JP6592696B2 - Pipe measuring device and pipe measuring method - Google Patents

Pipe measuring device and pipe measuring method Download PDF

Info

Publication number
JP6592696B2
JP6592696B2 JP2015132624A JP2015132624A JP6592696B2 JP 6592696 B2 JP6592696 B2 JP 6592696B2 JP 2015132624 A JP2015132624 A JP 2015132624A JP 2015132624 A JP2015132624 A JP 2015132624A JP 6592696 B2 JP6592696 B2 JP 6592696B2
Authority
JP
Japan
Prior art keywords
pipeline
traveling body
pipe
distance
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015132624A
Other languages
Japanese (ja)
Other versions
JP2017015563A (en
Inventor
諒一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2015132624A priority Critical patent/JP6592696B2/en
Publication of JP2017015563A publication Critical patent/JP2017015563A/en
Application granted granted Critical
Publication of JP6592696B2 publication Critical patent/JP6592696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、管路計測装置及び管路計測方法に関する。   The present invention relates to a pipe line measuring device and a pipe line measuring method.

布設管路の状態つまり形状を計測する方法が考案されている。
例えば、特許文献1には、加速度計及びジャイロスコープを有し且つ管路内を走行する慣性センサによる計測結果と、距離計によって計測される管路内の慣性センサの走行距離とを用いて、管路の変位量を計測する発明が記載されている。特許文献1では、予め曲がり状態が既知となっている少なくとも1つの剛体的な管路要素と、この少なくとも1つの剛体的な管路要素に接続された管路要素とから構成される管路を計測対象としている。上述のような慣性センサと距離計とを用いた計測方法では、ジャイロドリフトに起因する誤差が発生する。さらに、曲がりの大きい管路においては、曲がりの影響による誤差、つまりスケールファクタによる誤差が生じる。このため、少なくとも1つの剛体的な管路要素の既知の曲がり角度と、管路内を計測走行する慣性センサの計測結果とを比較することによって、計測走行中のジャイロドリフトレートとスケールファクタによる誤差との補正が行われている。
A method for measuring the state of the laying pipe, that is, the shape has been devised.
For example, in Patent Document 1, using a measurement result by an inertial sensor that has an accelerometer and a gyroscope and travels in a pipeline, and a travel distance of the inertial sensor in the pipeline that is measured by a distance meter, An invention for measuring the amount of displacement of a pipeline is described. In Patent Document 1, a pipe constituted by at least one rigid pipe element whose bending state is known in advance and a pipe element connected to the at least one rigid pipe element is provided. Measurement target. In the measurement method using the inertia sensor and the distance meter as described above, an error due to the gyro drift occurs. Further, in a pipeline with a large bend, an error due to the bend, that is, an error due to a scale factor occurs. For this reason, by comparing the known bending angle of at least one rigid pipe element with the measurement result of the inertial sensor that measures and travels in the pipe, an error due to the gyro drift rate and the scale factor during the measured travel And corrections have been made.

特許第3205101号公報Japanese Patent No. 3205101

特許文献1に記載される管路の変位量を計測する方法では、管路における少なくとも一つの管路要素の曲がり角度、つまり傾斜角度が既知であることが必要になる。このため、上記の少なくとも一つの管路要素の傾斜角度の計測と、慣性センサ及び距離計による計測との2つの異なる計測方法を用いて計測を実施する必要があり、計測方法毎に計測装置を準備する必要もある。よって、計測に要する手間、労力及び費用が、大きくなるという問題がある。   In the method of measuring the displacement amount of the pipeline described in Patent Document 1, it is necessary that the bending angle, that is, the inclination angle of at least one pipeline element in the pipeline is known. For this reason, it is necessary to carry out measurement using two different measurement methods, that is, measurement of the inclination angle of the at least one pipe element and measurement using an inertial sensor and a distance meter. It is also necessary to prepare. Therefore, there is a problem that labor, labor, and cost required for measurement are increased.

本発明はこのような問題点を解決するためになされたものであり、管路の形状の計測を簡易にしつつ高い計測精度を保つことを可能にする管路計測装置及び管路計測方法を提供することを目的とする。   The present invention has been made to solve such problems, and provides a pipe measuring device and a pipe measuring method capable of maintaining high measurement accuracy while simplifying the measurement of the pipe shape. The purpose is to do.

上記の課題を解決するために、本発明に係る管路計測装置は、管路の形状を計測する管路計測装置において、加速度センサ及びジャイロセンサを有し、管路内を走行可能である管路走行体と、管路走行体の走行距離を計測する距離計測部と、加速度センサ及びジャイロセンサが検知する加速度及び角速度と、距離計測部が計測する走行距離とから管路走行体の位置を検出する位置検出部とを備え、位置検出部は、検出する管路走行体の位置による軌跡と管路の形状との間における管路走行体の長さに起因する誤差を、検出する管路走行体の位置に対して補正する管路計測装置において、管路走行体の長さは、管路走行体の前輪の中心と後輪の中心との間の距離である。
さらに、位置検出部は、上記誤差の補正では、管路走行体の方位角が変化することによって生じる管路走行体の位置による軌跡と管路の線形形状との間の誤差距離と、管路走行体のピッチ角が変化することによって生じる管路走行体の位置による軌跡と管路の線形形状との間の誤差距離とを、管路走行体の長さと、方位角の変化量と、ピッチ角の変化量とに基づいて算出して用いてよい。
In order to solve the above-described problems, a pipe measuring device according to the present invention is a pipe measuring device that measures the shape of a pipe, and includes an acceleration sensor and a gyro sensor and is capable of traveling in the pipe. The position of the pipeline traveling body is determined from the road traveling body, the distance measuring unit that measures the traveling distance of the pipeline traveling body, the acceleration and angular velocity detected by the acceleration sensor and the gyro sensor, and the traveling distance measured by the distance measuring unit. A position detection unit that detects a pipe line that detects an error caused by the length of the pipeline traveling body between the locus of the pipeline traveling body to be detected and the shape of the pipeline. In the pipe measuring device that corrects the position of the traveling body, the length of the pipeline traveling body is a distance between the center of the front wheel and the center of the rear wheel of the pipeline traveling body.
Further, the position detection unit, in the correction of the error, the error distance between the trajectory due to the position of the pipeline traveling body caused by the change in the azimuth angle of the pipeline traveling body and the linear shape of the pipeline, and the pipeline The error distance between the trajectory due to the position of the pipeline traveling body and the linear shape of the pipeline caused by the change in the pitch angle of the traveling body, the length of the pipeline traveling body, the amount of change in the azimuth angle, and the pitch It may be calculated and used based on the amount of change in corners .

また、本発明に係る管路計測方法は、管路の形状を計測する管路計測方法において、加速度センサ及びジャイロセンサを有し、管路内を走行可能である管路走行体と、管路走行体の走行距離を計測する距離計測部と、加速度センサ及びジャイロセンサが検知する加速度及び角速度と、距離計測部が計測する走行距離とから管路走行体の位置を検出する位置検出部とを用い、位置検出部は、検出する管路走行体の位置による軌跡と管路の形状との間における管路走行体の長さに起因する誤差を、検出する管路走行体の位置に対して補正する管路計測方法において、管路走行体の長さは、管路走行体の前輪の中心と後輪の中心との間の距離である。
さらに、位置検出部は、上記誤差の補正では、管路走行体の方位角が変化することによって生じる管路走行体の位置による軌跡と管路の線形形状との間の誤差距離と、管路走行体のピッチ角が変化することによって生じる管路走行体の位置による軌跡と管路の線形形状との間の誤差距離とを、管路走行体の長さと、方位角の変化量と、ピッチ角の変化量とに基づいて算出して用いてよい。
In addition, a pipe line measuring method according to the present invention is a pipe line measuring method for measuring the shape of a pipe line. The pipe line traveling body has an acceleration sensor and a gyro sensor, and can travel in the pipe line. A distance measuring unit that measures the traveling distance of the traveling body, a position detecting unit that detects the position of the pipeline traveling body from the acceleration and angular velocity detected by the acceleration sensor and the gyro sensor, and the traveling distance measured by the distance measuring unit. The position detection unit uses an error due to the length of the pipeline traveling body between the trajectory due to the position of the pipeline traveling body to be detected and the shape of the pipeline with respect to the position of the pipeline traveling body to be detected. in line measuring method of correcting the length of the conduit traveling body, Ru distance der between the center of the front and rear wheels of the center of the conduit running body.
Further, the position detection unit, in the correction of the error, the error distance between the trajectory due to the position of the pipeline traveling body caused by the change in the azimuth angle of the pipeline traveling body and the linear shape of the pipeline, and the pipeline The error distance between the trajectory due to the position of the pipeline traveling body and the linear shape of the pipeline caused by the change in the pitch angle of the traveling body, the length of the pipeline traveling body, the amount of change in the azimuth angle, and the pitch It may be calculated and used based on the amount of change in corners .

本発明に係る管路計測装置及び管路計測方法によれば、管路の形状の計測が簡易になり且つ高い計測精度を保つことが可能になる。   According to the pipe line measuring device and the pipe line measuring method according to the present invention, it is possible to easily measure the shape of the pipe line and maintain high measurement accuracy.

本発明の実施の形態に係る管路計測装置の管路走行体の概略的な断面側面図である。It is a rough section side view of a pipe running object of a pipe line measuring device concerning an embodiment of the invention. 本発明の実施の形態に係る管路計測装置を用いた管路の計測状況を示す概略的な断面側面図である。It is a rough section side view showing the measurement situation of a pipe line using the pipe line measuring device concerning an embodiment of the invention. 管路走行体の位置の誤差補正の方法の例を示す概略図である。It is the schematic which shows the example of the method of the error correction | amendment of the position of a pipe running body.

以下、本発明の実施の形態に係る管路計測装置100について添付図面に基づいて説明する。
まず、管路計測装置100の構成を説明する。
図2を参照すると、本発明の実施の形態に係る管路計測装置100は、管路A内を走行可能な管路走行体101と、管路走行体101の走行距離を計測する距離計102とを備えている。ここで、距離計102は、距離計測部を構成し、エンコーダ等を含むことができる。
Hereinafter, a pipe line measuring device 100 according to an embodiment of the present invention will be described with reference to the accompanying drawings.
First, the configuration of the pipe line measuring apparatus 100 will be described.
Referring to FIG. 2, a pipe measuring device 100 according to an embodiment of the present invention includes a pipe traveling body 101 that can travel in the pipe A and a distance meter 102 that measures a travel distance of the pipe traveling body 101. And. Here, the distance meter 102 constitutes a distance measuring unit and can include an encoder or the like.

図1を参照すると、管路走行体101は、細長の有底円筒状の筐体1と、筐体1を走行させる車輪2及び3とを備えている。車輪は、筐体1の走行方向でもある長手方向に沿って間隔をあけて配置された前輪2と後輪3とによって構成されている。前輪2の中心と後輪3の中心との間の距離は、Lとなっている。
さらに、筐体1は、その前方先端にケーブル11が接続されるように構成されている。管路走行体101は、ケーブル11を介して押される又は引かれることによって、走行するように構成されている。
Referring to FIG. 1, a pipeline traveling body 101 includes an elongated bottomed cylindrical casing 1 and wheels 2 and 3 that cause the casing 1 to travel. The wheel is constituted by a front wheel 2 and a rear wheel 3 that are arranged at intervals along a longitudinal direction that is also a traveling direction of the housing 1. The distance between the center of the front wheel 2 and the center of the rear wheel 3 is L.
Further, the housing 1 is configured such that a cable 11 is connected to the front end thereof. The pipeline traveling body 101 is configured to travel by being pushed or pulled through the cable 11.

管路走行体101は、筐体1の内部に、三軸直線加速度センサ5と、三軸ジャイロセンサ6と、CPU等の演算部7とを有している。さらに、管路走行体101は、筐体1の前方部に設けられた入出力端子8を有している。
三軸直線加速度センサ5は、円筒状の筐体1の長手方向に延在する円筒中心軸に沿うX軸方向の直線加速度と、X軸に垂直であり且つ円筒中心軸から車輪2及び3に向かうZ軸方向の直線加速度と、X軸及びZ軸に垂直なY軸方向の直線加速度とを検知する。
三軸ジャイロセンサ6は、X軸周りつまり筐体1のローリング方向の角速度であるロール角速度と、Y軸周りつまり筐体1のピッチング方向の角速度であるピッチ角速度と、Z軸周りつまり筐体1のヨー方向の角速度である方位角速度とを検知する。
演算部7は、三軸直線加速度センサ5及び三軸ジャイロセンサ6から検知情報を受け取るように構成されている。
The pipe traveling body 101 includes a three-axis linear acceleration sensor 5, a three-axis gyro sensor 6, and a calculation unit 7 such as a CPU inside the housing 1. Further, the pipeline traveling body 101 has an input / output terminal 8 provided at the front portion of the housing 1.
The three-axis linear acceleration sensor 5 includes a linear acceleration in the X-axis direction along the cylindrical central axis extending in the longitudinal direction of the cylindrical casing 1, and perpendicular to the X-axis and from the cylindrical central axis to the wheels 2 and 3. A linear acceleration in the Z-axis direction and a linear acceleration in the Y-axis direction perpendicular to the X-axis and the Z-axis are detected.
The triaxial gyro sensor 6 includes a roll angular velocity that is an angular velocity around the X axis, that is, the rolling direction of the housing 1, a pitch angular velocity that is an angular velocity around the Y axis, that is, the pitching direction of the housing 1, and a Z axis around the housing 1. An azimuth angular velocity that is an angular velocity in the yaw direction is detected.
The calculation unit 7 is configured to receive detection information from the three-axis linear acceleration sensor 5 and the three-axis gyro sensor 6.

演算部7は、三軸直線加速度センサ5から連続的に受け取る三軸方向の直線加速度と、三軸ジャイロセンサ6から連続的に受け取る三軸周りの角速度とから、筐体1の三軸周りの姿勢角を算出する。すなわち、演算部7によって、筐体1のロール角とピッチ角と方位角とが、算出される。例えば、上記算出では、ロール角速度、ピッチ角速度及び方位角速度からロール角、ピッチ角及び方位角を算出する際に、X軸方向直線加速度、Y軸方向直線加速度及びZ軸方向直線加速度を用いて、三軸方向それぞれの直線加速度が三軸ジャイロセンサ6の検知角速度に与えている誤差及びジャイロドリフトを補正する。   The calculation unit 7 is configured to move around the three axes of the housing 1 from the three-axis linear acceleration continuously received from the three-axis linear acceleration sensor 5 and the angular velocities around the three axes continuously received from the three-axis gyro sensor 6. Calculate the attitude angle. That is, the calculation unit 7 calculates the roll angle, pitch angle, and azimuth angle of the housing 1. For example, in the above calculation, when calculating the roll angle, pitch angle, and azimuth angle from the roll angular velocity, pitch angular velocity, and azimuth angular velocity, using the X-axis direction linear acceleration, the Y-axis direction linear acceleration, and the Z-axis direction linear acceleration, The error and the gyro drift that the linear acceleration in each of the three axial directions gives to the detected angular velocity of the three axial gyro sensor 6 are corrected.

演算部7は、上述のようにして算出した筐体1のロール角とピッチ角と方位角とを、入出力端子8につながれた外部の装置に出力することができる。
また、演算部7は、入出力端子8につながれた外部の装置に対して、外部の装置から情報を受け取ることができる。
The calculation unit 7 can output the roll angle, pitch angle, and azimuth angle of the casing 1 calculated as described above to an external device connected to the input / output terminal 8.
In addition, the calculation unit 7 can receive information from an external device with respect to an external device connected to the input / output terminal 8.

図2を参照すると、距離計102は、管路走行体101を走行させるために巻取器103によってケーブル11を引き出したとき又は巻き取ったときのケーブル11の引き出し量又は引き込み量、つまり管路走行体101の走行距離を、搭載するエンコーダ等によって計測する。距離計102は、その計測結果を外部のコンピュータ等の演算装置104に送るように構成されている。なお、巻取器103は、手動で動作するものであっても、電動式で動作するものであってもよい。
さらに、演算装置104は、ケーブル11に内部又は外部に沿って延在する有線を介して、管路走行体101の入出力端子8に、情報の送受信ができるようにつながれる。
演算装置104は、管路走行体101の演算部7から受け取る筐体1のロール角とピッチ角と方位角と、距離計102から受け取る管路走行体101の走行距離とから、管路走行体101の位置及び走行軌跡を算出する。ここで、演算装置104は、位置検出部を構成している。
Referring to FIG. 2, the distance meter 102 has a pull-out amount or a pull-in amount of the cable 11 when the cable 11 is pulled out or taken up by the winder 103 in order to run the pipe traveling body 101, that is, the pipe line. The traveling distance of the traveling body 101 is measured by an encoder or the like that is mounted. The distance meter 102 is configured to send the measurement result to an arithmetic device 104 such as an external computer. Note that the winder 103 may be manually operated or electrically operated.
Furthermore, the arithmetic unit 104 is connected to the cable 11 via the wire extending inside or outside the cable 11 so that information can be transmitted and received to the input / output terminal 8 of the pipeline traveling body 101.
The computing device 104 calculates the pipeline traveling body from the roll angle, pitch angle, and azimuth angle of the housing 1 received from the computing unit 7 of the pipeline traveling body 101 and the travel distance of the pipeline traveling body 101 received from the distance meter 102. The position 101 and the travel locus are calculated. Here, the arithmetic unit 104 constitutes a position detection unit.

次に、管路計測装置100を用いた管路の形状の計測方法を説明する。
図2を参照すると、管路計測装置100を用いて、複数の管A1、A2、A3、・・・・・、An−1、Anを一列に連結して構成される管路Aの形状を計測する。
図1及び図2をあわせて参照すると、計測者が、筐体1の後輪3側から管A1内に、管路走行体101を挿入する。
管路走行体101は、計測者がケーブル11を介して押し込むことによって、管路A内を管Anに向かって走行させられる。管路走行体101の筐体1が管Anの端部にあるストッパAnaに当接すると、計測者は、管路走行体101を停止させる。
Next, a method for measuring the shape of the pipe using the pipe measuring device 100 will be described.
Referring to FIG. 2, the shape of the pipe A configured by connecting a plurality of pipes A 1, A 2, A 3,. measure.
Referring to FIGS. 1 and 2 together, the measurer inserts the pipeline traveling body 101 from the rear wheel 3 side of the housing 1 into the pipe A1.
The pipe traveling body 101 is caused to travel in the pipe A toward the pipe An when the measurer pushes in via the cable 11. When the casing 1 of the pipeline traveling body 101 contacts the stopper Ana at the end of the pipe An, the measurer stops the pipeline traveling body 101.

次いで、演算装置104によって、管路走行体101の演算部7、三軸直線加速度センサ5及び三軸ジャイロセンサ6等の構成要素が起動されて計測を開始すると共に、ケーブル11の距離計102が起動されて計測を開始する。
その後、巻取器103によって、ケーブル11の巻き取りが開始される。
ケーブル11が巻き取られることによって、管路走行体101が管路A内を管A1に向かって走行する。
Next, the calculation device 104 activates the components such as the calculation unit 7 of the pipeline traveling body 101, the three-axis linear acceleration sensor 5, and the three-axis gyro sensor 6 to start measurement, and the distance meter 102 of the cable 11 It starts and starts measuring.
Thereafter, winding of the cable 11 is started by the winder 103.
When the cable 11 is wound up, the pipe traveling body 101 travels in the pipe A toward the pipe A1.

走行過程において連続的に検知される三軸直線加速度センサ5からの三軸方向の直線加速度と三軸ジャイロセンサ6からの三軸周りの角加速度とに基づき、演算部7は、筐体1におけるロール角、ピッチ角及び方位角を算出する。演算部7は、算出したロール角、ピッチ角及び方位角からなる姿勢角を、演算装置104に送る。
また、距離計102は、稼働中の巻取器103によるケーブル11の巻取量つまり管路走行体101の走行距離を検出し、演算装置104に送る。
Based on the triaxial linear acceleration from the triaxial linear acceleration sensor 5 continuously detected in the traveling process and the angular acceleration around the three axes from the triaxial gyro sensor 6, the computing unit 7 The roll angle, pitch angle and azimuth angle are calculated. The calculation unit 7 sends the calculated posture angle including the roll angle, the pitch angle, and the azimuth to the calculation device 104.
The distance meter 102 detects the winding amount of the cable 11 by the winder 103 in operation, that is, the traveling distance of the pipe traveling body 101, and sends the detected distance to the computing device 104.

演算装置104は、距離計102から受け取る走行距離情報からケーブル11の軸方向での管路走行体101の速度を算出し、さらに、管路走行体101の演算部7から受け取る姿勢角情報を用いて、管路走行体101の速度をX軸、Y軸及びZ軸に分解する。
そして、演算装置104は、連続的に算出する管路走行体101の速度のX軸成分、Y軸成分及びZ軸成分を時間積分して、管路走行体101の位置のX軸成分、Y軸成分及びZ軸成分を連続的に算出する。
The computing device 104 calculates the speed of the pipeline traveling body 101 in the axial direction of the cable 11 from the travel distance information received from the distance meter 102, and further uses the attitude angle information received from the computing unit 7 of the pipeline traveling body 101. Thus, the speed of the pipeline traveling body 101 is decomposed into the X axis, the Y axis, and the Z axis.
Then, the arithmetic unit 104 integrates the X-axis component, the Y-axis component, and the Z-axis component of the velocity of the pipeline traveling body 101, which are continuously calculated, to integrate the X-axis component, Y An axial component and a Z-axis component are continuously calculated.

さらに、演算装置104は、管路走行体101の位置のX軸成分、Y軸成分及びZ軸成分を算出する毎に、誤差計算を実施する。つまり、演算装置104は、管路走行体101が走行する管路Aの実質的に全ての部位について、管路走行体101の位置の誤差計算を実施する。
具体的には、演算装置104は、算出した位置のX軸成分、Y軸成分及びZ軸成分のそれぞれから、下記のように位置のX軸成分の誤差X’、Y軸成分の誤差Y’及びZ軸成分の誤差Z’を減じる誤差計算を行い、補正後の位置のX軸成分であるX1、Y軸成分であるY1及びZ軸成分であるZ1を算出する。
Further, the arithmetic unit 104 performs error calculation every time the X-axis component, the Y-axis component, and the Z-axis component of the position of the pipeline traveling body 101 are calculated. That is, the arithmetic unit 104 performs error calculation of the position of the pipeline traveling body 101 for substantially all the portions of the pipeline A on which the pipeline traveling body 101 travels.
Specifically, the arithmetic unit 104 calculates the X-axis component error X ′ and the Y-axis component error Y ′ from the calculated X-axis component, Y-axis component, and Z-axis component as follows. Then, an error calculation for subtracting the error Z ′ of the Z-axis component is performed, and X1 as the X-axis component at the corrected position, Y1 as the Y-axis component, and Z1 as the Z-axis component are calculated.

Figure 0006592696
Figure 0006592696

例えば、方位角が変化することによって生じる誤差距離は、以下のように求められる。
図3を参照すると、管Amと管Am−1との継手部Jにおいて、管Am−1の軸方向は、管Amの軸方向に対して、管路A内を走行する管路走行体101の方位角の方向で角度φだけ傾斜している。よって、管Amの線形ラインLLAmと管Am−1の線形ラインLLAm−1とは、図3に実線で示すような形状となる。
一方、管路走行体101が、管Amから管Am−1へと走行する場合、演算装置104が上記の誤差計算を実施せずに算出する場合の管路走行体101の位置による軌跡は、線形ラインLLAmと、一点鎖線で示す線形ラインLLAm−1’とをたどることになる。管路走行体101の筐体1において、前輪2と後輪3との間に距離Lがあるため、走行する筐体1は、線形ラインLLAmと線形ラインLLAm−1との形状を正確になぞる軌跡を描かない。このような軌跡を描く筐体1の動作が三軸直線加速度センサ5及び三軸ジャイロセンサ6の検知結果に影響を与えることによって、湾曲部分を有し且つ線形ラインLLAm−1から平行移動した部分を有する線形ラインLLAm−1’が、軌跡として算出されることになる。
For example, the error distance generated by changing the azimuth angle is obtained as follows.
Referring to FIG. 3, in the joint portion J between the pipe Am and the pipe Am-1, the pipe traveling body 101 travels in the pipe A with respect to the axial direction of the pipe Am-1. It is inclined by an angle φ in the direction of the azimuth angle. Therefore, the linear line LL Am-1 of the linear line LL Am and tube Am-1 of the tube Am, the shape shown by the solid line in FIG. 3.
On the other hand, when the pipeline traveling body 101 travels from the tube Am to the tube Am-1, the trajectory due to the position of the pipeline traveling body 101 when the calculation device 104 calculates without performing the above error calculation is: The linear line LL Am and the linear line LL Am-1 ′ indicated by a one-dot chain line are traced. Since the distance L between the front wheel 2 and the rear wheel 3 is present in the casing 1 of the pipeline traveling body 101, the traveling casing 1 accurately forms the shapes of the linear line LL Am and the linear line LL Am-1. Do not draw a trajectory. The movement of the casing 1 that draws such a trajectory affects the detection results of the triaxial linear acceleration sensor 5 and the triaxial gyro sensor 6, thereby having a curved portion and being translated from the linear line LL Am−1 . A linear line LL Am-1 ′ having a portion is calculated as a locus.

走行中の管路走行体101の前輪2が継手部Jを通過した後に後輪3が継手部Jに位置するとき、前輪2は、線形ラインLLAm−1上の点F1に位置することになる。しかしながら、上記の誤差計算を伴わずに管路走行体101の位置が算出される場合、前輪2は、線形ラインLLAm−1’上の点F2に位置することになる。
よって、点F1と点F2との間の距離aだけの距離誤差が生じる。
When the rear wheel 3 is positioned at the joint portion J after the front wheel 2 of the traveling pipe traveling body 101 passes through the joint portion J, the front wheel 2 is positioned at a point F1 on the linear line LL Am-1. Become. However, when the position of the pipeline traveling body 101 is calculated without the above error calculation, the front wheel 2 is positioned at the point F2 on the linear line LL Am-1 ′.
Therefore, a distance error corresponding to the distance a between the points F1 and F2 occurs.

さらに、点F2から線形ラインLLAm−1上に垂線をおろしたときの交点を点F2’とし、点F2と点F2’との間の距離をa’とすると、a≒a’とみなすことができる。
さらにまた、継手部Jと点F1との距離Lと、継手部Jと点F2’との距離L’とに関して、L≒L’とみなすこともできる。
そして、線分JF2が線形ラインLLAm−1に対してなす角度αと、線形ラインLLAm−1’が線形ラインLLAm−1に対してなす角度φとに関して、α=φ/2とみなすことができる。
なお、角度φは、管路A内で走行する管路走行体101の前輪2が継手部Jを通過した後に後輪3が継手部Jに位置するようになる過程での、筐体1の方位角の実際の変化角度である。角度φは、管Amの軸方向に対する管Am−1の軸方向の傾斜角度と同等である。
角度αは、誤差計算を伴わない位置検出の場合において、管路走行体101の前輪2が継手部Jを通過した後に後輪3が継手部Jに位置するようになる過程での、筐体1の方位角の変化角度を、角度φから減じたものである。
従って、誤差距離a=L×tan(φ/2)となる。
Further, if the intersection point when the perpendicular line is dropped from the point F2 onto the linear line LL Am-1 is a point F2 ′ and the distance between the point F2 and the point F2 ′ is a ′, it is regarded that a≈a ′. Can do.
Furthermore, regarding the distance L between the joint portion J and the point F1 and the distance L ′ between the joint portion J and the point F2 ′, it can be regarded that L≈L ′.
Then, the angle alpha which a line segment JF2 makes with the linear line LL Am-1, with respect to an angle phi of linear line LL Am-1 'with respect to the linear line LL Am-1, considered as α = φ / 2 be able to.
It should be noted that the angle φ corresponds to the case 1 in the process in which the rear wheel 3 is positioned at the joint portion J after the front wheel 2 of the pipeline traveling body 101 traveling in the pipeline A passes through the joint portion J. This is the actual change angle of the azimuth. The angle φ is equal to the angle of inclination of the tube Am-1 in the axial direction with respect to the axial direction of the tube Am.
In the case of position detection without error calculation, the angle α is a case in the process in which the rear wheel 3 is positioned at the joint portion J after the front wheel 2 of the pipe traveling body 101 passes through the joint portion J. The change angle of the azimuth angle of 1 is subtracted from the angle φ.
Therefore, the error distance a = L × tan (φ / 2).

演算装置104は、上述のようにして連続して算出したX1、Y1及びZ1を成分とする点をつなげて線形とし、演算装置104に接続されたディスプレイ105に、二次元又は三次元の線形図で表示する。上記線形図は、管路A、つまり管A1、A2、A3、・・・・・、An−1、Anのそれぞれの姿勢、長さ、曲がり等を反映したものとなる。   The arithmetic unit 104 connects the points having the components X1, Y1, and Z1 calculated continuously as described above into a linear shape, and displays a two-dimensional or three-dimensional linear diagram on the display 105 connected to the arithmetic unit 104. Is displayed. The linear diagram reflects the postures, lengths, bends, and the like of the pipe A, that is, the pipes A1, A2, A3,..., An-1, An.

上述のような補正計算を行うことによって、管路走行体101の筐体1の前輪2と後輪3との間の距離L、つまり筐体1の長さに起因する筐体1の検出位置の軌跡と管路Aの曲がりの形状との間の誤差を修正することができる。例えば、2つの管の間の継手部で比較的変化の大きい曲がりがある場合、筐体1は、継手部の曲がりよりも緩い曲がり形状を描くようにして、継手部を通過し、検出される筐体1の位置の軌跡も上記形状の影響を受けたものとなる。しかしながら、上述のような補正計算を行うことによって、演算装置104が算出する管路Aの線形は、継手部の曲がりの形状を正確に反映したものとなる。   By performing the correction calculation as described above, the distance L between the front wheel 2 and the rear wheel 3 of the casing 1 of the pipe traveling body 101, that is, the detection position of the casing 1 due to the length of the casing 1. The error between the trajectory and the bend shape of the pipe A can be corrected. For example, when there is a bend with a relatively large change in the joint portion between two pipes, the housing 1 passes through the joint portion and is detected so as to draw a bent shape that is looser than the bend of the joint portion. The locus of the position of the housing 1 is also affected by the shape. However, by performing the correction calculation as described above, the linearity of the pipe A calculated by the arithmetic unit 104 accurately reflects the shape of the bending of the joint portion.

また、実施の形態に係る管路計測装置100では、管路走行体101を管路A内に挿入して管路Aの所定の位置まで走行させた後、管路走行体101を管路Aから引き出すだけで、管路Aの形状の計測が可能である。さらに、管路計測装置100では、上述のように管路Aの形状の計測精度が高い。よって、管路計測装置100は、管路Aの形状の計測を簡易にしつつ高い計測精度を保つことを可能にする。   Moreover, in the pipe line measuring device 100 according to the embodiment, after the pipe traveling body 101 is inserted into the pipe A and travels to a predetermined position in the pipe A, the pipe traveling body 101 is connected to the pipe A. The shape of the pipe A can be measured simply by pulling out from the pipe. Furthermore, in the pipe line measuring device 100, the measurement accuracy of the shape of the pipe line A is high as described above. Therefore, the pipe line measuring device 100 makes it possible to maintain high measurement accuracy while simplifying the measurement of the shape of the pipe line A.

実施の形態に係る管路計測装置100では、ケーブル11に沿って延在する有線を介して管路走行体101と演算装置104との間で情報の送受信を行っていたが、これに限定されるものでなく、無線通信を利用してもよい。
実施の形態に係る管路計測装置100では、ケーブル11の巻取量から管路走行体101の走行距離を計測していたが、これに限定されるものでなく、エンコーダ等を用いて検出できる前輪2又は後輪3の回転数から管路走行体101の走行距離を検出してもよい。
実施の形態に係る管路計測装置100では、管路走行体101は、外力が加えられることによって走行するように構成されていたが、これに限定されるものでなく、内蔵するモータ等によって自走するように構成されてもよい。
In the pipe line measuring apparatus 100 according to the embodiment, information is transmitted and received between the pipe line traveling body 101 and the arithmetic unit 104 via a wire extending along the cable 11, but the present invention is not limited to this. However, wireless communication may be used.
In the pipe line measuring apparatus 100 according to the embodiment, the travel distance of the pipe line traveling body 101 is measured from the winding amount of the cable 11, but is not limited to this, and can be detected using an encoder or the like. The travel distance of the pipeline traveling body 101 may be detected from the rotational speed of the front wheel 2 or the rear wheel 3.
In the pipe line measuring apparatus 100 according to the embodiment, the pipe running body 101 is configured to run by applying an external force. However, the pipe running body 101 is not limited to this. It may be configured to run.

5 三軸直線加速度センサ、6 三軸ジャイロセンサ、100 管路計測装置、101 管路走行体、102 距離計(距離計測部)、104 演算装置(位置検出部)、A 管路。   5 triaxial linear acceleration sensor, 6 triaxial gyro sensor, 100 pipeline measuring device, 101 pipeline traveling body, 102 rangefinder (distance measuring unit), 104 arithmetic unit (position detecting unit), A pipeline.

Claims (2)

管路の形状を計測する管路計測装置において、
加速度センサ及びジャイロセンサを有し、管路内を走行可能である管路走行体と、
前記管路走行体の走行距離を計測する距離計測部と、
前記加速度センサ及び前記ジャイロセンサが検知する加速度及び角速度と、前記距離計測部が計測する走行距離とから前記管路走行体の位置を検出する位置検出部と
を備え、
前記位置検出部は、検出する前記管路走行体の位置による軌跡と前記管路の形状との間における前記管路走行体の長さに起因する誤差を、検出する前記管路走行体の位置に対して補正する管路計測装置において、
前記管路走行体の長さは、前記管路走行体の前輪の中心と後輪の中心との間の距離であり、
前記位置検出部は、前記誤差の補正では、前記管路走行体の方位角が変化することによって生じる前記管路走行体の位置による軌跡と前記管路の線形形状との間の誤差距離と、前記管路走行体のピッチ角が変化することによって生じる前記管路走行体の位置による軌跡と前記管路の線形形状との間の誤差距離とを、前記管路走行体の長さと、前記方位角の変化量と、前記ピッチ角の変化量とに基づいて算出して用いる構成からなる管路計測装置。
In the pipe measuring device that measures the shape of the pipe,
A pipeline traveling body having an acceleration sensor and a gyro sensor, and capable of traveling in the pipeline;
A distance measuring unit for measuring a travel distance of the pipeline traveling body;
A position detection unit that detects the position of the pipeline traveling body from the acceleration and angular velocity detected by the acceleration sensor and the gyro sensor and the travel distance measured by the distance measurement unit;
The position detection unit detects a position of the pipeline traveling body that detects an error caused by the length of the pipeline traveling body between a trajectory due to the position of the pipeline traveling body to be detected and the shape of the pipeline. in line measuring apparatus for correcting contrast,
The length of the pipeline running body is a distance between the center of the front wheel and the center of the rear wheel of the pipeline running body,
The position detection unit, in the correction of the error, the error distance between the trajectory due to the position of the pipeline traveling body and the linear shape of the pipeline, which are generated by changing the azimuth angle of the pipeline traveling body, The error distance between the trajectory due to the position of the pipeline traveling body and the linear shape of the pipeline caused by the change in the pitch angle of the pipeline traveling body, the length of the pipeline traveling body, and the orientation A pipe measuring device having a configuration that is calculated and used based on a change amount of an angle and a change amount of the pitch angle.
管路の形状を計測する管路計測方法において、
加速度センサ及びジャイロセンサを有し、管路内を走行可能である管路走行体と、
前記管路走行体の走行距離を計測する距離計測部と、
前記加速度センサ及び前記ジャイロセンサが検知する加速度及び角速度と、前記距離計測部が計測する走行距離とから前記管路走行体の位置を検出する位置検出部と
用い
前記位置検出部は、検出する前記管路走行体の位置による軌跡と前記管路の形状との間における前記管路走行体の長さに起因する誤差を、検出する前記管路走行体の位置に対して補正する管路計測方法において、
前記管路走行体の長さは、前記管路走行体の前輪の中心と後輪の中心との間の距離であり、
前記位置検出部は、前記誤差の補正では、前記管路走行体の方位角が変化することによって生じる前記管路走行体の位置による軌跡と前記管路の線形形状との間の誤差距離と、前記管路走行体のピッチ角が変化することによって生じる前記管路走行体の位置による軌跡と前記管路の線形形状との間の誤差距離とを、前記管路走行体の長さと、前記方位角の変化量と、前記ピッチ角の変化量とに基づいて算出して用いる管路計測方法。
In a pipe measuring method for measuring the shape of a pipe,
A pipeline traveling body having an acceleration sensor and a gyro sensor, and capable of traveling in the pipeline;
A distance measuring unit for measuring a travel distance of the pipeline traveling body;
Using an acceleration and angular velocity the acceleration sensor and said gyro sensor detects, and the position detection portion to which the distance measuring unit detects the position of the conduit traveling body and a traveling distance to be measured,
The position detection unit detects a position of the pipeline traveling body that detects an error caused by the length of the pipeline traveling body between a trajectory due to the position of the pipeline traveling body to be detected and the shape of the pipeline. In the pipe line measuring method to correct for
The length of the pipeline running body is a distance between the center of the front wheel and the center of the rear wheel of the pipeline running body,
The position detection unit, in the correction of the error, the error distance between the trajectory due to the position of the pipeline traveling body and the linear shape of the pipeline, which are generated by changing the azimuth angle of the pipeline traveling body, The error distance between the trajectory due to the position of the pipeline traveling body and the linear shape of the pipeline caused by the change in the pitch angle of the pipeline traveling body, the length of the pipeline traveling body, and the orientation A pipe measuring method that is calculated and used based on a change amount of an angle and a change amount of the pitch angle.
JP2015132624A 2015-07-01 2015-07-01 Pipe measuring device and pipe measuring method Active JP6592696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015132624A JP6592696B2 (en) 2015-07-01 2015-07-01 Pipe measuring device and pipe measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132624A JP6592696B2 (en) 2015-07-01 2015-07-01 Pipe measuring device and pipe measuring method

Publications (2)

Publication Number Publication Date
JP2017015563A JP2017015563A (en) 2017-01-19
JP6592696B2 true JP6592696B2 (en) 2019-10-23

Family

ID=57827852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132624A Active JP6592696B2 (en) 2015-07-01 2015-07-01 Pipe measuring device and pipe measuring method

Country Status (1)

Country Link
JP (1) JP6592696B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6845836B2 (en) * 2018-10-12 2021-03-24 古河電気工業株式会社 Piping route measurement method and piping route measurement system
CN109870173A (en) * 2019-04-11 2019-06-11 中国石油化工股份有限公司 A kind of track correct method of the submarine pipeline inertial navigation system based on checkpoint
JP7346682B1 (en) 2022-08-30 2023-09-19 東芝プラントシステム株式会社 Embedded pipe shape measuring device and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155377A (en) * 2005-12-01 2007-06-21 Tamagawa Seiki Co Ltd Method of measuring porous passage

Also Published As

Publication number Publication date
JP2017015563A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
KR101049362B1 (en) Posture detection device and posture detection method
JP5242865B1 (en) Insert section shape estimation device
JP5206764B2 (en) Positioning device, positioning method and program
CN102573603B (en) Endoscope shape detection device and method for detecting shape of inserted part of endoscope
JP7073052B2 (en) Systems and methods for measuring the angular position of a vehicle
US20040181335A1 (en) Apparatus for detecting location of movable body in navigation system and method thereof
CN102487602B (en) Endoscope shape detection device and method for detecting shape of insertion portion of endoscope
WO2012086401A1 (en) Driving assist device
JP6592696B2 (en) Pipe measuring device and pipe measuring method
JP2015148450A (en) Sensor error correction device, imu calibration system, imu calibration method, and imu calibration program
JP6383907B2 (en) Vehicle position measuring apparatus and method
EP2930467A1 (en) A system and method for sensing the inclination of a moving platform with respect to gravity
CN102481089B (en) Endoscope shape detection device and method for detecting shape of inserted part of endoscope
JP5511088B2 (en) Portable device, program and method for correcting gravity vector used for autonomous positioning
JP5468315B2 (en) Drilling position measuring method and system
CN109211234B (en) Underground inertial surveying and mapping method and device
JP3836699B2 (en) Measuring method of excavator position in propulsion method
JP2006284359A (en) Conduit position measuring system
JP2015004593A (en) Navigation device
JP2007137306A (en) Device and method for horizontal travel determination of movable body
JP2009053039A (en) Vehicle attitude estimating apparatus and method
JP2009075075A (en) Vehicle behavior measuring device and vehicle behavior measuring method
KR101990404B1 (en) Method for calculating tilt angle of ins using roll rotation of launch tube and apparatus thereof
CN109190587B (en) Method and system for evaluating lane line data accuracy and recall rate
JP2006118972A (en) Pipeline shape measurement evaluation method and its system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190808

R150 Certificate of patent or registration of utility model

Ref document number: 6592696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250