JP6591910B2 - Piezoelectric element and manufacturing method thereof - Google Patents

Piezoelectric element and manufacturing method thereof Download PDF

Info

Publication number
JP6591910B2
JP6591910B2 JP2016033391A JP2016033391A JP6591910B2 JP 6591910 B2 JP6591910 B2 JP 6591910B2 JP 2016033391 A JP2016033391 A JP 2016033391A JP 2016033391 A JP2016033391 A JP 2016033391A JP 6591910 B2 JP6591910 B2 JP 6591910B2
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric element
hole
piezoelectric
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016033391A
Other languages
Japanese (ja)
Other versions
JP2017152532A (en
Inventor
柴田 清人
清人 柴田
友好 加藤
友好 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016033391A priority Critical patent/JP6591910B2/en
Publication of JP2017152532A publication Critical patent/JP2017152532A/en
Application granted granted Critical
Publication of JP6591910B2 publication Critical patent/JP6591910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、電圧の印加により伸縮する積層型の圧電素子およびその製造方法に関する。   The present invention relates to a laminated piezoelectric element that expands and contracts by application of a voltage and a method for manufacturing the same.

従来、図3(a)に示すように、圧電セラミックス210と内部電極221、222が交互に積層され、素子側面の外部電極271、272により内部電極221、222が1層おきに並列に接続される圧電素子200が知られている。一方、外部電極を設けるのが不適切な場合に素子内部のスルーホール電極で内部電極同士を接続している圧電素子も知られている(例えば、特許文献1参照)。   Conventionally, as shown in FIG. 3A, piezoelectric ceramics 210 and internal electrodes 221 and 222 are alternately stacked, and the internal electrodes 221 and 222 are connected in parallel every other layer by the external electrodes 271 and 272 on the side surface of the element. A piezoelectric element 200 is known. On the other hand, there is also known a piezoelectric element in which internal electrodes are connected to each other through through-hole electrodes inside the element when it is inappropriate to provide external electrodes (see, for example, Patent Document 1).

特開2008−211047号公報JP 2008-211047 A

上記のような積層型の圧電素子に対して、近年、小型化、薄層化が求められる場面が増えており、図3(b)に示すように、両端の内部電極より端部側の保護層の厚みを(例えば50μm程度まで)小さくすることがある。この場合、側面の外部電極371、372が素子の積層方向の端面にはみ出して平面を確保できない。このような圧電素子300では、基準面に対して正確な変位の取出しができなくなる。   In recent years, there are increasing demands for miniaturization and thinning of the multilayer piezoelectric element as described above, and as shown in FIG. The thickness of the layer may be reduced (for example, up to about 50 μm). In this case, the external electrodes 371 and 372 on the side surfaces protrude from the end face in the element stacking direction, and a flat surface cannot be secured. In such a piezoelectric element 300, it is impossible to accurately extract the displacement with respect to the reference plane.

また、仮にはみ出さないとしても、図3(c)に示すように、側面に外部電極471、472があると、圧電素子400を金属部材900へ設置する際に外部電極471、472と金属部材900間の絶縁確保が困難になる。   Moreover, even if it does not protrude temporarily, as shown in FIG. 3C, if there are external electrodes 471 and 472 on the side surfaces, the external electrodes 471 and 472 and the metal member when the piezoelectric element 400 is installed on the metal member 900. It becomes difficult to ensure insulation between the two.

本発明は、このような事情に鑑みてなされたものであり、小型化または薄層化されても、素子に基準面を確保して変位を正確に取り出せ、金属部材へ設置する際に絶縁を確保することができる圧電素子およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances. Even when the device is miniaturized or thinned, a reference plane is secured on the element so that the displacement can be accurately taken out, and insulation is provided when the device is installed on a metal member. An object of the present invention is to provide a piezoelectric element that can be secured and a method for manufacturing the same.

(1)上記の目的を達成するため、本発明の圧電素子は、電圧の印加により伸縮する積層型の圧電素子であって、圧電セラミックスで形成された圧電層と、前記圧電層と交互に積層された内部電極と、素子本体を貫通し、前記内部電極が1層おきに並列に接続されるスルーホール電極と、を備え、前記内部電極のうち積層方向の両端に設けられた内部電極より端部側の圧電層である保護層の厚さが100μm未満であることを特徴としている。   (1) In order to achieve the above object, the piezoelectric element of the present invention is a stacked piezoelectric element that expands and contracts by application of voltage, and is alternately stacked with piezoelectric layers formed of piezoelectric ceramics and the piezoelectric layers. A through-hole electrode that penetrates the element body and is connected in parallel to every other layer, and is connected to both ends of the internal electrode provided at both ends in the stacking direction. The thickness of the protective layer, which is the piezoelectric layer on the part side, is less than 100 μm.

これにより、小型化、薄層化されても、素子に基準面を確保して変位を正確に取り出せ、金属部材へ設置する際に絶縁を確保することができる。また、素子の側面に外部電極を設けず、積層方向の一方の端面だけに外部電極を設ければよいため、配線が容易である。   As a result, even if the device is downsized and thinned, a reference plane can be secured on the element so that the displacement can be accurately taken out, and insulation can be secured when it is installed on the metal member. In addition, the external electrode is not provided on the side surface of the element, and it is only necessary to provide the external electrode only on one end face in the stacking direction, so that wiring is easy.

(2)また、本発明の圧電素子は、前記スルーホール電極に接続し、積層方向の一対の端面のいずれか一方のみに設けられた外部電極を更に備えることを特徴としている。これにより、外部電極が一方の端面だけにあるので、外部との配線が容易になる。また、他方の端面を基準面として使用できるため、変位を正確に取り出せる。また、外部電極が一方の端面だけにあるので他方の端面を金属部材に設置しても短絡の危険がない。   (2) Further, the piezoelectric element of the present invention is characterized in that it further includes an external electrode connected to the through-hole electrode and provided on only one of the pair of end faces in the stacking direction. Thereby, since the external electrode is only on one end face, wiring with the outside becomes easy. Moreover, since the other end surface can be used as a reference surface, the displacement can be taken out accurately. Further, since the external electrode is only on one end face, there is no danger of short circuit even if the other end face is installed on the metal member.

(3)また、本発明の圧電素子は、前記内部電極のうち隣り合う電極の間の距離がいずれも50μm未満であることを特徴としている。このような構造にもかかわらず、スルーホール電極で電気的接続が行なわれ、外部電極が端面の一方の面だけにあるので配線が容易になる。   (3) Further, the piezoelectric element of the present invention is characterized in that the distance between adjacent electrodes among the internal electrodes is less than 50 μm. Despite such a structure, electrical connection is made with the through-hole electrode, and wiring is facilitated because the external electrode is only on one of the end faces.

(4)また、本発明の圧電素子の製造方法は、電圧の印加により伸縮する積層型の圧電素子の製造方法であって、電極パターンを印刷したグリーンシートの積層体にスルーホール電極用の孔を設ける工程と、前記スルーホール電極用の孔に、電極用の金属粒子が20〜50vol%を占めるように固形分の占有率を調整され、固形分の量を45〜55vol%に調整された電極ペーストを注入する工程と、前記電極ペーストを充填された積層体を焼成する工程と、を含むことを特徴としている。   (4) A method for manufacturing a piezoelectric element according to the present invention is a method for manufacturing a stacked piezoelectric element that expands and contracts by application of a voltage, and includes a hole for a through-hole electrode formed on a green sheet laminate on which an electrode pattern is printed. The solid content is adjusted so that the metal particles for the electrode occupy 20 to 50 vol% in the through-hole electrode hole, and the solid content is adjusted to 45 to 55 vol%. The method includes a step of injecting an electrode paste, and a step of firing the laminated body filled with the electrode paste.

上記のような電極ペーストを用いることで、ペースト乾燥後は金属粒子が20〜50vol%を占め、その後の焼成により電極中に金属粒子が充填される。これにより、圧電素子が小型化、薄層化されても、素子に基準面を確保して変位を正確に取り出せ、金属部材へ設置する際に絶縁を確保することができる。また、上記のような電極ペーストの調整によりスルーホール電極部分について焼成工程で素子厚みに影響する盛り上がりが生じない。   By using the electrode paste as described above, the metal particles occupy 20 to 50 vol% after the paste is dried, and the electrodes are filled with the metal particles by subsequent firing. As a result, even if the piezoelectric element is reduced in size and thickness, the reference plane can be secured on the element, the displacement can be accurately taken out, and insulation can be ensured when it is installed on the metal member. In addition, the adjustment of the electrode paste as described above does not cause swell that affects the element thickness in the firing process for the through-hole electrode portion.

本発明によれば、圧電素子が小型化または薄層化されても、素子に基準面を確保して変位を正確に取り出せ、金属部材へ設置する際に絶縁を確保することができる。   According to the present invention, even when the piezoelectric element is downsized or thinned, it is possible to secure a reference plane on the element to accurately extract the displacement, and to ensure insulation when the element is installed on a metal member.

(a)、(b)、(c)それぞれ本発明の圧電素子の平面図、側面図および側断面図である。(A), (b), (c) is the top view, side view, and side sectional view of the piezoelectric element of the present invention, respectively. 金属部材上に配置された本発明の圧電素子の側断面図である。It is a sectional side view of the piezoelectric element of this invention arrange | positioned on a metal member. (a)、(b)、(c)それぞれ従来の圧電素子の側断面図である。(A), (b), (c) is a sectional side view of a conventional piezoelectric element.

次に、図面を用いて本発明の実施形態を説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。   Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

(圧電素子)
図1(a)、(b)、(c)は、それぞれ圧電素子100の平面図、側面図および側断面図である。図1(c)は、図1(a)の断面1cの断面図を示している。図2は、金属部材900上に配置された圧電素子100の側断面図である。圧電素子100は、矩形体に形成され、一方の主面が金属部材900に接着される積層型の圧電素子である。圧電素子100は、圧電層110、内部電極121、122、スルーホール電極171、172を備え、スルーホール電極171、172への電圧の印加により伸縮する。
(Piezoelectric element)
1A, 1B, and 1C are a plan view, a side view, and a side sectional view of the piezoelectric element 100, respectively. FIG.1 (c) has shown sectional drawing of the cross section 1c of Fig.1 (a). FIG. 2 is a side sectional view of the piezoelectric element 100 disposed on the metal member 900. The piezoelectric element 100 is a stacked piezoelectric element that is formed in a rectangular body and has one main surface bonded to a metal member 900. The piezoelectric element 100 includes a piezoelectric layer 110, internal electrodes 121 and 122, and through-hole electrodes 171 and 172, and expands and contracts when a voltage is applied to the through-hole electrodes 171 and 172.

圧電層110は、例えばPZTやチタン酸バリウム等の圧電セラミックスで層状に形成されている。圧電層110は、内部電極121、122との積層方向に分極されている。   The piezoelectric layer 110 is formed in a layer shape with piezoelectric ceramics such as PZT and barium titanate. The piezoelectric layer 110 is polarized in the stacking direction with the internal electrodes 121 and 122.

内部電極121、122は、Ag−Pd、Ag−Pt等の金属で形成され、圧電層110と交互に積層されている。内部電極121、122は、スルーホール電極171、172によってそれぞれ並列に1層おきに接続されている。これにより、圧電素子100の側面に外部電極を設ける必要がなくなる。   The internal electrodes 121 and 122 are made of a metal such as Ag—Pd or Ag—Pt, and are stacked alternately with the piezoelectric layers 110. The internal electrodes 121 and 122 are connected to every other layer in parallel by through-hole electrodes 171 and 172, respectively. Thereby, it is not necessary to provide an external electrode on the side surface of the piezoelectric element 100.

内部電極121、122のうち隣り合う電極の間の距離は、いずれも50μm未満であることが好ましい。このように薄層化した構造により高い効率で圧電素子として動作可能である。薄層化している状態で、スルーホール電極171、172が設けられることで配線が容易になる。   The distance between adjacent electrodes among the internal electrodes 121 and 122 is preferably less than 50 μm. With such a thinned structure, the piezoelectric element can be operated with high efficiency. Wiring is facilitated by providing the through-hole electrodes 171 and 172 in a thinned state.

スルーホール電極171、172は、素子本体を貫通し、それぞれ内部電極121、122に接続されている。その結果、内部電極121、122を取り出す外部電極171a、172aは、側面に存在しない。したがって、積層方向の端面150に側面上の電極がはみ出ることもないため、小型化、薄層化されても、図2に示すように基準面(端面160に相当)を確保して変位を正確に取り出せる。そして、金属部材900へ設置する際に絶縁を確保することができる。例えば、圧電素子100の厚さtが500μm未満のときには高い効果が見込める。   The through-hole electrodes 171 and 172 penetrate the element body and are connected to the internal electrodes 121 and 122, respectively. As a result, the external electrodes 171a and 172a for taking out the internal electrodes 121 and 122 do not exist on the side surfaces. Accordingly, since the electrodes on the side surfaces do not protrude from the end surface 150 in the stacking direction, even if the size and the thickness of the layer are reduced, a reference surface (equivalent to the end surface 160) is secured as shown in FIG. Can be taken out. And insulation can be ensured when installing in the metal member 900. FIG. For example, a high effect can be expected when the thickness t of the piezoelectric element 100 is less than 500 μm.

保護層110a、110bは、内部電極121、122の積層方向に垂直な一対の端面150、160から、内部電極121、122のうち最近接の電極までの領域(言い換えると端の内部電極よりさらに端部側の圧電層)である。保護層110a、110bの厚さt1、t2は、100μm未満であり、30μm未満であることが好ましい。保護層110a、110bのような伸縮に寄与しない層は小さい方が、効率が高い。   The protective layers 110a and 110b are regions from the pair of end surfaces 150 and 160 perpendicular to the stacking direction of the internal electrodes 121 and 122 to the nearest electrode of the internal electrodes 121 and 122 (in other words, more end than the internal electrode at the end). Part piezoelectric layer). The thicknesses t1 and t2 of the protective layers 110a and 110b are less than 100 μm and preferably less than 30 μm. The smaller the layers that do not contribute to expansion and contraction, such as the protective layers 110a and 110b, the higher the efficiency.

外部電極171a、172aは、スルーホール電極171、172に接続し、一対の端面150、160のいずれか一方(図1、2の例では、端面150)のみに設けられていることが好ましい。これにより、配線が容易になり、他方の端面160を金属部材900に設置しても短絡するおそれがない。   The external electrodes 171a and 172a are preferably connected to the through-hole electrodes 171 and 172 and provided only on one of the pair of end surfaces 150 and 160 (the end surface 150 in the example of FIGS. 1 and 2). Thereby, wiring becomes easy, and even if the other end surface 160 is installed on the metal member 900, there is no possibility of short circuit.

上記のように構成された圧電素子100は、例えば、ステージやマスフローコントローラの弁を被駆動体とする精密位置決め用の圧電アクチュエータ、圧電トランス、医療用のプローブに用いることができる。   The piezoelectric element 100 configured as described above can be used for, for example, a precision positioning piezoelectric actuator, a piezoelectric transformer, and a medical probe using a stage or a mass flow controller valve as a driven body.

(圧電素子の製造方法)
圧電素子100の製造工程を説明する。まず、所定の配合で圧電材料、溶媒、バインダ等を混合し、押し出し成形でグリーンシートを形成する。得られたグリーンシートに電極ペーストで電極パターンを印刷して、それらを積層し、金型で積層体を打ち抜く。そして、打ち抜かれた積層体にスルーホール電極用の孔を設け、電極ペーストを所定量まで注入する。
(Piezoelectric element manufacturing method)
A manufacturing process of the piezoelectric element 100 will be described. First, a piezoelectric material, a solvent, a binder and the like are mixed in a predetermined composition, and a green sheet is formed by extrusion molding. An electrode pattern is printed on the obtained green sheet with an electrode paste, they are laminated, and the laminate is punched with a mold. And the hole for through-hole electrodes is provided in the punched-out laminated body, and electrode paste is inject | poured to predetermined amount.

この際には、Ag/Pd等の電極用の金属粒子が固形分の20〜50vol%を占めるように調整し、さらに電極ペーストの固形分の量を45〜55vol%に調整する。そして孔の体積に対し、十分に充填するように電極ペーストを孔に注入することが好ましい。プレス時、焼成時にセラミックス成形体が収縮するため、当初の金属粉末そのものの充填率を低くしておく。なお、電極ペーストの注入の際には、併せてスルーホール電極に接続される外部電極も設けてもよい。   At this time, the electrode metal particles such as Ag / Pd are adjusted so as to occupy 20 to 50 vol% of the solid content, and the solid content of the electrode paste is adjusted to 45 to 55 vol%. And it is preferable to inject | pour electrode paste into a hole so that it may fully fill with respect to the volume of a hole. Since the ceramic compact shrinks during pressing and firing, the filling rate of the original metal powder itself is kept low. When injecting the electrode paste, an external electrode connected to the through-hole electrode may also be provided.

充填された電極ペーストを乾燥させると、乾燥収縮が生じ、孔を埋める電極の両主面端部がロート状にへこむ。乾燥後の電極ペーストは金属粒子が有機物の樹脂(バインダ)に分散し、有機物のネットワークに金属粒子が分散した多孔体のような構造を形成する。このとき固形分のみが残留しており、有機物に対する金属粒子の占有率は、20〜50%である。   When the filled electrode paste is dried, drying shrinkage occurs, and both ends of the main surface of the electrode filling the hole are recessed in a funnel shape. The electrode paste after drying forms a structure like a porous body in which metal particles are dispersed in an organic resin (binder), and the metal particles are dispersed in an organic network. At this time, only solid content remains, and the occupation ratio of the metal particles to the organic matter is 20 to 50%.

このようにして準備された積層体をプレスしつつ焼成する。焼成体を生成できる。積層方向の端面の外部電極は、圧電セラミックスと同時に焼成してもよい。なお、焼成すると、電極は焼成収縮により乾燥時と比べ体積比で50%程度に縮む。その結果、スルーホール電極部分に素子厚みに影響する盛り上がりが生じない。焼成体は、研削して加工し、加工で得られた焼成体の外部電極にリード線を接続する。そして、活性領域の圧電層を分極することで、圧電素子100が得られる。上記のように予め電極ペーストの成分を調整することで、素子厚みに影響する盛り上がりを防止し、スルーホール電極を有する薄い圧電素子を形成することができる。   The laminate thus prepared is fired while being pressed. A fired body can be produced. The external electrode on the end face in the stacking direction may be fired simultaneously with the piezoelectric ceramic. When firing, the electrode shrinks to about 50% by volume due to firing shrinkage compared to when dried. As a result, the swell that affects the element thickness does not occur in the through-hole electrode portion. The fired body is processed by grinding, and a lead wire is connected to the external electrode of the fired body obtained by the processing. Then, the piezoelectric element 100 is obtained by polarizing the piezoelectric layer in the active region. By adjusting the components of the electrode paste in advance as described above, it is possible to prevent the swelling that affects the element thickness and to form a thin piezoelectric element having a through-hole electrode.

100 圧電素子
110 圧電層
110a、110b 保護層
121、122 内部電極
150、160 端面
171、172 スルーホール電極
171a、172a 外部電極
900 金属部材
DESCRIPTION OF SYMBOLS 100 Piezoelectric element 110 Piezoelectric layer 110a, 110b Protective layer 121,122 Internal electrode 150,160 End surface 171,172 Through-hole electrode 171a, 172a External electrode 900 Metal member

Claims (1)

電圧の印加により伸縮する積層型の圧電素子の製造方法であって、
電極パターンを印刷したグリーンシートの積層体にスルーホール電極用の孔を設ける工程と、
前記スルーホール電極用の孔に、電極用の金属粒子が20〜50vol%を占めるように固形分の占有率を調整され、固形分の量を45〜55vol%に調整された電極ペーストを注入する工程と、
前記電極ペーストを充填された積層体を焼成する工程と、を含むことを特徴とする圧電素子の製造方法。
A method of manufacturing a laminated piezoelectric element that expands and contracts by applying a voltage,
Providing a hole for a through-hole electrode in a laminate of green sheets printed with an electrode pattern;
An electrode paste in which the solid content is adjusted so that the metal particles for the electrode occupy 20 to 50 vol% and the solid content is adjusted to 45 to 55 vol% is injected into the through-hole electrode hole. Process,
Firing the laminate filled with the electrode paste. A method of manufacturing a piezoelectric element, comprising:
JP2016033391A 2016-02-24 2016-02-24 Piezoelectric element and manufacturing method thereof Active JP6591910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016033391A JP6591910B2 (en) 2016-02-24 2016-02-24 Piezoelectric element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033391A JP6591910B2 (en) 2016-02-24 2016-02-24 Piezoelectric element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017152532A JP2017152532A (en) 2017-08-31
JP6591910B2 true JP6591910B2 (en) 2019-10-16

Family

ID=59742079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033391A Active JP6591910B2 (en) 2016-02-24 2016-02-24 Piezoelectric element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6591910B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221360A (en) * 1994-02-01 1995-08-18 Fuji Elelctrochem Co Ltd Manufacture of layered electrostriction/piezoelectric element
JPH0953031A (en) * 1995-06-07 1997-02-25 Hitachi Chem Co Ltd Conductive paste and production of electrical circuit board
JP3964193B2 (en) * 2000-12-22 2007-08-22 日本碍子株式会社 Matrix type actuator
US7067965B2 (en) * 2002-09-18 2006-06-27 Tdk Corporation Piezoelectric porcelain composition, piezoelectric device, and methods of making thereof
US20150321222A1 (en) * 2014-05-07 2015-11-12 Samsung Electro-Mechanics Co., Ltd. Piezoelectric element and piezoelectric vibration module having the same

Also Published As

Publication number Publication date
JP2017152532A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
US9112152B2 (en) Method for producing a piezo actuator and piezo actuator
RU2706105C2 (en) Method of producing component from ceramic materials
JP2000082852A (en) Multilayered piezoelectric actuator and manufacture thereof
JP2006505144A (en) Piezo actuator and manufacturing method thereof
JP6591910B2 (en) Piezoelectric element and manufacturing method thereof
JP2008098655A (en) Laminated piezoelectric element
JP4670260B2 (en) Multilayer electronic components
JP2003318458A (en) Multilayer piezoelectric element, its producing method and ejector
JP2007019420A (en) Stacked piezoelectric element
JP6809822B2 (en) Piezoelectric actuator
JP2010199271A (en) Multilayer piezoelectric element, manufacturing method thereof, and vibrator
JP4868707B2 (en) Multilayer piezoelectric element and injection device
JPH06151999A (en) Manufacture of laminated piezoelectric/electrostrictive actuator element
JP2017135340A (en) Piezoelectric actuator
JP6809818B2 (en) Piezoelectric actuator
JPH08181031A (en) Laminated ceramic capacitor
JP2004259955A (en) Stacked type electronic component and its manufacturing method, and spraying device
JP2007266468A (en) Laminated piezoelectric element
JP2014036089A (en) Ceramic electronic component manufacturing method
US20050018378A1 (en) Piezostack and method for producing a piezostack
JP2010199272A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrating body
WO2023157523A1 (en) Laminate-type piezoelectric element and electronic device
JP2010171360A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrator
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JP2006156690A (en) Laminated piezoelectric element and spraying device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190919

R150 Certificate of patent or registration of utility model

Ref document number: 6591910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250