を有さず、静音・無振動・長寿命という長所を併せもつ。   Thermoelectric conversion is a technology that mutually converts thermal energy and electrical energy using a solid element. The technology that converts thermal energy into electrical energy is called thermoelectric power generation and is based on the Seebeck effect, which is one of the thermoelectric effects. On the other hand, the conversion from electrical energy to thermal energy originates from the Peltier effect and is applied to cooling and precision temperature control. These power generators and temperature control devices do not have mechanical moving parts, and have the advantages of quietness, no vibration, and long life.

熱電発電では、固体素子の両端間の温度差が電気エネルギーに直接変換される。この方法は、化石燃料を用いる発電と比較して環境にやさしい発電技術である。この熱電発電を利用して、工場や自動車から廃棄されている膨大な未利用熱エネルギーを回収し、そこから電力を生み出すことが可能になれば、化石燃料の消費量低減、即ち、CO削減と省エネルギーに大いに貢献できる。 In thermoelectric power generation, the temperature difference between both ends of a solid element is directly converted into electrical energy. This method is a power generation technology that is more environmentally friendly than power generation using fossil fuels. If this thermoelectric power generation can be used to recover a huge amount of unused thermal energy that is discarded from factories and automobiles and generate electricity from it, it will reduce fossil fuel consumption, that is, reduce CO 2 emissions. It can greatly contribute to energy saving.

ペルチェ冷却(電子冷却)では、熱電変換素子に直流電流を通電すると素子の片端が冷却される現象を用いている。この冷却は、フロンガスなどの冷媒を必要としない点、及び電流制御に基づく冷却温度の精密制御を長所としている。   Peltier cooling (electronic cooling) uses a phenomenon in which one end of an element is cooled when a direct current is applied to the thermoelectric conversion element. This cooling has the advantage of not requiring a refrigerant such as Freon gas and precise control of the cooling temperature based on current control.

このような熱電変換材料において、素子としての性能は熱電変換材料の無次元性能指数ZTとして求めることができる。熱電変換材料の無次元性能指数ZTは、ZT=ST/ρκで表わされる。Zは熱電変換材料の性能指数、Sは熱電変換材料のゼーベック係数、Tは絶対温度、ρは熱電変換材料の電気抵抗率、κは熱電変換材料の熱伝導率である。 In such a thermoelectric conversion material, the performance as an element can be obtained as the dimensionless figure of merit ZT of the thermoelectric conversion material. The dimensionless figure of merit ZT of the thermoelectric conversion material is represented by ZT = S 2 T / ρκ. Z is the figure of merit of the thermoelectric conversion material, S is the Seebeck coefficient of the thermoelectric conversion material, T is the absolute temperature, ρ is the electrical resistivity of the thermoelectric conversion material, and κ is the thermal conductivity of the thermoelectric conversion material.

ここで、硫化銅鉱物をベースにした高性能熱電変換材料が提案されている。より具体的には、例えば、Cu12−XSb13で表される熱電変換材料(MがZnの場合は、0<X<2.0、MがFeの場合は、0<X<1.5、MがNiの場合は、0≦X≦2.0)が提案されている。そして、この熱電変換材料の400℃における無次元性能指数ZTは0.5〜0.9であり、高い無次元性能指数ZTを示すと記載されている(例えば、特許文献1、非特許文献1参照)。 Here, a high-performance thermoelectric conversion material based on a copper sulfide mineral has been proposed. More specifically, for example, a thermoelectric conversion material represented by Cu 12-X M X Sb 4 S 13 (when M is Zn, 0 <X <2.0, and when M is Fe, 0 < When X <1.5 and M is Ni, 0 ≦ X ≦ 2.0) is proposed. And the dimensionless figure of merit ZT in 400 degreeC of this thermoelectric conversion material is 0.5-0.9, and it is described that the high dimensionless figure of merit ZT is shown (for example, patent documents 1, nonpatent literature 1). reference).

また、熱電変換材料として、アンチモン−テルルおよびビスマス−テルルが提案されている。この熱電変換材料の室温における無次元性能指数ZTは1程度であり、高い無次元性能指数ZTを示すと記載されている。更に、鉛−テルルとアンチモンを含有する材料は、室温から400℃の範囲で高い無次元性能指数ZTを示すと記載されている(例えば、非特許文献2参照)。   Further, antimony-tellurium and bismuth-tellurium have been proposed as thermoelectric conversion materials. The thermoelectric conversion material has a dimensionless figure of merit ZT at room temperature of about 1, and is described as exhibiting a high dimensionless figure of merit ZT. Furthermore, it is described that a material containing lead-tellurium and antimony exhibits a high dimensionless figure of merit ZT in the range of room temperature to 400 ° C. (see, for example, Non-Patent Document 2).

国際公開第2014/008414号公報International Publication No. 2014/008414

Koichiro Suekuni、 Kojiro Tsuruta、Masaru Kunii、Hirotaka Nishiate、Eiji Nishibori、Sachiko Maki、Michihiro Ohta、Atsushi Yamamoto、and Mikio Koyano、「High-performance thermoelectric mineral Cu12-xNixSb4S13tetrahedrite」、Journal of Applied Physics、113号、043712-1〜5ページ、doi:10.1063/1.4789389、2013年1月Koichiro Suekuni, Kojiro Tsuruta, Masaru Kunii, Hirotaka Nishiate, Eiji Nishibori, Sachiko Maki, Michihiro Ohta, Atsushi Yamamoto, and Mikio Koyano, "High-performance thermoelectric mineral Cu12-xNixSb4S13tetrahedrite", Journal of Applied Physics, No. 113, 04371 ~ 5 pages, doi: 10.1063 / 1.4789389, January 2013 G. Jeffrey Snyder、Eric S. Toberer、「Complex thermoelectric materials」、Nature Materials、7号、105〜114ページ、doi:10.1038/nmat2090、2008年2月G. Jeffrey Snyder, Eric S. Toberer, "Complex thermoelectric materials", Nature Materials, No. 7, pp. 105-114, doi: 10.1038 / nmat2090, February 2008

上記特許文献1と非特許文献1に記載の熱電変換材料においては、毒性元素であるアンチモンが含まれており、また、上記非特許文献2に記載の熱電変換材料においても、毒性元素である鉛とアンチモンが含まれているため、環境フレンドリーの観点から問題となっていた。   The thermoelectric conversion materials described in Patent Document 1 and Non-Patent Document 1 contain antimony that is a toxic element, and the thermoelectric conversion material described in Non-Patent Document 2 also contains lead that is a toxic element. And antimony was included, so it was a problem from an environmental friendly point of view.

また、上記非特許文献2に記載の熱電変換材料においては、地殻埋蔵量が少ない元素であるテルルが含まれているため、このような熱電変換材料では、熱電発電の幅広い実用化が容易ではないという問題があった。   In addition, the thermoelectric conversion material described in Non-Patent Document 2 contains tellurium, which is an element with a small amount of crustal reserves. Therefore, with such a thermoelectric conversion material, a wide range of practical use of thermoelectric power generation is not easy. There was a problem.

更に、鉛、テルル、ビスマス、およびアンチモンなどの重元素(重量の重い元素)が含まれるため、熱電変換素子の単位体積当たりの密度が高くなり、発電システム全体の重量が大きくなってしまう。その結果、軽量化が望まれている分野(例えば、自動車など)において、熱電発電システムの搭載による重量増加というデメリットが大きいという問題があった。   Furthermore, since heavy elements (heavy elements) such as lead, tellurium, bismuth, and antimony are included, the density per unit volume of the thermoelectric conversion element increases, and the weight of the entire power generation system increases. As a result, in the field where weight reduction is desired (for example, automobiles, etc.), there has been a problem that the demerit of an increase in weight due to mounting of a thermoelectric power generation system is large.

そこで、本発明は、かかる点に鑑みてなされたものであり、低毒性かつ地殻埋蔵量が多い元素から構成されるとともに、高い無次元性能指数ZTを示し、軽量化に対応可能な熱電変換材料、およびそれを用いた熱電発電素子、ペルチェ冷却用素子を提供することを目的とする。   Therefore, the present invention has been made in view of such a point, and is composed of an element having low toxicity and a large amount of crustal reserves, and has a high dimensionless figure of merit ZT, and can cope with weight reduction. And a thermoelectric power generation element and a Peltier cooling element using the same.

上記目的を達成するために、本発明の熱電変換材料は、下記式(1)で表されることを特徴とする。   In order to achieve the above object, the thermoelectric conversion material of the present invention is represented by the following formula (1).

Figure 0006593870
(式中、MはMn、Fe、Co、Ni、及びZnから選ばれる少なくとも1種であり、AはV、Nb、及びTaから選ばれる少なくとも1種であり、EはSi、Ge、及びSnから選ばれる少なくとも1種であり、Xは0以上5以下である。)
Figure 0006593870
(In the formula, M is at least one selected from Mn, Fe, Co, Ni, and Zn, A is at least one selected from V, Nb, and Ta, and E is Si, Ge, and Sn) At least one selected from X, and X is 0 or more and 5 or less.)

本発明の熱電変換材料によれば、低毒性かつ地殻埋蔵量が多い元素から構成されるとともに、高い無次元性能指数ZTを示し、軽量化に対応可能な熱電変換材料を提供することが可能になる。   According to the thermoelectric conversion material of the present invention, it is possible to provide a thermoelectric conversion material that is composed of an element having low toxicity and a large amount of crustal reserves and that exhibits a high dimensionless figure of merit ZT and can cope with weight reduction. Become.

以下、本発明の熱電変換材料について説明する。本発明においては、熱電変換材料として、下記一般式(2)で示される硫化物が使用される。   Hereinafter, the thermoelectric conversion material of the present invention will be described. In the present invention, a sulfide represented by the following general formula (2) is used as the thermoelectric conversion material.

Figure 0006593870
Figure 0006593870

この硫化物は、コルーサ鉱(Cu24〜26(As,Sn,Sb)32)と類似する結晶構造を有しているが、このコルーサ鉱は、これまで、熱電変換材料として使用・検討されていない。 This sulfide has a crystal structure similar to that of corusa ore (Cu 24-26 V 2 (As, Sn, Sb) 6 S 32 ), but this corrosa ore has been used as a thermoelectric conversion material until now.・ Not considered.

そして、本発明者が鋭意研究を重ねた結果、上記一般式(2)で示される熱電変換材料は、120〜400℃の温度範囲において、低い熱伝導率と高いゼーベック係数および低い電気抵抗率を発現させること、即ち、高い無次元性能指数ZTを示すことが明らかになり、上記課題が解決されることを見出し、本発明を完成するに至った。   And as a result of the present inventor's extensive research, the thermoelectric conversion material represented by the general formula (2) has a low thermal conductivity, a high Seebeck coefficient and a low electrical resistivity in a temperature range of 120 to 400 ° C. It has become clear that it is expressed, that is, it exhibits a high dimensionless figure of merit ZT, and it has been found that the above-mentioned problems can be solved, thereby completing the present invention.

そして、熱電変換材料として、このような硫化物を使用することにより、低毒性かつ地殻埋蔵量が多い硫黄と銅から主に構成されるとともに、高い無次元性能指数ZTを示し、軽量化に対応可能な熱電変換材料を提供することが可能になる。   And by using such a sulfide as a thermoelectric conversion material, it is mainly composed of sulfur and copper with low toxicity and a large amount of crustal reserves, and also exhibits a high dimensionless figure of merit ZT, corresponding to weight reduction It becomes possible to provide a possible thermoelectric conversion material.

ここで、高いゼーベック係数と低い電気抵抗率を達成するとの観点から、上記一般式(2)における金属Mとしては、Cuに類似の電子配置を有するZnが好ましい。また、金属Mとして、Znと同様に、3d軌道に電子を有し、2価のイオン状態をとることができるMn、Fe、Co、及びNiを使用することができる。   Here, from the viewpoint of achieving a high Seebeck coefficient and a low electrical resistivity, the metal M in the general formula (2) is preferably Zn having an electronic configuration similar to Cu. As the metal M, Mn, Fe, Co, and Ni that have an electron in a 3d orbital and can take a divalent ion state can be used as in the case of Zn.

また、電荷バランスの観点から、上記一般式(2)における金属Mに関するXの範囲は、0以上5以下が好ましく、高いゼーベック係数および低い電気抵抗率を達成するとの観点から、0以上4以下がより好ましい。   Further, from the viewpoint of charge balance, the range of X relating to the metal M in the general formula (2) is preferably 0 or more and 5 or less, and from the viewpoint of achieving a high Seebeck coefficient and low electrical resistivity, 0 or more and 4 or less. More preferred.

なお、Cu26−x32におけるXの範囲はCu、M2+、A5+、またはE4+(Si4+、Ge4+、Sn4+)及びS2−の電荷バランスにより決定することが好ましい。 Note that the range of X in Cu 26-x M x A 2 E 6 S 32 is determined by the charge balance of Cu + , M 2+ , A 5+ , or E 4+ (Si 4+ , Ge 4+ , Sn 4+ ) and S 2−. It is preferable to do.

例えば、X=0であれば電荷の和は−4であるため、材料は金属的な電気的特性を示し、X=4であれば電荷の和は0となるため、材料は半導体的な電気的特性を示す。熱電材料としては金属と半導体の中間の電荷キャリア密度を有することが求められるため、Xの範囲としては0以上4以下が好ましい。   For example, if X = 0, the sum of charges is -4, so the material exhibits metallic electrical characteristics, and if X = 4, the sum of charges is 0, so the material is semiconductive. Characteristics. Since the thermoelectric material is required to have an intermediate charge carrier density between a metal and a semiconductor, the range of X is preferably 0 or more and 4 or less.

また、高いゼーベック係数と低い電気抵抗率を達成するとの観点から、上記一般式(2)における金属Aとしては、5族の遷移金属であるV、Nb、及びTaから選ばれる少なくとも1種が好ましい。   Further, from the viewpoint of achieving a high Seebeck coefficient and a low electrical resistivity, the metal A in the general formula (2) is preferably at least one selected from V, Nb, and Ta which are Group 5 transition metals. .

また、熱伝導率を低下させるとの観点から、上記一般式(2)における金属Eとしては、Cu及びSに対する原子量および原子半径の差が大きいSi、Ge、及びSnから選ばれる少なくとも1種が好ましい。   Further, from the viewpoint of reducing the thermal conductivity, the metal E in the general formula (2) is at least one selected from Si, Ge, and Sn having a large difference in atomic weight and atomic radius with respect to Cu and S. preferable.

また、上記一般式(2)で示される熱電変換材料は、その主成分が原子量の小さいCuとSであるため、熱電変換材料の軽量化に対応することが可能であるが、例えば、自動車へ搭載する場合は、より軽量である方が好ましいため、上記一般式(2)で表される熱電変換材料の単位体積当たりの質量密度が、上記非特許文献2に記載の鉛―テルル、アンチモン−テルル、またはビスマス―テルルの密度(6.5〜8.3g/cm)よりも十分に低い5g/cm以下であることが好ましい。 In addition, the thermoelectric conversion material represented by the general formula (2) can cope with the weight reduction of the thermoelectric conversion material because the main components thereof are Cu and S having a small atomic weight. In the case of mounting, since it is preferable that the weight is lighter, the mass density per unit volume of the thermoelectric conversion material represented by the general formula (2) is lead-tellurium, antimony- It is preferably 5 g / cm 3 or less, which is sufficiently lower than the density of tellurium or bismuth-tellurium (6.5 to 8.3 g / cm 3 ).

また、一般的な熱電発電モジュールとペルチェ冷却用モジュールは、π型形状をしており、n型およびp型熱電変換材料からなる熱電素子、それらを接合する電極材料、および絶縁材料から構成される。そして、このp型の熱電素子として、上記一般式(2)に示す熱電変換材料を用いることができる。   Further, a general thermoelectric power generation module and a Peltier cooling module have a π-shape, and are composed of a thermoelectric element made of n-type and p-type thermoelectric conversion materials, an electrode material for joining them, and an insulating material. . As the p-type thermoelectric element, a thermoelectric conversion material represented by the general formula (2) can be used.

以下に、本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを本発明の範囲から除外するものではない。   Hereinafter, the present invention will be described based on examples. In addition, this invention is not limited to these Examples, These Examples can be changed and changed based on the meaning of this invention, and they are excluded from the scope of the present invention. is not.

(実施例1)
(熱電変換材料の作製)
まず、原料であるCu(1.2386g)、Zn(0.0510g)、V(0.0794g)、Sn(0.5553g)、及びS(0.8000g)を、石英管の中に真空封入し、1100℃で反応させて、Cu25ZnVSn32の多結晶試料を2.7244g得た。なお、得られた多結晶試料の同定は、粉末X線回折および電子プローブマイクロ元素分析により行った。
(Example 1)
(Production of thermoelectric conversion material)
First, Cu (1.2386 g), Zn (0.0510 g), V (0.0794 g), Sn (0.5553 g), and S (0.8000 g) as raw materials are vacuum sealed in a quartz tube. , it is reacted in 1100 ° C., to give 2.7244g of polycrystalline samples of Cu 25 ZnV 2 Sn 6 S 32 . The obtained polycrystalline sample was identified by powder X-ray diffraction and electron probe microelement analysis.

次に、この多結晶試料を粉末化したものをペレット状に成形し、800℃でアニール処理を行うことにより不純物を除去した。その後、得られた多結晶試料を再度粉砕し、800℃、50MPaの条件下で焼結し、空隙の少ない高密度な多結晶試料を得た。   Next, the polycrystalline sample was pulverized into a pellet and subjected to annealing at 800 ° C. to remove impurities. Thereafter, the obtained polycrystalline sample was pulverized again and sintered under conditions of 800 ° C. and 50 MPa to obtain a high-density polycrystalline sample with few voids.

(熱電変換の無次元性能指数ZTの算出)
次に、所定の温度範囲(室温である約30℃〜約390℃)において、得られた多結晶試料の電気抵抗率ρ〔μΩm〕、ゼーベック係数S〔μV/K〕、熱伝導率κ〔W/Km〕を測定し、熱電変換の無次元性能指数ZTを、ZT=ST/ρκの式より求めた。以上の結果を表1に示す。
(Calculation of dimensionless figure of merit ZT for thermoelectric conversion)
Next, in a predetermined temperature range (room temperature of about 30 ° C. to about 390 ° C.), the obtained polycrystalline sample has an electrical resistivity ρ [μΩm], Seebeck coefficient S [μV / K], and thermal conductivity κ [ W / Km] was measured, and the dimensionless figure of merit ZT of thermoelectric conversion was determined from the equation ZT = S 2 T / ρκ. The results are shown in Table 1.

(実施例2)
(熱電変換材料の作製)
まず、原料であるCu(1.2882g)、V(0.0794g)、Ge(0.3398g)、及びS(0.8000g)を、石英管の中に真空封入し、1100℃で反応させて、Cu26Ge32の多結晶試料を2.5074g得た。なお、得られた多結晶試料の同定は粉末X線回折および電子プローブマイクロ元素分析により行った。
(Example 2)
(Production of thermoelectric conversion material)
First, Cu (1.2882 g), V (0.0794 g), Ge (0.3398 g), and S (0.8000 g) as raw materials are vacuum sealed in a quartz tube and reacted at 1100 ° C. A 2.0574 g polycrystalline sample of Cu 26 V 2 Ge 6 S 32 was obtained. The obtained polycrystalline sample was identified by powder X-ray diffraction and electron probe microelement analysis.

次に、この多結晶試料を粉末化したものをペレット状に成形し、800℃でアニール処理を行うことにより不純物を除去した。その後、得られた多結晶試料を再度粉砕し、800℃、50MPaの条件下で焼結し、空隙の少ない高密度な多結晶試料を得た。   Next, the polycrystalline sample was pulverized into a pellet and subjected to annealing at 800 ° C. to remove impurities. Thereafter, the obtained polycrystalline sample was pulverized again and sintered under conditions of 800 ° C. and 50 MPa to obtain a high-density polycrystalline sample with few voids.

次に、上述の第1の実施形態の場合と同様にして、熱電変換の無次元性能指数ZTを算出した。以上の結果を表2に示す。   Next, the dimensionless figure of merit ZT of thermoelectric conversion was calculated in the same manner as in the first embodiment described above. The results are shown in Table 2.

(実施例3)
(熱電変換材料の作製)
まず、原料であるCu(1.6365g)、Nb(0.1842g)、Si(0.1667g)、及びS(1.0178g)を、石英管の中に真空封入し、1050℃で反応させて、Cu26NbSi32の多結晶試料を3.0052g得た。なお、得られた多結晶試料の同定は粉末X線回折により行った。
Example 3
(Production of thermoelectric conversion material)
First, Cu (1.6365 g), Nb (0.1842 g), Si (0.1667 g), and S (1.0178 g) as raw materials are vacuum-sealed in a quartz tube and reacted at 1050 ° C. 3.0052 g of a polycrystalline sample of Cu 26 Nb 2 Si 6 S 32 was obtained. The obtained polycrystalline sample was identified by powder X-ray diffraction.

次に、この多結晶試料を粉末化したものを850℃、70MPaの条件下で焼結し、空隙の少ない高密度な多結晶試料を得た。   Next, the powdered polycrystalline sample was sintered under the conditions of 850 ° C. and 70 MPa to obtain a high-density polycrystalline sample with few voids.

次に、上述の第1の実施形態の場合と同様にして、熱電変換の無次元性能指数ZTを算出した。以上の結果を表3に示す。   Next, the dimensionless figure of merit ZT of thermoelectric conversion was calculated in the same manner as in the first embodiment described above. The above results are shown in Table 3.

(実施例4)
(熱電変換材料の作製)
まず、原料であるCu(1.2882g)、V(0.0794g)、Sn(0.5553g)、及びS(0.8000g)を、石英管の中に真空封入し、1100℃で反応させて、Cu26Sn32の多結晶試料を2.7229g得た。なお、得られた多結晶試料の同定は粉末X線回折および電子プローブマイクロ元素分析により行った。
(Example 4)
(Production of thermoelectric conversion material)
First, Cu (1.2882 g), V (0.0794 g), Sn (0.5553 g), and S (0.8000 g) as raw materials are sealed in a quartz tube and reacted at 1100 ° C. 2.7229 g of a polycrystalline sample of Cu 26 V 2 Sn 6 S 32 was obtained. The obtained polycrystalline sample was identified by powder X-ray diffraction and electron probe microelement analysis.

次に、この多結晶試料を粉末化したものをペレット状に成形し、800℃でアニール処理を行うことにより不純物を除去した。その後、得られた多結晶試料を再度粉砕し、800℃、50MPaの条件下で焼結し、空隙の少ない高密度な多結晶試料を得た。   Next, the polycrystalline sample was pulverized into a pellet and subjected to annealing at 800 ° C. to remove impurities. Thereafter, the obtained polycrystalline sample was pulverized again and sintered under conditions of 800 ° C. and 50 MPa to obtain a high-density polycrystalline sample with few voids.

次に、上述の第1の実施形態の場合と同様にして、熱電変換の無次元性能指数ZTを算出した。以上の結果を表4に示す。   Next, the dimensionless figure of merit ZT of thermoelectric conversion was calculated in the same manner as in the first embodiment described above. The results are shown in Table 4.

(実施例5)
(熱電変換材料の作製)
まず、原料であるCu(1.1891g)、Zn(0.1019g)、V(0.0794g)、Sn(0.5553g)、及びS(0.8000g)を、石英管の中に真空封入し、1100℃で反応させて、Cu24ZnSn32の多結晶試料を2.7258g得た。なお、得られた多結晶試料の同定は粉末X線回折および電子プローブマイクロ元素分析により行った。
(Example 5)
(Production of thermoelectric conversion material)
First, Cu (1.1891 g), Zn (0.1019 g), V (0.0794 g), Sn (0.5553 g), and S (0.8000 g) as raw materials are vacuum-sealed in a quartz tube. , it is reacted in 1100 ° C., to give 2.7258g of polycrystalline samples of Cu 24 Zn 2 V 2 Sn 6 S 32. The obtained polycrystalline sample was identified by powder X-ray diffraction and electron probe microelement analysis.

次に、この多結晶試料を粉末化したものをペレット状に成形し、800℃でアニール処理を行うことにより不純物を除去した。その後、得られた多結晶試料を再度粉砕し、800℃、50MPaの条件下で焼結し、空隙の少ない高密度な多結晶試料を得た。   Next, the polycrystalline sample was pulverized into a pellet and subjected to annealing at 800 ° C. to remove impurities. Thereafter, the obtained polycrystalline sample was pulverized again and sintered under conditions of 800 ° C. and 50 MPa to obtain a high-density polycrystalline sample with few voids.

次に、上述の第1の実施形態の場合と同様にして、熱電変換の無次元性能指数ZTを算出した。以上の結果を表5に示す。   Next, the dimensionless figure of merit ZT of thermoelectric conversion was calculated in the same manner as in the first embodiment described above. The results are shown in Table 5.

(実施例6)
(熱電変換材料の作製)
まず、原料であるCu(1.1395g)、Zn(0.1529g)、V(0.0794g)、Sn(0.5553g)、及びS(0.8000g)を、石英管の中に真空封入し、1100℃で反応させて、Cu23ZnSn32の多結晶試料を2.7272g得た。なお、得られた多結晶試料の同定は粉末X線回折および電子プローブマイクロ元素分析により行った。
(Example 6)
(Production of thermoelectric conversion material)
First, Cu (1.1395 g), Zn (0.1529 g), V (0.0794 g), Sn (0.5553 g), and S (0.8000 g) as raw materials are vacuum-sealed in a quartz tube. , it is reacted in 1100 ° C., to give 2.7272g of polycrystalline samples of Cu 23 Zn 3 V 2 Sn 6 S 32. The obtained polycrystalline sample was identified by powder X-ray diffraction and electron probe microelement analysis.

次に、この多結晶試料を粉末化したものをペレット状に成形し、800℃でアニール処理を行うことにより不純物を除去した。その後、得られた多結晶試料を再度粉砕し、800℃、50MPaの条件下で焼結し、空隙の少ない高密度な多結晶試料を得た。   Next, the polycrystalline sample was pulverized into a pellet and subjected to annealing at 800 ° C. to remove impurities. Thereafter, the obtained polycrystalline sample was pulverized again and sintered under conditions of 800 ° C. and 50 MPa to obtain a high-density polycrystalline sample with few voids.

次に、上述の第1の実施形態の場合と同様にして、熱電変換の無次元性能指数ZTを算出した。以上の結果を表6に示す。   Next, the dimensionless figure of merit ZT of thermoelectric conversion was calculated in the same manner as in the first embodiment described above. The results are shown in Table 6.

(実施例7)
(熱電変換材料の作製)
まず、原料であるCu(1.3865g)、Nb(0.1560g)、Sn(0.5986g)、及びS(0.8610g)を、石英管の中に真空封入し、1050℃で反応させて、Cu26NbSn32の多結晶試料を3.0021g得た。なお、得られた多結晶試料の同定は粉末X線回折により行った。
(Example 7)
(Production of thermoelectric conversion material)
First, Cu (1.3865 g), Nb (0.1560 g), Sn (0.5986 g), and S (0.8610 g) as raw materials are vacuum-sealed in a quartz tube and reacted at 1050 ° C. Then, 3.0021 g of a polycrystalline sample of Cu 26 Nb 2 Sn 6 S 32 was obtained. The obtained polycrystalline sample was identified by powder X-ray diffraction.

次に、この多結晶試料を粉末化したものを700℃、70MPaの条件下で焼結し、空隙の少ない高密度な多結晶試料を得た。   Next, the powdered polycrystalline sample was sintered under the conditions of 700 ° C. and 70 MPa to obtain a high-density polycrystalline sample with few voids.

次に、上述の第1の実施形態の場合と同様にして、熱電変換の無次元性能指数ZTを算出した。以上の結果を表7に示す。   Next, the dimensionless figure of merit ZT of thermoelectric conversion was calculated in the same manner as in the first embodiment described above. The results are shown in Table 7.

(実施例8)
(熱電変換材料の作製)
まず、原料であるCu(1.3943g)、V(0.0656g)、Ta(0.00768g)、Sn(0.6055g)、及びS(0.8690g)を、石英管の中に真空封入し、1050℃で反応させて、Cu261.5Ta0.5Sn32の多結晶試料を3.0112g得た。なお、得られた多結晶試料の同定は粉末X線回折により行った。
(Example 8)
(Production of thermoelectric conversion material)
First, Cu (1.3943 g), V (0.0656 g), Ta (0.00768 g), Sn (0.6055 g), and S (0.8690 g) as raw materials are vacuum sealed in a quartz tube. , it is reacted in 1050 ° C., to give 3.0112g of polycrystalline samples of Cu 26 V 1.5 Ta 0.5 Sn 6 S 32. The obtained polycrystalline sample was identified by powder X-ray diffraction.

次に、この多結晶試料を粉末化したものを700℃、70MPaの条件下で焼結し、空隙の少ない高密度な多結晶試料を得た。   Next, the powdered polycrystalline sample was sintered under the conditions of 700 ° C. and 70 MPa to obtain a high-density polycrystalline sample with few voids.

次に、上述の第1の実施形態の場合と同様にして、熱電変換の無次元性能指数ZTを算出した。以上の結果を表8に示す。   Next, the dimensionless figure of merit ZT of thermoelectric conversion was calculated in the same manner as in the first embodiment described above. Table 8 shows the above results.

Figure 0006593870
Figure 0006593870

Figure 0006593870
Figure 0006593870

Figure 0006593870
Figure 0006593870

Figure 0006593870
Figure 0006593870

Figure 0006593870
Figure 0006593870

Figure 0006593870
Figure 0006593870

Figure 0006593870
Figure 0006593870

Figure 0006593870
Figure 0006593870

表1に示すように、実施例1の熱電変換材料は、170〜386℃の温度範囲において、0.2以上の無次元性能指数ZTを示しており、特に、364℃以上の温度において、0.4以上の高い無次元性能指数ZTを示していることが判る。   As shown in Table 1, the thermoelectric conversion material of Example 1 shows a dimensionless figure of merit ZT of 0.2 or more in a temperature range of 170 to 386 ° C., and particularly 0 at a temperature of 364 ° C. or more. It can be seen that it exhibits a high dimensionless figure of merit ZT of 4 or higher.

また、表2に示すように、実施例2の熱電変換材料は、76〜389℃の温度範囲において、0.2以上の無次元性能指数ZTを示しており、特に、172℃以上の温度において、0.4以上の高い無次元性能指数ZTを示していることが判る。   Further, as shown in Table 2, the thermoelectric conversion material of Example 2 shows a dimensionless figure of merit ZT of 0.2 or more in the temperature range of 76 to 389 ° C., and particularly at a temperature of 172 ° C. or more. It can be seen that a high dimensionless figure of merit ZT of 0.4 or more is shown.

また、表3に示すように、実施例3の熱電変換材料は、122〜387℃の温度範囲において、0.2以上の無次元性能指数ZTを示しており、特に、267℃以上の温度において、0.4以上の高い無次元性能指数ZTを示していることが判る。   Further, as shown in Table 3, the thermoelectric conversion material of Example 3 shows a dimensionless figure of merit ZT of 0.2 or more in the temperature range of 122 to 387 ° C., and particularly at a temperature of 267 ° C. or more. It can be seen that a high dimensionless figure of merit ZT of 0.4 or more is shown.

また、表4に示すように、実施例4の熱電変換材料は、125〜391℃の温度範囲において、0.2以上の無次元性能指数ZTを示しており、特に、320℃以上の温度において、0.4以上の高い無次元性能指数ZTを示していることが判る。   Further, as shown in Table 4, the thermoelectric conversion material of Example 4 shows a dimensionless figure of merit ZT of 0.2 or more in a temperature range of 125 to 391 ° C., and particularly at a temperature of 320 ° C. or more. It can be seen that a high dimensionless figure of merit ZT of 0.4 or more is shown.

また、表5に示すように、実施例5の熱電変換材料は、216〜383℃の温度範囲において、0.2以上の無次元性能指数ZTを示していることが判る。   Moreover, as shown in Table 5, it can be seen that the thermoelectric conversion material of Example 5 exhibits a dimensionless figure of merit ZT of 0.2 or more in the temperature range of 216 to 383 ° C.

また、表6に示すように、実施例6の熱電変換材料は、368〜390℃の温度範囲において、0.2以上の無次元性能指数ZTを示していることが判る。   Further, as shown in Table 6, it can be seen that the thermoelectric conversion material of Example 6 exhibits a dimensionless figure of merit ZT of 0.2 or more in the temperature range of 368 to 390 ° C.

また、表7に示すように、実施例7の熱電変換材料は、123〜388℃の温度範囲において、0.2以上の無次元性能指数ZTを示しており、特に、292℃以上の温度において、0.4以上の高い無次元性能指数ZTを示していることが判る。   Further, as shown in Table 7, the thermoelectric conversion material of Example 7 shows a dimensionless figure of merit ZT of 0.2 or more in the temperature range of 123 to 388 ° C., and particularly at a temperature of 292 ° C. or more. It can be seen that a high dimensionless figure of merit ZT of 0.4 or more is shown.

更に、表8に示すように、実施例8の熱電変換材料は、101〜390℃の温度範囲において、0.2以上の無次元性能指数ZTを示しており、特に、246℃以上の温度において、0.4以上の高い無次元性能指数ZTを示していることが判る。   Furthermore, as shown in Table 8, the thermoelectric conversion material of Example 8 shows a dimensionless figure of merit ZT of 0.2 or more in a temperature range of 101 to 390 ° C., and particularly at a temperature of 246 ° C. or more. It can be seen that a high dimensionless figure of merit ZT of 0.4 or more is shown.

また、表1〜表8に示すように、実施例1〜8の熱電変換材料は、所定の温度範囲において、再現性良く、高い無次元性能指数ZTを示すことが判る。   Further, as shown in Tables 1 to 8, it can be seen that the thermoelectric conversion materials of Examples 1 to 8 exhibit a high dimensionless figure of merit ZT with good reproducibility in a predetermined temperature range.

以上より、実施例1〜8における熱電変換材料は、所定の温度範囲(76℃〜391℃)において、高い無次元性能指数ZTを示しており、低毒性かつ地殻埋蔵量が多い元素から構成されるとともに、軽量化に対応可能な熱電変換材料となり得ることが判る。   From the above, the thermoelectric conversion materials in Examples 1 to 8 show a high dimensionless figure of merit ZT in a predetermined temperature range (76 ° C. to 391 ° C.), and are composed of low toxicity and a large amount of crustal reserves. In addition, it can be seen that the thermoelectric conversion material can be reduced in weight.

本発明の活用例としては、熱電変換材料、およびそれを用いた熱電発電素子、ペルチェ冷却用素子が挙げられる。   Examples of utilization of the present invention include thermoelectric conversion materials, thermoelectric power generation elements using the materials, and Peltier cooling elements.

Claims (6)

下記式(1)で表されることを特徴とする熱電変換材料。
Figure 0006593870
(式中、MはMn、Fe、Co、Ni、及びZnから選ばれる少なくとも1種であり、AはV、Nb、及びTaから選ばれる少なくとも1種であり、EはSi、Ge、及びSnから選ばれる少なくとも1種であり、Xは0以上5以下である。)
A thermoelectric conversion material represented by the following formula (1).
Figure 0006593870
(In the formula, M is at least one selected from Mn, Fe, Co, Ni, and Zn, A is at least one selected from V, Nb, and Ta, and E is Si, Ge, and Sn) At least one selected from X, and X is 0 or more and 5 or less.)
前記MがZnであること特徴とする請求項1に記載の熱電変換材料。   The thermoelectric conversion material according to claim 1, wherein the M is Zn. 前記Xが0以上4以下であることを特徴とする請求項1または請求項2に記載の熱電変換材料。   The thermoelectric conversion material according to claim 1, wherein the X is 0 or more and 4 or less. 無次元性能指数(ZT)が、76〜390℃において0.2以上0.73以下であることを特徴とする請求項1〜請求項3のいずれか1項に記載の熱電変換材料。 4. The thermoelectric conversion material according to claim 1, wherein a dimensionless figure of merit (ZT) is 0.2 to 0.73 at 76 to 390 ° C. 5. 請求項1〜請求項4のいずれか1項に記載の熱電変換材料により形成された熱電発電素子。   The thermoelectric power generation element formed with the thermoelectric conversion material of any one of Claims 1-4. 請求項1〜請求項4のいずれか1項に記載の熱電変換材料により形成されたペルチェ冷却用素子。   The Peltier cooling element formed with the thermoelectric conversion material of any one of Claims 1-4.
JP2015154340A 2014-08-05 2015-08-04 Thermoelectric conversion material, thermoelectric power generation element using the same, and Peltier cooling element Active JP6593870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015154340A JP6593870B2 (en) 2014-08-05 2015-08-04 Thermoelectric conversion material, thermoelectric power generation element using the same, and Peltier cooling element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014159776 2014-08-05
JP2014159776 2014-08-05
JP2015154340A JP6593870B2 (en) 2014-08-05 2015-08-04 Thermoelectric conversion material, thermoelectric power generation element using the same, and Peltier cooling element

Publications (2)

Publication Number Publication Date
JP2016039372A JP2016039372A (en) 2016-03-22
JP6593870B2 true JP6593870B2 (en) 2019-10-23

Family

ID=55530168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154340A Active JP6593870B2 (en) 2014-08-05 2015-08-04 Thermoelectric conversion material, thermoelectric power generation element using the same, and Peltier cooling element

Country Status (1)

Country Link
JP (1) JP6593870B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203938A1 (en) * 2016-05-25 2017-11-30 株式会社日本触媒 Thermoelectric conversion material, thermoelectric conversion element, powder for thermoelectric conversion material, and method for producing thermoelectric conversion material
JP6793087B2 (en) * 2016-05-25 2020-12-02 株式会社日本触媒 Manufacturing method of thermoelectric conversion material, thermoelectric conversion element, powder for thermoelectric conversion material, and thermoelectric conversion material
JP6847410B2 (en) * 2016-06-10 2021-03-24 国立研究開発法人産業技術総合研究所 Thermoelectric conversion material and thermoelectric conversion module
JP6749831B2 (en) * 2016-11-28 2020-09-02 株式会社日本触媒 Thermoelectric conversion material
JP6718800B2 (en) * 2016-11-28 2020-07-08 株式会社日本触媒 Sulfide, semiconductor material, and thermoelectric conversion material
JP7290915B2 (en) * 2018-02-28 2023-06-14 株式会社日本触媒 Sulfides, thermoelectric conversion materials, and thermoelectric conversion elements

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124344A (en) * 2003-10-20 2005-05-12 Hitachi Metals Ltd Thermoelectric conversion material and preparing method therefor
JP5664998B2 (en) * 2010-08-18 2015-02-04 独立行政法人産業技術総合研究所 Thermoelectric conversion material, thermoelectric power generating element and Peltier cooling element using the same
AU2013286602A1 (en) * 2012-07-06 2015-01-29 Board Of Trustees Of Michigan State University Thermoelectric materials based on tetrahedrite structure for thermoelectric devices

Also Published As

Publication number Publication date
JP2016039372A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP6593870B2 (en) Thermoelectric conversion material, thermoelectric power generation element using the same, and Peltier cooling element
Li et al. Enhanced thermoelectric performance of Yb-single-filled skutterudite by ultralow thermal conductivity
Schierning et al. Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations of module design
Qiu et al. Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity
Qiu et al. Cu-based thermoelectric materials
Masood et al. Odyssey of thermoelectric materials: foundation of the complex structure
Elsheikh et al. A review on thermoelectric renewable energy: Principle parameters that affect their performance
Bashir et al. Recent advances on Mg2Si1− xSnx materials for thermoelectric generation
CN107078201B (en) Thermo-electric converting material
EP2552830B1 (en) Thermoelectric module and thermoelectric device including the thermoelectric module
WO2013093967A1 (en) Thermoelectric conversion element and thermoelectric conversion module using same
CN107710429B (en) P-type skutterudite thermoelectric material, method for preparing same, and thermoelectric device comprising same
JP2018508982A (en) Highly efficient P-type FeNbHfSb thermoelectric material and manufacturing method
JP6250172B2 (en) High performance index P-type FeNbTiSb thermoelectric material and preparation method thereof
Hasan et al. Enhanced Thermoelectric Properties of Ti2FeNiSb2 Double Half‐Heusler Compound by Sn Doping
Chen Synthesis and thermoelectric properties of Cu-Sb-S compounds
JP2019528235A (en) Chalcogen compound, method for producing the same, and thermoelectric device including the same
Park et al. Evolution of electrical transport properties in FeTe2-CoTe2 solid solution system for optimum thermoelectric performance
JPWO2014155591A1 (en) High efficiency thermoelectric conversion unit
Balasubramanian et al. On the formation of phases and their influence on the thermal stability and thermoelectric properties of nanostructured zinc antimonide
Wang et al. First-principles calculation study of Mg2XH6 (X= Fe, Ru) on thermoelectric properties
Tsujii et al. Stability and thermoelectric property of Cu 9 Fe 9 S 16: Sulfide mineral as a promising thermoelectric material
WO2016030964A1 (en) n-TYPE THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT
JP6847410B2 (en) Thermoelectric conversion material and thermoelectric conversion module
JP2018019014A (en) Thermoelectric conversion material, and thermoelectric conversion module arranged by use thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20150819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190919

R150 Certificate of patent or registration of utility model

Ref document number: 6593870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250