JP6591040B2 - Hot melt adhesive - Google Patents

Hot melt adhesive Download PDF

Info

Publication number
JP6591040B2
JP6591040B2 JP2018503000A JP2018503000A JP6591040B2 JP 6591040 B2 JP6591040 B2 JP 6591040B2 JP 2018503000 A JP2018503000 A JP 2018503000A JP 2018503000 A JP2018503000 A JP 2018503000A JP 6591040 B2 JP6591040 B2 JP 6591040B2
Authority
JP
Japan
Prior art keywords
glycol
bisphenol
hot melt
melt adhesive
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503000A
Other languages
Japanese (ja)
Other versions
JPWO2017150142A1 (en
Inventor
政登 今井
政登 今井
島田 哲也
哲也 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Publication of JPWO2017150142A1 publication Critical patent/JPWO2017150142A1/en
Application granted granted Critical
Publication of JP6591040B2 publication Critical patent/JP6591040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は熱可塑性ウレタン樹脂を含有するホットメルト接着剤に関する。   The present invention relates to a hot melt adhesive containing a thermoplastic urethane resin.

熱可塑性樹脂は、通常温度の上昇に伴い樹脂強度が低下するため、使用する際には耐熱性が問題となることがある。熱可塑性樹脂を使用した製品の品質安定性の観点から、広い温度領域で、温度依存性の少ない熱可塑性樹脂が望まれている。また、使用する際の扱いやすさから、シャープメルト性(融点を超えると、すぐに流動性が発現)を有するような熱可塑性樹脂が望まれている。このような温度依存性の少ない熱可塑性樹脂として、対称構造を有するジイソシアネートと対称構造を有する低分子ジオールおよび/または対称構造を有する低分子ジアミン類とから構成されるハードセグメントを有するホットメルト接着剤が知られている(特許文献1)。しかし、上記ホットメルト接着剤は凝集力が低く、引張破断強度が低いという課題がある。   Thermoplastic resins usually have lower resin strength as the temperature rises, so heat resistance may be a problem when used. From the viewpoint of product quality stability using a thermoplastic resin, a thermoplastic resin having a small temperature dependency in a wide temperature range is desired. In addition, a thermoplastic resin having sharp melt properties (fluidity immediately appears when the melting point is exceeded) is desired for ease of handling when used. A hot melt adhesive having a hard segment composed of a diisocyanate having a symmetric structure and a low molecular diol having a symmetric structure and / or a low molecular diamine having a symmetric structure as a thermoplastic resin having a low temperature dependency. Is known (Patent Document 1). However, the hot melt adhesive has a problem that the cohesive force is low and the tensile strength at break is low.

特許第2984921号公報Japanese Patent No. 2949821

本発明の目的は、温度依存性が少なく、融点を超えるとすぐに流動性が発現し、かつ引張破断強度に優れるホットメルト接着剤を提供することにある。   An object of the present invention is to provide a hot melt adhesive that is less temperature dependent, exhibits fluidity as soon as the melting point is exceeded, and is excellent in tensile strength at break.

本発明者らは、上述の状況に鑑み鋭意検討した結果、本発明に到達した。即ち、本発明は、芳香環を有するポリオール(A)、対称性を有するジイソシアネート(B)、一般式(1)で示されるポリメチレングリコール(C1)及び/又は一般式(2)で示されるポリエチレングリコール(C2)であるグリコール(C)、並びに高分子ポリオール(D)を必須構成単量体とする熱可塑性ウレタン樹脂(F)を含有するホットメルト接着剤である。
HO−(CH)n−OH (1)
[nは2〜8の整数である。]
HO−(CHCHO)m−H (2)
[mは2〜8の整数である。]
The inventors of the present invention have reached the present invention as a result of intensive studies in view of the above situation. That is, the present invention relates to a polyol (A) having an aromatic ring, a diisocyanate (B) having symmetry, a polymethylene glycol (C1) represented by the general formula (1) and / or a polyethylene represented by the general formula (2). It is a hot melt adhesive containing a thermoplastic urethane resin (F) whose essential constituent monomer is glycol (C), which is glycol (C2), and polymer polyol (D).
HO— (CH 2 ) n —OH (1)
[N is an integer of 2 to 8. ]
HO- (CH 2 CH 2 O) m-H (2)
[M is an integer of 2 to 8. ]

本発明のホットメルト接着剤に含まれる熱可塑性ウレタン樹脂は、温度依存性が少ないため、これを使用した製品の品質安定性に優れ、ホットメルト接着剤として使用した際には、接着力が安定する。また、シャープメルト性(融点を超えると比較的すぐに流動性が発現)を有するため、取り扱いが容易である。さらに、引張破断強度にも優れる。   The thermoplastic urethane resin contained in the hot melt adhesive of the present invention has little temperature dependence, so it has excellent product quality stability and stable adhesive strength when used as a hot melt adhesive. To do. Further, since it has sharp melt properties (fluidity appears relatively soon when the melting point is exceeded), it is easy to handle. Furthermore, the tensile strength at break is also excellent.

本発明における芳香環を有するポリオール(A)としては、例えば、ビスフェノールA、ビスフェノールB、ビスフェノールE及びビスフェノールFからなる群より選ばれる少なくとも1種のビスフェノール化合物(J)のエチレンオキサイド付加物、ジヒドロキシベンゼンのエチレンオキサイド付加物、ジヒドロキシビフェニールのエチレンオキサイド付加物、ビス(ヒドロキシメチル)ベンゼン、該化合物のエチレンオキサイド付加物、ビス(ヒドロキシメチル)ビフェニール、該化合物のエチレンオキサイド付加物、フタル酸のエチレンオキサイド付加物及びそれらの2種以上の混合物等が挙げられる。   As the polyol (A) having an aromatic ring in the present invention, for example, an ethylene oxide adduct of at least one bisphenol compound (J) selected from the group consisting of bisphenol A, bisphenol B, bisphenol E and bisphenol F, dihydroxybenzene Ethylene oxide adduct, dihydroxybiphenyl ethylene oxide adduct, bis (hydroxymethyl) benzene, ethylene oxide adduct of the compound, bis (hydroxymethyl) biphenyl, ethylene oxide adduct of the compound, ethylene oxide addition of phthalic acid And a mixture of two or more thereof.

上記エチレンオキサイド(以下、EO)付加物のEO平均付加モル数は、好ましくは水酸基あたり0.90〜1.10であり、より好ましくは0.91〜1.09であり、さらに好ましくは0.92〜1.08である。
上記EO付加物のEO平均付加モル数が水酸基あたり0.90以上であれば接着力が向上し、1.10以下であれば引張破断強度が向上する。
芳香環を有するポリオール(A)のうち、ビスフェノールA、ビスフェノールB、ビスフェノールE及びビスフェノールFからなる群より選ばれる少なくとも1種のビスフェノール化合物のエチレンオキサイド付加物(A1)が好ましく、エチレンオキサイド付加物(A1)のうち、エチレンオキサイド平均付加モル数が水酸基あたり0.90〜1.10であり、下記式(1)で示される単分散度が80%以上であるエチレンオキサイド付加物(A11)がさらに好ましい。
単分散度(%)={[水酸基あたりエチレンオキサイド付加モル数が1モルであるエチレンオキサイド付加物(A1)の重量]/[エチレンオキサイド付加物(A)の重量]}×100 (1)
The EO average addition mole number of the ethylene oxide (hereinafter referred to as EO) adduct is preferably 0.90 to 1.10 per hydroxyl group, more preferably 0.91 to 1.09, and still more preferably 0.8. 92 to 1.08.
If the EO average addition mole number of the EO adduct is 0.90 or more per hydroxyl group, the adhesive strength is improved, and if it is 1.10 or less, the tensile strength at break is improved.
Among the polyols (A) having an aromatic ring, an ethylene oxide adduct (A1) of at least one bisphenol compound selected from the group consisting of bisphenol A, bisphenol B, bisphenol E and bisphenol F is preferred, and an ethylene oxide adduct ( Among A1), the ethylene oxide adduct (A11) having an average ethylene oxide addition mole number of 0.90 to 1.10 per hydroxyl group and a monodispersity of 80% or more represented by the following formula (1) is further provided preferable.
Monodispersity (%) = {[weight of ethylene oxide adduct (A1) having 1 mol of ethylene oxide added per hydroxyl group] / [weight of ethylene oxide adduct (A)]} × 100 (1)

エチレンオキサイド付加物(A1)のうち、エチレンオキサイド平均付加モル数が水酸基あたり0.90〜1.10であり、上記式(1)で示される単分散度が80%以上であるエチレンオキサイド付加物(A11)を使用すると、接着力を特に高くすることができ、かつ、引張破断強度も高くすることができる。   Among the ethylene oxide adducts (A1), the ethylene oxide average addition mole number is 0.90 to 1.10 per hydroxyl group, and the monodispersity represented by the above formula (1) is 80% or more. When (A11) is used, the adhesive force can be particularly increased, and the tensile strength at break can also be increased.

ビスフェノール化合物(J)の内、特に好ましいのは、ビスフェノールAである。
なお、ビスフェノールBは、2,2−ビス(p−ヒドロキシフェニル)ブタンであり、フェノールEは1,1−ビス(p−ヒドロキシフェニル)エタンであり、ビスフェノールFはビス(p−ヒドロキシフェニル)メタンである。
上記式(1)で示される(A11)の単分散度は80%以上であり、好ましくは85%以上、さらに好ましくは90%以上である。
(A11)の単分散度が80%未満であれば、引張破断強度が低下し、温度依存性が高くなり高温での接着力が低下する。
Of the bisphenol compounds (J), bisphenol A is particularly preferable.
Note that bisphenol B is 2,2-bis (p-hydroxyphenyl) butane, phenol E is 1,1-bis (p-hydroxyphenyl) ethane, and bisphenol F is bis (p-hydroxyphenyl) methane. It is.
The monodispersity of (A11) represented by the above formula (1) is 80% or more, preferably 85% or more, and more preferably 90% or more.
If the monodispersity of (A11) is less than 80%, the tensile strength at break is lowered, the temperature dependency is increased, and the adhesive force at high temperature is lowered.

単分散度、EO平均付加モル数は、シリル化剤で前処理した上でガスクロマトグラフ(GC)によって確認できる。測定条件は次の通りである。
<試料の予備調製方法>
試料1gを採取し、次いでアセトン19gを加えて溶解させる。この試料にTMS−H1(Trimethylchlorosilaneのシリル化剤、東京化成工業株式会社製)を0.1ml加え、2〜3分間、50〜70℃に温めシリル化を完結させる。この上澄みを1μl採取し、ガスクロマトグラフで測定を行う。
<GCの測定条件>
GC機種 :GC−14B(株式会社島津製作所製)
充填剤:シリコンGE−SE−52(4%)、担体CromosorbG(AW−DMCS);150〜180μm(和光純薬工業株式会社製パックドカラム)
カラム温度 :250〜350℃(昇温速度10℃/分)
検出器 :FID
溶媒 :アセトンまたはメチルエチルケトン
キャリアガス :窒素 流量50ml/分
<単分散度の計算方法>
ガスクロマトグラムにおける各モル数のEO付加物のピーク面積から、下記式(2)によって計算する。
単分散度(%)=100×水酸基あたり1モル付加物ピーク面積/(水酸基あたり0〜4モル付加物ピーク面積) (2)
上記ピーク面積は各EO付加物の重量に比例する。
The monodispersity and EO average addition mole number can be confirmed by gas chromatography (GC) after pretreatment with a silylating agent. The measurement conditions are as follows.
<Preparation method of sample>
A 1 g sample is taken and then 19 g acetone is added and dissolved. To this sample, 0.1 ml of TMS-H1 (Trimethylchlorosilane silylating agent, manufactured by Tokyo Chemical Industry Co., Ltd.) is added and heated to 50-70 ° C. for 2-3 minutes to complete the silylation. 1 μl of this supernatant is sampled and measured with a gas chromatograph.
<Measurement conditions for GC>
GC model: GC-14B (manufactured by Shimadzu Corporation)
Filler: Silicon GE-SE-52 (4%), carrier Cromosorb G (AW-DMCS); 150 to 180 μm (packed column manufactured by Wako Pure Chemical Industries, Ltd.)
Column temperature: 250-350 ° C. (temperature increase rate: 10 ° C./min)
Detector: FID
Solvent: Acetone or methyl ethyl ketone Carrier gas: Nitrogen Flow rate 50 ml / min <Calculation method of monodispersity>
From the peak area of each mole number of EO adducts in the gas chromatogram, calculation is performed according to the following formula (2).
Monodispersity (%) = 100 × 1 mol adduct peak area per hydroxyl group / (0-4 mol adduct peak area per hydroxyl group) (2)
The peak area is proportional to the weight of each EO adduct.

本発明における対称性を有するジイソシアネート(B)としては、ポリメチレンジイソシアネート(B1)[例えば、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート等]、対称性を有し環構造を有するジイソシアネート[例えば、メチレンビス(4,1−フェニレン)=ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート等]等が挙げられる。
上記(B)のうち、イソシアネート基中の炭素を除く炭素数が、2〜18の偶数であるものが好ましい。
これらの内、結晶性の観点から好ましいのは、ポリメチレンジイソシアネート(B1)であり、さらに好ましいのは炭素数(イソシアネート基中の炭素を除く)が6〜10の偶数を有するポリメチレンジイソシアネートである。
As the diisocyanate (B) having symmetry in the present invention, polymethylene diisocyanate (B1) [for example, ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, etc.] And diisocyanates having symmetry and a ring structure [for example, methylenebis (4,1-phenylene) = diisocyanate, dicyclohexylmethane-4,4′-diisocyanate and the like] and the like.
Among the above (B), those having an even number of 2 to 18 carbon atoms excluding carbon in the isocyanate group are preferable.
Of these, polymethylene diisocyanate (B1) is preferable from the viewpoint of crystallinity, and more preferable is polymethylene diisocyanate having an even number of 6 to 10 carbon atoms (excluding carbon in the isocyanate group). .

グリコール(C)は、一般式(1)で示されるポリメチレングリコール(C1)及び/又は一般式(2)で示されるポリエチレングリコール(C2)であるグリコール(C)であり、結晶性の観点からグリコール(C)に含まれるポリメチレングリコール(C1)及びポリエチレングリコール(C2)の炭素数がそれぞれ偶数であることが好ましい。
これは、グリコール(C)がポリメチレングリコール(C1)だけを含むときはポリメチレングリコール(C1)の炭素数が偶数であり、グリコール(C)がポリエチレングリコール(C2)だけを含むときはポリエチレングリコール(C2)の炭素数が偶数であり、グリコール(C)がポリメチレングリコール(C1)及びポリエチレングリコール(C2)を含むときはポリメチレングリコール(C1)の炭素数が偶数であり、かつ、ポリエチレングリコール(C2)の炭素数が偶数であることを意味する。
本発明におけるポリメチレングリコール(C1)としては、エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,8―オクタンジオール等が挙げられる。
繰り返し数が2〜8のポリエチレングリコール(C2)としては、ジエチレングリコール、トリエチレングリコール、ヘキサエチレングリコール等が挙げられる。
これら(C)の内、結晶性の観点から好ましいのは(C1)であり、更に好ましいのは炭素数が4〜8の偶数を有するポリメチレングリコールであり、特に好ましいのは炭素数が6〜8の偶数を有するポリメチレングリコールである。
Glycol (C) is glycol (C) which is polymethylene glycol (C1) represented by general formula (1) and / or polyethylene glycol (C2) represented by general formula (2), from the viewpoint of crystallinity. The polymethylene glycol (C1) and polyethylene glycol (C2) contained in the glycol (C) preferably have an even number of carbon atoms.
This is because when the glycol (C) contains only polymethylene glycol (C1), the polymethylene glycol (C1) has an even number of carbon atoms, and when the glycol (C) contains only polyethylene glycol (C2), the polyethylene glycol When (C2) has an even number of carbon atoms and the glycol (C) contains polymethylene glycol (C1) and polyethylene glycol (C2), the polymethylene glycol (C1) has an even number of carbon atoms and polyethylene glycol It means that the number of carbon atoms in (C2) is an even number.
Examples of the polymethylene glycol (C1) in the present invention include ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, and the like.
Examples of the polyethylene glycol (C2) having 2 to 8 repeats include diethylene glycol, triethylene glycol, hexaethylene glycol and the like.
Among these (C), from the viewpoint of crystallinity, (C1) is preferable, more preferable is polymethylene glycol having an even number of 4 to 8 carbon atoms, and particularly preferable is 6 to 6 carbon atoms. Polymethylene glycol having an even number of 8.

本発明における熱可塑性ウレタン樹脂(F)の必須構成単量体としては、ポリメチレンジイソシアネート(B1)とポリメチレングリコール(C1)の組合せが好ましく、(B1)のイソシアネート基中の炭素を除く炭素数と(C1)の炭素数は、結晶性の観点から同数であることが好ましい。例えば、テトラメチレンジイソシアネートと1,4−ブタンジオール、ヘキサメチレンジイソシアネートと1,6−ヘキサンジオール、オクタメチレンジイソシアネートと1,8―オクタンジオールの組合せ等である。   As an essential constituent monomer of the thermoplastic urethane resin (F) in the present invention, a combination of polymethylene diisocyanate (B1) and polymethylene glycol (C1) is preferable, and the number of carbon atoms excluding carbon in the isocyanate group of (B1). And (C1) preferably have the same number of carbon atoms from the viewpoint of crystallinity. For example, combinations of tetramethylene diisocyanate and 1,4-butanediol, hexamethylene diisocyanate and 1,6-hexanediol, octamethylene diisocyanate and 1,8-octanediol, and the like.

高分子ポリオール(D)としては、ポリエーテルポリオール(D1)、ポリエステルポリオール(D2)及びその他のポリオール(D3)等が挙げられる。高分子ポリオール(D)の数平均分子量(以下Mn)は400〜10000であることが好ましく、1000〜5000であることがさらに好ましい。   Examples of the polymer polyol (D) include polyether polyol (D1), polyester polyol (D2), and other polyol (D3). The number average molecular weight (hereinafter referred to as Mn) of the polymer polyol (D) is preferably 400 to 10,000, and more preferably 1000 to 5000.

ポリエーテルポリオール(D1)としては、例えばポリアルキレングリコール[ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレンエーテルグリコール、ポリ−3−メチルテトラメチレンエーテルグリコール等]、共重合ポリオキシアルキレンジオール[EO/PO共重合ジオール、THF/EO共重合ジオール及びTHF/3−メチルテトラヒドロフラン共重合ジオール等(重量比は例えば1/9〜9/1)]及びビスフェノール系化合物のAO付加物;3官能以上のポリエーテルポリオール、例えば3価以上の多価アルコールのAO付加物[グリセリンのAO付加物及びトリメチロールプロパンのAO付加物等];並びにこれらの1種以上をメチレンジクロライドでカップリングしたもの等が挙げられる。   Examples of the polyether polyol (D1) include polyalkylene glycol [polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol, poly-3-methyltetramethylene ether glycol, etc.], copolymer polyoxyalkylene diol [EO / PO copolymerization]. Diol, THF / EO copolymerized diol, THF / 3-methyltetrahydrofuran copolymer diol and the like (weight ratio is, for example, 1/9 to 9/1)] and an AO adduct of a bisphenol-based compound; Examples thereof include AO adducts of trihydric or higher polyhydric alcohols [AO adducts of glycerin and AO adducts of trimethylolpropane]; and those obtained by coupling one or more of these with methylene dichloride.

ポリエステルポリオール(D2)としては、例えば縮合ポリエステルポリオール、ポリラクトンポリオール、ヒマシ油系ポリオール及びポリカーボネートポリオールが挙げられる。   Examples of the polyester polyol (D2) include condensed polyester polyols, polylactone polyols, castor oil-based polyols, and polycarbonate polyols.

縮合ポリエステルポリオールとしては、Mnが300未満の低分子量ポリオール又はポリエーテルポリオール(D1)と、ポリカルボン酸又はそのエステル形成性誘導体(酸無水物及び炭素数1〜4のアルキルエステル等)との重縮合物等が挙げられる。   As the condensed polyester polyol, a low molecular weight polyol or polyether polyol (D1) having an Mn of less than 300 and a polycarboxylic acid or an ester-forming derivative thereof (an acid anhydride, an alkyl ester having 1 to 4 carbon atoms, etc.) Examples include condensates.

ポリカルボン酸としては、ジカルボン酸及び3価〜4価又はそれ以上のポリカルボン酸が挙げられ、具体的には、炭素数2〜30又はそれ以上(好ましくは炭素数2〜12)の飽和又は不飽和の脂肪族ポリカルボン酸[炭素数2〜15のジカルボン酸(シュウ酸、コハク酸、マロン酸、アジピン酸、スベリン酸、アゼライン酸、セバチン酸、ドデカンジカルボン酸、マレイン酸、フマル酸及びイタコン酸等)及び炭素数6〜20のトリカルボン酸(トリカルバリル酸及びヘキサントリカルボン酸)];炭素数8〜15の芳香族ポリカルボン酸[テレフタル酸、イソフタル酸及びフタル酸等のジカルボン酸並びにトリメリット酸及びピロメリット酸等のトリ又はテトラカルボン酸等);炭素数6〜40の脂環式ポリカルボン酸(ダイマー酸等);及びスルホ基含有ポリカルボン酸[上記ポリカルボン酸にスルホ基を導入してなるもの、例えばスルホコハク酸、スルホマロン酸、スルホグルタル酸、スルホアジピン酸及びスルホイソフタル酸及びそれらの塩(例えば金属塩、アンモニウム塩、アミン塩及び4級アンモニウム塩);並びにカルボキシ末端のポリマーが挙げられる。   Examples of the polycarboxylic acid include dicarboxylic acids and trivalent to tetravalent or higher polycarboxylic acids, and specifically, saturated or saturated with 2 to 30 or more carbon atoms (preferably 2 to 12 carbon atoms). Unsaturated aliphatic polycarboxylic acids [dicarboxylic acids having 2 to 15 carbon atoms (oxalic acid, succinic acid, malonic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic acid, fumaric acid and itacone Acid) and tricarboxylic acids having 6 to 20 carbon atoms (tricarballylic acid and hexanetricarboxylic acid)]; aromatic polycarboxylic acids having 8 to 15 carbon atoms [dicarboxylic acids such as terephthalic acid, isophthalic acid and phthalic acid, and trimellit Tri- or tetracarboxylic acid such as acid and pyromellitic acid); alicyclic polycarboxylic acid having 6 to 40 carbon atoms (such as dimer acid) And a sulfo group-containing polycarboxylic acid [the one obtained by introducing a sulfo group into the polycarboxylic acid, such as sulfosuccinic acid, sulfomalonic acid, sulfoglutaric acid, sulfoadipic acid, sulfoisophthalic acid and salts thereof (for example, metal salts, ammonium Salts, amine salts and quaternary ammonium salts); and carboxy-terminated polymers.

カルボキシ末端のポリマーとしては、ポリエーテルポリカルボン酸[例えばMnが300未満の低分子量ポリオール又はポリエーテルポリオール(D1)等のポリオールのカルボキシメチルエーテル(アルカリの存在下にモノクロル酢酸を反応させて得られるもの等)];ポリアミド及び/又はポリエステルポリカルボン酸[例えば上記ポリカルボン酸を開始剤として炭素数4〜15のラクタム(カプロラクタム、エナントラクタム、ラウロラクタム及びウンデカノラクタム等)又は炭素数4〜15のラクトン(γ−ブチロラクトン、γ−バレロラクトン及びε−カプロラクトン等)を開環重合させてなるポリラクタムポリカルボン酸及びポリラクトンポリカルボン酸]が挙げられる。   As the carboxy-terminated polymer, a polyether polycarboxylic acid [for example, a low molecular weight polyol having an Mn of less than 300 or a carboxymethyl ether of a polyol such as a polyether polyol (D1) (obtained by reacting monochloroacetic acid in the presence of alkali) Polyamides and / or polyester polycarboxylic acids (for example, lactams having 4 to 15 carbon atoms (such as caprolactam, enantolactam, laurolactam, undecanolactam, etc.) or carbon atoms having 4 to 15 carbon atoms using the polycarboxylic acid as an initiator. Polylactam polycarboxylic acids and polylactone polycarboxylic acids obtained by ring-opening polymerization of lactones (γ-butyrolactone, γ-valerolactone, ε-caprolactone, etc.).

ポリラクトンポリオールとしては、水又はMnが300未満の低分子量ポリオールを開始剤とする炭素数4〜15のラクトン(γ−ブチロラクトン、γ−バレロラクトン及びε−カプロラクトン等)の開環付加物等が挙げられる。   Examples of polylactone polyols include ring-opened adducts of lactones having 4 to 15 carbon atoms (γ-butyrolactone, γ-valerolactone, ε-caprolactone, etc.), which are initiated by water or a low molecular weight polyol having an Mn of less than 300. Can be mentioned.

ヒマシ油系ポリオールとしては、ヒマシ油(リシノール酸トリグリセリド)、部分脱水ヒマシ油、部分アシル化ヒマシ油、水添ヒマシ油及びこれらの変性物[ポリエーテルポリオール(D1)若しくはMnが300未満の低分子ポリオールとヒマシ油、部分脱水ヒマシ油若しくは水添ヒマシ油とのエステル交換反応により得られるエステルポリオール、及びポリエーテルポリオール(D1)若しくはMnが300未満の低分子ポリオールとヒマシ油脂肪酸若しくは水添ヒマシ油脂肪酸とのエステル化反応により得られるエステル等]等が挙げられる。   Castor oil-based polyols include castor oil (ricinoleic acid triglyceride), partially dehydrated castor oil, partially acylated castor oil, hydrogenated castor oil, and modified products thereof [polyether polyol (D1) or low molecular weight Mn of less than 300 Ester polyol obtained by transesterification reaction between polyol and castor oil, partially dehydrated castor oil or hydrogenated castor oil, and polyether polyol (D1) or low molecular polyol having Mn of less than 300 and castor oil fatty acid or hydrogenated castor oil Ester obtained by esterification reaction with fatty acid, etc.].

ポリカーボネートポリオールとしては、Mnが300未満の低分子量ポリオールを開始剤とするアルキレンカーボネートの開環付加/重縮合物及び、Mnが300未満の低分子量ポリオールとジフェニル又はジアルキルカーボネートの重縮合(エステル交換)物等が挙げられる。   Polycarbonate polyols include ring-opening addition / polycondensation products of alkylene carbonates whose initiator is a low molecular weight polyol having an Mn of less than 300, and polycondensation (transesterification) of a low molecular weight polyol having an Mn of less than 300 and diphenyl or dialkyl carbonate. Thing etc. are mentioned.

その他のポリオール(D3)としては、ポリマーポリオール、ポリオレフィンポリオール、ポリアルカジエンポリオール及びアクリルポリオール等が挙げられる。   Examples of the other polyol (D3) include polymer polyol, polyolefin polyol, polyalkadiene polyol, and acrylic polyol.

ポリマーポリオールとしては、1種以上のポリオール中で炭素数3〜24のビニル単量体(例えばスチレン、アクリロニトリル)をラジカル重合開始剤の存在下で重合させた重合体粒子を分散安定化させてなるポリオール(重合体含量は例えば5〜30重量%)が挙げられる。   The polymer polyol is obtained by dispersing and stabilizing polymer particles obtained by polymerizing a vinyl monomer having 3 to 24 carbon atoms (for example, styrene or acrylonitrile) in the presence of a radical polymerization initiator in one or more kinds of polyols. Examples include polyol (polymer content is, for example, 5 to 30% by weight).

ポリオレフィンポリオールとしては、ポリイソブテンポリオール等が挙げられる。   Examples of the polyolefin polyol include polyisobutene polyol.

ポリアルカジエンポリオールとしては、ポリイソプレンポリオール、ポリブタジエンポリオール、水添化ポリイソプレンポリオール及び水添化ポリブタジエンポリオール等が挙げられる。   Examples of the polyalkadiene polyol include polyisoprene polyol, polybutadiene polyol, hydrogenated polyisoprene polyol, and hydrogenated polybutadiene polyol.

アクリルポリオールとしては、(メタ)アクリル酸アルキル(アルキルの炭素数1〜30)エステル[ブチル(メタ)アクリレート等]と水酸基含有アクリルモノマー[ヒドロキシエチル(メタ)アクリレート等]との共重合体等が挙げられる。   Examples of the acrylic polyol include a copolymer of an alkyl (meth) acrylate (alkyl 1 to 30 carbon atoms) ester [butyl (meth) acrylate and the like] and a hydroxyl group-containing acrylic monomer [hydroxyethyl (meth) acrylate and the like]. Can be mentioned.

上記及び以下においてMnはゲルパーミエーションクロマトグラフィーにより測定される数平均分子量を意味する。
なお、数平均分子量は、N,N−ジメチルホルムアミドを溶剤として用い、ポリスチレンを標準物質としてゲルパーミエーションクロマトグラフィーにより測定される。サンプル濃度は0.125重量%、カラム固定相はTSKgel Guardcolumn α、TSKgel α−M(いずれも東ソー株式会社製)を各1本連結したもの、カラム温度は40℃とすればよい。
In the above and the following, Mn means the number average molecular weight measured by gel permeation chromatography.
The number average molecular weight is measured by gel permeation chromatography using N, N-dimethylformamide as a solvent and polystyrene as a standard substance. The sample concentration may be 0.125% by weight, the column stationary phase may be TSKgel Guardcolumn α, TSKgel α-M (both manufactured by Tosoh Corporation), and the column temperature may be 40 ° C.

上記高分子ポリオール(D)のうち、ポリテトラメチレンエーテルグリコールが好ましい。また、末端に位置するヒドロキシプロピル基の内の40モル%以上、好ましくは70モル%以上が下記化学式(3)で表される基(1級OH基)である、ポリプロピレングリコールが好ましい。
−CH(CH)−CH−OH (3)
Of the polymer polyol (D), polytetramethylene ether glycol is preferred. Polypropylene glycol in which 40 mol% or more, preferably 70 mol% or more of the hydroxypropyl groups located at the terminals is a group (primary OH group) represented by the following chemical formula (3) is preferable.
-CH (CH 3) -CH 2 -OH (3)

熱可塑性ウレタン樹脂(F)の必須構成単量体である芳香環を有するポリオール(A)、対称性を有するジイソシアネート(B)、グリコール(C)、高分子ポリオール(D)の重量割合は、(A)、(B)、(C)、(D)の合計重量に対して、(A)は好ましくは5〜20重量%、さらに好ましくは10〜20重量%であり、(B)は好ましくは15〜30重量%、さらに好ましくは20〜30重量%であり、(C)は好ましくは1〜15重量%、さらに好ましくは3〜15重量%であり、(D)は好ましくは40〜60重量%、さらに好ましくは45〜60重量%である。   The weight ratio of the polyol (A) having an aromatic ring, which is an essential constituent monomer of the thermoplastic urethane resin (F), the diisocyanate (B) having symmetry, the glycol (C), and the polymer polyol (D) is ( (A) is preferably 5 to 20% by weight, more preferably 10 to 20% by weight, and (B) is preferably based on the total weight of A), (B), (C) and (D). 15 to 30% by weight, more preferably 20 to 30% by weight, (C) is preferably 1 to 15% by weight, more preferably 3 to 15% by weight, and (D) is preferably 40 to 60% by weight. %, More preferably 45 to 60% by weight.

熱可塑性ウレタン樹脂(F)のウレア基含有量としては、シャープメルト性の観点から好ましくは0.06mmol/g以下、より好ましくは0.03mmol/g以下、さらに好ましくは0.02mmol/g以下である。   The urea group content of the thermoplastic urethane resin (F) is preferably 0.06 mmol / g or less, more preferably 0.03 mmol / g or less, still more preferably 0.02 mmol / g or less from the viewpoint of sharp melt properties. is there.

熱可塑性ウレタン樹脂(F)の製造方法
熱可塑性ウレタン樹脂(F)の製造方法としては、例えば、芳香環を有するポリオール(A)、グリコール(C)、高分子ポリオール(D)とを均一に混合した後、対称性を有するジイソシアネート(B)を反応させる方法などが挙げられる。
熱可塑性ウレタン樹脂(F)の必須構成単量体である芳香環を有するポリオール(A)、グリコール(C)、高分子ポリオール(D)の混合物中に含まれる水分割合は、(A)、(C)、(D)の合計重量に対して、好ましくは0.00〜0.10重量%、さらに好ましくは0.00〜0.03重量%である。
Production method of thermoplastic urethane resin (F) As a production method of thermoplastic urethane resin (F), for example, polyol (A) having an aromatic ring, glycol (C), and polymer polyol (D) are uniformly mixed. Then, a method of reacting diisocyanate (B) having symmetry is exemplified.
The water content contained in the mixture of polyol (A), glycol (C) and polymer polyol (D) having an aromatic ring which is an essential constituent monomer of the thermoplastic urethane resin (F) is (A), ( Preferably it is 0.00-0.10 weight% with respect to the total weight of C) and (D), More preferably, it is 0.00-0.03% weight.

ウレタン化反応に際しては、ウレタン化触媒を使用してもよい。ウレタン化触媒としては種々のものが使用でき、例えば金属触媒〔錫触媒[トリメチルチンラウレート、トリメチルチンヒドロキサイド、ジメチルチンジラウレート、ジブチルチンジアセテート、ジブチルチンジラウレート、スタナスオクトエート、ジブチルチンマレエート等]、鉛触媒[オレイン酸鉛、2−エチルヘキサン酸鉛、ナフテン酸鉛、オクテン酸鉛等]、その他の金属触媒[ナフテン酸金属塩(ナフテン酸コバルト等)、フェニル水銀プロピオン酸塩等]等〕;アミン触媒{トリエチレンジアミン、テトラメチルエチレンジアミン、ジアザビシクロアルケン〔1,8−ジアザビシクロ[5,4,0]ウンデセン−7[DBU(サンアプロ(株)製、登録商標)]等〕、ジアルキル(炭素数1〜3)アミノアルキル(炭素数2〜4)アミン[ジメチルアミノエチルアミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジプロピルアミノプロピルアミン等]、複素環式アミノアルキル(炭素数2〜6)アミン[2−(1−アジリジニル)エチルアミン、4−(1−ピペリジニル)−2−ヘキシルアミン等]、およびこれらの炭酸塩および有機酸(炭素数1〜3、例えばギ酸)塩等;N−メチルおよび−エチルモルホリン、トリエチルアミン、ジメチル−およびジエチルエタノールアミン等};およびこれらの2種以上の併用系が挙げられる。   In the urethanization reaction, a urethanization catalyst may be used. Various catalysts can be used as urethanization catalysts such as metal catalysts [tin catalysts [trimethyltin laurate, trimethyltin hydroxide, dimethyltin dilaurate, dibutyltin diacetate, dibutyltin dilaurate, stannous octoate, dibutyltin maleate]. Etc.], lead catalysts [lead oleate, lead 2-ethylhexanoate, lead naphthenate, lead octenoate, etc.], other metal catalysts [metal salts of naphthenate (cobalt naphthenate, etc.), phenylmercuric propionate, etc.] Etc.]; amine catalyst {triethylenediamine, tetramethylethylenediamine, diazabicycloalkene [1,8-diazabicyclo [5,4,0] undecene-7 [DBU (manufactured by San Apro Co., Ltd., registered trademark)]], dialkyl (C1-C3) aminoalkyl (C2-C4) Min [dimethylaminoethylamine, dimethylaminopropylamine, diethylaminopropylamine, dipropylaminopropylamine, etc.], heterocyclic aminoalkyl (2 to 6 carbon atoms) amine [2- (1-aziridinyl) ethylamine, 4- (1 -Piperidinyl) -2-hexylamine and the like], and carbonates and organic acids thereof (C1-C3, for example formate) and the like; N-methyl and -ethylmorpholine, triethylamine, dimethyl- and diethylethanolamine, etc.} And combinations of two or more of these.

本発明のホットメルト接着剤は、熱可塑性ウレタン樹脂(F)を含有するが、種々の目的および用途に応じ、本発明の効果を阻害しない範囲で他の樹脂用添加剤(E)を任意に含有させることができる。   The hot melt adhesive of the present invention contains a thermoplastic urethane resin (F), but according to various purposes and applications, other resin additives (E) can be arbitrarily added within a range not inhibiting the effects of the present invention. It can be included.

樹脂用添加剤(E)としては、粘着性付与剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、吸着剤、着色剤、充填剤、核剤、滑剤、離型剤、水、難燃剤および香料からなる群から選ばれる少なくとも1種の添加剤が挙げられる。   Additives for resins (E) include tackifiers, antioxidants, UV absorbers, light stabilizers, plasticizers, adsorbents, colorants, fillers, nucleating agents, lubricants, mold release agents, water, Examples include at least one additive selected from the group consisting of a flame retardant and a fragrance.

粘着性付与剤としては、例えばテルペン樹脂、テルペンフェノール樹脂、フェノール樹脂、芳香族炭化水素変性テルペン樹脂、ロジン樹脂、変性ロジン樹脂、合成石油樹脂(脂肪族、芳香族又は脂環式合成石油樹脂等)、クマロン−インデン樹脂、キシレン樹脂、スチレン系樹脂、ジシクロペンタジエン樹脂、及びこれらの内の水素添加可能な不飽和二重結合を有するものの水素添加物等が挙げられる。   Examples of the tackifier include terpene resin, terpene phenol resin, phenol resin, aromatic hydrocarbon modified terpene resin, rosin resin, modified rosin resin, synthetic petroleum resin (aliphatic, aromatic or alicyclic synthetic petroleum resin, etc. ), Coumarone-indene resin, xylene resin, styrene resin, dicyclopentadiene resin, and hydrogenated products of these having hydrogenated unsaturated double bonds.

酸化防止剤としては、ヒンダードフェノール化合物〔ペンタエリスチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート等〕、リン化合物[トリス(2,4−ジ−t−ブチルフェニル)ホスファイト等]、イオウ化合物[ペンタエリスチル−テトラキス(3−ラウリルチオプロピオネート)、ジラウリル−3,3’−チオジプロピオネート等]等が挙げられる。   Antioxidants include hindered phenol compounds [pentaerystyl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t. -Butyl-4-hydroxyphenyl) propionate, etc.], phosphorus compound [tris (2,4-di-t-butylphenyl) phosphite, etc.], sulfur compound [pentaerystyl-tetrakis (3-laurylthiopropionate) , Dilauryl-3,3′-thiodipropionate, etc.].

紫外線吸収剤としては、ベンゾトリアゾール化合物[2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール等]等が挙げられる。   Examples of the ultraviolet absorber include benzotriazole compounds [2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, etc.]. It is done.

光安定剤としては、ヒンダードアミン化合物[(ビス−2,2,6,6−テトラメチル−4−ピペリジル)セバケート等]等が挙げられる。   Examples of the light stabilizer include hindered amine compounds [(bis-2,2,6,6-tetramethyl-4-piperidyl) sebacate and the like] and the like.

可塑剤としては、種々の可塑剤[例えば接着の技術Vol.20,(2),21(2000)等に記載のもの]が使用でき、プロセスオイル(パラフィン、ナフテンもしくは芳香族化合物型);液状樹脂(Mn300〜6,000、例えば液状ポリブテン、液状ポリブタジエン、液状ポリイソプレン);該液状樹脂の水素化体;低分子量(Mn300〜10,000)ポリイソブチレン;およびこれらの2種以上の混合物等が挙げられる。   As the plasticizer, various plasticizers [for example, adhesive technology Vol. 20, (2), 21 (2000), etc.], process oil (paraffin, naphthene or aromatic compound type); liquid resin (Mn 300 to 6,000, for example, liquid polybutene, liquid polybutadiene, liquid Polyisoprene); hydrogenated product of the liquid resin; low molecular weight (Mn 300 to 10,000) polyisobutylene; and mixtures of two or more thereof.

吸着剤としては、アルミナ、シリカゲル、モレキュラーシーブ等が挙げられる。   Examples of the adsorbent include alumina, silica gel, molecular sieve and the like.

着色剤としては、顔料(酸化チタン、カーボンブラック等)、染料(アゾ、アンスラキノン、インジゴイド、アリザリン、アクリジン、ニトロソおよびアニリン染料等)等が挙げられる。   Examples of the colorant include pigments (titanium oxide, carbon black, etc.), dyes (azo, anthraquinone, indigoid, alizarin, acridine, nitroso, aniline dyes, etc.) and the like.

充填剤としては、タルク、マイカ、炭酸カルシウム等が挙げられる。   Examples of the filler include talc, mica, calcium carbonate and the like.

核剤としては、ソルビトール、ホスフェート金属塩、安息香酸金属塩、リン酸金属塩等が挙げられる。   Examples of the nucleating agent include sorbitol, phosphate metal salt, benzoic acid metal salt, and phosphate metal salt.

滑剤としては、ステアリン酸カルシウム、ステアリン酸ブチル、オレイン酸アミド等が挙げられる。   Examples of the lubricant include calcium stearate, butyl stearate, oleic amide and the like.

離型剤としては、カルボキシル変性シリコーンオイル、ヒドロキシル変性シリコーンオイル等が挙げられる。   Examples of the release agent include carboxyl-modified silicone oil and hydroxyl-modified silicone oil.

難燃剤としては、ハロゲン含有難燃剤、リン含有難燃剤、アンチモン含有難燃剤、金属水酸化物含有難燃剤等が挙げられる。   Examples of the flame retardant include a halogen-containing flame retardant, a phosphorus-containing flame retardant, an antimony-containing flame retardant, and a metal hydroxide-containing flame retardant.

香料としては、ジテルペン、リモネン等が挙げられる。   Examples of the fragrances include diterpenes and limonene.

樹脂用添加剤(E)の合計含有量は熱可塑性ウレタン樹脂(F)の全重量に基づいて、40重量%以下であることが好ましく、添加効果および接着性の観点からより好ましくは0.002〜30重量%、さらに好ましくは0.1〜10重量%である。   The total content of the resin additive (E) is preferably 40% by weight or less based on the total weight of the thermoplastic urethane resin (F), and more preferably 0.002 from the viewpoint of the addition effect and adhesiveness. -30% by weight, more preferably 0.1-10% by weight.

本発明のホットメルト接着剤は、温度依存性の観点と塗工性の観点から、融点は80℃〜150℃が好ましく、90℃〜120℃がさらに好ましい。   The hot melt adhesive of the present invention has a melting point of preferably 80 ° C. to 150 ° C., more preferably 90 ° C. to 120 ° C., from the viewpoints of temperature dependency and coatability.

また、本発明のホットメルト接着剤は、接着力等の品質安定性の観点から、貯蔵弾性率(以下、G’と略記)の温度依存性が低いことが好ましい。
本発明のホットメルト接着剤は、接着力の安定性に優れている。これは貯蔵弾性率(G’)の温度依存性で評価することが出来る。
具体的には、下記式(3)で示されるG’の温度変化率が100以下であれば温度依存性が低いため好ましく、下記式(4)で示されるG’の温度変化率が10以下であればさらに好ましい。
G’の温度変化率(−20/70)=G’(−20℃)/G’(70℃) (3)
G’の温度変化率(0/70)=G’(0℃)/G’(70℃) (4)
[式(3)、式(4)中のG’(T℃)は、T℃におけるG’の数値を表す。]
In addition, the hot melt adhesive of the present invention preferably has a low temperature dependency of storage elastic modulus (hereinafter abbreviated as G ′) from the viewpoint of quality stability such as adhesive strength.
The hot melt adhesive of the present invention is excellent in adhesive strength stability. This can be evaluated by the temperature dependence of the storage elastic modulus (G ′).
Specifically, it is preferable that the temperature change rate of G ′ represented by the following formula (3) is 100 or less because the temperature dependency is low, and the temperature change rate of G ′ represented by the following formula (4) is 10 or less. More preferably.
Temperature change rate of G ′ (−20/70) = G ′ (−20 ° C.) / G ′ (70 ° C.) (3)
Temperature change rate of G ′ (0/70) = G ′ (0 ° C.) / G ′ (70 ° C.) (4)
[G ′ (T ° C.) in Formulas (3) and (4) represents a numerical value of G ′ at T ° C. ]

本発明のホットメルト接着剤の製造方法については特に限定されないが、本発明のホットメルト接着剤の各成分を加熱溶融して混合する方法;及び本発明のホットメルト接着剤の各成分を有機溶剤(トルエン又はキシレン等)と共に加熱溶融して均一混合した後に溶剤を留去する方法等が適用できる。これらのうち、工業的に好ましいのは前者の方法である。   The method for producing the hot melt adhesive of the present invention is not particularly limited, but the components of the hot melt adhesive of the present invention are heated and melted and mixed; and the components of the hot melt adhesive of the present invention are mixed with an organic solvent. A method of distilling off the solvent after heating and melting together with (toluene, xylene, etc.) and uniformly mixing can be applied. Of these, the former method is industrially preferred.

以下、実施例により本発明を更に説明するが、本発明はこれに限定されるものではない。実施例中、部及び%は特に断りのない限り、それぞれ重量部及び重量%を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to this. In the examples, “parts” and “%” represent “parts by weight” and “% by weight” unless otherwise specified.

製造例1
〔ビスフェノールAのEO付加物(A−1)の合成〕
ガラス製オートクレーブに、トルエン137.0g(ビスフェノール類に対して40%)、ビスフェノールA(三菱化学株式会社製「ビスフェノールA」)342.4g(1.50mol)を仕込み、窒素置換を行った後、75℃まで昇温し、ビスフェノールAをトルエンに分散させた。ここにテトラメチルアンモニウムヒドロキシド25%水溶液を2.73g添加した。
再度窒素置換を行い、EOを75〜95℃、反応圧0.2MPa以下の範囲で滴下反応させた。反応中、適宜サンプリングし、GCで反応物のビスフェノールへの付加モル分布を追跡し、1モル付加物が0.1%以下になった時点で反応を終了した。要したEOは139.9g(3.18mol)であり、反応時間は7時間であった。
反応後、130〜160℃、減圧下で未反応EO、触媒、溶剤等を留去し、ビスフェノールAのEO付加物(A−1)を得た。
この(A−1)をGCにて分析したところ、得られた(A−1)の水酸基あたりのEO平均付加モル数は1.02であり、単分散度は97.4%であった。
Production Example 1
[Synthesis of bisphenol A EO adduct (A-1)]
A glass autoclave was charged with 137.0 g of toluene (40% based on bisphenols) and 342.4 g (1.50 mol) of bisphenol A (Mitsubishi Chemical Corporation “bisphenol A”), and after nitrogen substitution, The temperature was raised to 75 ° C., and bisphenol A was dispersed in toluene. To this, 2.73 g of a 25% aqueous solution of tetramethylammonium hydroxide was added.
Nitrogen substitution was performed again, and EO was dropped and reacted in a range of 75 to 95 ° C. and a reaction pressure of 0.2 MPa or less. During the reaction, sampling was performed as appropriate, and the addition mole distribution of the reaction product to bisphenol was traced by GC, and the reaction was terminated when the 1 mol addition product was 0.1% or less. The required EO was 139.9 g (3.18 mol), and the reaction time was 7 hours.
After the reaction, unreacted EO, catalyst, solvent and the like were distilled off at 130 to 160 ° C. under reduced pressure to obtain an EO product of bisphenol A (A-1).
When this (A-1) was analyzed by GC, the EO average added mole number per hydroxyl group of the obtained (A-1) was 1.02, and the monodispersity was 97.4%.

製造例2
〔ビスフェノールAのEO付加物(A−2)の合成〕
ガラス製オートクレーブに、実施例1で得られた(A−1)85.6g(後に加えるビスフェノールAに対して25重量%)を溶融させて反応系の溶媒として入れた。110℃まで加熱してこれを溶融した後、ビスフェノールA342.4g(1.50mol)を仕込み、窒素置換を行った後、95℃まで冷却し、ビスフェノールAを分散させた。ここに水酸化ナトリウム0.30gを添加した。
再度窒素置換を行い、EOを75〜95℃、反応圧0.2MPa以下の範囲で滴下反応させた。反応中、適宜サンプリングし、GCで反応物のビスフェノールへの付加モル分布を追跡した。1モル付加物が0.1%以下になった時点で反応を終了した。要したEOは150.5g(3.42mol)であり、反応時間は7時間であった。
反応後、燐酸で触媒を中和し、130〜160℃、減圧下で未反応EOを留去し、ビスフェノールAのEO付加物(A−2)を得た。
この(A−2)をGCにて分析したところ、得られた(A−2)の水酸基あたりのEO平均付加モル数は1.09であり、単分散度は82.5%であった。
Production Example 2
[Synthesis of bisphenol A EO adduct (A-2)]
In a glass autoclave, 85.6 g of (A-1) obtained in Example 1 (25% by weight based on bisphenol A added later) was melted and added as a solvent for the reaction system. After heating up to 110 ° C. and melting it, 342.4 g (1.50 mol) of bisphenol A was charged and purged with nitrogen, and then cooled to 95 ° C. to disperse bisphenol A. To this was added 0.30 g of sodium hydroxide.
Nitrogen substitution was performed again, and EO was dropped and reacted in a range of 75 to 95 ° C. and a reaction pressure of 0.2 MPa or less. During the reaction, sampling was performed as appropriate, and the distribution of addition moles of the reaction product to bisphenol was monitored by GC. The reaction was terminated when the 1 mol adduct was 0.1% or less. The required EO was 150.5 g (3.42 mol), and the reaction time was 7 hours.
After the reaction, the catalyst was neutralized with phosphoric acid, and unreacted EO was distilled off under reduced pressure at 130 to 160 ° C. to obtain an EO adduct (A-2) of bisphenol A.
When this (A-2) was analyzed by GC, the EO average added mole number per hydroxyl group of the obtained (A-2) was 1.09, and the monodispersity was 82.5%.

製造例3
〔ビスフェノールAのEO付加物(A−3)の合成〕
製造例2で滴下反応させたEOの量を154.0g(3.50mol)として、1モル付加物が0.1%以下になった時点で反応を終了した以外は製造例2と同様にして反応させた。
反応後、燐酸で触媒を中和し、130〜160℃、減圧下で未反応EOを留去し、ビスフェノールAのEO付加物(A−3)を得た。
この(A−3)をGCにて分析したところ、得られた(A−3)の水酸基あたりのEO平均付加モル数は1.10であり、単分散度は81.3%であった。
Production Example 3
[Synthesis of bisphenol A EO adduct (A-3)]
The amount of EO dropped in Production Example 2 was set to 154.0 g (3.50 mol), and the reaction was terminated when 1 mol of adduct became 0.1% or less. Reacted.
After the reaction, the catalyst was neutralized with phosphoric acid, and unreacted EO was distilled off under reduced pressure at 130 to 160 ° C. to obtain an EO adduct (A-3) of bisphenol A.
When this (A-3) was analyzed by GC, the EO average added mole number per hydroxyl group of the obtained (A-3) was 1.10, and the monodispersity was 81.3%.

製造例4
〔ビスフェノールAのEO付加物(A−4)の合成〕
製造例1で滴下反応させたEOの量を124.8g(2.84mol)として、1モル付加物が0.1%以下になった時点で反応を終了した以外は製造例1と同様にして反応させた。
反応後、燐酸で触媒を中和し、130〜160℃、減圧下で未反応EOを留去し、ビスフェノールAのEO付加物(A−4)を得た。
この(A−4)をGCにて分析したところ、得られた(A−4)の水酸基あたりのEO平均付加モル数は0.91であり、単分散度は88.3%であった。
Production Example 4
[Synthesis of bisphenol A EO adduct (A-4)]
In the same manner as in Production Example 1, except that the amount of EO reacted dropwise in Production Example 1 was 124.8 g (2.84 mol) and the reaction was terminated when 1 mol adduct was 0.1% or less. Reacted.
After the reaction, the catalyst was neutralized with phosphoric acid, and unreacted EO was distilled off at 130 to 160 ° C. under reduced pressure to obtain an EO adduct (A-4) of bisphenol A.
When this (A-4) was analyzed by GC, the EO average added mole number per hydroxyl group of the obtained (A-4) was 0.91, and the monodispersity was 88.3%.

製造例5
〔ビスフェノールAのEO付加物(A−5)の合成〕
製造例2で用いた水酸化ナトリウムの量を0.27gに代えた以外は製造例2と同様にして反応させた。
1モル付加物が0.1%以下になった時点で反応を終了し、要したEOは、121.8g(2.77mol)であり、反応時間は7時間であった。
反応後、燐酸で触媒を中和し、130〜160℃、減圧下で未反応EOを留去し、ビスフェノールAのEO付加物(A−5)を得た。
この(A−5)をGCにて分析したところ、得られた(A−5)の水酸基あたりのEO平均付加モル数は1.03であり、単分散度は80.5%であった。
Production Example 5
[Synthesis of bisphenol A EO adduct (A-5)]
The reaction was conducted in the same manner as in Production Example 2 except that the amount of sodium hydroxide used in Production Example 2 was changed to 0.27 g.
The reaction was terminated when 1 mol adduct was 0.1% or less, and EO required was 121.8 g (2.77 mol), and the reaction time was 7 hours.
After the reaction, the catalyst was neutralized with phosphoric acid, and unreacted EO was distilled off at 130 to 160 ° C. under reduced pressure to obtain an EO adduct (A-5) of bisphenol A.
When this (A-5) was analyzed by GC, the EO average added mole number per hydroxyl group of the obtained (A-5) was 1.03, and the monodispersity was 80.5%.

製造例6
〔ビスフェノールBのEO付加物(A−6)の合成〕
製造例1で用いたビスフェノールAをビスフェノールB(東京化成工業株式会社製)363.4g(1.50mol)に代えた以外は製造例1と同様にして反応させた。
1モル付加物が0.1%以下になった時点で反応を終了した。要したEOは150.8g(3.43mol)であり、反応時間は7時間であった。
反応後、130〜160℃、減圧下で未反応EO、触媒、溶剤等を留去し、ビスフェノールBのEO付加物(A−6)を得た。
この(A−6)をGCにて分析したところ、得られた(A−6)の水酸基あたりのEO平均付加モル数は1.03であり、単分散度は96.7%であった。
Production Example 6
[Synthesis of bisphenol B EO adduct (A-6)]
The reaction was conducted in the same manner as in Production Example 1 except that bisphenol A used in Production Example 1 was replaced with 363.4 g (1.50 mol) of bisphenol B (manufactured by Tokyo Chemical Industry Co., Ltd.).
The reaction was terminated when the 1 mol adduct was 0.1% or less. The required EO was 150.8 g (3.43 mol), and the reaction time was 7 hours.
After the reaction, unreacted EO, catalyst, solvent and the like were distilled off under reduced pressure at 130 to 160 ° C. to obtain an EO product of bisphenol B (A-6).
When this (A-6) was analyzed by GC, the EO average addition mole number per hydroxyl group of the obtained (A-6) was 1.03, and the monodispersity was 96.7%.

製造例7
〔ビスフェノールEのEO付加物(A−7)の合成〕
製造例1で用いたビスフェノールAをビスフェノールE(本州化学工業株式会社製「ビスフェノールE」)321.4g(1.50mol)に代えた以外は製造例1と同様にして反応させた。
1モル付加物が0.1%以下になった時点で反応を終了した。要したEOは150.6g(3.42mol)であり、反応時間は7時間であった。
反応後、130〜160℃、減圧下で未反応EO、触媒、溶剤等を留去し、ビスフェノールEのEO付加物(A−7)を得た。
この(A−7)をGCにて分析したところ、得られた(A−7)の水酸基あたりのEO平均付加モル数は1.03であり、単分散度は96.4%であった。
Production Example 7
[Synthesis of bisphenol E EO adduct (A-7)]
The reaction was conducted in the same manner as in Production Example 1 except that bisphenol A used in Production Example 1 was replaced with 321.4 g (1.50 mol) of bisphenol E (“Bisphenol E” manufactured by Honshu Chemical Industry Co., Ltd.).
The reaction was terminated when the 1 mol adduct was 0.1% or less. The required EO was 150.6 g (3.42 mol), and the reaction time was 7 hours.
After the reaction, unreacted EO, catalyst, solvent and the like were distilled off under reduced pressure at 130 to 160 ° C. to obtain an EO product of bisphenol E (A-7).
When this (A-7) was analyzed by GC, the average added mole number of EO per hydroxyl group of the obtained (A-7) was 1.03, and the monodispersity was 96.4%.

製造例8
〔ビスフェノールFのEO付加物(A−8)の合成〕
製造例1で用いたビスフェノールAをビスフェノールF(本州化学工業株式会社製「ビスフェノールF」)300.4g(1.50mol)に代えた以外は製造例1と同様にして反応させた。
1モル付加物が0.1%以下になった時点で反応を終了した。要したEOは150.3g(3.42mol)であり、反応時間は7時間であった。
反応後、130〜160℃、減圧下で未反応EO、触媒、溶剤等を留去し、ビスフェノールFのEO付加物(A−8)を得た。
この(A−8)をGCにて分析したところ、得られた(A−8)の水酸基あたりのEO平均付加モル数は1.02であり、単分散度は97.5%であった。
Production Example 8
[Synthesis of bisphenol F EO adduct (A-8)]
The reaction was conducted in the same manner as in Production Example 1 except that bisphenol A used in Production Example 1 was replaced with 300.4 g (1.50 mol) of bisphenol F (“Bisphenol F” manufactured by Honshu Chemical Industry Co., Ltd.).
The reaction was terminated when the 1 mol adduct was 0.1% or less. The required EO was 150.3 g (3.42 mol), and the reaction time was 7 hours.
After the reaction, unreacted EO, catalyst, solvent and the like were distilled off at 130 to 160 ° C. under reduced pressure to obtain an EO product of bisphenol F (A-8).
When this (A-8) was analyzed by GC, the EO average addition mole number per hydroxyl group of the obtained (A-8) was 1.02, and the monodispersity was 97.5%.

製造例9
〔ビスフェノールAのEO付加物(A−9)の合成〕
製造例2で用いた水酸化ナトリウムをトリメチルアミン40%水溶液0.22gに代えた以外は製造例2と同様にして反応させた。
反応後、15時間後でも1モル付加物が13%であり、0.1%以下になるまでは相当の時間を要することが予想され、実用的ではないと判断し、反応を打ち切った。この段階までに滴下したEOは、132g(3.00mol)であった。
反応後、燐酸で触媒を中和し、130〜160℃、減圧下で未反応EOを留去し、ビスフェノールAのEO付加物(A−9)を得た。
この(A−9)をGCにて分析したところ、得られた(A−9)の水酸基あたりのEO平均付加モル数は0.98であり、単分散度は78.9%であった。
Production Example 9
[Synthesis of bisphenol A EO adduct (A-9)]
The reaction was conducted in the same manner as in Production Example 2 except that sodium hydroxide used in Production Example 2 was replaced with 0.22 g of a 40% aqueous solution of trimethylamine.
Even after 15 hours from the reaction, the 1 mol adduct was 13%, and it was expected that a considerable amount of time was required until it was 0.1% or less. EO dripped by this stage was 132 g (3.00 mol).
After the reaction, the catalyst was neutralized with phosphoric acid, and unreacted EO was distilled off at 130 to 160 ° C. under reduced pressure to obtain an EO adduct (A-9) of bisphenol A.
When this (A-9) was analyzed by GC, the average added mole number of EO per hydroxyl group of the obtained (A-9) was 0.98, and the monodispersity was 78.9%.

製造例10
〔ビスフェノールAのEO付加物(A−10)の合成〕
製造例2で用いた水酸化ナトリウムの量を0.24gに代えた以外は製造例2と同様にして反応させた。
1モル付加物が0.1%以下になった時点で反応を終了し、要したEOは、121.8g(2.77mol)であり、反応時間は7時間であった。
反応後、燐酸で触媒を中和し、130〜160℃、減圧下で未反応EOを留去し、ビスフェノールAのEO付加物(A−10)を得た。
この(A−10)をGCにて分析したところ、得られた(A−10)の水酸基あたりのEO平均付加モル数は0.89であり、単分散度は80.3%であった。
Production Example 10
[Synthesis of bisphenol A EO adduct (A-10)]
The reaction was conducted in the same manner as in Production Example 2 except that the amount of sodium hydroxide used in Production Example 2 was changed to 0.24 g.
The reaction was terminated when 1 mol adduct was 0.1% or less, and EO required was 121.8 g (2.77 mol), and the reaction time was 7 hours.
After the reaction, the catalyst was neutralized with phosphoric acid, and unreacted EO was distilled off at 130 to 160 ° C. under reduced pressure to obtain an EO adduct (A-10) of bisphenol A.
When this (A-10) was analyzed by GC, the average added mole number of EO per hydroxyl group of the obtained (A-10) was 0.89, and the monodispersity was 80.3%.

製造例11
〔ビスフェノールAのEO付加物(A−11)の合成〕
製造例2で滴下反応させたEOの量を157.5g(3.58mol)として、1モル付加物が0.1%以下になった時点で反応を終了した以外は製造例2と同様にして反応させた。
反応後、燐酸で触媒を中和し、130〜160℃、減圧下で未反応EOを留去し、ビスフェノールAのEO付加物(A−11)を得た。
この(A−11)をGCにて分析したところ、得られた(A−11)の水酸基あたりのEO平均付加モル数は1.12であり、単分散度は80.1%であった。
Production Example 11
[Synthesis of bisphenol A EO adduct (A-11)]
The amount of EO dropped in Production Example 2 was 157.5 g (3.58 mol), and the reaction was terminated when 1 mol adduct became 0.1% or less. Reacted.
After the reaction, the catalyst was neutralized with phosphoric acid, and unreacted EO was distilled off under reduced pressure at 130 to 160 ° C. to obtain an EO adduct (A-11) of bisphenol A.
When this (A-11) was analyzed by GC, the EO average addition mole number per hydroxyl group of the obtained (A-11) was 1.12, and the monodispersity was 80.1%.

製造例12
〔p−フタル酸のEO付加物(A−12)の合成〕
製造例1で用いたビスフェノールAをp−フタル酸(東京化成工業株式会社製)249.2g(1.50mol)に代えた以外は製造例1と同様にして反応させた。
1モル付加物が0.1%以下になった時点で反応を終了した。要したEOは149.2g(3.39mol)であり、反応時間は6時間であった。
反応後、130〜160℃、減圧下で未反応EO、触媒、溶剤等を留去し、p−フタル酸のEO付加物(A−12)を得た。
Production Example 12
[Synthesis of p-phthalic acid EO adduct (A-12)]
The reaction was carried out in the same manner as in Production Example 1 except that bisphenol A used in Production Example 1 was replaced with 249.2 g (1.50 mol) of p-phthalic acid (manufactured by Tokyo Chemical Industry Co., Ltd.).
The reaction was terminated when the 1 mol adduct was 0.1% or less. The required EO was 149.2 g (3.39 mol), and the reaction time was 6 hours.
After the reaction, unreacted EO, catalyst, solvent and the like were distilled off under reduced pressure at 130 to 160 ° C. to obtain an EO adduct (A-12) of p-phthalic acid.

製造例13
〔1,4−ジヒドロキシベンゼンのEO付加物(A−13)の合成〕
製造例1で用いたビスフェノールAを1,4−ジヒドロキシベンゼン(東京化成工業株式会社製)165.2g(1.50mol)に代えた以外は製造例1と同様にして反応させた。
1モル付加物が0.1%以下になった時点で反応を終了した。要したEOは151.2g(3.44mol)であり、反応時間は7時間であった。
反応後、130〜160℃、減圧下で未反応EO、触媒、溶剤等を留去し、1,4−ジヒドロキシベンゼンのEO付加物(A−13)を得た。
Production Example 13
[Synthesis of EO adduct of 1,4-dihydroxybenzene (A-13)]
The reaction was conducted in the same manner as in Production Example 1 except that bisphenol A used in Production Example 1 was replaced with 165.2 g (1.50 mol) of 1,4-dihydroxybenzene (Tokyo Chemical Industry Co., Ltd.).
The reaction was terminated when the 1 mol adduct was 0.1% or less. The required EO was 151.2 g (3.44 mol), and the reaction time was 7 hours.
After the reaction, unreacted EO, catalyst, solvent and the like were distilled off at 130 to 160 ° C. under reduced pressure to obtain 1,4-dihydroxybenzene EO adduct (A-13).

実施例1〜26、比較例1〜3
[ホットメルト接着剤(H)の調製]
攪拌機、コンデンサー、温度計を備えたフラスコに、表1に記載の配合部数の芳香環を有するポリオール(A)、グリコール(C)及び高分子ポリオール(D)を一括で投入し、105℃で均一攪拌後、80℃まで冷却して、水分を測定した。表1に記載の配合部数のジイソシアネート(B)とウレタン化触媒(日東化成株式会社製「ネオスタンU−600」)0.01部を仕込み、窒素気流下、攪拌、混合して温度を100〜160℃に保ちながら、8時間反応させることで目的とする熱可塑性ウレタン樹脂(F−1)〜(F−26)及び比較用の熱可塑性樹脂(F'−1)〜(F'−3)を得た。これらを本発明のホットメルト接着剤(H−1)〜(H−26)及び比較用のメルト接着剤(H'−1)〜(H'−3)とした。
Examples 1-26, Comparative Examples 1-3
[Preparation of hot melt adhesive (H)]
Into a flask equipped with a stirrer, a condenser, and a thermometer, the polyol (A), glycol (C) and polymer polyol (D) having an aromatic ring having the number of blending parts shown in Table 1 are charged all at once, and uniform at 105 ° C. After stirring, the mixture was cooled to 80 ° C., and moisture was measured. The amount of the diisocyanate (B) and the urethanization catalyst (“Neostan U-600” manufactured by Nitto Kasei Co., Ltd.) 0.01 parts shown in Table 1 are charged, and the mixture is stirred and mixed in a nitrogen stream to adjust the temperature to 100 to 160. The target thermoplastic urethane resins (F-1) to (F-26) and comparative thermoplastic resins (F′-1) to (F′-3) are allowed to react for 8 hours while being kept at ° C. Obtained. These were designated as hot melt adhesives (H-1) to (H-26) of the present invention and comparative melt adhesives (H′-1) to (H′-3).

Figure 0006591040
Figure 0006591040

Figure 0006591040
Figure 0006591040

Figure 0006591040
Figure 0006591040

表1〜3に記載の(B)、(C)、(D)、(E)、(B’)及び(C’)は以下を使用した。
1,6−ヘキサメチレンジイソシアネート(B−1):住化コベストロウレタン株式会社製「デスモジュールH」
4,4’−ジフェニルメタンジイソシアネート(B−2):東ソー株式会社製「ミリオネートMT」
ジシクロヘキシルメタン−4,4’−ジイソシアネート(B−3):住化コベストロウレタン株式会社製「デスモジュールW」
イソホロンジイソシアネート(B’−1):住化コベストロウレタン株式会社製「デスモジュールI」
1,4−ブタンジオール(C−1)::三菱化学株式会社製「14BG」
1,6−ヘキサンジオール(C−2):宇部興産株式会社製「1,6−ヘキサンジオール」
1,8−オクタンジオール(C−3):東京化成工業株式会社製
ヘキサエチレングリコール(C−4):東京化成工業株式会社製
1,5−ネオペンチルグリコール(C’−1):東京化成工業株式会社製
ポリテトラメチレンエーテルグリコール(D−1):三菱化学株式会社製「PTMG 1000」
ポリプロピレングリコール(D−2):三洋化成工業株式会社製「プライムポールPX−1000」(1級OH基率:70モル%)
ポリエステルポリオール(D−3):東ソー株式会社製「ニッポラン 164」
ポリプロピレングリコール(D−4):三洋化成工業株式会社製「サンニックスPP−1000」(1級OH基率:2モル%)
ポリテトラメチレンエーテルグリコール(D−5):三菱化学株式会社製「PTMG 650」
ポリエステルポリオール(D−6):東ソー株式会社製「ニッポラン 136」
ウレタン化触媒(E):日東化成株式会社製「ネオスタン U−600」
The following were used for (B), (C), (D), (E), (B ′) and (C ′) described in Tables 1 to 3.
1,6-hexamethylene diisocyanate (B-1): “Desmodur H” manufactured by Sumika Covestrourethane Co., Ltd.
4,4′-diphenylmethane diisocyanate (B-2): “Millionate MT” manufactured by Tosoh Corporation
Dicyclohexylmethane-4,4′-diisocyanate (B-3): “Death Module W” manufactured by Sumika Covestrourethane Co., Ltd.
Isophorone diisocyanate (B'-1): "Death Module I" manufactured by Sumika Covestrourethane Co., Ltd.
1,4-butanediol (C-1): “14BG” manufactured by Mitsubishi Chemical Corporation
1,6-hexanediol (C-2): “1,6-hexanediol” manufactured by Ube Industries, Ltd.
1,8-octanediol (C-3): Tokyo Chemical Industry Co., Ltd. Hexaethylene glycol (C-4): Tokyo Chemical Industry Co., Ltd. 1,5-neopentyl glycol (C'-1): Tokyo Chemical Industry Polytetramethylene ether glycol (D-1) manufactured by Mitsubishi Electric Corporation “PTMG 1000”
Polypropylene glycol (D-2): “Prime Paul PX-1000” manufactured by Sanyo Chemical Industries, Ltd. (primary OH group ratio: 70 mol%)
Polyester polyol (D-3): “Nipporan 164” manufactured by Tosoh Corporation
Polypropylene glycol (D-4): “SANNICS PP-1000” manufactured by Sanyo Chemical Industries, Ltd. (primary OH group ratio: 2 mol%)
Polytetramethylene ether glycol (D-5): “PTMG 650” manufactured by Mitsubishi Chemical Corporation
Polyester polyol (D-6): “Nipporan 136” manufactured by Tosoh Corporation
Urethane catalyst (E): “Neostan U-600” manufactured by Nitto Kasei Co., Ltd.

表1〜3に記載のポリオール[(A)+(C)+(D)]の水分量(%)は、カールフィッシャー水分計(容量滴定方式)を使用して測定した。カールフィッシャー水分計は、京都電子工業株式会社製:カールフィッシャー水分計(MKS−500)を用いた。希釈溶剤としてメタノールを用いて、測定試料約1gを有効数字4桁まで精秤し、メタノール中に投入し、1分間攪拌した。攪拌後、適定によって求められた水分量を読み取った。
なお、この計算における(C)には(C’)を含む。
The moisture content (%) of the polyols [(A) + (C) + (D)] listed in Tables 1 to 3 was measured using a Karl Fischer moisture meter (volumetric titration method). As the Karl Fischer moisture meter, a Karl Fischer moisture meter (MKS-500) manufactured by Kyoto Electronics Industry Co., Ltd. was used. Using methanol as a diluting solvent, about 1 g of a measurement sample was precisely weighed to 4 significant digits, put into methanol, and stirred for 1 minute. After stirring, the water content determined by titration was read.
Note that (C) in this calculation includes (C ′).

ホットメルト接着剤(H−1)〜(H−26)及び比較用のメルト接着剤(H'−1)〜(H'−3)について、以下の方法で性能評価を行った結果を表1〜3に示す。   Table 1 shows the results of performance evaluation of hot melt adhesives (H-1) to (H-26) and comparative melt adhesives (H'-1) to (H'-3) by the following methods. Shown in ~ 3.

評価方法は、次の通りである。
ホットメルト接着剤(H−1)〜(H−26)及び比較用のメルト接着剤(H'−1)〜(H'−3)について、以下では単に接着剤という。
(1)150℃溶融粘度
JIS−K7117(1999年)に準拠し、B型粘度計(東機産業株式会社製「RB−80H」)を用いて150℃での粘度を測定した。
The evaluation method is as follows.
The hot melt adhesives (H-1) to (H-26) and the comparative melt adhesives (H′-1) to (H′-3) are hereinafter simply referred to as adhesives.
(1) 150 degreeC melt viscosity Based on JIS-K7117 (1999), the viscosity at 150 degreeC was measured using the B-type viscosity meter ("RB-80H" by Toki Sangyo Co., Ltd.).

(2)融点
示差走査熱量測定(DSC)(ティー・エイ・インスツルメント・ジャパン株式会社製「Q20」)における吸熱ピークより求めた。
(2) It calculated | required from the endothermic peak in melting | fusing point differential scanning calorimetry (DSC) ("Q20" by TA Instruments Japan Co., Ltd.).

(3)引張破断強度
接着剤を厚さ1mmになるようにプレス機(テスター産業株式会社製「SA−302 卓上型テストプレス」)を使用して230℃でプレスすることで樹脂フィルムを作成し、塗膜の引張破断強度をJIS K 7311(1995年)に準拠して測定した。
(3) Tensile strength at break The adhesive film was pressed at 230 ° C. using a press machine (“SA-302 desktop test press” manufactured by Tester Sangyo Co., Ltd.) to a thickness of 1 mm. The tensile breaking strength of the coating film was measured according to JIS K 7311 (1995).

(4)温度依存性
下記の測定条件で、−20℃及び70℃での、接着剤の貯蔵弾性率(G’)を測定し、G'(−20℃)/G'(70℃)を求めて温度依存性を評価した。この数値が100以下であると温度依存性が少ないと評価した。
貯蔵弾性率(G’)は、樹脂フィルムを「(3)引張破断強度」と同じ方法でプレスし下記サンプルサイズに切り抜いて作製し、粘弾性を以下の測定条件で測定することによって求めた。
<粘弾性測定条件>
測定装置:Rheogel−E4000[株式会社UBM製]
測定治具:固体せん断
測定温度:−20〜130℃
昇温速度:5℃/min
測定周波数:10Hz
サンプルサイズ:約7mm(縦)×約6mm(横)
(4) Temperature dependence Under the following measurement conditions, the storage elastic modulus (G ′) of the adhesive at −20 ° C. and 70 ° C. is measured, and G ′ (−20 ° C.) / G ′ (70 ° C.) is calculated. The temperature dependence was evaluated. When this value was 100 or less, it was evaluated that the temperature dependency was small.
The storage elastic modulus (G ′) was determined by pressing a resin film in the same manner as “(3) Tensile strength at break” and cutting out to the following sample size, and measuring viscoelasticity under the following measurement conditions.
<Viscoelasticity measurement conditions>
Measuring device: Rheogel-E4000 [manufactured by UBM Co., Ltd.]
Measurement jig: Solid shear measurement temperature: -20 to 130 ° C
Temperature increase rate: 5 ° C / min
Measurement frequency: 10Hz
Sample size: about 7mm (length) x about 6mm (width)

(5)シャープメルト性
上記の測定条件で、70℃及び「(2)融点」で測定した融点+20℃での、接着剤の貯蔵弾性率(G’)を測定し、G'(70℃)/G'(融点+20℃)を求めてシャープメルト性を評価した。この数値が80以上であるとシャープメルト性が良好と評価した。
(5) Sharp melt property Under the above measurement conditions, the storage elastic modulus (G ′) of the adhesive was measured at 70 ° C. and the melting point + 20 ° C. measured by “(2) melting point”, and G ′ (70 ° C.). / G ′ (melting point + 20 ° C.) was determined to evaluate the sharp melt property. It was evaluated that the sharp melt property was good when this value was 80 or more.

(6)接着力(80℃)
接着剤を、2枚のPETフィルム(厚さ100μm)の間に挟みこみ、厚みが1mmとなるように貼り合わせてサンプルを作製した。上記サンプルを200mm×25mmの大きさに裁断し、引張試験機を用い、測定温度(80℃)で引っ張り速度100mm/分の条件でT型剥離強度(単位:N/25mm)を測定した。
(6) Adhesive strength (80 ° C)
An adhesive was sandwiched between two PET films (thickness: 100 μm) and bonded to a thickness of 1 mm to prepare a sample. The sample was cut into a size of 200 mm × 25 mm, and a T-type peel strength (unit: N / 25 mm) was measured at a measurement temperature (80 ° C.) under a pulling rate of 100 mm / min using a tensile tester.

<ウレア基含有量>
ウレア基含有量は、窒素分析計[ANTEK7000(アンテック社製)]によって定量されるN原子含量とH−NMRによって定量されるウレタン基とウレア基の比率から算出する。H−NMR測定については、「NMRによるポリウレタン樹脂の構造研究:武田研究所報34(2)、224−323(1975)」に記載の方法で行う。すなわちH−NMRを測定して、脂肪族イソシアネートを使用した場合、化学シフト6ppm付近のウレア基由来の水素の積分量と化学シフト7ppm付近のウレタン基由来の水素の積分量の比率からウレア基とウレタン基の重量比を測定し、該重量比と上記のN原子含量及びアロハネート基及びビューレット基含量からウレタン基及びウレア基含量を算出する。芳香族イソシアネートを使用した場合、化学シフト8ppm付近のウレア基由来の水素の積分量と化学シフト9ppm付近のウレタン基由来の水素の積分量の比率からウレア基とウレタン基の重量比を算出し、該重量比と上記のN原子含量からウレア基含有量を算出する。
<Urea group content>
The urea group content is calculated from the N atom content determined by a nitrogen analyzer [ANTEK7000 (manufactured by Antec)] and the ratio of urethane group and urea group determined by 1 H-NMR. The 1 H-NMR measurement is carried out by the method described in “Structural study of polyurethane resin by NMR: Takeda Laboratory Report 34 (2), 224-323 (1975)”. That is, when 1 H-NMR is measured and an aliphatic isocyanate is used, the urea group is calculated from the ratio of the integral amount of hydrogen derived from a urea group near a chemical shift of 6 ppm and the integral amount of hydrogen derived from a urethane group near a chemical shift of 7 ppm. The urethane group and the urea group content are calculated from the weight ratio, the N atom content, the allophanate group and the burette group content. When aromatic isocyanate is used, the weight ratio of urea group and urethane group is calculated from the ratio of the integral amount of hydrogen derived from urea groups near the chemical shift of 8 ppm and the integral amount of hydrogen derived from urethane groups near the chemical shift of 9 ppm, The urea group content is calculated from the weight ratio and the N atom content.

ホットメルト接着剤(H−1)〜(H−26)は、温度依存性が少ないため、これを使用した製品の品質安定性に優れる。そして、ホットメルト接着剤として使用した際には、接着力が安定する。さらに、引張破断強度にも優れる。   Since the hot melt adhesives (H-1) to (H-26) have little temperature dependency, the quality stability of products using the hot melt adhesives (H-1) to (H-26) is excellent. And when it uses as a hot-melt-adhesive, adhesive force is stabilized. Furthermore, the tensile strength at break is also excellent.

本発明のホットメルト接着剤は衣料用途や各種産業資材の芯地の製造にとくに有用である。   The hot melt adhesive of the present invention is particularly useful for apparel use and production of various industrial materials.

Claims (8)

芳香環を有するポリオール(A)、対称性を有するジイソシアネート(B)、一般式(1)で示されるポリメチレングリコール(C1)及び/又は一般式(2)で示されるポリエチレングリコール(C2)であるグリコール(C)、並びに高分子ポリオール(D)を必須構成単量体とする熱可塑性ウレタン樹脂(F)を含有するホットメルト接着剤であって、
上記芳香環を有するポリオール(A)がビスフェノールA、ビスフェノールB、ビスフェノールE及びビスフェノールFからなる群より選ばれる少なくとも1種のビスフェノール化合物のエチレンオキサイド付加物(A1)であり、
上記高分子ポリオール(D)がポリエーテルポリオール(D1)であるホットメルト接着剤。
HO−(CH)n−OH (1)
[nは2〜8の整数である。]
HO−(CHCHO)m−H (2)
[mは2〜8の整数である。]
Polyol (A) having an aromatic ring, diisocyanate (B) having symmetry, polymethylene glycol (C1) represented by general formula (1) and / or polyethylene glycol (C2) represented by general formula (2) A hot melt adhesive containing a thermoplastic urethane resin (F) having a glycol (C) and a polymer polyol (D) as essential constituent monomers ,
The polyol (A) having an aromatic ring is an ethylene oxide adduct (A1) of at least one bisphenol compound selected from the group consisting of bisphenol A, bisphenol B, bisphenol E and bisphenol F,
A hot melt adhesive, wherein the polymer polyol (D) is a polyether polyol (D1).
HO— (CH 2 ) n —OH (1)
[N is an integer of 2 to 8. ]
HO- (CH 2 CH 2 O) m-H (2)
[M is an integer of 2 to 8. ]
上記エチレンオキサイド付加物(A1)が、エチレンオキサイド平均付加モル数が水酸基あたり0.90〜1.10であり、下記式(1)で示される単分散度が80%以上であるエチレンオキサイド付加物(A11)である請求項に記載のホットメルト接着剤。
単分散度(%)={[水酸基あたりエチレンオキサイド付加モル数が1モルであるエチレンオキサイド付加物(A1)の重量]/[エチレンオキサイド付加物(A)の重量]}×100 (1)
The ethylene oxide adduct (A1) has an ethylene oxide average addition mole number of 0.90 to 1.10 per hydroxyl group, and a monodispersity represented by the following formula (1) is 80% or more. The hot melt adhesive according to claim 1 , which is (A11).
Monodispersity (%) = {[weight of ethylene oxide adduct (A1) having 1 mol of ethylene oxide added per hydroxyl group] / [weight of ethylene oxide adduct (A)]} × 100 (1)
上記対称性を有するジイソシアネート(B)のイソシアネート基中の炭素を除く炭素数が、2〜18の偶数である請求項1又は2に記載のホットメルト接着剤。 The hot melt adhesive according to claim 1 or 2 , wherein the number of carbon atoms excluding carbon in the isocyanate group of the diisocyanate (B) having symmetry is an even number of 2 to 18. 上記グリコール(C)に含まれる上記ポリメチレングリコール(C1)及び上記ポリエチレングリコール(C2)の炭素数がそれぞれ偶数である請求項1〜のいずれか1項に記載のホットメルト接着剤。 The hot melt adhesive according to any one of claims 1 to 3 , wherein the polymethylene glycol (C1) and the polyethylene glycol (C2) contained in the glycol (C) each have an even number of carbon atoms. 上記対称性を有するジイソシアネート(B)がポリメチレンジイソシアネート(B1)である請求項1〜のいずれか1項に記載のホットメルト接着剤。 The hot melt adhesive according to any one of claims 1 to 4 , wherein the diisocyanate (B) having symmetry is polymethylene diisocyanate (B1). 上記グリコール(C)は上記ポリメチレングリコール(C1)を含み、
上記ポリメチレンジイソシアネート(B1)中のイソシアネート基中の炭素を除く炭素数が、上記ポリメチレングリコール(C1)の炭素数と同数である請求項に記載のホットメルト接着剤。
The glycol (C) includes the polymethylene glycol (C1),
The hot melt adhesive according to claim 5 , wherein the number of carbon atoms in the isocyanate group in the polymethylene diisocyanate (B1) is the same as the number of carbon atoms in the polymethylene glycol (C1).
上記高分子ポリオール(D)がポリテトラメチレンエーテルグリコールである請求項1〜のいずれか1項に記載のホットメルト接着剤。 The hot melt adhesive according to any one of claims 1 to 6 , wherein the polymer polyol (D) is polytetramethylene ether glycol. 熱可塑性ウレタン樹脂(F)のウレア基含有量が0.06mmol/g以下である請求項1〜のいずれか1項に記載のホットメルト接着剤。 The hot melt adhesive according to any one of claims 1 to 7 , wherein the urea group content of the thermoplastic urethane resin (F) is 0.06 mmol / g or less.
JP2018503000A 2016-03-04 2017-02-10 Hot melt adhesive Active JP6591040B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016042530 2016-03-04
JP2016042530 2016-03-04
PCT/JP2017/004895 WO2017150142A1 (en) 2016-03-04 2017-02-10 Hot-melt adhesive

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019168418A Division JP6836636B2 (en) 2016-03-04 2019-09-17 Hot melt adhesive

Publications (2)

Publication Number Publication Date
JPWO2017150142A1 JPWO2017150142A1 (en) 2018-10-18
JP6591040B2 true JP6591040B2 (en) 2019-10-16

Family

ID=59744024

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018503000A Active JP6591040B2 (en) 2016-03-04 2017-02-10 Hot melt adhesive
JP2019168418A Active JP6836636B2 (en) 2016-03-04 2019-09-17 Hot melt adhesive

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019168418A Active JP6836636B2 (en) 2016-03-04 2019-09-17 Hot melt adhesive

Country Status (3)

Country Link
JP (2) JP6591040B2 (en)
CN (1) CN108603088B (en)
WO (1) WO2017150142A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730297B2 (en) * 1986-03-25 1995-04-05 旭硝子株式会社 Hot melt adhesive
JPH06271830A (en) * 1993-03-18 1994-09-27 Sekisui Chem Co Ltd Hot-melt adhesive
JP2984921B2 (en) * 1997-01-20 1999-11-29 三洋化成工業株式会社 Hot melt adhesive
EP2025730B1 (en) * 2006-12-01 2014-04-16 DIC Corporation Moisture-curable polyurethane hot melt adhesive and multilayer sheet using the same
JP2009286941A (en) * 2008-05-30 2009-12-10 Henkel Japan Ltd Moisture-curable hot melt adhesive

Also Published As

Publication number Publication date
CN108603088A (en) 2018-09-28
CN108603088B (en) 2020-12-01
JP2020015918A (en) 2020-01-30
JPWO2017150142A1 (en) 2018-10-18
WO2017150142A1 (en) 2017-09-08
JP6836636B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
KR101691870B1 (en) Moisture-curable polyurethane hot melt resin composition, adhesive and article
US8686076B2 (en) Silane moisture curable hot melts
KR100583926B1 (en) Polyurethane and preparation containing polyurethane
CN102482549B (en) Hot melt adhesive composition
US8383728B2 (en) Adhesives based on polyester-graft-poly(meth)acrylate copolymers
US8865842B2 (en) Polyurethane hot-melt adhesive with reduced viscosity
US20130210989A1 (en) Polyurethane hot-melt adhesive produced from polyacrylates and polyesters
CN101679593A (en) Resin composition containing thermoplastic polyurethane and hot-melt adhesive
CN102549095A (en) Radiation-cure removal type pressure-sensitive adhesive sheet
CN111433244B (en) Toughened cyanoacrylate compositions
Lopez et al. A perfluoropolyether-based elastomers library with on-demand thermorheological features
EP0001166B1 (en) Liquid polymer compositions, process for the preparation of adhesives and laminate structures
EP0001165B1 (en) Polyurethane based compositions, a process for their preparation and their use as adhesives in laminate structures
JP6591040B2 (en) Hot melt adhesive
JP7176425B2 (en) Polyamide compound
JP2023103299A (en) Polycarbonate diol composition
JP2017105992A (en) Hot-melt adhesive composition and bonded body thereof
JP2023005131A (en) Adhesive composition and adhesive sheet
US3829526A (en) Hydrogenated polyphenols as sulfur solubilizers in polythiol sealants
JP7295341B2 (en) Two-component polyurethane adhesive and adherend
JP2018111748A (en) Reactive hot-melt adhesive
JP4232094B2 (en) Composition for flexible resin molding excellent in high-temperature shear bonding performance and flexible resin molding obtained therefrom
US4243789A (en) Hydroxyl-containing liquid polymers and pressure-sensitive adhesives prepared therefrom
WO2024181569A1 (en) Carbonate group-containing polyol
JPS63218782A (en) Adhesive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190917

R150 Certificate of patent or registration of utility model

Ref document number: 6591040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150