JP6592250B2 - Synchronous circuit - Google Patents

Synchronous circuit Download PDF

Info

Publication number
JP6592250B2
JP6592250B2 JP2015027437A JP2015027437A JP6592250B2 JP 6592250 B2 JP6592250 B2 JP 6592250B2 JP 2015027437 A JP2015027437 A JP 2015027437A JP 2015027437 A JP2015027437 A JP 2015027437A JP 6592250 B2 JP6592250 B2 JP 6592250B2
Authority
JP
Japan
Prior art keywords
period
uplink data
osu
side device
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015027437A
Other languages
Japanese (ja)
Other versions
JP2016152436A (en
Inventor
學 吉野
學 吉野
鈴木 謙一
謙一 鈴木
裕隆 氏川
裕隆 氏川
遼真 安永
遼真 安永
寛 王
寛 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015027437A priority Critical patent/JP6592250B2/en
Publication of JP2016152436A publication Critical patent/JP2016152436A/en
Application granted granted Critical
Publication of JP6592250B2 publication Critical patent/JP6592250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Time-Division Multiplex Systems (AREA)
  • Small-Scale Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、通信システムにおける同期回路に関する。   The present invention relates to a synchronization circuit in a communication system.

通信システム、特に光アクセスネットワークは、主にPON(Passive Optical Network)システムによって提供されている。図1に、PONシステムの構成例を示す。PONシステムは、宅内に設置するONU(Optical Network Unit)91と、局舎に設置するOSU(Optical Subscriber Unit)92と、ONU91と1つのOSU92を接続する光ファイバ網93とから構成される。ONU91は帯域要求と上りデータをOSU92に送信する。複数のOSU92が受信した上りデータは、集線装置94に集線される。   Communication systems, particularly optical access networks, are mainly provided by PON (Passive Optical Network) systems. FIG. 1 shows a configuration example of the PON system. The PON system includes an ONU (Optical Network Unit) 91 installed in a home, an OSU (Optical Subscriber Unit) 92 installed in a station, and an optical fiber network 93 connecting the ONU 91 and one OSU 92. The ONU 91 transmits a bandwidth request and upstream data to the OSU 92. Uplink data received by the plurality of OSUs 92 is collected by the concentrator 94.

また、OSU92−ONU91間の距離は0kmから40km程度の範囲である。そのOSU92−ONU91間の距離を測定するレンジング又はディスカバリでは、距離が不定のONU91からの距離測定のための上りフレームの到着を待つためにONU91が上りデータ送信しない時間がある。   The distance between the OSU 92 and the ONU 91 is in the range of about 0 km to 40 km. In ranging or discovery in which the distance between the OSU 92 and the ONU 91 is measured, there is a time during which the ONU 91 does not transmit upstream data in order to wait for arrival of an upstream frame for distance measurement from the ONU 91 whose distance is indefinite.

IEEE Std.802.3av−2009,“Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks”,Oct.2009IEEE Std. 802.3av-2009, “Physical Layer Specifications and Management Parameters for 10 Gb / s Passive Optical Networks”, Oct. 2009 ITU−T勧告G.983ITU-T Recommendation G. 983

通常、OSU92同士は非同期であるため、OSU92間の帯域割当周期の位相関係又は/及びOSU92間のディスカバリ・レンジング等のONU91から上りデータを送信しない期間の位相関係が時間と共に変化する。このため、OSU92間で上りデータを送信する位相が一致し、非輻輳時にも集線装置94に滞留するキューが発生し、集線装置94で過剰な遅延が追加される課題があった。   Normally, the OSUs 92 are asynchronous with each other, and therefore, the phase relationship between the bandwidth allocation periods between the OSUs 92 and / or the phase relationship during the period in which no uplink data is transmitted from the ONU 91 such as discovery and ranging between the OSUs 92 changes with time. For this reason, there is a problem that a phase in which uplink data is transmitted between the OSUs 92 coincides with each other, a queue that stays in the concentrator 94 is generated even when there is no congestion, and excessive delay is added in the concentrator 94.

そこで、本発明は、非輻輳時における集線装置に滞留するキューの発生を防ぐことを目的とする。   Therefore, an object of the present invention is to prevent the occurrence of a queue that stays in a concentrator during non-congestion.

上りデータが集線装置に到着するタイミングがOSU間で重ならないように、OSUごとに互いにシフトして同期する。   The OSUs are synchronized with each other so that the timing at which the upstream data arrives at the concentrator does not overlap between the OSUs.

具体的には、本発明に係る同期回路は、加入者側装置からの上りデータが局側装置に送信され、複数の前記局側装置からの前記上りデータを集線装置で集線する通信システムにおいて、前記局側装置から前記集線装置への前記上りデータの到着タイミングが互いに重ならないように、前記加入者側装置の帯域割当を行う各局側装置に対し、前記局側装置ごとにシフトして同期するSpecifically, the synchronization circuit according to the present invention is a communication system in which uplink data from a subscriber-side device is transmitted to a station-side device, and the uplink data from a plurality of the station-side devices is concentrated by a concentrator. wherein from the station side device to the concentrator as the arrival timing of the uplink data do not overlap with each other, to each station side device that performs the bandwidth allocation of the subscriber unit, synchronized shifts for each of the station-side device .

本発明に係る同期回路では、前記局側装置が前記加入者側装置に対して帯域割当を行う周期の位相を前記局側装置ごとにシフトさせることによって、前記局側装置から前記集線装置への前記上りデータの到着タイミングを前記局側装置ごとにシフトさせてもよい。   In the synchronization circuit according to the present invention, the station side device shifts the phase of the period for performing bandwidth allocation to the subscriber side device for each of the station side devices, so that the station side device transfers to the concentrator. The arrival timing of the uplink data may be shifted for each station side device.

本発明に係る同期回路では、ディスカバリ又はレンジング等の前記加入者側装置が上りデータを送信しない期間の位相を前記局側装置ごとにシフトさせることによって、前記局側装置から前記集線装置への前記上りデータの到着タイミングを前記局側装置ごとにシフトさせてもよい。   In the synchronization circuit according to the present invention, the subscriber-side device, such as discovery or ranging, shifts the phase of the period during which uplink data is not transmitted for each station-side device, thereby allowing the station-side device to the concentrator. The arrival timing of the uplink data may be shifted for each station side device.

本発明に係る同期回路では、前記局側装置が前記加入者側装置に対して送信を許可する時間の起点となる位相を前記局側装置ごとにシフトさせることによって、前記局側装置から前記集線装置への前記上りデータの到着タイミングを前記局側装置ごとにシフトさせてもよい。 In the synchronization circuit according to the present invention, the station side device shifts the phase, which is the starting point of the time when the station side device permits transmission to the subscriber side device, for each station side device, so that the concentrator You may shift the arrival timing of the said uplink data to an apparatus for every said station side apparatus.

具体的には、本発明に係る通信システムは、加入者側からの上りデータが局側装置に送信され、複数の前記局側装置からの前記上りデータを集線装置で集線する通信システムであって、本発明に係る同期回路を備える。   Specifically, a communication system according to the present invention is a communication system in which uplink data from a subscriber side is transmitted to a station-side device, and the uplink data from a plurality of the station-side devices is concentrated by a concentrator. The synchronization circuit according to the present invention is provided.

なお、上記各発明は、可能な限り組み合わせることができる。   The above inventions can be combined as much as possible.

本発明によれば、OSUの帯域割当に関する周期の位相をOSUごとにシフトさせた状態で複数のOSUを同期させるため、非輻輳時における集線装置に滞留するキューの発生を防ぐことができる。   According to the present invention, since a plurality of OSUs are synchronized in a state in which the phase of the OSU bandwidth allocation is shifted for each OSU, it is possible to prevent the occurrence of a queue staying in the concentrator during non-congestion.

PONシステムの構成の一例である。It is an example of a structure of a PON system. OSU間で上りデータを送信するタイミングの一例を示す。An example of the timing which transmits uplink data between OSUs is shown. ディスカバリ・レンジング周期Ptが帯域割当周期Prよりも長い場合にOSUが上りデータを送信するタイミングの一例を示す。An example of the timing at which the OSU transmits uplink data when the discovery / ranging period Pt is longer than the bandwidth allocation period Pr is shown. ディスカバリ・レンジング周期Ptが帯域割当周期Prよりも短い場合にOSUが上りデータを送信するタイミングの一例を示す。An example of the timing at which the OSU transmits uplink data when the discovery / ranging period Pt is shorter than the band allocation period Pr is shown. TrとTsの期間が分離できない場合にOSUが上りデータを送信するタイミングの一例を示す。An example of timing at which the OSU transmits uplink data when the period of Tr and Ts cannot be separated is shown. 実施形態1に係る位相シフト同期の例を示す。2 shows an example of phase shift synchronization according to the first embodiment. OSUから集線装置に到着するトラフィックとキュー長の第1の模式図であり、(a)は比較例を示し、(b)実施例を示す。It is the 1st schematic diagram of traffic and queue length which arrives at a concentrator from OSU, (a) shows a comparative example and (b) shows an example. 非輻輳時において集線装置へ到着するトラフィックに対する最大キュー長を示す。The maximum queue length for traffic arriving at the concentrator during non-congestion is shown. OSUから集線装置に到着するトラフィックとキュー長の第2の模式図であり、(a)は比較例を示し、(b)実施例を示す。It is the 2nd schematic diagram of the traffic and queue length which arrives at a concentrator from OSU, (a) shows a comparative example and (b) shows an Example. 実施形態2に係る位相シフト同期の例を示す。The example of the phase shift synchronization which concerns on Embodiment 2 is shown. 非輻輳時において集線装置へ到着するトラフィックに対する最大キュー長を示す。The maximum queue length for traffic arriving at the concentrator during non-congestion is shown.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本発明は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to embodiment shown below. These embodiments are merely examples, and the present invention can be implemented in various modifications and improvements based on the knowledge of those skilled in the art. In the present specification and drawings, the same reference numerals denote the same components.

実施形態のシステムを図1に示す。本実施形態に係るシステムは、ONU91と、OSU92と、ONU91とOSU92を接続する光ファイバ網93と、集線装置94と、OSU92間の位相をシフトして互いに同期する同期回路(不図示)を備える。ここで、各OSU92に複数のONU91が接続する構成を示したが、ONU91がOSU92に上りデータを送信するタイミング又は上りデータが集線装置94に到着してよいタイミング又はONU91がOSU92に上りデータを送信しないタイミング又は上りデータが集線装置94に到着しないタイミングを制御できる構成であれば、OSU92に接続するONU91は単数であってもよく、単数のONU91を接続するOSU92と複数のONU91を接続するOSU92が混在していてもよい。   The system of the embodiment is shown in FIG. The system according to this embodiment includes an ONU 91, an OSU 92, an optical fiber network 93 connecting the ONU 91 and the OSU 92, a concentrator 94, and a synchronization circuit (not shown) that shifts the phase between the OSU 92 and synchronizes with each other. . Here, a configuration in which a plurality of ONUs 91 are connected to each OSU 92 is shown, but the timing at which the ONU 91 transmits uplink data to the OSU 92 or the timing at which uplink data may arrive at the concentrator 94 or the ONU 91 transmits uplink data to the OSU 92 The ONU 91 connected to the OSU 92 may be a single number, or the OSU 92 connecting the single ONU 91 and the OSU 92 connecting the plurality of ONUs 91 may be used. It may be mixed.

同期回路は、OSU92間の位相をシフト可能な任意の装置に配置される。例えば、同期回路は、OSU92と集線装置94以外の独立装置に配置されていてもよいし、OSU92と集線装置94から構成される装置に配置されていてもよいし、複数OSU92を収容するボード上に配置されていてもよいし、何れかのOSU92に内蔵されていてもよいし、集線装置94に内蔵されていてもよい。同期回路は、同一集線装置94に接続する全OSU92を同期することが望ましいが、一部のOSU92のみを同期しても本発明の効果は得られる。少なくとも複数のOSU92が同一の集線装置94に収容され、集線装置94に収容されるOSU92を同期しても本発明の効果は得られる。   The synchronization circuit is disposed in any device capable of shifting the phase between the OSUs 92. For example, the synchronization circuit may be arranged in an independent device other than the OSU 92 and the line concentrator 94, may be arranged in a device constituted by the OSU 92 and the line concentrator 94, or on a board that accommodates a plurality of OSUs 92. May be arranged in any of the OSUs 92, or may be incorporated in the concentrator 94. Although it is desirable that the synchronization circuit synchronizes all the OSUs 92 connected to the same concentrator 94, the effect of the present invention can be obtained by synchronizing only some of the OSUs 92. Even if at least a plurality of OSUs 92 are accommodated in the same concentrator 94 and the OSUs 92 accommodated in the concentrator 94 are synchronized, the effect of the present invention can be obtained.

[実施形態1]
本実施形態に係る発明は、帯域要求期間やディスカバリ・レンジング期間などの上りデータを送信しない期間のタイミングがOSU92同士で重ならないように、OSU92の帯域割当に関する周期の位相をOSU92ごとに互いにシフトして同期する。
[Embodiment 1]
The invention according to the present embodiment shifts the phase of the period related to the bandwidth allocation of the OSU 92 to each OSU 92 so that the timings of the periods in which uplink data is not transmitted such as the bandwidth request period and the discovery / ranging period do not overlap with each other. To synchronize.

図2に、OSU92間で上りデータを送信するタイミングの一例を示す。本実施形態に係る同期回路は、OSU92間で上りデータが集線装置94に到着するタイミングが一致しづらいように、OSU92間の位相をシフトして同期する。具体的には、ONU91がOSU92へ帯域要求を行う帯域要求期間Trまたはその周期Prや、ディスカバリ又はレンジングのためにONU91が上りデータを送信しない期間Td又はその周期Pdや、OSU92がONU91に対して送信を許可する時間の起点Ttの少なくともいずれかが、OSU92同士で重ならないように位相を互いにシフトして同期する。同期回路は帯域割当に関する周期のみOSU92間で位相をシフトして同期させるだけであり、同期回路が各ONU91の帯域を個別に割当する必要はない。   FIG. 2 shows an example of timing for transmitting uplink data between the OSUs 92. The synchronization circuit according to the present embodiment synchronizes by shifting the phase between the OSUs 92 so that the timing at which the uplink data arrives at the concentrator 94 is not easily matched between the OSUs 92. Specifically, the bandwidth request period Tr in which the ONU 91 makes a bandwidth request to the OSU 92 or its period Pr, the period Td in which the ONU 91 does not transmit uplink data for discovery or ranging, or its period Pd, or the OSU 92 with respect to the ONU 91 The phases are synchronized with each other so that at least one of the start points Tt of the time during which transmission is permitted does not overlap between the OSUs 92. The synchronization circuit only shifts the phase and synchronizes between the OSUs 92 only in the period related to band allocation, and the synchronization circuit does not need to allocate the band of each ONU 91 individually.

OSU92間の位相のシフトは、期間Tr、期間Td又は起点Ttのいずれかのみの位相シフトであってもよいし、これらの組み合わせであってもよい。以下においては、期間Tr又はその周期Prの位相シフト量Sr、期間Td又はその周期Pdの位相シフト量Sd、及び起点Ttの位相シフト量Stを含めて位相シフト量Spと称する。   The phase shift between the OSUs 92 may be a phase shift of any one of the period Tr, the period Td, or the starting point Tt, or a combination thereof. Hereinafter, the phase shift amount Sr of the period Tr or its period Pr, the phase shift amount Sd of the period Td or its period Pd, and the phase shift amount St of the starting point Tt are referred to as a phase shift amount Sp.

また以下においては、簡単のために、ディスカバリ又はレンジングのためにONU91が上りデータを送信しない期間Tdをディスカバリ・レンジング期間Tdと称し、ディスカバリ・レンジング期間Tdの周期をディスカバリ・レンジング周期Pdと称する。ディスカバリ・レンジング期間Tdは、例えば、ディスカバリ又はレンジングのウインドウサイズである。ディスカバリ・レンジング周期Pdは、ディスカバリ又はレンジングのためにONU91が上りデータを送信しない期間と上りデータを送信する期間を含む。   In the following, for simplicity, a period Td in which the ONU 91 does not transmit uplink data for discovery or ranging is referred to as a discovery ranging period Td, and a period of the discovery ranging period Td is referred to as a discovery ranging period Pd. The discovery and ranging period Td is, for example, a discovery or ranging window size. The discovery / ranging cycle Pd includes a period during which the ONU 91 does not transmit uplink data and a period during which uplink data is transmitted for discovery or ranging.

各OSU92の位相シフト量Spは、非輻輳時に上りデータ送信がOSU92間で一致しづらいように、決定する。例えば、各OSU92の位相が隣接する他のOSU92との位相シフト量Spは、OSU92毎のONU91の数又はアクティブなONU91の数に比例又は反比例した関数を用いて決定する。ここで、ONU91ごとに重み付けを行ってもよい。この場合、各OSU92の位相シフト量Spは、例えば、ONU91毎の重み付を乗じた値の総和に比例又は反比例した関数とする。   The phase shift amount Sp of each OSU 92 is determined so that uplink data transmission is not easily matched between the OSUs 92 when there is no congestion. For example, the phase shift amount Sp between other OSUs 92 in which the phase of each OSU 92 is adjacent is determined using a function proportional to or inversely proportional to the number of ONUs 91 for each OSU 92 or the number of active ONUs 91. Here, weighting may be performed for each ONU 91. In this case, the phase shift amount Sp of each OSU 92 is, for example, a function proportional to or inversely proportional to the sum of values multiplied by the weights for each ONU 91.

比例した関数は、OSU92毎の上りデータ量がそれらのONU数又はアクティブなONU91数又は重み付の総和に概ね比例すると想定される場合に適している。各OSU92の位相シフト量Spは、例えば、各OSU92の位相が隣接する他のOSU92との位相シフト量Spは、上りデータを送信しない期間であるTd、Trとする。上りデータと送信しない期間が他のOSU92が上りデータを送信しうる期間と重ねることで、上りデータを送信しうる期間のOSU92にとって、集線装置に到着する上りデータのタイミングの衝突が回避できる効果がある。   The proportional function is suitable when the amount of uplink data for each OSU 92 is assumed to be approximately proportional to the number of ONUs, the number of active ONUs 91, or the sum of weights. As for the phase shift amount Sp of each OSU 92, for example, the phase shift amount Sp with another OSU 92 in which the phase of each OSU 92 is adjacent is set to Td and Tr during which no uplink data is transmitted. By overlapping the period during which uplink data is not transmitted with a period during which another OSU 92 can transmit uplink data, the OSU 92 during the period during which uplink data can be transmitted has the effect of avoiding the collision of the timing of uplink data arriving at the concentrator. is there.

各OSU92の位相シフト量Spをたとえば以下のように設定する。
Sp=Sr=帯域割当周期Pr×(該当するOSU92に収容されるONU91の数)/(全OSU92に収容されるONU91の数) 式(11)
Sp=Sr=帯域割当周期Pr×(該当するOSU92に収容される各ONU91の重みの総和)/(全OSU92に収容される全ONU91の重みの総和) 式(12)
Sp=Sd=ディスカバリ・レンジング周期Pd÷{(該当するOSU92のディスカバリ・レンジング期間Td)/(全OSU92のディスカバリ・レンジング期間Tdの総和)} 式(13)
Sp=Sd=OSU92のディスカバリ・レンジング期間Td 式(14)
Sp=Sr=OSU92の帯域要求期間Tr 式(15)
Sp=Sd=OSU92のディスカバリ・レンジング期間Td+OSU92の帯域要求期間Tr 式(16)
For example, the phase shift amount Sp of each OSU 92 is set as follows.
Sp = Sr = bandwidth allocation period Pr × (number of ONUs 91 accommodated in corresponding OSU 92) / (number of ONUs 91 accommodated in all OSUs 92) Expression (11)
Sp = Sr = Bandwidth allocation period Pr × (total sum of weights of ONUs 91 accommodated in corresponding OSU 92) / (total sum of weights of all ONUs 91 accommodated in all OSUs 92) Expression (12)
Sp = Sd = Discovery ranging period Pd ÷ {(Discovery ranging period Td of corresponding OSU 92) / (Total of discovery ranging period Td of all OSUs 92)} Expression (13)
Sp = Sd = Discovery and ranging period Td of OSU 92 Equation (14)
Sp = Sr = band request period Tr of OSU 92 (15)
Sp = Sd = OSU 92 discovery and ranging period Td + OSU 92 bandwidth request period Tr (16)

なお、帯域割当周期Prやディスカバリ・レンジング周期PdがOSU92毎に異なる場合は、帯域割当周期Pr若しくはディスカバリ・レンジング周期Pt又はこれらの和の公倍数の周期としてもよい。   When the bandwidth allocation period Pr and the discovery / ranging period Pd are different for each OSU 92, the bandwidth allocation period Pr, the discovery / ranging period Pt, or a period of a common multiple of these may be used.

同期回路の同期精度(OSU92とOSU92の同期ずれの許容精度)は、少なくとも同期対象の期間程度以下である。同期回路が帯域要求期間Trの位相シフトを行う場合、同期回路の同期精度は帯域割当周期Prを構成する期間の長さ程度が下限となる。同期回路がディスカバリ・レンジング期間Tdの位相シフトを行う場合、同期回路の同期精度はディスカバリ・レンジング周期Ptを構成する期間の長さ程度が下限となる。   The synchronization accuracy of the synchronization circuit (accuracy accuracy of synchronization deviation between OSU 92 and OSU 92) is at least less than the period to be synchronized. When the synchronization circuit shifts the phase of the band request period Tr, the synchronization accuracy of the synchronization circuit has a lower limit of the length of the period constituting the band allocation period Pr. When the synchronization circuit performs phase shift of the discovery / ranging period Td, the synchronization accuracy of the synchronization circuit has a lower limit of the length of the period constituting the discovery / ranging period Pt.

なお、ディスカバリ・レンジング周期Ptと帯域割当周期Prの関係は任意である。
例えば、ディスカバリ・レンジング周期Ptが帯域割当周期Prよりも長くてもよい。この場合は、図3に示すように、1つのディスカバリ・レンジング周期Pt内に複数の帯域割当周期Prを含み、その帯域割当周期Prの中にそれぞれ帯域要求期間Tr及び上りデータ送信期間Tsを含む。
例えば、ディスカバリ・レンジング周期Ptが帯域割当周期Prよりも短くてもよい。この場合は、図4に示すように、帯域割当周期Prの上りデータ送信期間Tsに複数のディスカバリ・レンジング周期Pdを含み、そのディスカバリ・レンジング周期Ptの中にそれぞれディスカバリ又はレンジングのためにONU91が上りデータを送信しない期間であるディスカバリ・レンジング期間Tdと上りデータ送信期間Tsを含む。
例えば、ディスカバリ・レンジング周期Pdと帯域割当周期Prが一致していてもよい。この場合、図2に示すように、ディスカバリ・レンジング周期Pd及び帯域割当周期Prの中にディスカバリ・レンジング期間Tdと帯域要求期間Trと上りデータ送信期間Tsを含む。
The relationship between the discovery / ranging period Pt and the bandwidth allocation period Pr is arbitrary.
For example, the discovery / ranging period Pt may be longer than the band allocation period Pr. In this case, as shown in FIG. 3, a plurality of band allocation periods Pr are included in one discovery / ranging period Pt, and a band request period Tr and an uplink data transmission period Ts are included in each band allocation period Pr. .
For example, the discovery / ranging period Pt may be shorter than the band allocation period Pr. In this case, as shown in FIG. 4, the upstream data transmission period Ts of the band allocation period Pr includes a plurality of discovery / ranging periods Pd, and the ONU 91 for discovery or ranging is included in each of the discovery / ranging periods Pt. It includes a discovery / ranging period Td and an uplink data transmission period Ts, which are periods during which uplink data is not transmitted.
For example, the discovery / ranging period Pd and the band allocation period Pr may be the same. In this case, as shown in FIG. 2, the discovery / ranging period Td, the band request period Tr, and the uplink data transmission period Ts are included in the discovery / ranging period Pd and the band allocation period Pr.

また、ディスカバリ・レンジング期間Tdが含まれない場合もある。この場合、図2のディスカバリ・レンジング期間Tdがなくなり、帯域割当周期Prが出現しなくなることがあってもよい。例えば、ディスカバリ・レンジング期間Tdがなくなる場合、ディスカバリ・レンジング期間Tdは、データ送信期間Tsや帯域要求期間がその期間分延長してもよいし、Trや何もしない期間に置き換わってもよい。   Further, the discovery / ranging period Td may not be included. In this case, the discovery / ranging period Td in FIG. 2 may disappear and the band allocation period Pr may not appear. For example, when the discovery / ranging period Td is eliminated, the discovery / ranging period Td may be extended by the data transmission period Ts or the bandwidth request period, or may be replaced with Tr or a period of nothing.

なお、TrとTsは帯域割当周期中で明示的に分離して設定できる例にて示したが、ディスカバリ・レンジングに関する本実施形態であれば、例えば図5に示すように、明示的にTrとTsの期間が分離できなくても本実施例の効果は得られる。   Although Tr and Ts have been shown in an example that can be explicitly separated and set in the bandwidth allocation period, in the present embodiment relating to discovery and ranging, for example, as shown in FIG. Even if the period of Ts cannot be separated, the effect of this embodiment can be obtained.

図6に、本実施形態に係る位相シフト同期の例を示す。図6では、集線装置94あたりのOSU92の数は4台であり、OSU92毎の重み付は均等であり、ONU91は上りデータ送信期間Ts内で前詰に上りデータを送信し、割当帯域は全OSU92で均等であるとし、位相シフト量Srを帯域割当周期Prの1/4とした。   FIG. 6 shows an example of phase shift synchronization according to the present embodiment. In FIG. 6, the number of OSUs 92 per line concentrator 94 is four, the weights for each OSU 92 are equal, the ONU 91 transmits upstream data in the upstream direction within the upstream data transmission period Ts, and the allocated bandwidth is all The phase shift amount Sr is set to 1/4 of the band allocation period Pr.

図7に、OSU92から集線装置94に到着するトラフィックとキュー長の模式図を示す。図7(a)は比較例を示し、図7(b)は実施例を示す。OSU92間の上りデータを送信する位相が一致した場合、図7(a)に示すように、非輻輳時であっても10Gbit/s×4の合計40Gbit/sのトラフィックが集線装置94に同時に到着し、トラフィックが滞留してキューL3Aが伸長しうる。これに対し、帯域割当周期Prの位相シフトを行って同期させた場合、図7(b)に示すように、OSU92から集線装置94に到着するトラフィックが分散され、集線装置94にトラフィックに滞留しないため、キューL3Bの伸長を防止することができる。   FIG. 7 shows a schematic diagram of the traffic arriving at the concentrator 94 from the OSU 92 and the queue length. Fig.7 (a) shows a comparative example and FIG.7 (b) shows an Example. When the phases for transmitting uplink data between the OSUs 92 match, as shown in FIG. 7A, traffic of 10 Gbit / s × 4 total 40 Gbit / s arrives at the concentrator 94 at the same time even during non-congestion. However, the traffic can be accumulated and the queue L3A can be extended. On the other hand, when the phase shift of the band allocation period Pr is performed for synchronization, as shown in FIG. 7B, traffic arriving from the OSU 92 to the concentrator 94 is dispersed and does not stay in the concentrator 94. Therefore, the expansion of the queue L3B can be prevented.

図8に、非輻輳時の集線装置94へ到着するトラフィックに対する最大キュー長を示す。L4Aは比較例を示し、L4Bは実施例を示す。ここで、ONU91−OSU92間のリンクと集線装置94の出力は10Gbit/s、OSU92あたりのONU91の数は128台、ONU91あたりの帯域要求の所要時間は3マイクロ秒、帯域割当周期Prは1ミリ秒、その他は図7と同様とした。   FIG. 8 shows the maximum queue length for traffic arriving at the concentrator 94 when there is no congestion. L4A indicates a comparative example, and L4B indicates an example. Here, the link between the ONU 91 and the OSU 92 and the output of the concentrator 94 are 10 Gbit / s, the number of ONUs 91 per OSU 92 is 128, the time required for the bandwidth request per ONU 91 is 3 microseconds, and the bandwidth allocation period Pr is 1 mm. Seconds and others were the same as in FIG.

図8に示す通り、OSU92間で位相が一致した場合のキュー長L4Aは、非輻輳時でも集線装置94に滞留するキューが伸長する。それに対して、帯域割当周期Prの位相シフトを行って同期させた場合のキュー長L4Bは、送信データの位相がOSU92間で一致することはなく、キューの伸長が抑制されていることが分かる。このため、本実施形態に係る発明は、非輻輳時にキューが伸長しないことから、非輻輳時に集線装置94で過剰な遅延が追加されることはない。   As shown in FIG. 8, the queue length L4A when the phases match between the OSUs 92 is such that the queue staying in the concentrator 94 is extended even during non-congestion. On the other hand, the queue length L4B in the case of synchronizing by performing the phase shift of the band allocation period Pr does not match the phase of the transmission data between the OSUs 92, and it can be seen that queue expansion is suppressed. For this reason, in the invention according to the present embodiment, since the queue does not expand at the time of non-congestion, an excessive delay is not added by the concentrator 94 at the time of non-congestion.

なお、図7の設定で、4つのOSU92の代わりに、位相の隣接する2つのOSU92のみで上りトラフィックがある場合の例を図9に示す。図9(a)は比較例を示し、図9(b)は実施例を示す。集線装置94あたりのOSU92の数は2台であり、OSU92毎の重み付は均等であり、ONU91は上りデータ送信可能な期間内で前詰に上りデータを送信し、トラフィックは全OSU92で均等であるとし、位相シフト量Srを帯域割当周期Prの1/4とした。   Note that FIG. 9 shows an example in which there is uplink traffic with only two OSUs 92 adjacent in phase instead of the four OSUs 92 in the setting of FIG. FIG. 9A shows a comparative example, and FIG. 9B shows an example. The number of OSUs 92 per concentrator 94 is two, the weighting for each OSU 92 is equal, the ONU 91 transmits upstream data just before the upstream data can be transmitted, and traffic is evenly distributed across all OSUs 92. It is assumed that the phase shift amount Sr is 1/4 of the band allocation period Pr.

図9(b)に示す帯域割当周期Prの位相シフトを行って同期させた場合のキュー長L5Bは、図7(b)のキュー長L3Bよりは伸長するが、OSU92間の上りデータを送信する位相が一致した場合のキュー長L5Aよりも軽減されていることが分かる。   The queue length L5B in the case of synchronizing by performing the phase shift of the band allocation period Pr shown in FIG. 9B is longer than the queue length L3B in FIG. 7B, but transmits upstream data between the OSUs 92. It can be seen that the queue length L5A is reduced when the phases match.

以上、帯域割当周期Prに着目して説明したが、ディスカバリ・レンジング周期Pdでも、帯域割当周期Prとディスカバリ・レンジング周期Pdを組み合わせた場合も同様である。   As described above, the description has been given focusing on the bandwidth allocation cycle Pr, but the same applies to the discovery / ranging cycle Pd when the bandwidth allocation cycle Pr and the discovery / ranging cycle Pd are combined.

また、図7及び図9に示すシミュレーションでは上りデータの送信を前詰に許可する例で示したが、非輻輳時に上りデータが衝突しづらい上りデータの送信許可であればよい。例えば、上りデータの送信許可は、後詰でもよく、擬似乱数によってもよい。擬似乱数の場合は、非輻輳時にOSU92間で上りデータが衝突しないように、OSU92間で擬似乱数を生成する関数を同一とすることが好ましく、乱数の種となる値を同一とすることが望ましい。   Further, in the simulations shown in FIGS. 7 and 9, an example is shown in which upstream data transmission is permitted in a front-end manner. However, upstream data transmission permission is acceptable as long as upstream data is difficult to collide during non-congestion. For example, the upstream data transmission permission may be backpacked or may be a pseudo-random number. In the case of pseudo-random numbers, it is preferable to use the same function for generating pseudo-random numbers between the OSUs 92 so that upstream data does not collide between the OSUs 92 when there is no congestion, and it is desirable to set the same value as the seed of the random numbers. .

以上、局側装置としてのOSU92を加入者側装置としてのONU91を含む通信ステムを例に説明したが、局側装置から加入者側装置に加入者側装置から局側装置を介して集線装置にデータを伝送する通信システムであり、加入者側装置から局側装置を介して集線装置に伝送するデータを通信してよい時間または通信しない時間を局側装置から加入者側装置に通知する通信システムであれば、本願の本実施形態及び以降に示す実施形態は、局側装置としてのOSU92を加入者側装置としてのONU91を含む光通信ステムに限定されない。   The communication system including the OSU 92 as the station side device and the ONU 91 as the subscriber side device has been described as an example. However, the station side device changes from the subscriber side device to the concentrator via the station side device. A communication system for transmitting data, a communication system for notifying the subscriber side device of the time at which data transmitted from the subscriber side device to the concentrator via the station side device may be communicated or not. Then, this embodiment of this application and embodiment shown below are not limited to the optical communication system containing OSU92 as a station side apparatus and ONU91 as a subscriber side apparatus.

また、加入者側装置から局側装置を介して集線装置に伝送するデータを通信しない時間として帯域要求期間とディスカバリ・レンジング期間を例に挙げて説明したが、それ以外の加入者側装置から局側装置を介して集線装置に伝送するデータを通信しない時間、例えばOAMやOMCI等の加入者側装置と局側装置の間で終端する制御や管理関係の情報を伝送する期間であってもよい。これは、本願の他の実施形態であっても同様である。   In addition, the bandwidth request period and the discovery ranging period have been described as examples in which the data transmitted from the subscriber side device to the concentrator via the station side device is not communicated. It may be a time during which data to be transmitted to the concentrator via the side device is not communicated, for example, a period for transmitting control or management related information terminated between the subscriber side device and the station side device such as OAM and OMCI. . The same applies to other embodiments of the present application.

[実施形態2]
本実施形態に係る同期回路は、OSU92から集線装置94への上りデータの到着タイミングが一致しづらいように、OSU92がONU91に対して送信を許可する時間の起点TtがOSU92ごとに異なるように、OSU92毎の間の帯域割当の起点Ttとなる位相を互いにシフトして同期する。
[Embodiment 2]
The synchronization circuit according to this embodiment is configured so that the start point Tt of the time when the OSU 92 permits transmission to the ONU 91 is different for each OSU 92 so that the arrival timing of the upstream data from the OSU 92 to the concentrator 94 is difficult to match. The phases that are the starting points Tt of bandwidth allocation between the OSUs 92 are mutually shifted and synchronized.

図10に、本実施形態に係る位相シフト同期の例を示す。起点Ttのシフト量Stは、非輻輳時に上りデータ送信がOSU92間で一致しづらいように、決定する。例えば、起点Ttのシフト量StをOSU92毎のONU91の数又はアクティブなONU91の数に比例又は反比例した関数とする。また、起点Ttのシフト量StをONU91毎の重み付を乗じた値の総和に比例又は反比例した関数とする。   FIG. 10 shows an example of phase shift synchronization according to the present embodiment. The shift amount St of the starting point Tt is determined so that uplink data transmission is not easily matched between the OSUs 92 when there is no congestion. For example, the shift amount St of the starting point Tt is a function proportional or inversely proportional to the number of ONUs 91 for each OSU 92 or the number of active ONUs 91. In addition, the shift amount St of the starting point Tt is a function that is proportional or inversely proportional to the sum of values multiplied by the weights for each ONU 91.

比例した関数は、OSU92毎の上りデータ量がそれらのONU数又はアクティブなONU数又は重み付の総和に概ね比例すると想定される場合に適している。各OSU92の位相が隣接する他のOSU92との位相シフト量Spは、上りデータを送信しない期間であるディスカバリ・レンジング期間Td又は帯域要求期間Trとする。上りデータと送信しない期間と他のOSU92が上りデータを送信しうる期間とを重ねることで、上りデータを送信しうる期間のOSU92にとって、集線装置94に到着する上りデータのタイミングの衝突が回避できる効果がある。   The proportional function is suitable when the amount of uplink data for each OSU 92 is assumed to be approximately proportional to the number of ONUs or the number of active ONUs or the sum of weights. The phase shift amount Sp between other OSUs 92 whose phases of each OSU 92 are adjacent to each other is a discovery / ranging period Td or a band request period Tr which is a period during which uplink data is not transmitted. By overlapping the period in which the uplink data is not transmitted and the period in which another OSU 92 can transmit the uplink data, the OSU 92 in the period in which the uplink data can be transmitted can avoid the collision of the timing of the uplink data arriving at the concentrator 94. effective.

本実施形態では、各OSU92の位相シフト量Spをたとえば以下のように設定する。
Sp=St=上りデータ送信期間Ts×(該当するOSU92に収容されるONU91の数)/(全OSU92に収容されるONU91の数) 式(21)
Sp=St=上りデータ送信期間Ts×(該当するOSU92に収容される各ONU91の重みの総和)/(全OSU92に収容される各ONU91の重みの総和) 式(22)
Sp=St=OSU92のディスカバリ・レンジング期間Td 式(23)
Sp=St=OSU92の帯域要求期間Tr 式(24)
Sp=St=OSU92のディスカバリ・レンジング期間Td+OSU92の帯域要求期間Tr 式(25)
In the present embodiment, the phase shift amount Sp of each OSU 92 is set as follows, for example.
Sp = St = Uplink data transmission period Ts × (number of ONUs 91 accommodated in corresponding OSU 92) / (number of ONUs 91 accommodated in all OSUs 92) Expression (21)
Sp = St = Uplink data transmission period Ts × (total sum of weights of ONUs 91 accommodated in corresponding OSU 92) / (total sum of weights of ONUs 91 accommodated in all OSUs 92) Expression (22)
Sp = St = OSU 92 discovery and ranging period Td Equation (23)
Sp = St = band request period Tr of OSU 92 (24)
Sp = St = Discovery and ranging period Td of OSU 92 + Band request period Tr of OSU 92 Equation (25)

なお、式(24)は帯域要求期間Tr≦(上りデータ送信期間Ts/OSU92の数)の場合である。
式(25)はOSU92のディスカバリ・レンジング期間Td+OSU92の帯域要求期間Tr≦上りデータ送信期間Ts÷OSU92の数の場合である。
Sp=St=OSUの帯域要求期間、
帯域割当周期Prやディスカバリ・レンジング周期PdがOSU92毎に異なる場合は、帯域割当周期Pr若しくはディスカバリ・レンジング周期Pt又はこれらの和の公倍数の周期としてもよい。その場合は、括弧の中の不等号の左辺は公倍数となる。
Expression (24) is a case where the bandwidth request period Tr ≦ (uplink data transmission period Ts / number of OSUs 92).
Expression (25) is a case where the discovery / ranging period Td of the OSU 92 + the bandwidth request period Tr of the OSU 92 ≦ the uplink data transmission period Ts ÷ the number of OSUs 92.
Sp = St = OSU bandwidth request period,
When the bandwidth allocation period Pr and the discovery / ranging period Pd are different for each OSU 92, the bandwidth allocation period Pr, the discovery / ranging period Pt, or a period of a common multiple of these may be used. In that case, the left side of the inequality sign in parentheses is a common multiple.

同期回路の同期精度(OSU92とOSU92の同期ずれの許容精度)は、少なくとも同期対象の期間程度以下である。同期回路が帯域割当周期Prの位相シフトを行う場合、同期回路の同期精度は帯域割当周期Prを構成する期間の長さ程度が下限となる。同期回路がディスカバリ・レンジング周期Pdの位相シフトを行う場合、同期回路の同期精度はディスカバリ・レンジング周期Pdを構成する期間の長さ程度が下限となる。   The synchronization accuracy of the synchronization circuit (accuracy accuracy of synchronization deviation between OSU 92 and OSU 92) is at least less than the period to be synchronized. When the synchronization circuit performs a phase shift of the band allocation period Pr, the synchronization accuracy of the synchronization circuit is limited to the length of the period constituting the band allocation period Pr. When the synchronization circuit shifts the phase of the discovery / ranging period Pd, the synchronization accuracy of the synchronization circuit is about the length of the period constituting the discovery / ranging period Pd.

図10に、本実施形態に係る位相シフト同期の例を示す。図10では、集線装置94あたりのOSU数は4台であり、OSU92毎の重み付は均等であり、OSU92は上りデータ送信期間Ts内で、起点Ttから上りデータをONU91に送信許可し、トラフィックは全OSU92で均等とし、全OSU92の帯域割当周期Prの始点は同一時刻で同期し、起点Ttは単一の帯域割当周期Prに含まれる上りデータ送信期間Tsを1/4ずつ位相シフトした。位相シフト量Stは、データ送信期間Tsの1/4とした。   FIG. 10 shows an example of phase shift synchronization according to the present embodiment. In FIG. 10, the number of OSUs per line concentrator 94 is four, the weights for each OSU 92 are equal, and the OSU 92 permits transmission of upstream data to the ONU 91 from the start point Tt within the upstream data transmission period Ts, and traffic Are equal for all the OSUs 92, the start points of the bandwidth allocation periods Pr of all the OSUs 92 are synchronized at the same time, and the starting point Tt is phase-shifted by 1/4 the uplink data transmission period Ts included in the single bandwidth allocation period Pr. The phase shift amount St is set to ¼ of the data transmission period Ts.

図11に、非輻輳時の集線装置94へ到着するトラフィックに対する最大キュー長を示す。L7Aは比較例を示し、L7Bは実施例を示す。7.5Gbit/sまでの集線装置94への到着トラフィック量に対する最大キュー長を示す。ここで、ONU91−OSU92間のリンクと集線装置94の出力は10Gbit/s、OSU92あたりのONU91の数は128台、ONU91あたりの帯域要求の所要時間は3マイクロ秒、帯域割当周期Prは1ミリ秒、その他は図7と同様とした。   FIG. 11 shows the maximum queue length for traffic arriving at the concentrator 94 when there is no congestion. L7A indicates a comparative example, and L7B indicates an example. The maximum queue length with respect to the traffic amount arriving at the concentrator 94 up to 7.5 Gbit / s is shown. Here, the link between the ONU 91 and the OSU 92 and the output of the concentrator 94 are 10 Gbit / s, the number of ONUs 91 per OSU 92 is 128, the time required for the bandwidth request per ONU 91 is 3 microseconds, and the bandwidth allocation period Pr is 1 mm. Seconds and others were the same as in FIG.

図11に示す通り、OSU92間で位相が一致した場合のキュー長L7Aは、非輻輳時でも集線装置94に滞留するキューが伸長する。それに対して、送信を許可する時間の起点Ttの位相シフトを行って同期させた場合のキュー長L7Bは、送信データの位相がOSU92間で一致することはなく、キューの伸長が抑制されていることが分かる。このため、本実施形態に係る発明は、キューが伸長しないことから、7.5Gbit/sまで集線装置94で過剰な遅延が追加されない。   As shown in FIG. 11, the queue length L7A when the phases match between the OSUs 92 is such that the queue staying in the line concentrator 94 extends even during non-congestion. On the other hand, the queue length L7B in the case of synchronizing by performing the phase shift of the starting point Tt of the time permitted for transmission does not match the phase of the transmission data between the OSUs 92, and the expansion of the queue is suppressed. I understand that. For this reason, since the queue according to the present embodiment does not expand, an excessive delay is not added by the concentrator 94 up to 7.5 Gbit / s.

また、上りデータの送信許可は起点となる時間Ttから前詰に許可する例で示したが、非輻輳時に上りデータが衝突しづらい上りデータの送信許可であればよい。例えば、上りデータの送信許可は、後詰でもよく、擬似乱数によってもよい。擬似乱数の場合は、非輻輳時にOSU92間で上りデータが衝突しないように、OSU92間で擬似乱数を生成する関数を同一とすることが好ましく、乱数の種となる値を同一とすることが望ましい。   Further, although the example of permitting upstream data transmission from the starting time Tt is shown as an example, the upstream data transmission permission is not limited as long as upstream data is difficult to collide at the time of non-congestion. For example, the upstream data transmission permission may be backpacked or may be a pseudo-random number. In the case of pseudo-random numbers, it is preferable to use the same function for generating pseudo-random numbers between the OSUs 92 so that upstream data does not collide between the OSUs 92 when there is no congestion, and it is desirable to set the same value as the seed of the random numbers. .

また、OSU92同士の帯域割当周期Prの位相が一致した形で同期するとしたが、帯域割当周期Prの位相もシフトし、そのシフト量Spと送信を許可する時間の起点Ttのシフト量Spの和でシフトすることで、非輻輳時に上りデータが衝突しづらい上りデータの送信許可としてもよい。   In addition, although the synchronization is performed in such a manner that the phases of the band allocation periods Pr of the OSUs 92 are matched, the phase of the band allocation period Pr is also shifted, and the sum of the shift amount Sp and the shift amount Sp of the start point Tt of the time permitted for transmission. By shifting in the above, it is possible to permit transmission of uplink data that is difficult for uplink data to collide during non-congestion.

本発明は情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

91:ONU
92:OSU
93:光ファイバ網
94:集線装置
91: ONU
92: OSU
93: Optical fiber network 94: Concentrator

Claims (3)

加入者側装置からの上りデータが局側装置に送信され、複数の前記局側装置からの前記上りデータを集線装置で集線する通信システムにおいて、
前記局側装置から前記集線装置への前記上りデータの到着タイミングが互いに重ならないように、配下の前記加入者側装置の帯域割当をそれぞれ独立して行う各局側装置に対し、帯域割当を行う周期の位相を前記局側装置ごとに前記加入者側装置またはアクティブな前記加入者側装置の数に比例または反比例した関数、あるいは前記加入者側装置毎の重み付けを乗じた値の総和に比例または反比例した関数、に応じたシフト量に基づきシフトして同期し、かつ前記加入者装置の帯域割当を行わない、
同期回路。
In a communication system in which uplink data from a subscriber-side device is transmitted to a station-side device, and the uplink data from a plurality of the station-side devices is concentrated by a line concentrator,
Period of performing bandwidth allocation for each station side device that performs bandwidth allocation of the subordinate subscriber devices independently so that arrival timings of the uplink data from the station side device to the line concentrator do not overlap each other Is proportional to or inversely proportional to the sum of values obtained by multiplying the phase of each of the station side devices by a function proportional to or inversely proportional to the number of subscriber side devices or active subscriber side devices, or weighting for each subscriber side device. not performed the bandwidth allocation of the synchronized, or one prior Symbol subscriber unit to shift on the basis of the function, the shift amount corresponding to,
Synchronous circuit.
加入者側装置からの上りデータが局側装置に送信され、複数の前記局側装置からの前記上りデータを集線装置で集線する通信システムにおいて、
前記局側装置から前記集線装置への前記上りデータの到着タイミングが互いに重ならないように、配下の前記加入者側装置の帯域割当をそれぞれ独立して行う各局側装置に対し、前記局側装置が前記加入者側装置に対して送信を許可する時間の起点となる位相を前記局側装置ごとに前記加入者側装置またはアクティブな前記加入者側装置の数に比例または反比例した関数、あるいは前記加入者側装置毎の重み付けを乗じた値の総和に比例または反比例した関数、に応じたシフト量に基づきシフトして同期し、かつ前記加入者側装置の帯域割当を行わない、
同期回路。
In a communication system in which uplink data from a subscriber-side device is transmitted to a station-side device, and the uplink data from a plurality of the station-side devices is concentrated by a line concentrator,
For each station side device that independently performs bandwidth allocation of the subordinate subscriber devices so that the arrival timing of the uplink data from the station side device to the concentrator does not overlap each other, the station side device A function that is proportional or inversely proportional to the number of subscriber-side devices or the number of active subscriber-side devices for each station-side device, or the subscription shifted based on the shift amount corresponding function, the proportional or inversely proportional to the sum of the value obtained by multiplying the weighting of each shielding-side apparatus does not perform the bandwidth allocation in synchronization, or one prior Symbol subscriber unit,
Synchronous circuit.
加入者側からの上りデータが局側装置に送信され、複数の前記局側装置からの前記上りデータを集線装置で集線する通信システムであって、
請求項1から2のいずれかに記載の同期回路を備える、
通信システム。
A communication system in which uplink data from a subscriber side is transmitted to a station side device, and the upstream data from a plurality of the station side devices is collected by a line concentrator,
The synchronization circuit according to claim 1 is provided.
Communications system.
JP2015027437A 2015-02-16 2015-02-16 Synchronous circuit Active JP6592250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015027437A JP6592250B2 (en) 2015-02-16 2015-02-16 Synchronous circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015027437A JP6592250B2 (en) 2015-02-16 2015-02-16 Synchronous circuit

Publications (2)

Publication Number Publication Date
JP2016152436A JP2016152436A (en) 2016-08-22
JP6592250B2 true JP6592250B2 (en) 2019-10-16

Family

ID=56696749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027437A Active JP6592250B2 (en) 2015-02-16 2015-02-16 Synchronous circuit

Country Status (1)

Country Link
JP (1) JP6592250B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483439B2 (en) * 2010-08-25 2014-05-07 日本電信電話株式会社 PON system and bandwidth allocation method in PON system
JP4854823B1 (en) * 2010-10-01 2012-01-18 三菱電機株式会社 Band control method and communication system
JP5404972B2 (en) * 2011-08-09 2014-02-05 三菱電機株式会社 Optical communication system, communication apparatus, and bandwidth control method
JP5815478B2 (en) * 2012-06-27 2015-11-17 日本電信電話株式会社 Bandwidth allocation method and communication apparatus

Also Published As

Publication number Publication date
JP2016152436A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP5908167B2 (en) Master station device, slave station device, optical communication system, control device, and bandwidth allocation method
Ni et al. POXN: A new passive optical cross-connection network for low-cost power-efficient datacenters
JP6429225B2 (en) Optical terminal equipment and uplink scheduling method for optical network
CN109075863A (en) Data communication system, optical line terminal and base band unit
WO2015109795A1 (en) Optical burst transport network, node, transmission method and computer storage medium
Indre et al. POPI: A Passive Optical Pod Interconnect for high performance data centers
JP2008219166A (en) Optical transmission system and optical transmission method
JP2008072534A (en) Pon system
JP2007243770A (en) Dynamic band allocation method, and station side apparatus and subscriber side apparatus
JP4913876B2 (en) Bandwidth allocation apparatus and bandwidth allocation method
JP6592250B2 (en) Synchronous circuit
JP2017139547A (en) Communication device, operation method therefor, and program
JP5640877B2 (en) Communication system, master station device, and communication line switching method
JP6647193B2 (en) Optical ring network system and path control method therefor
WO2017193879A1 (en) Data transmission method, apparatus and system
JP6861593B2 (en) Subscriber line end station equipment
JP2017225018A (en) Subscriber side device, office side device, optical communication system, optical communication method and program
JP2014033251A (en) Communication system and packet transmission method
JP6792530B2 (en) Communication system and communication method
JP6506208B2 (en) Optical concentrator network system, optical transmission apparatus and optical transmission method
JP6506209B2 (en) Optical concentrator network system, optical transmission apparatus and optical transmission method
JP2007288629A (en) Transmission allocation method and device
Han et al. An AWG-based WDM-PON architecture employing WDM/TDMA transmission for upstream traffic with dynamic bandwidth allocation
JP5661665B2 (en) Branched optical access system and method
JP5484308B2 (en) Station side communication equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181108

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20181214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190920

R150 Certificate of patent or registration of utility model

Ref document number: 6592250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150