JP6593277B2 - Method for judging water-swelling expansion of steel slag and method for producing slag roadbed material - Google Patents

Method for judging water-swelling expansion of steel slag and method for producing slag roadbed material Download PDF

Info

Publication number
JP6593277B2
JP6593277B2 JP2016157188A JP2016157188A JP6593277B2 JP 6593277 B2 JP6593277 B2 JP 6593277B2 JP 2016157188 A JP2016157188 A JP 2016157188A JP 2016157188 A JP2016157188 A JP 2016157188A JP 6593277 B2 JP6593277 B2 JP 6593277B2
Authority
JP
Japan
Prior art keywords
water immersion
expansion
water
time
immersion expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016157188A
Other languages
Japanese (ja)
Other versions
JP2018025461A (en
Inventor
孝一 市川
圭児 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016157188A priority Critical patent/JP6593277B2/en
Publication of JP2018025461A publication Critical patent/JP2018025461A/en
Application granted granted Critical
Publication of JP6593277B2 publication Critical patent/JP6593277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、製鋼スラグ水浸膨張性を判定する製鋼スラグの水浸膨張性判定方法および当該製鋼スラグの水浸膨張性判定方法を用いたスラグ路盤材の製造方法に関する。   The present invention relates to a method for determining the water-swellability of steelmaking slag for determining the steel-making slag water-swellability and a method for producing a slag roadbed material using the method for judging the water-swellability of steelmaking slag.

製鋼スラグは緻密で固く、締め固めれば大きな荷重を支持できるため、道路の路盤材として用いられる。しかし、製鋼スラグ中には、精錬時に使用した酸化カルシウム(CaO)の一部が未反応で残存しており、このCaOが雨水や海水などの水分と水和反応を起こして体積膨張する。このため、製鋼スラグを路盤材(JIS A 5015クラッシャラン鉄鋼スラグ)として用いる場合、適切なエージング処理を行って、体積膨張を抑制させることが必要になる。エージングが不十分であると、数年を経て路盤の膨張に応じて畝状の凹凸を発生させたり、局所的に山状に盛り上がってアスファルトを突き破るポップアウトを生じて、車輌や歩行者の往来を阻害する。   Steelmaking slag is dense and hard, and can be used as roadbed material because it can support large loads when compacted. However, in the steelmaking slag, a part of calcium oxide (CaO) used at the time of refining remains unreacted, and this CaO undergoes a hydration reaction with moisture such as rainwater and seawater, and expands in volume. For this reason, when using steelmaking slag as a roadbed material (JIS A 5015 crusher run steel slag), it is necessary to perform an appropriate aging process and to suppress volume expansion. Insufficient aging may cause saddle-like irregularities as the roadbed expands over several years, or pops out locally to swell and break through the asphalt, resulting in traffic of vehicles and pedestrians. Inhibits.

道路用の鉄鋼スラグについて規定したJIS A 5015には製品種毎に最低限のエージング期間と、路盤材としての膨張性上限が示されている。製鋼スラグの路盤材製品として多いのは、HMS−25、MS−25、CS−40などであり、膨張性は水浸膨張率で1.5%以下とすることになっている。しかし、時として製品内のばらつきなどから、測定サンプルでは規格を満たしているのに、敷設後数年を経て路面に膨張を引き起こすことがある。そのため、製鋼スラグに低膨張材料を複合して製品膨張性のばらつきを抑制するか、膨張率を規定より相当に下げて、安全化を図ることも通常に行われている。   JIS A 5015, which prescribes steel slag for roads, shows the minimum aging period and the upper limit of expansion as a roadbed material for each product type. Many of the steelmaking slag roadbed material products are HMS-25, MS-25, CS-40, etc., and the expansibility is supposed to be 1.5% or less in terms of water immersion expansion. However, sometimes due to variations within the product, the measurement sample meets the standard, but may cause swelling on the road surface several years after installation. For this reason, it is common practice to combine a low-expansion material with steelmaking slag to suppress variations in product expansibility, or to reduce the expansion rate considerably from the standard to achieve safety.

製鋼スラグの膨張性を判定する方法として、例えば、特許文献1では、スラグを容器内で突固めて成型体とした後、乾燥器内で所定時間乾燥して、成型体表面の亀裂有無で判定する方法が開示されている。また、この他に、オートクレーブの高圧蒸気内で水和させて初期より粉化した量で判定する方法もある。   As a method for determining the expandability of steelmaking slag, for example, in Patent Document 1, the slag is solidified in a container to form a molded body, and then dried in a dryer for a predetermined time, and determined by the presence or absence of cracks on the surface of the molded body. A method is disclosed. In addition to this, there is also a method for judging by the amount hydrated in the high pressure steam of the autoclave and powdered from the beginning.

特開昭57−171612号公報JP 57-171612 A

路盤設計基準では道路の耐久性は10年を見越している。しかし、実情はメンテナンスコスト削減のために、20年程度の耐久性が求められる実態もある。すなわち、路盤材には高い耐久性と、特に製鋼スラグ路盤材に関しては高い膨張安定性が求められる。しかし、現状の膨張性判定はJIS A 5015でも、何年も先まで製鋼スラグの膨張により路盤を崩壊させないことを保証するものではない。他の判定方法も、実使用条件で何年先という長期にわたり製鋼スラグの膨張により路盤を崩壊させないことを予測するものではない。一方、実際に製鋼スラグを長期間水浸させて膨張性を確認するのでは、確認するまでに何十年もの時間を要するので現実的ではない。このように、長期にわたる製鋼スラグ路盤材の膨張性を論理的に保証できる方法はなく、このため、膨張性に対する品質を長期間保証された製鋼スラグ路盤材はないのが現状である。   According to roadbed design standards, road durability is expected to be 10 years. However, there are actual situations where durability of about 20 years is required to reduce maintenance costs. That is, the roadbed material is required to have high durability and particularly high stability in terms of steelmaking slag roadbed material. However, even in JIS A 5015, the current expansibility determination does not guarantee that the roadbed will not be collapsed due to the expansion of the steelmaking slag for many years. Other judgment methods do not predict that the roadbed will not collapse due to the expansion of the steelmaking slag over a long period of years under actual use conditions. On the other hand, it is not practical to confirm the expansibility by actually immersing the steelmaking slag for a long time because it takes decades to confirm. Thus, there is no method that can logically guarantee the expansibility of the steelmaking slag roadbed material over a long period of time, and therefore there is no steelmaking slag roadbed material that guarantees the quality for expansive properties for a long time.

本発明は、このような現状を鑑みてなされたものであり、その目的は、短期間で長期間の水浸膨張性に対する品質を論理的に保証できる製鋼スラグの水浸膨張判定方法を提供するとともに、当該判定方法を用いた製鋼スラグ路盤材の製造方法を提供することにある。   The present invention has been made in view of such a current situation, and an object of the present invention is to provide a method for determining the water immersion expansion of a steelmaking slag capable of logically assuring the quality with respect to the water expansion expandability for a long period of time in a short period of time. And it is providing the manufacturing method of the steelmaking slag roadbed material using the said determination method.

このような課題を解決するための本発明の特徴は、以下の通りである。
(1)40℃から120℃までの間の異なる温度で水浸膨張させた複数の製鋼スラグの水浸膨張曲線から単位温度あたりに上昇する水浸膨張速度の増加倍率を算出し、
所定温度で所定時間水浸膨張させた前記製鋼スラグの水浸膨張基準値に対して、前記所定温度よりも高い測定温度との温度差と、前記増加倍率とを用いて前記測定温度における前記所定時間に対応した変換時間を算出し、
前記測定温度で前記変換時間水浸膨張させた前記製鋼スラグの水浸膨張値を用いて前記製鋼スラグの前記水浸膨張基準値に対する合否を判定することを特徴とする製鋼スラグの水浸膨張性判定方法。
(2)横軸に水浸時間を対数目盛りでとり、縦軸に水浸膨張率を対数目盛りでとったグラフ上に、所定温度で所定時間水浸膨張させた製鋼スラグの水浸膨張基準値を示す点をとり、
前記所定温度で測定した前記製鋼スラグの水浸膨張曲線が、前記点から水浸時間が短くなる方向に延びた勾配を0.5とする直線を上回ると推定される場合に、前記水浸膨張基準値に対して不合格と判定し、前記製鋼スラグの水膨張曲線が前記直線を上回らないと推定される場合に、前記水浸膨張基準値に対して合格と判定することを特徴とする製鋼スラグの水浸膨張性判定方法。
(3)40℃から120℃までの間の異なる温度で膨張させた複数の製鋼スラグの水浸膨張曲線から単位温度あたりに上昇する水浸膨張速度の増加倍率を算出し、所定温度で所定時間水浸膨張させた前記製鋼スラグの水浸膨張基準値に対して、前記所定温度よりも高い測定温度との温度差と、前記増加倍率とを用いて前記測定温度における前記所定時間に対応した変換時間を算出し、横軸に水浸時間を対数目盛りでとり、縦軸に水浸膨張率を対数目盛りでとったグラフ上に、前記変換時間に対応させた前記製鋼スラグの水浸膨張基準値を示す点をとり、前記測定温度で測定した前記製鋼スラグの水浸膨張曲線が、前記点から水浸時間が短くなる方向に伸びた勾配が0.5である直線を上回ると推定される場合に、前記水浸膨張基準値に対して不合格と判定し、前記製鋼スラグの水膨張曲線が前記直線を上回らないと推定される場合に、前記水浸膨張基準値に対して合格と判定することを特徴とする製鋼スラグの水浸膨張性判定方法。
(4)JIS A 5015 付属書Bの水浸膨張試験の測定を前記測定温度で継続して水浸させた場合に同じ膨張率となる対応時間を統計的な平均値で算出し、前記水浸膨張曲線に代えて、前記測定温度で水浸膨張させた水浸膨張曲線の前記対応時間経過時における前記水浸膨張曲線の勾配のまま水浸時間が長くなる方向に直線補外した直線を用いることを特徴とする(3)に記載の製鋼スラグの水浸膨張性判定方法。
(5)(1)から(4)の何れか1つに記載の製鋼スラグの水浸膨張性判定方法を用いて製鋼スラグの水浸膨張性を判定し、前記水浸膨張基準値に対して合格と判定された製鋼スラグを用いてスラグ路盤材を製造することを特徴とするスラグ路盤材の製造方法。
The features of the present invention for solving such problems are as follows.
(1) Calculate the rate of increase of the water immersion expansion rate that rises per unit temperature from the water immersion expansion curves of a plurality of steelmaking slags that have been subjected to water immersion expansion at different temperatures between 40 ° C. and 120 ° C.,
The predetermined temperature at the measurement temperature using the temperature difference between the measurement temperature higher than the predetermined temperature and the increase factor with respect to the water immersion expansion reference value of the steelmaking slag that has been subjected to water immersion expansion for a predetermined time at a predetermined temperature. Calculate the conversion time corresponding to the time,
The water immersion expansion property of the steelmaking slag characterized by determining pass / fail with respect to the water immersion expansion reference value of the steelmaking slag using the water immersion expansion value of the steelmaking slag that has been subjected to the water immersion expansion for the conversion time at the measurement temperature. Judgment method.
(2) Water immersion expansion standard value of steelmaking slag that is water immersion expanded for a predetermined time at a predetermined temperature on a graph with the water immersion time on a logarithmic scale on the horizontal axis and the logarithmic scale on the vertical axis. Take a point indicating
When it is estimated that the water immersion expansion curve of the steelmaking slag measured at the predetermined temperature exceeds a straight line with a gradient extending from the point in a direction in which the water immersion time is shortened to 0.5, the water immersion expansion It is determined that the steelmaking slag is rejected with respect to the reference value, and when it is estimated that the water expansion curve of the steelmaking slag does not exceed the straight line, the steelmaking is determined to be acceptable with respect to the water immersion expansion reference value. A method for judging the water swellability of slag.
(3) The increase rate of the water immersion expansion rate that rises per unit temperature is calculated from the water immersion expansion curves of a plurality of steelmaking slags expanded at different temperatures between 40 ° C. and 120 ° C., and at a predetermined temperature for a predetermined time. Conversion corresponding to the predetermined time at the measurement temperature using the temperature difference between the measurement temperature higher than the predetermined temperature and the increase factor with respect to the water immersion expansion reference value of the steelmaking slag that has been subjected to water immersion expansion Calculate the time, and the horizontal axis represents the water immersion time on a logarithmic scale, and the vertical axis represents the water immersion expansion rate on a logarithmic scale. When the water immersion expansion curve of the steelmaking slag measured at the measurement temperature is estimated to exceed the straight line extending in the direction in which the water immersion time is shortened from the point is 0.5 In addition, with respect to the water expansion reference value It is determined that the steelmaking slag is acceptable, and when it is estimated that the water expansion curve of the steelmaking slag does not exceed the straight line, it is determined that the steelmaking slag is acceptable with respect to the water immersion expansion reference value. Judgment method.
(4) When the water immersion expansion test of JIS A 5015 Annex B is continuously immersed in the measurement temperature, the corresponding time for the same expansion rate is calculated as a statistical average value. Instead of the expansion curve, a straight line extrapolated in a direction in which the water immersion time becomes longer with the gradient of the water immersion expansion curve when the corresponding time elapses in the water immersion expansion curve that has been subjected to water immersion expansion at the measurement temperature is used. (3) The method for determining the water-swellable expansion property of steelmaking slag according to (3)
(5) The water immersion expansion property of the steelmaking slag is determined using the method for determining the water immersion expansion property of the steelmaking slag according to any one of (1) to (4), The manufacturing method of the slag roadbed material characterized by manufacturing a slag roadbed material using the steelmaking slag determined to be acceptable.

本発明の製鋼スラグの水浸膨張判定方法を実施することで、長期間の水浸膨張性に対する品質を、短期間で論理的に保証することができる。また、当該判定方法を用いた製鋼スラグ路盤材の製造方法で製造されたスラグ路盤材は、長期間の膨張性に対する品質が論理的に保証されたスラグ路盤材にできる。   By implementing the method for determining the water immersion expansion of steelmaking slag according to the present invention, the quality with respect to long-term water immersion expansion can be logically guaranteed in a short period of time. Moreover, the slag roadbed material manufactured by the manufacturing method of the steelmaking slag roadbed material using the said determination method can be made into the slag roadbed material in which the quality with respect to the long-term expansibility was logically guaranteed.

各温度条件で脱炭スラグの水浸膨張試験を行なった結果を示すグラフである。It is a graph which shows the result of having performed the water immersion expansion test of decarburization slag on each temperature condition. 80℃、60℃、40℃の水浸膨張曲線が100℃の水浸膨張曲線に重なることを示したグラフである。It is the graph which showed that the water immersion expansion curve of 80 degreeC, 60 degreeC, and 40 degreeC overlapped with the water immersion expansion curve of 100 degreeC. 種々の脱炭スラグにおいても同様に水浸膨張曲線を推算できることを説明するグラフである。It is a graph explaining that a water immersion expansion curve can be estimated similarly also in various decarburization slag. 第1の実施形態に係る製鋼スラグの水浸膨張判定方法を説明するグラフである。It is a graph explaining the water immersion expansion determination method of the steelmaking slag which concerns on 1st Embodiment. 脱炭スラグの水浸膨張曲線を横軸および縦軸ともに対数軸に変換したグラフを示す。The graph which converted the water immersion expansion curve of decarburization slag into the logarithmic axis for both the horizontal axis and the vertical axis is shown. 水浸温度の異なる水浸膨張に適用させた第2の実施形態に係る製鋼スラグの水浸膨張判定方法を説明するグラフである。It is a graph explaining the water immersion expansion determination method of the steelmaking slag based on 2nd Embodiment applied to the water immersion expansion from which water immersion temperature differs. JIS水浸膨張法を、第2の実施形態に係る製鋼スラグの水浸膨張判定方法に適用させる方法を説明するグラフである。It is a graph explaining the method of applying the JIS water immersion expansion method to the water immersion expansion determination method of the steelmaking slag which concerns on 2nd Embodiment. 第2の実施形態に係る製鋼スラグの水浸膨張判定方法を用いて脱炭スラグA〜Cの水浸膨張性を判定した結果を示すグラフである。It is a graph which shows the result of having determined the water immersion expansion property of decarburization slags AC using the water immersion expansion determination method of steelmaking slag concerning a 2nd embodiment. JIS膨張試験結果を第2の実施形態に係る製鋼スラグの水浸膨張判定方法に適用させた結果を示すグラフである。It is a graph which shows the result of having applied the JIS expansion test result to the water immersion expansion determination method of the steelmaking slag which concerns on 2nd Embodiment.

以下、発明の実施の形態を通じて本発明を説明する。図1は、各温度条件で脱炭スラグの水浸膨張試験を行なった結果を示すグラフである。図1に示したグラフにおいて、横軸は、水浸時間(日)であり、縦軸は、膨張率(%)である。   Hereinafter, the present invention will be described through embodiments of the invention. FIG. 1 is a graph showing the results of a water immersion expansion test of decarburized slag under each temperature condition. In the graph shown in FIG. 1, the horizontal axis represents the water immersion time (days), and the vertical axis represents the expansion rate (%).

まず、本発明をするに到った水浸膨張試験について説明する。JIS A 5015付属書Bに規定されている水浸膨張試験(以後、「JIS水浸膨張法」という)と同量の脱炭スラグを試料として充填した供試体について温度条件を変えて水浸膨張試験を実施した。なお、JIS水浸膨張法では、1日6時間、80℃に保持するサイクルを10日間繰り返すが、図1に示した水浸膨張試験においては、水浸温度を100℃、80℃、60℃、40℃とし、当該温度で保持し続ける水浸膨張試験を実施した。一つの温度での供試体の本数は、JIS水浸膨張法と合わせて3本とし、この3本の供試体の測定から得られた3つの水浸膨張曲線の平均の曲線を図1に示す。なお、以下の実施形態は、脱炭スラグを試料として用いた例で説明するが、製鋼スラグであれば、例えば、脱珪スラグ、脱燐スラグ、造塊スラグ等であっても、本実施形態に係る製鋼スラグの水浸膨張性判定方法を適用させて、当該スラグの水浸膨張性を判定できる。   First, the water immersion expansion test that led to the present invention will be described. Water immersion expansion by changing the temperature conditions of the specimen filled with the same amount of decarburized slag as the sample in the water immersion expansion test (hereinafter referred to as “JIS water immersion expansion method”) specified in JIS A 5015 Annex B The test was conducted. In the JIS water immersion expansion method, a cycle of holding at 80 ° C. for 6 hours per day is repeated for 10 days. In the water immersion expansion test shown in FIG. 1, the water immersion temperature is 100 ° C., 80 ° C., 60 ° C. , 40 ° C., and a water immersion expansion test was carried out while maintaining the temperature. The number of specimens at one temperature is three in combination with the JIS water immersion expansion method, and the average curve of three water immersion expansion curves obtained from the measurement of these three specimens is shown in FIG. . In addition, although the following embodiment demonstrates by the example which used the decarburization slag as a sample, even if it is a desiliconization slag, a dephosphorization slag, an ingot slag etc., if this is a steelmaking slag, this embodiment By applying the method for determining the water-swellability of steelmaking slag according to the above, the water-swellability of the slag can be determined.

図1に示すように、水浸温度が高い場合に、脱炭スラグの水浸膨張は速やかに進行し、水浸温度が低い場合に脱炭スラグの膨張はゆっくり進行する。本発明者らは、水浸温度が高くなるにつれて脱炭スラグの膨張速度が規則的に速くなることに着目し、水浸温度が単位温度上昇するごとに、脱炭スラグの水浸膨張速度は一定倍率で増加し、100℃より低い温度の膨張曲線は、当該一定倍率の逆数で水浸時間軸を短縮することで100℃の膨張曲線に重ねられることを見出した。   As shown in FIG. 1, when the water immersion temperature is high, the water expansion of the decarburized slag proceeds quickly, and when the water immersion temperature is low, the expansion of the decarburized slag proceeds slowly. The present inventors pay attention to the fact that the expansion rate of the decarburized slag increases regularly as the water immersion temperature increases, and the water immersion expansion rate of the decarburized slag increases as the unit temperature increases. It has been found that the expansion curve at a constant magnification and a temperature lower than 100 ° C. is superimposed on the 100 ° C. expansion curve by shortening the water immersion time axis by the reciprocal of the constant magnification.

図2は、80℃、60℃、40℃の水浸膨張曲線が100℃の水浸膨張曲線に重なることを示したグラフである。図2に示したグラフにおいて、横軸は、水浸時間(日)であり、縦軸は、膨張率(%)である。80℃の膨張曲線は、水浸時間軸を1/4に短縮することで100℃の水浸膨張曲線と重なり、60℃の膨張曲線は、水浸時間軸を1/16に短縮することで100℃の水浸膨張曲線と重ねることができる。さらに、40℃の水浸膨張曲線は、水浸時間軸を1/64に短縮することで、100℃の膨張曲線と重ねることができる。   FIG. 2 is a graph showing that the water immersion expansion curves at 80 ° C., 60 ° C., and 40 ° C. overlap the water immersion expansion curves at 100 ° C. In the graph shown in FIG. 2, the horizontal axis represents the water immersion time (days), and the vertical axis represents the expansion rate (%). The expansion curve at 80 ° C overlaps with the 100 ° C water immersion expansion curve by shortening the water immersion time axis to ¼, and the expansion curve at 60 ° C shortens the water immersion time axis to 1/16. It can be overlaid with a 100 ° C. water immersion expansion curve. Furthermore, the 40 ° C. water immersion expansion curve can be overlapped with the 100 ° C. expansion curve by shortening the water immersion time axis to 1/64.

このように、例えば、80℃の水浸膨張曲線を100℃の水浸膨張曲線に重ねようとした場合に、80℃と100℃の温度差20℃に対し、10℃上昇するごとに時間軸を1/2にすればよいことがわかる。すなわち、80℃の膨張曲線を100℃の膨張曲線に重ねる場合、(1/2)=1/4となり、80℃の水浸膨張曲線の水浸時間軸を1/4にすればよい。 Thus, for example, when an 80 ° C. water immersion expansion curve is to be superimposed on a 100 ° C. water immersion expansion curve, a time axis increases every 10 ° C. with respect to a temperature difference of 20 ° C. between 80 ° C. and 100 ° C. It can be seen that ½ should be reduced. That is, when the 80 ° C. expansion curve is superimposed on the 100 ° C. expansion curve, (1/2) 2 = 1/4, and the water immersion time axis of the 80 ° C. water immersion expansion curve may be ¼.

また、60℃の水浸膨張曲線を100℃の水浸膨張曲線に重ねる場合、100℃になるまでに40℃上昇するので(1/2)=1/16となり、60℃の水浸膨張曲線の水浸時間軸を1/16にすればよいことがわかる。同様に、40℃の水浸膨張曲線を100℃の水浸膨張曲線に重ねる場合、100℃になるまでに60℃上昇するので(1/2)=1/64となり、40℃の水浸膨張曲線の水浸時間軸を1/64にすればよいことがわかる。同様に、100℃の水浸膨張曲線の水浸時間軸を4倍にすれば、80℃の水浸膨張曲線に重ねることができる In addition, when the 60 ° C. water immersion expansion curve is superimposed on the 100 ° C. water immersion expansion curve, it rises by 40 ° C. until it reaches 100 ° C., so (1/2) 4 = 1/16, and the 60 ° C. water immersion expansion It can be seen that the water immersion time axis of the curve should be 1/16. Similarly, when the 40 ° C. water immersion expansion curve is superimposed on the 100 ° C. water immersion expansion curve, the temperature rises by 60 ° C. until it reaches 100 ° C., so (1/2) 6 = 1/64, and 40 ° C. water immersion It can be seen that the water immersion time axis of the expansion curve should be 1/64. Similarly, if the water immersion time axis of the 100 ° C. water immersion expansion curve is quadrupled, it can be superimposed on the 80 ° C. water immersion expansion curve.

このように、異なる温度で水浸膨張させた複数の水浸膨張曲線から、単位温度あたりに上昇する水膨張速度の増加倍率を算出することで、別の温度で水浸膨張させた水浸膨張曲線を推算できる。なお、100℃に限らず、60℃の膨張曲線を80℃の膨張曲線に重ねる場合には、温度差が20℃であるので、時間軸を1/4に短縮すればよく、40℃の膨張曲線を80℃の膨張曲線に重ねる場合には、温度差が40℃であるので、時間軸を1/16に短縮すればよい。   In this way, by calculating the increase rate of the water expansion rate that rises per unit temperature from a plurality of water immersion expansion curves that have been subjected to water expansion at different temperatures, A curve can be estimated. In addition, when the expansion curve of 60 ° C is overlapped with the expansion curve of 80 ° C, not only 100 ° C, the temperature difference is 20 ° C, so the time axis may be shortened to 1/4, and the expansion of 40 ° C When the curve is superimposed on the 80 ° C. expansion curve, the temperature difference is 40 ° C., so the time axis may be shortened to 1/16.

図3は、種々の脱炭スラグにおいても同様に水浸膨張曲線を推算できることを説明するグラフである。図3(a)は、図1、図2で示した脱炭スラグとは別ロットであって、蒸気エージング処理した脱炭スラグの40℃、80℃、100℃の水浸膨張曲線を示す。当該の脱炭スラグの膨張曲線においても、図3(b)に示すように、水浸温度が10℃上昇するごとに水浸膨張速度が2倍になるとして、40℃の水浸膨張曲線の水浸時間軸を1/64にすることで100℃の水浸膨張曲線に重ねることができ、80℃の水浸膨張曲線の水浸時間軸を1/4にすることで、100℃の水浸膨張曲線に重ねることができた。   FIG. 3 is a graph for explaining that the water immersion expansion curve can be similarly estimated in various decarburized slags. FIG. 3A shows a water immersion expansion curve of 40 ° C., 80 ° C., and 100 ° C. of the decarburized slag which is a lot different from the decarburized slag shown in FIGS. Also in the expansion curve of the decarburized slag, as shown in FIG. 3B, assuming that the water immersion expansion speed doubles every time the water immersion temperature increases by 10 ° C., the water expansion expansion curve of 40 ° C. By setting the water immersion time axis to 1/64, it can be superimposed on the 100 ° C. water immersion expansion curve, and by setting the water immersion time axis of the 80 ° C. water immersion expansion curve to 1/4, It was possible to superimpose on the expansion curve.

また、図3(c)は、さらに別ロットの蒸気エージング処理した脱炭スラグの40℃、80℃、100℃の水浸膨張曲線を示す。当該の脱炭スラグの膨張曲線においても、図3(d)に示すように、水浸温度が10℃上昇するごとに水浸膨張速度が2倍になるとして、40℃の水浸膨張曲線の水浸時間軸を1/64にすることで100℃の水浸膨張曲線に重ねることができ、80℃の水浸膨張曲線の水浸時間軸を1/4にすることで、100℃の水浸膨張曲線に重ねることができた。   Moreover, FIG.3 (c) shows the 40 degreeC, 80 degreeC, and 100 degreeC water immersion expansion curve of the decarburization slag of the steam aging process of another lot. Also in the expansion curve of the decarburization slag, as shown in FIG. 3 (d), assuming that the water immersion expansion speed doubles every time the water immersion temperature increases by 10 ° C, By setting the water immersion time axis to 1/64, it can be superimposed on the 100 ° C. water immersion expansion curve, and by setting the water immersion time axis of the 80 ° C. water immersion expansion curve to 1/4, It was possible to superimpose on the expansion curve.

また、図3(e)は、さらに別ロットの蒸気エージング処理した脱炭スラグの40℃、60℃、80℃、100℃の水浸膨張曲線を示す。当該の脱炭スラグの水浸膨張曲線においては、図3(f)に示すように、温度が10℃上昇するごとに水浸膨張速度が1.9倍になるとして、40℃の水浸膨張曲線の水浸時間軸を1/47((1/1.9))にすることで100℃の水浸膨張曲線に重ねることができ、60℃の水浸膨張曲線の水浸時間軸を1/13((1/1.9))にすることで100℃の水浸膨張曲線に重ねることができ、80℃の水浸膨張曲線の水浸時間軸を1/3.6((1/1.9)2)にすることで、100℃の水浸膨張曲線に重ねることができた。 Moreover, FIG.3 (e) shows the water immersion expansion curve of 40 degreeC, 60 degreeC, 80 degreeC, and 100 degreeC of the decarburization slag of the steam aging process of another lot. In the water immersion expansion curve of the decarburized slag, as shown in FIG. 3 (f), it is assumed that the water immersion expansion rate is 1.9 times for every 10 ° C increase in temperature, and the water immersion expansion at 40 ° C is performed. By setting the water immersion time axis of the curve to 1/47 ((1 / 1.9) 6 ), it is possible to overlap the water immersion expansion curve at 100 ° C., and the water immersion time axis of the water immersion expansion curve at 60 ° C. By setting it to 1/13 ((1 / 1.9) 4 ), the water immersion expansion curve at 100 ° C. can be superimposed, and the water immersion time axis of the water expansion expansion curve at 80 ° C. is 1 / 3.6 (( By setting it to 1 / 1.9) 2 ), it was possible to overlap the 100 ° C. water immersion expansion curve.

図3に示すように、ロットが異なり精錬条件が異なる脱炭スラグにおいても、水浸温度を10℃上昇するごとに水浸膨張速度が2倍程度になることが確認された。製鋼スラグのこのような水浸膨張特性を利用することで長期間の水浸膨張性に対する品質の有無を短期間で判定できる。図4は、第1の実施形態に係る製鋼スラグの水浸膨張判定方法を説明するグラフである。   As shown in FIG. 3, even in decarburized slag with different lots and different refining conditions, it was confirmed that the water immersion expansion rate doubled every time the water immersion temperature was increased by 10 ° C. By utilizing such water immersion expansion characteristics of steelmaking slag, the presence or absence of quality for long-term water expansion expansion can be determined in a short period of time. FIG. 4 is a graph for explaining a water immersion expansion determination method for steelmaking slag according to the first embodiment.

第1の実施形態に係る製鋼スラグの水浸膨張判定方法において、まず、対象となる製鋼スラグの単位温度あたりに上昇する水浸膨張速度の増加倍率を算出する。水浸膨張速度の増加倍率は、製鋼スラグの材質により変化し得るので、同種の製鋼スラグでも複数の工場で製造され処理条件が異なる場合には、各工場ごと、製鋼スラグの種類ごとに、水浸膨張速度の増加倍率を算出することが望ましい。   In the water immersion expansion determination method for steelmaking slag according to the first embodiment, first, an increase rate of the water immersion expansion rate that rises per unit temperature of the target steelmaking slag is calculated. The rate of increase in the water expansion rate can vary depending on the material of the steelmaking slag. It is desirable to calculate the increase rate of the expansion rate.

水浸膨張速度の増加倍率は、40℃から120℃までの間の異なる温度で測定した複数の水浸膨張曲線を測定し、所定の膨張率に到達する水浸時間を比較することで算出できる。なお、水浸膨張速度の増加倍率の算出には、温度条件の異なる3つ以上の水浸膨張曲線から算出することが好ましい。また、水浸条件は、JIS水浸膨張方法のように、1日6時間、80℃に保持し他の時間は放冷してもよいが、放冷時に管理されていない雰囲気温度の影響を受けて誤差が拡大するので好ましくない。このため、水浸温度を一定に保った状態で継続して水浸膨張させることが好ましい。   The increase rate of the water expansion rate can be calculated by measuring a plurality of water expansion curves measured at different temperatures between 40 ° C. and 120 ° C., and comparing the water immersion times to reach a predetermined expansion rate. . In addition, it is preferable to calculate from the three or more water immersion expansion curves from which temperature conditions differ in calculation of the increase rate of a water immersion expansion speed. Moreover, the water immersion conditions may be maintained at 80 ° C. for 6 hours a day and allowed to cool for other times as in the JIS water expansion method. This is not preferable because the error increases. For this reason, it is preferable to continue the water immersion expansion while keeping the water immersion temperature constant.

次に、単位温度あたりに上昇する水浸膨張速度の増加倍率を算出した後に、実際に水浸膨張率を測定する。ここで、単位温度をa(℃)とした場合の水浸膨張速度の増加倍率をb(−)とする。また、長期間水浸させた場合の製鋼スラグの水浸膨張基準値をc(%)に定めたとし、当該水浸膨張基準値cの温度条件および期間を、それぞれ所定温度d(℃)および所定時間e(日)とする。さらに、所定温度dよりも高い温度の測定温度をf(℃)とし、測定温度fにおける所定時間eに対応した変換時間をg(日)とする。   Next, after calculating the rate of increase of the water expansion rate that rises per unit temperature, the water expansion rate is actually measured. Here, when the unit temperature is a (° C.), the increase rate of the water immersion expansion rate is b (−). Further, assuming that the water immersion expansion reference value of the steelmaking slag when immersed for a long period of time is set to c (%), the temperature condition and period of the water immersion expansion reference value c are respectively set to a predetermined temperature d (° C.) and The predetermined time is e (day). Further, a measurement temperature higher than the predetermined temperature d is defined as f (° C.), and a conversion time corresponding to the predetermined time e at the measurement temperature f is defined as g (day).

なお、単位温度aは、実用的には5℃、10℃、20℃などの温度間隔を区切りやすい値に定めることが好ましい。なお、単位温度aは、10℃とすると、計算がしやすくなるので、より好ましい。また、単位温度を10℃とすると、製鋼スラグを用いた場合における水浸膨張速度の増加倍率bは、1.5以上2.5以下になる。   In practice, the unit temperature a is preferably set to a value at which temperature intervals such as 5 ° C., 10 ° C., and 20 ° C. can be easily separated. Note that it is more preferable that the unit temperature a is 10 ° C., because the calculation is easy. Moreover, when unit temperature is 10 degreeC, the increase rate b of the water immersion expansion speed at the time of using steelmaking slag will be 1.5 or more and 2.5 or less.

さらに、水浸膨張基準値cは、0.5〜6%の範囲内とすることがこのましく、3〜5%の範囲内とすることがより好ましい。水浸膨張基準値cは、上記範囲内であって、例えば、4.0%としてよい。この値は、平成24年度(独)土木研究所成果報告「舗装用骨材の物理・化学性状に関する研究」において、モデル路盤での膨張が4%を超えると路面の膨張による亀裂の増大や路盤支持力の低下が見られるとの報告に基づく値である。また、所定温度は、例えば、常温を想定して20℃としてよい。さらに、所定期間eは、道路に求められる耐久性を考慮すると、10〜30年の範囲内とすることが好ましく、例えば、20年としてよい。   Further, the water immersion expansion reference value c is preferably in the range of 0.5 to 6%, and more preferably in the range of 3 to 5%. The water immersion expansion reference value c is within the above range, and may be 4.0%, for example. This value is the result of the 2012 Civil Engineering Research Report “Study on Physical and Chemical Properties of Pavement Aggregate”. If the expansion of the model roadbed exceeds 4%, the cracks due to the road surface expansion and the roadbed It is a value based on a report that a decrease in support force is seen. The predetermined temperature may be 20 ° C. assuming normal temperature, for example. Furthermore, the predetermined period e is preferably within a range of 10 to 30 years, considering the durability required for roads, for example, 20 years.

次に、測定温度fで測定した水浸膨張曲線を用いて、所定温度dで所定時間eが経過するまで水浸膨張させた水浸膨張基準値cに対する合否を判定する。まず、変換時間gを以下の(1)式を用いて算出する。   Next, using the water immersion expansion curve measured at the measurement temperature f, it is determined whether or not it is acceptable for the water expansion reference value c that has been subjected to water expansion until a predetermined time e has elapsed at the predetermined temperature d. First, the conversion time g is calculated using the following equation (1).

g=e×(1/b)(f−d)/a・・・(1) g = e × (1 / b) (f−d) / a (1)

式(1)で算出された変換時間gは、所定温度dで所定時間eが経過するまで水浸させた製鋼スラグの水浸膨張を、測定温度fで水浸膨張させる時間である。このため、測定温度fで、変換時間gが経過するまで水浸膨張させた後の製鋼スラグの水浸膨張値を用いて、製鋼スラグの水浸膨張基準値cに対する合否を判定する。これにより、所定時間eよりも短い変換時間gで、製鋼スラグの水浸膨張基準値cに対する合否を論理的に判定できる。   The conversion time g calculated by the equation (1) is a time for water immersion expansion of the steelmaking slag immersed in the water until the predetermined time e elapses at the predetermined temperature d at the measurement temperature f. For this reason, the pass / fail of the steelmaking slag with respect to the water immersion expansion reference value c is determined using the water immersion expansion value of the steelmaking slag after being subjected to water immersion expansion at the measurement temperature f until the conversion time g elapses. Thereby, the pass / fail of the steelmaking slag with respect to the water immersion expansion reference value c can be logically determined in a conversion time g shorter than the predetermined time e.

また、当該判定方法で長期間の水浸膨張性を論理的に保証された製鋼スラグを用いてスラグ路盤材を製造する。これにより、長期間の膨張性に対する品質が論理的に品質が保証されたスラグ路盤材を製造できる。   Moreover, a slag roadbed material is manufactured using the steelmaking slag which logically guaranteed the long-term water-expandability by the determination method. Thereby, the slag roadbed material in which the quality for the long-term expansibility is logically guaranteed can be manufactured.

以上説明したように、第1に実施形態に係る製鋼スラグの水浸膨張判定方法を実施することで、製鋼スラグを長期間水浸膨張させることなく、短期間で長期間の水浸膨張性に対する品質を論理的に保証することができる。例えば、単位温度aが10℃であって、水浸膨張速度の増加倍率bが2倍である場合に、所定温度20℃、所定時間20年の水浸膨張基準値cを定めた場合に、測定温度100℃で水浸膨張させることで、約29日で水浸膨張基準値cに対する合否を判定できる。   As described above, by first implementing the method for determining the water immersion expansion of steelmaking slag according to the embodiment, the steelmaking slag can be immersed in water for a long period of time without causing the steelmaking slag to be immersed in water for a long period of time. Quality can be logically guaranteed. For example, when the unit temperature a is 10 ° C. and the increase rate b of the water immersion expansion rate is 2 times, when the water immersion expansion reference value c for the predetermined temperature 20 ° C. and the predetermined time 20 years is determined, By performing water immersion expansion at a measurement temperature of 100 ° C., it is possible to determine whether or not the water immersion expansion reference value c is acceptable in about 29 days.

なお、測定温度は、60〜120℃が水浸時間の短縮という観点から好ましく、さらに、80〜100℃がより好ましい。80℃は、JIS水浸膨張法と同じ温度であることから、測定装置が流用し易いのでより好ましい。また、100℃は、大気圧下、蒸気で蒸すことで得られる条件であり、密閉性の高い容器を用いることなく比較的簡便な装置で測定できるのでより好ましい。   The measurement temperature is preferably 60 to 120 ° C. from the viewpoint of shortening the water immersion time, and more preferably 80 to 100 ° C. Since 80 degreeC is the same temperature as a JIS water immersion expansion method, since a measuring apparatus is easy to divert, it is more preferable. Further, 100 ° C. is more preferable because it is a condition obtained by steaming under atmospheric pressure and can be measured with a relatively simple apparatus without using a highly airtight container.

次に、第2の実施形態に係る製鋼スラグの水浸膨張判定方法を説明する。図5は、脱炭スラグの水浸膨張曲線を横軸および縦軸ともに対数軸に変換したグラフを示す。   Next, a method for determining water immersion expansion of a steelmaking slag according to the second embodiment will be described. FIG. 5 shows a graph obtained by converting the water immersion expansion curve of decarburized slag into a logarithmic axis for both the horizontal axis and the vertical axis.

図5に示すように、水浸膨張曲線を縦軸および横軸ともに対数軸に変換すると、脱炭スラグの水浸膨張曲線は、水浸初期においては勾配が1に近くなり、その後、勾配が0.5に漸近していく。例えば、80℃の水浸膨張曲線においては、水浸時間が14日経過した後には勾配が0.5になる。なお、水浸温度が低くなると勾配が0.5に漸近する位置が水浸時間が長くなる方向にスライドし、水浸温度が高くなると勾配が0.5に漸近する位置が水浸時間が短くなる方向にスライドするが、勾配が0.5に漸近する傾向は同じであった。   As shown in FIG. 5, when the water immersion expansion curve is converted into a logarithmic axis for both the vertical and horizontal axes, the desorption slag water immersion expansion curve has a gradient close to 1 in the initial stage of water immersion, and then the gradient is Asymptotically approaching 0.5. For example, in an 80 ° C. water immersion expansion curve, the slope becomes 0.5 after 14 days of water immersion. When the water immersion temperature decreases, the position where the gradient asymptotically approaches 0.5 slides in a direction in which the water immersion time increases, and when the water immersion temperature increases, the position where the gradient asymptotically approaches 0.5 shortens the water immersion time. The direction of the gradient asymptotically approached 0.5 was the same.

これは、水浸膨張の初期は、遊離石灰や遊離マグネシアなどの膨張源の反応が、化学反応律速であり、蒸気エージングの終了する直前に崩壊して露出した粒子や、水浸膨張試験の準備段階である型枠への突き固めによって割れた粒子の表面にある膨張源が反応しているためと考えられる。しかし、これらの粒子表面での反応が終われば、次は、粒子内部に走るクラックを水分が浸入することで粒子内部の膨張源が反応し、さらに、その膨張反応で新しい亀裂が延び、さらに他の膨張源への水分供給が始まるといった粒子内部の反応が続く。このような反応の反応速度は、水分が粒子内部の膨張源に到達する速度によって定まるので、反応速度は拡散律速的になる。このため、横軸および縦軸を対数軸としたグラフにおいて、全ての膨張曲線が拡散律速を示す勾配が0.5の直線に漸近したと推測した。   In the initial stage of water immersion expansion, the reaction of the expansion source such as free lime and free magnesia is the chemical reaction rate-determined, and the particles collapsed and exposed immediately before the end of vapor aging, and preparation for the water immersion expansion test. This is thought to be due to the reaction of the expansion source on the surface of the cracked particles due to the tamping of the mold at the stage. However, after the reaction on the surface of these particles is finished, the next is that the expansion source inside the particles reacts when moisture enters the cracks that run inside the particles. The reaction inside the particles continues, such as the start of water supply to the expansion source. Since the reaction rate of such a reaction is determined by the rate at which moisture reaches the expansion source inside the particle, the reaction rate becomes diffusion-limited. For this reason, in the graph in which the horizontal axis and the vertical axis are logarithmic axes, it was presumed that all the expansion curves were asymptotic to a straight line having a diffusion-controlling gradient of 0.5.

このように、水浸初期以外は、水浸膨張は擬似的に拡散律速反応となるのが製鋼スラグの水浸膨張反応の全体像であると考えられる。そのため、長期間水浸されて水浸膨張基準値に到達する時点では、水浸膨張は、上述したように拡散律速になっていると考えられる。このため、横軸および縦軸を対数軸としたグラフ上において、水浸膨張基準値に到達する場合、製鋼スラグの水浸膨張曲線は、勾配が0.5である直線で水浸膨張基準値に到達する。このことから、横軸および縦軸を対数軸としたグラフ上に水浸膨張基準値を示す点をとり、当該点から勾配が0.5である直線を水浸時間が短くなる方向へ延ばす。そして、製鋼スラグの水浸膨張曲線が、勾配が0.5である直線を上回り高膨張率側に延びないと推定される場合には、水浸膨張基準値を超えないといえ、勾配が0.5である直線を上回り高膨張率側に延びると推定される場合には、水浸膨張基準値を超えるといえる。   Thus, except for the initial stage of water immersion, it is considered that the water immersion expansion is a diffusion-determined reaction in a pseudo manner, which is the overall image of the water immersion expansion reaction of the steelmaking slag. Therefore, it is considered that the water immersion expansion is diffusion-controlled as described above at the time when the water immersion is reached for a long time and reaches the water immersion expansion reference value. Therefore, on the graph with the horizontal axis and the vertical axis as the logarithmic axis, when the water immersion expansion reference value is reached, the water immersion expansion curve of the steelmaking slag is a straight line having a slope of 0.5 and the water immersion expansion reference value. To reach. Therefore, a point indicating the water immersion expansion reference value is taken on a graph with the horizontal axis and the vertical axis as a logarithmic axis, and a straight line having a gradient of 0.5 is extended from the point in a direction in which the water immersion time is shortened. And when it is estimated that the water immersion expansion curve of the steelmaking slag exceeds the straight line having a gradient of 0.5 and does not extend to the high expansion rate side, it can be said that the water immersion expansion reference value is not exceeded, and the gradient is 0. If it is estimated to extend above the straight line of .5 to the high expansion rate side, it can be said that it exceeds the water immersion expansion reference value.

製鋼スラグのこのような水浸膨張特性を利用することで長期間の水浸膨張性に対する品質の有無を短期間で判定できる。具体的には、横軸に水浸時間を対数目盛りでとり、縦軸に水浸膨張率を対数目盛りでとったグラフ上に、製鋼スラグの水浸膨張基準値を示す点をとり、同じ温度で測定した製鋼スラグの水浸膨張曲線が、当該点から水浸時間が短くなる方向に延びた勾配が0.5である直線を上回ると推定される場合に、製鋼スラグは、水浸膨張基準値に対して不合格と判定し、製鋼スラグの水膨張曲線が当該直線を上回らないと推定される場合に、製鋼スラグは、水浸膨張基準値に対して合格と判定する。   By utilizing such water immersion expansion characteristics of steelmaking slag, the presence or absence of quality for long-term water expansion expansion can be determined in a short period of time. Specifically, the horizontal axis represents the water immersion time on a logarithmic scale, and the vertical axis represents the water immersion expansion rate on a logarithmic scale. When it is estimated that the water-swelling expansion curve of the steel-making slag measured in step 1 exceeds the straight line in which the slope extending from the point in the direction in which the water-immersion time is shortened is 0.5, If it is determined that the steel expansion slag does not exceed the straight line, it is determined that the steelmaking slag is acceptable with respect to the water immersion expansion reference value.

横軸に水浸時間を対数目盛りでとり、縦軸に水浸膨張率を対数目盛りでとったグラフ上において、水浸膨張曲線は勾配が0.5である直線に漸近する。このため、水浸膨張曲線を測定し、勾配が0.5になった時点で、当該水浸膨張曲線が水浸膨張基準値を示す点から水浸時間が短くなる方向に延びた勾配が0.5である直線を上回るか否かを推定できる。このように、第2の実施形態に係る製鋼スラグの水浸膨張判定方法を実施することで、短時間で長期間の水浸膨張性に対する品質を論理的に保証できる。   On the graph in which the horizontal axis represents the water immersion time on a logarithmic scale and the vertical axis represents the water immersion expansion rate on a logarithmic scale, the water immersion expansion curve gradually approaches a straight line having a slope of 0.5. For this reason, when the water immersion expansion curve is measured and the gradient becomes 0.5, the gradient extending in the direction in which the water immersion time is shortened from the point where the water immersion expansion curve shows the water immersion expansion reference value is 0. It can be estimated whether it exceeds the straight line of .5. As described above, by performing the water immersion expansion determination method for steelmaking slag according to the second embodiment, it is possible to logically guarantee the quality with respect to the long-term water expansion expansion in a short time.

また、第1の実施形態に係る製鋼スラグの水浸膨張判定方法で定義したように、単位温度をa(℃)とした場合の水浸膨張速度の増加倍率をb(−)とする。また、長期間水浸させた場合の製鋼スラグの水浸膨張基準値をc(%)に定めたとし、当該水浸膨張基準値cの温度条件および期間を、それぞれ所定温度d(℃)および所定時間e(日)とする。さらに、所定温度dよりも高い測定温度をf(℃)とし、測定温度fにおける所定時間eに対応した変換時間をg(日)とする。第2の実施形態に係る製鋼スラグの水浸膨張判定方法における水浸膨張基準値cは、所定温度dとした水浸膨張曲線で判定してもよいが、単位温度a上昇した水浸膨張速度の増加倍率がbである、という規則性を利用することで水浸温度の異なる水浸膨張にも適用できる。   Further, as defined in the method for determining the water immersion expansion of steelmaking slag according to the first embodiment, the increase rate of the water expansion rate when the unit temperature is a (° C.) is defined as b (−). Further, assuming that the water immersion expansion reference value of the steelmaking slag when immersed for a long period of time is set to c (%), the temperature condition and period of the water immersion expansion reference value c are respectively set to a predetermined temperature d (° C.) and The predetermined time is e (day). Further, a measurement temperature higher than the predetermined temperature d is defined as f (° C.), and a conversion time corresponding to the predetermined time e at the measurement temperature f is defined as g (day). The water immersion expansion reference value c in the method for determining the water immersion expansion of steelmaking slag according to the second embodiment may be determined by a water immersion expansion curve having a predetermined temperature d, but the water immersion expansion speed increased by the unit temperature a. By utilizing the regularity that the increase rate of b is b, it can be applied to water immersion expansion with different water immersion temperatures.

図6は、水浸温度の異なる水浸膨張に適用させた第2の実施形態に係る製鋼スラグの水浸膨張判定方法を説明するグラフである。図6において、横軸は、水浸時間(日)の対数軸であり、縦軸は、膨張率(%)の対数軸である。   FIG. 6 is a graph for explaining a water immersion expansion determination method for steelmaking slag according to the second embodiment applied to water immersion expansion with different water immersion temperatures. In FIG. 6, the horizontal axis is a logarithmic axis of water immersion time (days), and the vertical axis is a logarithmic axis of expansion rate (%).

図6中の点は、変換時間gに対応させた水浸膨張基準値cを示す。すなわち、単位温度aと水浸膨張速度の増加倍率bを用いて、水浸膨張基準値cを測定する条件である所定温度dにおける所定時間eを、測定温度fにおける変換時間gに変換して、所定温度dと異なる温度である測定温度fの水浸膨張に対応させた。   The point in FIG. 6 shows the water immersion expansion reference value c corresponding to the conversion time g. That is, by using the unit temperature a and the increase rate b of the water expansion rate, the predetermined time e at the predetermined temperature d, which is a condition for measuring the water expansion reference value c, is converted into the conversion time g at the measurement temperature f. Further, it was made to correspond to the water immersion expansion at the measurement temperature f which is a temperature different from the predetermined temperature d.

第2の実施形態に係る製鋼スラグの水浸膨張判定方法は、製鋼スラグの水浸膨張曲線が変換時間gにおける水浸膨張基準値cを示す点から水浸時間が短くなる方向に延びた勾配が0.5である直線に対して、製鋼スラグの水浸膨張曲線が当該直線を上回らないと推定される場合に、水浸膨張基準値に対して合格と判定し、製鋼スラグの水浸膨張曲線が当該直線を上回ると推定される場合に、水浸膨張基準値に対して不合格と判定する。   The method for determining the water immersion expansion of steelmaking slag according to the second embodiment is a gradient extending in a direction in which the water immersion time is shortened from the point where the water immersion expansion curve of the steelmaking slag shows the water immersion expansion reference value c in the conversion time g. When it is estimated that the water immersion expansion curve of the steelmaking slag does not exceed the straight line with respect to the straight line having a value of 0.5, the water immersion expansion of the steelmaking slag is determined to be acceptable. When it is estimated that the curve exceeds the straight line, it is determined that the curve does not pass the water immersion expansion reference value.

図6において、実線Aは、製鋼スラグAの測定温度fにおける水浸膨張曲線を示し、一点鎖線Bは、測定温度fにおける製鋼スラグBの水浸膨張曲線を示し、二点鎖線Cは、測定温度fにおける製鋼スラグCの水浸膨張曲線を示す。なお、一点鎖線Bに接続された破線は、一点鎖線Bから予測された水浸膨張曲線である。   In FIG. 6, the solid line A shows the water immersion expansion curve at the measurement temperature f of the steelmaking slag A, the one-dot chain line B shows the water immersion expansion curve of the steelmaking slag B at the measurement temperature f, and the two-dot chain line C shows the measurement. The water immersion expansion curve of the steelmaking slag C in the temperature f is shown. The broken line connected to the alternate long and short dash line B is a water immersion expansion curve predicted from the alternate long and short dash line B.

製鋼スラグAの水浸膨張曲線は、水浸膨張基準値cを示す点から水浸時間が短くなる方向に延びた勾配が0.5である直線を上回らないので、製鋼スラグAは、水浸膨張基準値cに対して合格と判定する。一方、製鋼スラグBの水浸膨張曲線は、水浸膨張基準値cを示す点から水浸時間が短くなる方向に延びた勾配が0.5である直線を上回ると推定されるので、製鋼スラグBは、水浸膨張基準値cに対して不合格と判定する。同様に、製鋼スラグCの水浸膨張曲線も水浸膨張基準値cを示す点から水浸時間が短くなる方向に延びた勾配が0.5である直線を上回るので、製鋼スラグCは、水浸膨張基準値cに対して不合格と判定する。   Since the water immersion expansion curve of the steelmaking slag A does not exceed the straight line having a gradient of 0.5 extending in the direction of shortening the water immersion time from the point indicating the water immersion expansion reference value c, It is determined that the expansion reference value c is acceptable. On the other hand, since the water immersion expansion curve of the steelmaking slag B is estimated to exceed the straight line having a gradient extending in the direction of shortening the water immersion time from the point indicating the water immersion expansion reference value c, the steelmaking slag B is determined to be unacceptable with respect to the water immersion expansion reference value c. Similarly, the water-swelling expansion curve of the steelmaking slag C exceeds the straight line whose slope extending in the direction of shortening the water-immersion time from the point indicating the water-swelling expansion reference value c is 0.5. It is determined that the reference value “c” is not acceptable.

ここで、所定温度dよりも測定温度fを高くすることで、所定時間eよりも短い変換時間gの水浸膨張基準値に基づいて判定できるので、所定時間eの水浸膨張基準値に基づいて判定する場合よりも短い時間で判定できる。このように、第2の実施形態に係る製鋼スラグの水浸膨張判定方法を所定温度dよりも高い測定温度fに適用することで、さらに短時間で長期間の水浸膨張性に対する品質を論理的に保証できる。   Here, by making the measurement temperature f higher than the predetermined temperature d, the determination can be made based on the water expansion reference value for the conversion time g shorter than the predetermined time e. It can be determined in a shorter time than the case of determining by. In this way, by applying the method for determining the water immersion expansion of the steelmaking slag according to the second embodiment to the measurement temperature f higher than the predetermined temperature d, the quality for the water expansion expansion property for a long period of time can be further increased. Can be guaranteed.

また、JIS水浸膨張法の測定結果を測定温度fで継続して水浸させた膨張曲線に読み替えて適用させることもできる。図7は、JIS水浸膨張法を、第2の実施形態に係る製鋼スラグの水浸膨張判定方法に適用させる方法を説明するグラフである。   Moreover, the measurement result of the JIS water immersion expansion method can be read and applied to the expansion curve continuously immersed in the measurement temperature f. FIG. 7 is a graph for explaining a method of applying the JIS water immersion expansion method to the water immersion expansion determination method for steelmaking slag according to the second embodiment.

JIS水浸膨張法を、第2の実施形態に係る製鋼スラグの水浸膨張判定方法に適用させる場合に、まず、JIS水浸膨張法での測定が、測定温度fで継続して何時間水浸させた場合に相当するかを統計的な平均値で算出する。ここで、算出された水浸時間をJIS対応時間iとする。測定温度fで測定した水浸膨張曲線におけるJIS対応時間iの時点での水浸膨張曲線の勾配のまま、水浸時間が長くなる方向に直線補外する。   When the JIS water immersion expansion method is applied to the method for determining the water immersion expansion of steelmaking slag according to the second embodiment, first, the measurement by the JIS water immersion expansion method is continued at the measurement temperature f for several hours. It is calculated by a statistical average value whether it corresponds to the case of soaking. Here, the calculated water immersion time is defined as JIS corresponding time i. The straight line extrapolation is performed in the direction in which the water immersion time becomes longer with the slope of the water immersion expansion curve at the time of the JIS corresponding time i in the water immersion expansion curve measured at the measurement temperature f.

長時間側に直線補外した直線が、水浸膨張基準値cを示す点から水浸時間が短くなる方向に延びた勾配が0.5である直線を上回らないと推定される場合に、水浸膨張基準値に対して合格と判定し、当該直線が、水浸膨張基準値cを示す点から短時間側に延びた勾配が0.5である直線を上回ると推定される場合に水浸膨張基準値に対して不合格と判定してもよい。   When it is estimated that the straight line extrapolated to the long time side does not exceed the straight line whose slope extending in the direction of shortening the water immersion time from the point indicating the water immersion expansion reference value c is 0.5, If it is determined that the reference value is acceptable and the straight line is estimated to exceed a straight line having a gradient extending to the short time side from the point indicating the water immersion expansion reference value c, the water immersion is 0.5. You may determine with disqualification with respect to an expansion | swelling reference value.

また、JIS対応時間iの時点での水浸膨張曲線の勾配は、例えば、JIS水浸膨張法における8日と10日の水浸膨張率変化を用いて算出する。JIS水浸膨張法は10日の間、間欠的に80℃に保持する試験であるが、10日のJIS対応時間iに対して、8日の対応時間を0.8iとし、0.8iとiの2点からJIS対応時間iの時点における水浸膨張曲線の勾配を算出してもよい。   Further, the slope of the water immersion expansion curve at the time point of JIS corresponding time i is calculated using, for example, changes in the water expansion coefficient on the 8th and 10th days in the JIS water expansion method. The JIS water immersion expansion method is a test that is intermittently maintained at 80 ° C. for 10 days, but with respect to the JIS response time i of 10 days, the response time of 8 days is set to 0.8i, and 0.8i The slope of the water immersion expansion curve at the time point JIS corresponding time i may be calculated from the two points i.

すなわち、水浸膨張曲線のJIS対応時間iの時点から算出された勾配で直線補外した直線が、水浸膨張基準値cを示す点から水浸時間が短くなる方向に延びた勾配が0.5である直線を上回らない場合に水浸膨張基準値cに対して合格と判定し、当該直線が、水浸膨張基準値cを示す点から水浸時間が短くなる方向に延びた勾配が0.5である直線を上回らない場合に、水浸膨張基準値cに対して合格と判定してもよい。このように判定することで、JIS水浸膨張法の測定結果を測定温度fで継続して水浸膨張させた水浸膨張曲線に読み替えて適用させることができる。このように、第2の実施形態に係る製鋼スラグの水浸膨張判定方法を実施することでも、長期間の水浸膨張性に対する品質を、短期間で論理的に保証することができる。   In other words, the slope obtained by extrapolating the straight line with the slope calculated from the time point JIS corresponding time i of the water immersion expansion curve extends from the point indicating the water immersion expansion reference value c in the direction in which the water immersion time is shortened is 0. If it does not exceed the straight line 5, it is determined that the water immersion expansion reference value c is acceptable, and the straight line extends from the point indicating the water immersion expansion reference value c in a direction in which the water immersion time is shortened to 0. If it does not exceed the straight line of .5, it may be determined that the water immersion expansion reference value c is acceptable. By determining in this way, the measurement result of the JIS water immersion expansion method can be read and applied to a water immersion expansion curve obtained by continuously water immersion expansion at the measurement temperature f. As described above, by implementing the method for determining the water immersion expansion of the steelmaking slag according to the second embodiment, it is possible to logically guarantee the quality with respect to the long term water immersion expansion property in a short period of time.

ロットの異なる脱炭スラグを100℃2日以上蒸気エージングした3種の脱炭スラグA〜Cを用いた。JIS水浸膨張試験(JIS A 5015 附属書B)に準拠して、内径15cmの型枠を用い、最適含水比に調湿した後、突き固めて供試体を作製した。水浸膨張試験は、温度は80℃で一定に保つ試験とともに、JIS水浸膨張試験の手法に従って80℃に1日6時間保持し、それ以外は80℃への昇温または80℃からの放冷の期間とした試験も実施した。   Three types of decarburized slags A to C obtained by steam aging of decarburized slags of different lots at 100 ° C. for 2 days or more were used. In accordance with a JIS water immersion expansion test (JIS A 5015, Annex B), a specimen having an inner diameter of 15 cm was used to adjust the moisture content to an optimum water content ratio, and then tamped to prepare a specimen. In the water immersion expansion test, the temperature is kept constant at 80 ° C. and maintained at 80 ° C. for 6 hours a day according to the method of the JIS water immersion expansion test, otherwise the temperature is raised to 80 ° C. or released from 80 ° C. A test with a cold period was also performed.

3種の脱炭スラグA〜Cにおいて40〜100℃の複数の温度で水浸膨張試験を行い、水浸透膨張速度の増加倍率を算出した所、脱炭スラグA〜Cのいずれも単位温度を10℃とした場合の水浸膨張速度の増加倍率は2.0であった。   In the three types of decarburized slags A to C, a water immersion expansion test was performed at a plurality of temperatures of 40 to 100 ° C., and the rate of increase of the water permeation expansion rate was calculated. When the temperature was set to 10 ° C., the rate of increase in the water expansion rate was 2.0.

水浸膨張基準値cを4.0%とし、所定温度dを20℃とし、所定時間を20年(日数換算で7300日(閏年は無視))とした。温度が10℃上昇するごとに、時間軸は増加倍率の逆数(1/2.0)で短縮される。このため測定温度fが80℃の場合、時間軸は(1/2.0)=1/64に短縮されるので、20℃の7300日は、80℃の114.0日に相当する。水浸膨張基準値cを4.0%とし、水浸時間を114日とした点(114.0日、4.0%)を浸漬時間−膨張率の両対数目盛グラフ上にとり、短時間側に勾配0.5の直線を引いた。この結果を図8に示す。 The water immersion expansion reference value c was 4.0%, the predetermined temperature d was 20 ° C., and the predetermined time was 20 years (7300 days in terms of days (ignoring leap years)). Each time the temperature rises by 10 ° C., the time axis is shortened by the reciprocal of the increasing magnification (1 / 2.0). Therefore, when the measurement temperature f is 80 ° C., the time axis is shortened to (1 / 2.0) 6 = 1/64, and therefore, 7300 days at 20 ° C. corresponds to 114.0 days at 80 ° C. The point (114.0 days, 4.0%) where the water immersion expansion reference value c is 4.0% and the water immersion time is 114 days is taken on the logarithmic scale graph of immersion time-expansion rate, and the short time side. A straight line with a slope of 0.5 was drawn on the surface. The result is shown in FIG.

図8は、第2の実施形態に係る製鋼スラグの水浸膨張判定方法を用いて脱炭スラグA〜Cの水浸膨張性を判定した結果を示すグラフである。図8において、実線Aは、80℃における脱炭スラグAの水浸膨張曲線を示し、一点鎖線Bは、80℃における脱炭スラグBの水浸膨張曲線を示し、二点鎖線Cは、80℃における脱炭スラグCの水浸膨張曲線を示す。図8に示すように、脱炭スラグB、Cの10日時点の水浸膨張曲線は、点(114.0日、4.0%)から短時間側に延ばした勾配が0.5である直線を上回っており、不合格判定となる。一方、脱炭スラグAは、10日時点から勾配0.5で延長した直線が、点(114.0日、4.0%)から短時間側に延ばした勾配が0.5である直線を上回らず、変換時間114.0日においても膨張率4.0%に到達しないので合格判定となる。このように、第2の実施形態に係る製鋼スラグの水浸膨張方法を用いることで、所定温度が20℃で、所定期間20年の水浸膨張基準値に対する合否を、10日程度の水浸膨張試験により論理的に判定できることが確認された。   FIG. 8 is a graph showing the results of determining the water immersion expansion of the decarburization slags A to C using the method for determining the water immersion expansion of the steel slag according to the second embodiment. In FIG. 8, a solid line A indicates a water immersion expansion curve of the decarburized slag A at 80 ° C., a one-dot chain line B indicates a water immersion expansion curve of the decarburized slag B at 80 ° C., and a two-dot chain line C indicates The water immersion expansion curve of the decarburization slag C in ° C is shown. As shown in FIG. 8, the dewatering slag B, C has a water immersion expansion curve at 10 days of time, the gradient extending from the point (114.0 days, 4.0%) to the short time side is 0.5. It exceeds the straight line and is judged as rejected. On the other hand, the decarburization slag A is a straight line extending from the 10th day with a gradient of 0.5, and a straight line extending from the point (114.0 days, 4.0%) to the short time side with a gradient of 0.5. Since the expansion rate does not reach 4.0% even at the conversion time of 114.0 days, it is judged as acceptable. In this way, by using the method of water immersion expansion of steelmaking slag according to the second embodiment, the predetermined temperature is 20 ° C., and the pass / fail of the water expansion expansion reference value for a predetermined period of 20 years is determined for about 10 days. The expansion test confirmed that it can be logically determined.

図9は、JIS膨張試験結果を第2の実施形態に係る製鋼スラグの水浸膨張判定方法に適用させた結果を示すグラフである。図9において、実線Aは、80℃における脱炭スラグAの水浸膨張曲線を示し、一点鎖線Bは、80℃における脱炭スラグBの水浸膨張曲線を示し、二点鎖線Cは、80℃における脱炭スラグCの水浸膨張曲線を示す。   FIG. 9 is a graph showing a result of applying the JIS expansion test result to the water immersion expansion determination method for steelmaking slag according to the second embodiment. In FIG. 9, a solid line A indicates a water immersion expansion curve of the decarburized slag A at 80 ° C., a one-dot chain line B indicates a water immersion expansion curve of the decarburized slag B at 80 ° C., and a two-dot chain line C indicates The water immersion expansion curve of the decarburization slag C in ° C is shown.

80℃で継続して水浸膨張試験およびJIS水浸膨張試験を行なった結果、80℃で継続して水浸膨張させた場合の膨張率が、JIS膨張試験10日の膨張率と同じになるJIS対応時間iが平均値で4.0日であり、JIS膨張試験8日の膨張率と同じになるJIS対応時間0.8iが平均値で3.2日であった。4.0日時点の膨張率変化から勾配を算出する場合の水浸時間を3.2日および4.0日とし、この2つの点から算出された勾配と同じ勾配で、4.0日の時点から水浸膨張したとして、4.0日の点から長時間側に直線補外した。なお、本実施例においてはJIS対応時間iが平均値で4.0日であった例を示したが、JIS対応時間iは、JIS水浸膨張法において使用する水槽のヒーター能力等によって変わり得る。すなわち、水槽のヒーターの80℃迄の昇温速度が速い場合、および/または、当該水槽の保温性が高く80℃からの冷却速度が遅い場合には、JIS対応時間iは、4.0日よりも長くなり、水槽のヒーターの80℃迄の昇温速度が遅い場合、および/または、当該水槽の保温性が低く80℃からの冷却速度が速い場合には、JIS対応時間iは、4.0日よりも短くなる。   As a result of continuously performing the water immersion expansion test and the JIS water immersion expansion test at 80 ° C., the expansion rate when the water immersion expansion is continued at 80 ° C. is the same as the expansion rate on the 10th day of the JIS expansion test. The JIS response time i was 4.0 days on average, and the JIS response time 0.8i that was the same as the expansion rate on the 8th day of JIS expansion test was 3.2 days on average. The immersion time when calculating the gradient from the change in expansion rate at 4.0 days is 3.2 days and 4.0 days, and the same gradient as calculated from these two points is used for 4.0 days. Assuming that the water was swollen from the time point, extrapolation was performed from the 4.0 day point to the long time side. In the present embodiment, an example in which the JIS response time i was 4.0 days on average was shown, but the JIS response time i may vary depending on the heater capacity of the water tank used in the JIS water immersion expansion method. . That is, when the rate of temperature increase up to 80 ° C. of the water tank heater is high and / or when the temperature of the water tank is high and the cooling rate from 80 ° C. is low, the JIS response time i is 4.0 days. When the temperature rise rate of the water tank heater to 80 ° C. is slow and / or the heat retention rate of the water tank is low and the cooling rate from 80 ° C. is high, the JIS response time i is 4 It will be shorter than 0 days.

脱炭スラグB、Cは、点(114.0日、4.0%)から短時間側に延ばした勾配0.5の直線を上回るので、不合格判定となる。脱炭スラグAは、点(114.0日、4.0%)から短時間側に延ばした勾配0.5の直線を上回らず、変換時間114.0日においても膨張率4.0%に到達しないので合格判定となる。このように、第2の実施形態に係る製鋼スラグの水浸膨張方法を用いることで、所定温度が20℃で、所定期間20年の水浸膨張基準値に対する合否を、JIS膨張試験結果を用いて判定できることが確認された。   Since the decarburization slags B and C exceed the straight line with the gradient 0.5 extending from the point (114.0 days, 4.0%) to the short time side, the determination is rejected. The decarburized slag A does not exceed the straight line with a slope of 0.5 extending from the point (114.0 days, 4.0%) for a short time, and the expansion rate is 4.0% even at the conversion time of 114.0 days. Since it does not reach, it becomes a pass judgment. As described above, by using the water immersion expansion method for steelmaking slag according to the second embodiment, whether the predetermined temperature is 20 ° C. or not with respect to the water immersion expansion reference value for a predetermined period of 20 years is used as a result of the JIS expansion test result. It was confirmed that it can be judged.

Claims (4)

横軸に水浸時間を対数目盛りでとり、縦軸に水浸膨張率を対数目盛りでとったグラフ上に、所定温度で所定時間水浸膨張させた製鋼スラグの水浸膨張基準値を示す点をとり、
前記所定温度で測定した前記製鋼スラグの水浸膨張曲線が、前記点から水浸時間が短くなる方向に延びた勾配が0.5である直線を上回ると推定される場合に、前記水浸膨張基準値に対して不合格と判定し、前記製鋼スラグの水膨張曲線が前記直線を上回らないと推定される場合に、前記水浸膨張基準値に対して合格と判定することを特徴とする製鋼スラグの水浸膨張性判定方法。
Point where the horizontal axis represents the water immersion time on a logarithmic scale, and the vertical axis represents the water expansion rate on a logarithmic scale. Take
When the water immersion expansion curve of the steelmaking slag measured at the predetermined temperature is estimated to exceed a straight line with a gradient extending from the point in a direction in which the water immersion time is shortened to 0.5, the water immersion expansion It is determined that the steelmaking slag is rejected with respect to the reference value, and when it is estimated that the water expansion curve of the steelmaking slag does not exceed the straight line, the steelmaking is determined to be acceptable with respect to the water immersion expansion reference value. A method for judging the water swellability of slag.
40℃から120℃までの間の異なる温度で膨張させた複数の製鋼スラグの水浸膨張曲線から単位温度あたりに上昇する水浸膨張速度の増加倍率を算出し、
所定温度で所定時間水浸膨張させた前記製鋼スラグの水浸膨張基準値に対して、前記所定温度よりも高い測定温度との温度差と、前記増加倍率とを用いて前記測定温度における前記所定時間に対応した変換時間を算出し、
横軸に水浸時間を対数目盛りでとり、縦軸に水浸膨張率を対数目盛りでとったグラフ上に、前記変換時間に対応させた前記製鋼スラグの水浸膨張基準値を示す点をとり、
前記測定温度で測定した前記製鋼スラグの水浸膨張曲線が、前記点から水浸時間が短くなる方向に伸びた勾配が0.5である直線を上回ると推定される場合に、前記水浸膨張基準値に対して不合格と判定し、前記製鋼スラグの水膨張曲線が前記直線を上回らないと推定される場合に、前記水浸膨張基準値に対して合格と判定することを特徴とする製鋼スラグの水浸膨張性判定方法。
From the water immersion expansion curves of a plurality of steelmaking slags expanded at different temperatures between 40 ° C. and 120 ° C., the increase rate of the water immersion expansion rate rising per unit temperature is calculated,
The predetermined temperature at the measurement temperature using the temperature difference between the measurement temperature higher than the predetermined temperature and the increase factor with respect to the water immersion expansion reference value of the steelmaking slag that has been subjected to water immersion expansion for a predetermined time at a predetermined temperature. Calculate the conversion time corresponding to the time,
On the graph with waterlogging time on the logarithmic scale on the horizontal axis and the waterlogging expansion rate on the logarithmic scale on the vertical axis, a point indicating the water immersion expansion reference value of the steelmaking slag corresponding to the conversion time is taken. ,
When the water immersion expansion curve of the steelmaking slag measured at the measurement temperature is estimated to exceed a straight line having a gradient extending from the point in a direction in which the water immersion time is shortened to 0.5, the water immersion expansion It is determined that the steelmaking slag is rejected with respect to the reference value, and when it is estimated that the water expansion curve of the steelmaking slag does not exceed the straight line, the steelmaking is determined to be acceptable with respect to the water immersion expansion reference value. A method for judging the water swellability of slag.
JIS A 5015 付属書Bの水浸膨張試験の測定を前記測定温度で継続して水浸させた場合に同じ膨張率となる対応時間を統計的な平均値で算出し、
前記水浸膨張曲線に代えて、前記測定温度で水浸膨張させた水浸膨張曲線の前記対応時間経過時における前記水浸膨張曲線の勾配のまま水浸時間が長くなる方向に直線補外した直線を用いることを特徴とする請求項に記載の製鋼スラグの水浸膨張性判定方法。
When the measurement of the water immersion expansion test of JIS A 5015 Annex B is continuously immersed in the measurement temperature, the corresponding time for the same expansion rate is calculated as a statistical average value,
Instead of the water immersion expansion curve, linear extrapolation was performed in the direction in which the water immersion time was increased while maintaining the slope of the water immersion expansion curve when the corresponding time elapsed in the water immersion expansion curve that was water-expanded at the measurement temperature. The method for determining the water-swelling expansibility of steelmaking slag according to claim 2 , wherein a straight line is used.
請求項1から請求項の何れか一項に記載の製鋼スラグの水浸膨張性判定方法を用いて製鋼スラグの水浸膨張性を判定し、
前記水浸膨張基準値に対して合格と判定された製鋼スラグを用いてスラグ路盤材を製造することを特徴とするスラグ路盤材の製造方法。
The water-swelling expansibility of steelmaking slag is determined using the method for judging the water-swelling extensibility of steelmaking slag according to any one of claims 1 to 3 ,
A method for producing a slag roadbed material, comprising producing a slag roadbed material using steelmaking slag determined to be acceptable with respect to the water immersion expansion reference value.
JP2016157188A 2016-08-10 2016-08-10 Method for judging water-swelling expansion of steel slag and method for producing slag roadbed material Active JP6593277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157188A JP6593277B2 (en) 2016-08-10 2016-08-10 Method for judging water-swelling expansion of steel slag and method for producing slag roadbed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157188A JP6593277B2 (en) 2016-08-10 2016-08-10 Method for judging water-swelling expansion of steel slag and method for producing slag roadbed material

Publications (2)

Publication Number Publication Date
JP2018025461A JP2018025461A (en) 2018-02-15
JP6593277B2 true JP6593277B2 (en) 2019-10-23

Family

ID=61194046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157188A Active JP6593277B2 (en) 2016-08-10 2016-08-10 Method for judging water-swelling expansion of steel slag and method for producing slag roadbed material

Country Status (1)

Country Link
JP (1) JP6593277B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596815B (en) * 2018-12-27 2024-02-27 长安大学 Evaluation method and test device for steel slag aging quality

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171612A (en) * 1981-04-14 1982-10-22 Nippon Steel Corp Quick decision method for expansion collapsing property of converter slag
JPH07232940A (en) * 1994-02-17 1995-09-05 Sumitomo Metal Ind Ltd Method for deciding rapid expansion of converter slag
WO2001020048A1 (en) * 1999-09-13 2001-03-22 Mcmaster University High temperature modification of steelmaking slag to provide construction material
JP4255726B2 (en) * 2003-03-28 2009-04-15 新日本製鐵株式会社 Method for determining expansion stability of solidified material containing steelmaking slag
JP5797968B2 (en) * 2011-08-03 2015-10-21 株式会社フジタ Water immersion expansion test method, water immersion expansion test apparatus and embankment construction method for expansive material

Also Published As

Publication number Publication date
JP2018025461A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
Garcia-Diaz et al. Mechanism of damage for the alkali–silica reaction
Nili et al. Assessing the effectiveness of pozzolans in massive high-strength concrete
Nepomuceno et al. Experimental evaluation of cement mortars with phase change material incorporated via lightweight expanded clay aggregate
Haddad et al. Influence of moisture content on the thermal and mechanical properties and curing behavior of polymeric matrix and polymer concrete composite
JP6593277B2 (en) Method for judging water-swelling expansion of steel slag and method for producing slag roadbed material
CN103698238A (en) Concrete temperature deformation stress test method
Talaei et al. Mechanical properties of fiber-reinforced concrete containing waste porcelain aggregates under elevated temperatures
Benali et al. Thermo-mechanical characterization of a silica-alumina refractory concrete based on calcined algerian kaolin
Tišlova et al. Porosity and specific surface area of Roman cement pastes
JP5930294B2 (en) Quantitative evaluation method of crack reduction effect by shrinkage reducing material and selection method of shrinkage reducing material
Knack The use of PP fibers in tunnel construction to avoid explosive concrete spalling in case of fire. New test results for the clarification of the mode of action
Innocentini et al. Vaporization processes and pressure buildup during dewatering of dense refractory castables
Chen et al. Influence of soaking and polymerization conditions on the properties of polymer concrete
Wilk et al. Shrinkage cracking in Roman cement pastes and mortars
JP2011094302A (en) Base course material and construction method of pavement
JP5991223B2 (en) Method for estimating the amount of quick-expanding quicklime in steelmaking slag
JP6729609B2 (en) Method for measuring expansion coefficient of iron-containing oxide and method for producing granular material
Jafferji et al. Preliminary study on mitigating steel reinforcement corrosion with bioactive agent
Al Ghazali et al. Plastic shrinkage of high-performance strain-hardening cement-based composites (HP-SHCC)
JP6143008B2 (en) Pressurized steam aging method for steelmaking slag
CN108007752B (en) Gunning mix test sample containing calcium oxide and preparation method thereof
JP5195501B2 (en) How to select materials that are not suitable for roadbed materials
JP6735242B2 (en) Method for measuring the strength of hollow particles
JP6966967B2 (en) Construction method of salt-shielding mortar
Bazhenov et al. Concrete composites of double structure formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6593277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250