JP6590587B2 - Coating materials and articles - Google Patents

Coating materials and articles Download PDF

Info

Publication number
JP6590587B2
JP6590587B2 JP2015163873A JP2015163873A JP6590587B2 JP 6590587 B2 JP6590587 B2 JP 6590587B2 JP 2015163873 A JP2015163873 A JP 2015163873A JP 2015163873 A JP2015163873 A JP 2015163873A JP 6590587 B2 JP6590587 B2 JP 6590587B2
Authority
JP
Japan
Prior art keywords
polyolefin
coating material
propylene
silylated
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015163873A
Other languages
Japanese (ja)
Other versions
JP2017039892A (en
Inventor
直樹 朝重
朝重  直樹
永井 直
永井  直
邦昭 川辺
邦昭 川辺
浩貴 金谷
浩貴 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2015163873A priority Critical patent/JP6590587B2/en
Publication of JP2017039892A publication Critical patent/JP2017039892A/en
Application granted granted Critical
Publication of JP6590587B2 publication Critical patent/JP6590587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、コーティング材および物品に関する。   The present invention relates to coating materials and articles.

従来から、各種基材表面に防汚性、撥水性、撥油性、離型性、耐熱性、耐候性、耐傷つき性、塗膜すべり性等を付与する目的で、シリコーン系コーティング材が使用・検討されてきた。   Conventionally, silicone coating materials have been used for the purpose of imparting antifouling, water repellency, oil repellency, releasability, heat resistance, weather resistance, scratch resistance, coating slip properties, etc. to various substrate surfaces. Has been studied.

シリコーン系コーティング材としては、末端にシラノール基等の架橋性基を有する比較的低分子量のシリコーンを有機溶剤に溶解させた、いわゆるシリコーンワニスが一般的である。
シリコーンワニスは、架橋反応を促進させて硬化時間ないし硬化温度を低下させる目的で、架橋剤や硬化剤を併用することがある(例えば特許文献1)。
As the silicone-based coating material, a so-called silicone varnish obtained by dissolving a relatively low molecular weight silicone having a crosslinkable group such as a silanol group at an end in an organic solvent is generally used.
Silicone varnish may be used in combination with a crosslinking agent or a curing agent for the purpose of accelerating the crosslinking reaction and lowering the curing time or the curing temperature (for example, Patent Document 1).

国際公開第2009/60535号パンフレットInternational Publication No. 2009/60535 Pamphlet

本発明者らの検討によれば、架橋剤や硬化剤を併用したシリコーンワニスは、保存中に架橋反応が進行してゲル化する場合があることが明らかになった。コーティングの直前に架橋剤や硬化剤を添加して混合する二液タイプとする方法、あるいは紫外線照射等により硬化する方法も考えられる。しかし、このような方法ではコーティングの作業が煩雑となる。   According to the study by the present inventors, it has been clarified that a silicone varnish combined with a crosslinking agent or a curing agent may be gelled due to the progress of the crosslinking reaction during storage. A two-component type method in which a crosslinking agent or a curing agent is added and mixed immediately before coating, or a method of curing by ultraviolet irradiation or the like is also conceivable. However, such a method complicates the coating operation.

本発明は上記事情に鑑みてなされたものであり、保存安定性に優れ、かつ、シリコーンワニスに期待される特性(例えば、塗膜すべり性等)を、手軽な手段で基材に付与することが可能なコーティング材を提供するものである。   The present invention has been made in view of the above circumstances, and is excellent in storage stability and imparts properties (eg, coating slip properties, etc.) expected of a silicone varnish to a substrate by a simple means. A coating material that can be applied is provided.

すなわち、本発明によれば、以下に示すコーティング材および物品が提供される。   That is, according to the present invention, the following coating materials and articles are provided.

[1]
融点が40℃以上105℃以下のポリオレフィンと、シリル化ポリオレフィンと、有機溶媒とを含み、
上記ポリオレフィンおよび上記シリル化ポリオレフィンが上記有機溶媒中に溶解または分散しているコーティング材。
[2]
上記ポリオレフィンがエチレン・α−オレフィン共重合体(A1)およびプロピレン・α−オレフィン共重合体(A2)から選択される少なくとも一種を含む上記[1]に記載のコーティング材。
[3]
上記プロピレン・α−オレフィン共重合体(A2)が、以下の要件(i)および(ii)を満たす上記[2]に記載のコーティング材。
(i)ゲル浸透クロマトグラフィ(GPC)で測定される重量平均分子量(Mw)が3,000以上40,000以下の範囲にある
(ii)上記プロピレン・α−オレフィン共重合体(A2)におけるプロピレン由来の構成単位(a)と、炭素数4以上のα−オレフィン由来の構成単位(b)の合計を100モル%としたとき、上記プロピレン・α−オレフィン共重合体(A2)における上記構成単位(a)の割合が60モル%以上95モル%以下であり、上記プロピレン・α−オレフィン共重合体(A2)における上記構成単位(b)の割合が5モル%以上40モル%以下である
[4]
上記シリル化ポリオレフィンが下記式(1)で表されるシリル化ポリオレフィンである上記[1]乃至[3]のいずれか一つに記載のコーティング材。

Figure 0006590587
(上記式(1)において、A、AおよびAは各々独立に、ポリオレフィン鎖または炭素数1〜10の炭化水素基である。Rは炭素数1〜10の炭化水素基である。各Rは同一でも異なっていてもよい。mは1〜10,000の整数である。Aが複数存在する場合、各Aは同一でも異なっていてもよい。ただし、A、A、Aのうち、少なくとも1つはポリオレフィン鎖を表す。)
[5]
上記コーティング材中の上記シリル化ポリオレフィンの含有量が、上記ポリオレフィン1質量部に対し、0.005質量部以上90質量部以下である、上記[1]乃至[4]のいずれか一つに記載のコーティング材。
[6]
上記コーティング材中の上記ポリオレフィンの含有量が、上記有機溶媒100質量部に対し、0.1質量部以上55質量部以下である、上記[1]乃至[5]のいずれか一つに記載のコーティング材。
[7]
上記[1]乃至[6]のいずれか一つに記載のコーティング材により形成されたコーティング層を備える物品。 [1]
Including a polyolefin having a melting point of 40 ° C. or higher and 105 ° C. or lower, a silylated polyolefin, and an organic solvent,
A coating material in which the polyolefin and the silylated polyolefin are dissolved or dispersed in the organic solvent.
[2]
The coating material according to the above [1], wherein the polyolefin contains at least one selected from an ethylene / α-olefin copolymer (A1) and a propylene / α-olefin copolymer (A2).
[3]
The coating material according to [2], wherein the propylene / α-olefin copolymer (A2) satisfies the following requirements (i) and (ii).
(I) The weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) is in the range of 3,000 to 40,000. (Ii) Propylene origin in the propylene / α-olefin copolymer (A2) When the total of the structural unit (a) and the structural unit (b) derived from an α-olefin having 4 or more carbon atoms is 100 mol%, the structural unit in the propylene / α-olefin copolymer (A2) ( The proportion of a) is 60 mol% or more and 95 mol% or less, and the proportion of the structural unit (b) in the propylene / α-olefin copolymer (A2) is 5 mol% or more and 40 mol% or less [4. ]
The coating material according to any one of [1] to [3], wherein the silylated polyolefin is a silylated polyolefin represented by the following formula (1).
Figure 0006590587
(In the above formula (1), A 1 , A 2 and A 3 are each independently a polyolefin chain or a hydrocarbon group having 1 to 10 carbon atoms. R is a hydrocarbon group having 1 to 10 carbon atoms. Each R may be the same or different, m is an integer of 1 to 10,000, and when a plurality of A 3 are present, each A 3 may be the same or different, provided that A 1 , A 2 , A 3 represents at least one polyolefin chain.)
[5]
The content of the silylated polyolefin in the coating material is 0.005 parts by mass or more and 90 parts by mass or less with respect to 1 part by mass of the polyolefin, according to any one of the above [1] to [4]. Coating material.
[6]
The content of the polyolefin in the coating material is 0.1 to 55 parts by mass with respect to 100 parts by mass of the organic solvent, according to any one of the above [1] to [5]. Coating material.
[7]
An article comprising a coating layer formed of the coating material according to any one of [1] to [6].

本発明のコーティング材は保存安定性に優れている。さらに、本発明のコーティング材は施行が容易である。また得られる塗膜は塗工性が良好で、シリコーンが本来有する良好な特性(例えば、塗膜すべり性等)を有している。さらに、手軽な手段で基材にコーティングすることができる。   The coating material of the present invention is excellent in storage stability. Furthermore, the coating material of the present invention is easy to implement. Moreover, the coating film obtained has good coating properties and has good properties inherent to silicone (for example, coating slipperiness). Furthermore, the substrate can be coated by a simple means.

以下に、本発明の実施形態について説明する。なお、文中の数値範囲を示す記号「a〜b」はとくに断りがない限り、a以上からb以下を表すものとする。   Hereinafter, embodiments of the present invention will be described. In addition, unless otherwise indicated, the symbol "ab" which shows the numerical range in a sentence shall express from a to b or less.

以下、本実施形態に係るコーティング材について説明する。
本実施形態に係るコーティング材は、融点が40℃以上105℃以下のポリオレフィンと、シリル化ポリオレフィンと、有機溶媒とを含む。そして、上記ポリオレフィンおよび上記シリル化ポリオレフィンが上記有機溶媒中に溶解または分散している。
本実施形態に係るコーティング材は、保存安定性に優れ、かつ、シリコーンワニスに期待される特性(例えば、塗膜すべり性等)を、手軽な手段で基材に付与することが可能である。
Hereinafter, the coating material according to the present embodiment will be described.
The coating material according to the present embodiment includes a polyolefin having a melting point of 40 ° C. or higher and 105 ° C. or lower, a silylated polyolefin, and an organic solvent. The polyolefin and the silylated polyolefin are dissolved or dispersed in the organic solvent.
The coating material according to the present embodiment is excellent in storage stability and can impart properties expected to the silicone varnish (for example, coating slip properties) to the substrate by a simple means.

[ポリオレフィン]
本実施形態に係るポリオレフィンの融点(Tm)の下限は40℃以上であり、好ましくは60℃以上であり、特に好ましくは70℃以上である。また、本実施形態に係るポリオレフィンの融点(Tm)の上限は105℃以下であり、好ましくは100℃以下であり、特に好ましくは97℃以下である。当該ポリオレフィンは、その構成単位中にシリコーン部分を含まない。
[Polyolefin]
The lower limit of the melting point (Tm) of the polyolefin according to this embodiment is 40 ° C. or higher, preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher. In addition, the upper limit of the melting point (Tm) of the polyolefin according to this embodiment is 105 ° C. or less, preferably 100 ° C. or less, and particularly preferably 97 ° C. or less. The polyolefin does not contain a silicone moiety in its constituent units.

<融点の測定法>
ポリオレフィンの融点(Tm)は、例えば、DSC(示差走査型熱量測定)法により測定できる。DSC装置としては、例えば、DSC−20(セイコー電子工業社製)を用いることができる。
まず、試料約10mgを−20℃から200℃まで10℃/分で昇温させて、得られたカーブの吸熱ピークを融点として求める。この昇温測定の前に、一旦、試料(ポリオレフィン)を200℃程度まで昇温させて、5分間保持した後、10℃/分で常温(−20℃)まで降温させる操作を行い、試料(ポリオレフィン)の熱履歴を統一する。
<Measuring method of melting point>
The melting point (Tm) of polyolefin can be measured, for example, by the DSC (Differential Scanning Calorimetry) method. As the DSC device, for example, DSC-20 (manufactured by Seiko Denshi Kogyo Co., Ltd.) can be used.
First, about 10 mg of a sample is heated from −20 ° C. to 200 ° C. at 10 ° C./min, and the endothermic peak of the obtained curve is obtained as the melting point. Before the temperature rise measurement, the sample (polyolefin) is once heated to about 200 ° C., held for 5 minutes, and then cooled to room temperature (−20 ° C.) at 10 ° C./min. Polyolefin) thermal history.

本実施形態に係る融点が上記範囲内のポリオレフィンとしては特に限定されないが、例えば、エチレンの単独または共重合体、プロピレン共重合体等が挙げられる。
中でも、エチレン・α−オレフィン共重合体(A1)およびプロピレン・α−オレフィン共重合体(A2)から選択される少なくとも一種が好ましい。
Although it does not specifically limit as melting | fusing point which concerns on this embodiment in the said range, For example, the homo of ethylene or a copolymer, a propylene copolymer, etc. are mentioned.
Among these, at least one selected from an ethylene / α-olefin copolymer (A1) and a propylene / α-olefin copolymer (A2) is preferable.

エチレン・α−オレフィン共重合体(A1)において、α−オレフィンとしては、炭素数3以上のα−オレフィンが好ましく、炭素数3〜50のα−オレフィンがより好ましい。
α−オレフィンの例としては、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、3,4−ジメチル−1−ペンテン、4−メチル−1−ヘキセン、3−エチル−1−ペンテン、3−エチル−4−メチル−1−ペンテン、3,4−ジメチル−1−ヘキセン、4−メチル−1−ヘプテン、3,4−ジメチル−1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン、ビニルシクロヘキサン等が挙げられる。
In the ethylene / α-olefin copolymer (A1), the α-olefin is preferably an α-olefin having 3 or more carbon atoms, more preferably an α-olefin having 3 to 50 carbon atoms.
Examples of α-olefins include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 3,4- Dimethyl-1-pentene, 4-methyl-1-hexene, 3-ethyl-1-pentene, 3-ethyl-4-methyl-1-pentene, 3,4-dimethyl-1-hexene, 4-methyl-1- Examples include heptene, 3,4-dimethyl-1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene and vinylcyclohexane.

エチレン・α−オレフィン共重合体(A1)におけるエチレン由来の構成単位(a)が50〜97モル%であることが好ましく、60〜95モル%であることがより好ましい。
また、エチレン・α−オレフィン共重合体(A1)におけるα−オレフィン由来の構成単位(b)が3〜50モル%であることが好ましく、5〜40モル%であることがより好ましい。
ここで、構成単位(a)+構成単位(b)=100モル%とする。
The ethylene-derived structural unit (a) in the ethylene / α-olefin copolymer (A1) is preferably 50 to 97 mol%, more preferably 60 to 95 mol%.
Moreover, it is preferable that the structural unit (b) derived from the α-olefin in the ethylene / α-olefin copolymer (A1) is 3 to 50 mol%, and more preferably 5 to 40 mol%.
Here, the structural unit (a) + the structural unit (b) = 100 mol%.

また、エチレン・α−オレフィン共重合体(A1)のゲル浸透クロマトグラフィ(GPC)で測定される重量平均分子量(Mw)が2,000〜40,000の範囲にあることが好ましい。   Moreover, it is preferable that the weight average molecular weight (Mw) measured by the gel permeation chromatography (GPC) of an ethylene * alpha-olefin copolymer (A1) exists in the range of 2,000-40,000.

プロピレン・α−オレフィン共重合体(A2)において、α−オレフィンとしては、炭素数4以上のα−オレフィンが好ましく、炭素数4〜50のα−オレフィンがより好ましい。α−オレフィンの例としては、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、3,4−ジメチル−1−ペンテン、4−メチル−1−ヘキセン、3−エチル−1−ペンテン、3−エチル−4−メチル−1−ペンテン、3,4−ジメチル−1−ヘキセン、4−メチル−1−ヘプテン、3,4−ジメチル−1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン、ビニルシクロヘキサン等が挙げられる。   In the propylene / α-olefin copolymer (A2), the α-olefin is preferably an α-olefin having 4 or more carbon atoms, and more preferably an α-olefin having 4 to 50 carbon atoms. Examples of α-olefins include 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 3,4-dimethyl- 1-pentene, 4-methyl-1-hexene, 3-ethyl-1-pentene, 3-ethyl-4-methyl-1-pentene, 3,4-dimethyl-1-hexene, 4-methyl-1-heptene, Examples include 3,4-dimethyl-1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, vinylcyclohexane, and the like.

プロピレン・α−オレフィン共重合体(A2)におけるプロピレン由来の構成単位(a)が60〜95モル%であることが好ましく、70〜90モル%であることがより好ましく、77〜90モル%であることが特に好ましい。
また、プロピレン・α−オレフィン共重合体(A2)における炭素数4以上のα−オレフィン由来の構成単位(b)が5〜40モル%であることが好ましく、10〜30モル%であることがより好ましく、10〜23モル%であることが特に好ましい。
ここで、構成単位(a)+構成単位(b)=100モル%とする。
The propylene-derived structural unit (a) in the propylene / α-olefin copolymer (A2) is preferably 60 to 95 mol%, more preferably 70 to 90 mol%, and 77 to 90 mol%. It is particularly preferred.
Moreover, it is preferable that the structural unit (b) derived from an α-olefin having 4 or more carbon atoms in the propylene / α-olefin copolymer (A2) is 5 to 40 mol%, and preferably 10 to 30 mol%. More preferably, it is 10-23 mol%, and it is especially preferable.
Here, the structural unit (a) + the structural unit (b) = 100 mol%.

プロピレン・α−オレフィン共重合体(A2)のゲル浸透クロマトグラフィ(GPC)で測定される重量平均分子量(Mw)が3,000〜40,000の範囲にあることが好ましい。   The weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the propylene / α-olefin copolymer (A2) is preferably in the range of 3,000 to 40,000.

上記したポリオレフィンの分子量の測定方法を以下に示す。   A method for measuring the molecular weight of the polyolefin described above is shown below.

<分子量・分子量分布>
本実施形態に係るポリオレフィンの重量平均分子量(Mw)は、GPC測定により求めることができる。GPC測定は以下の条件で行う。また、重量平均分子量(Mw)と数平均分子量(Mn)は、市販の単分散標準ポリスチレンを用いて検量線を作成し、下記の換算法に基づいて求める。
<Molecular weight and molecular weight distribution>
The weight average molecular weight (Mw) of the polyolefin according to this embodiment can be determined by GPC measurement. GPC measurement is performed under the following conditions. The weight average molecular weight (Mw) and the number average molecular weight (Mn) are determined based on the following conversion method by creating a calibration curve using commercially available monodisperse standard polystyrene.

装置:ゲル浸透クロマトグラフAlliance GPC2000型(Waters社製)
有機溶媒:o−ジクロロベンゼン
カラム:TSKgel GMH6−HT×2、TSKgel GMH6−HTLカラム×2(何れも東ソー社製)
流速:1.0 ml/分
試料:0.15mg/mL o−ジクロロベンゼン溶液
温度:140℃
分子量換算:PS換算/汎用較正法
なお、汎用較正の計算には、Mark−Houwink粘度式の係数を用いる。PS(ポリスチレン)のMark−Houwink係数は文献(J.Polym.Sci.,Part A−2,8,1803(1970)、Makromol.Chem.,177,213(1976))に記載の値を用いる。
Apparatus: Gel permeation chromatograph Alliance GPC2000 (manufactured by Waters)
Organic solvent: o-dichlorobenzene Column: TSKgel GMH6-HT × 2, TSKgel GMH6-HTL column × 2 (both manufactured by Tosoh Corporation)
Flow rate: 1.0 ml / min Sample: 0.15 mg / mL o-dichlorobenzene solution Temperature: 140 ° C
Molecular weight conversion: PS conversion / general-purpose calibration method The coefficient of the Mark-Houwink viscosity equation is used for calculation of general-purpose calibration. The value described in the literature (J. Polym. Sci., Part A-2, 8, 1803 (1970), Makromol. Chem., 177, 213 (1976)) is used for the Mark-Houwink coefficient of PS (polystyrene).

本実施形態に係るポリオレフィンは、公知の方法で製造できる。
また、本実施形態に係るポリオレフィンは、無水マレイン酸、クロトン酸、オレイン酸等の不飽和カルボン酸またはその誘導体により変性されていてもよい。
The polyolefin according to this embodiment can be produced by a known method.
Further, the polyolefin according to this embodiment may be modified with an unsaturated carboxylic acid such as maleic anhydride, crotonic acid, oleic acid, or a derivative thereof.

[シリル化ポリオレフィン]
本実施形態に係るシリル化ポリオレフィンは、シリコーン部分とポリオレフィン部分を有する限りどのような構造でもよいが、下記式(1)で表される構造を有するものが好ましい。
[Silylated polyolefin]
The silylated polyolefin according to the present embodiment may have any structure as long as it has a silicone part and a polyolefin part, but preferably has a structure represented by the following formula (1).

Figure 0006590587
Figure 0006590587

(上記式(1)において、A、AおよびAは各々独立に、ポリオレフィン鎖または炭素数1〜10の炭化水素基である。Rは炭素数1〜10の炭化水素基である。各Rは同一でも異なっていてもよい。mは1〜10,000の整数である。Aが複数存在する場合、各Aは同一でも異なっていてもよい。ただし、A、A、Aのうち、少なくとも1つはポリオレフィン鎖を表す。) (In the above formula (1), A 1 , A 2 and A 3 are each independently a polyolefin chain or a hydrocarbon group having 1 to 10 carbon atoms. R is a hydrocarbon group having 1 to 10 carbon atoms. Each R may be the same or different, m is an integer of 1 to 10,000, and when a plurality of A 3 are present, each A 3 may be the same or different, provided that A 1 , A 2 , A 3 represents at least one polyolefin chain.)

上記A、AおよびAにおけるポリオレフィン鎖は、例えば炭素数2〜50、好ましくは炭素数2〜20のオレフィンに由来する構造単位を含む重合体鎖である。
炭素数2〜50のオレフィンとしては、具体的には、エチレン、炭素数3〜50のα−オレフィン(プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、3,4−ジメチル−1−ペンテン、4−メチル−1−ヘキセン、3−エチル−1−ペンテン、3−エチル−4−メチル−1−ペンテン、3,4−ジメチル−1−ヘキセン、4−メチル−1−ヘプテン、3,4−ジメチル−1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン、ビニルシクロヘキサン等)が挙げられる。
これらのうち、エチレン、炭素数3〜12のα−オレフィンが好ましく、エチレン、炭素数3〜8のα−オレフィンがより好ましく、エチレンが特に好ましい。
ポリオレフィン鎖は単独重合体鎖であっても、共重合体鎖であってもよい。
The polyolefin chain in A 1 , A 2 and A 3 is a polymer chain including a structural unit derived from an olefin having 2 to 50 carbon atoms, preferably 2 to 20 carbon atoms, for example.
Specific examples of the olefin having 2 to 50 carbon atoms include ethylene and an α-olefin having 3 to 50 carbon atoms (propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4 -Methyl-1-pentene, 3-methyl-1-pentene, 3,4-dimethyl-1-pentene, 4-methyl-1-hexene, 3-ethyl-1-pentene, 3-ethyl-4-methyl-1 -Pentene, 3,4-dimethyl-1-hexene, 4-methyl-1-heptene, 3,4-dimethyl-1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene 1-octadecene, 1-eicocene, vinylcyclohexane, etc.).
Among these, ethylene and an α-olefin having 3 to 12 carbon atoms are preferable, ethylene and an α-olefin having 3 to 8 carbon atoms are more preferable, and ethylene is particularly preferable.
The polyolefin chain may be a homopolymer chain or a copolymer chain.

なかでも、エチレンおよび炭素数3〜50のα−オレフィンから選ばれる炭素数2〜50のオレフィンのみから構成される重合体鎖が好ましく、さらには、エチレン単独重合体鎖、プロピレン単独重合体鎖、またはエチレン・炭素数3〜20のα−オレフィンの共重合体鎖が好ましい。エチレン・炭素数3〜20のα−オレフィンの共重合体鎖において、全構成単位を100モル%としたとき、炭素数3〜20のα−オレフィン由来の構造単位は、例えば0モル%を超え20モル%以下とすることができ、0モル%を超え10モル%以下とすることもできる。   Especially, the polymer chain comprised only from C2-C50 olefin chosen from ethylene and C3-C50 alpha olefin is preferable, Furthermore, ethylene homopolymer chain, propylene homopolymer chain, Alternatively, an ethylene / C3-C20 α-olefin copolymer chain is preferred. In the copolymer chain of ethylene / C3-C20 α-olefin, when all the structural units are 100 mol%, the structural unit derived from C3-C20 α-olefin exceeds, for example, 0 mol%. It can also be 20 mol% or less, and can also be over 0 mol% and 10 mol% or less.

また、上記ポリオレフィン鎖は所望により、他のオレフィン由来の構造単位を含んでもよい。他のオレフィンとしては、シス−2−ブテン等の内部二重結合を含むオレフィン;イソブテン等のビニリデン化合物;スチレン等のアリールビニル化合物;α−メチルスチレン等のアリールビニリデン化合物;メタクリル酸メチル等の官能基置換ビニリデン化合物;5−メチル−2−ノルボルネン、テトラシクロドデセン、シクロペンタジエン、ジシクロペンタジエン等の内部二重結合を含む脂肪族環状オレフィン;インデン等の芳香環を含有する環状オレフィン;ブタジエン、イソプレン、エチリデンノルボルネン、ビニルノルボルネン等の鎖状または環状のポリエン等が挙げられる。   Moreover, the said polyolefin chain may also contain the structural unit derived from another olefin as needed. Other olefins include olefins containing an internal double bond such as cis-2-butene; vinylidene compounds such as isobutene; aryl vinyl compounds such as styrene; arylvinylidene compounds such as α-methylstyrene; and functionalities such as methyl methacrylate. Group-substituted vinylidene compounds; aliphatic cyclic olefins containing internal double bonds such as 5-methyl-2-norbornene, tetracyclododecene, cyclopentadiene, dicyclopentadiene; cyclic olefins containing aromatic rings such as indene; butadiene, Examples thereof include linear or cyclic polyenes such as isoprene, ethylidene norbornene and vinyl norbornene.

他のオレフィン由来の構造単位の含有量は、ポリオレフィン鎖を構成する全構成単位を100モル%としたとき、0〜10モル%が好ましく、0〜5モル%がより好ましい。   The content of structural units derived from other olefins is preferably 0 to 10 mol%, more preferably 0 to 5 mol%, assuming that all the structural units constituting the polyolefin chain are 100 mol%.

上記ポリオレフィン鎖は、下記のGPC法により求めた数平均分子量が100以上500,000以下であることが好ましく、200以上100,000以下がさらに好ましく、500以上50,000以下がさらに好ましく、700以上10,000以下がさらに好ましい。
また、上記ポリオレフィン鎖は、下記のGPC法により求めた分子量分布(Mw/Mn)が1.1〜3.0の範囲にあることが好ましい。
The polyolefin chain preferably has a number average molecular weight of 100 or more and 500,000 or less, more preferably 200 or more and 100,000 or less, further preferably 500 or more and 50,000 or less, and more preferably 700 or more. 10,000 or less is more preferable.
The polyolefin chain preferably has a molecular weight distribution (Mw / Mn) determined by the following GPC method in the range of 1.1 to 3.0.

<GPC測定法>
GPC測定は、温度140℃、オルトジクロロベンゼンを溶媒として使用してポリスチレン検量線を用いて測定し、ポリエチレン換算値として分析値(重量平均分子量(Mw)、数平均分子量(Mn)およびMw/Mn)を得ることができる。
測定は以下の条件で行うことができる。また、分子量は、市販の単分散標準ポリスチレンを用いて検量線を作成し、下記の換算法に基づいて求めることができる。
装置:ゲル浸透クロマトグラフAllianceGPC2000型(Waters社製)
溶剤:o−ジクロロベンゼン
カラム:TSKgelカラム(東ソー社製)×4
流速:1.0ml/分
試料:0.15mg/mLo−ジクロロベンゼン溶液
温度:140℃
分子量換算:PS換算/汎用較正法
なお、汎用較正の計算には、以下に示すMark−Houwink粘度式の係数を用いることができる。
ポリスチレン(PS)の係数:KPS=1.38×10−4,aPS=0.70
ポリエチレン(PE)の係数:KPE=5.06×10−4,aPE=0.70
<GPC measurement method>
The GPC measurement was performed using a polystyrene calibration curve using orthodichlorobenzene as a solvent at a temperature of 140 ° C., and analyzed values (weight average molecular weight (Mw), number average molecular weight (Mn) and Mw / Mn as polyethylene conversion values). ) Can be obtained.
The measurement can be performed under the following conditions. The molecular weight can be determined based on the following conversion method by creating a calibration curve using commercially available monodisperse standard polystyrene.
Apparatus: Gel permeation chromatograph Alliance GPC2000 (manufactured by Waters)
Solvent: o-dichlorobenzene Column: TSKgel column (manufactured by Tosoh Corporation) x 4
Flow rate: 1.0 ml / min Sample: 0.15 mg / mLo-dichlorobenzene solution Temperature: 140 ° C.
Molecular weight conversion: PS conversion / general-purpose calibration method The coefficient of the Mark-Houwink viscosity equation shown below can be used for the calculation of general-purpose calibration.
Coefficient of polystyrene (PS): KPS = 1.38 × 10 −4 , aPS = 0.70
Coefficient of polyethylene (PE): KPE = 0.06 × 10 −4 , aPE = 0.70

上記A、A、AおよびRにおいて、炭素数1〜10の炭化水素基としては、アルキル基、アリールアルキル基、アルケニル基、アリール基が挙げられる。 In the above A 1 , A 2 , A 3 and R, examples of the hydrocarbon group having 1 to 10 carbon atoms include an alkyl group, an arylalkyl group, an alkenyl group, and an aryl group.

アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、2−エチルヘキシル基、オクチル基、デシル基、オクタデシル基等の直鎖状または分岐状アルキル基;シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基等が挙げられる。
アリールアルキル基としては、ベンジル基、フェニルエチル基、フェニルプロピル基等が挙げられる。
アルケニル基としては、ビニル基、プロペニル基、シクロヘキセニル基等が挙げられる。
アリール基としては、フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ナフチル基等が挙げられる。
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, hexyl group, 2-ethylhexyl group, octyl group, decyl group, and octadecyl group. A linear or branched alkyl group; a cycloalkyl group such as a cyclopentyl group, a cyclohexyl group and a norbornyl group;
Examples of the arylalkyl group include a benzyl group, a phenylethyl group, and a phenylpropyl group.
Examples of the alkenyl group include a vinyl group, a propenyl group, and a cyclohexenyl group.
Examples of the aryl group include a phenyl group, a tolyl group, a dimethylphenyl group, a trimethylphenyl group, an ethylphenyl group, a propylphenyl group, and a naphthyl group.

上記式(1)において、mは1〜10,000の整数である。mは5以上が好ましく、10以上がより好ましい。また、mは1,000以下が好ましく、300以下がより好ましく、50以下がより好ましい。   In the above formula (1), m is an integer of 1 to 10,000. m is preferably 5 or more, and more preferably 10 or more. Further, m is preferably 1,000 or less, more preferably 300 or less, and even more preferably 50 or less.

上記A、A、単数または複数のAは、全てがポリオレフィン鎖であってもよいし、一部の基がポリオレフィン鎖でその他は炭素数1〜10の炭化水素基であってもよい。 The above A 1 , A 2 , single or plural A 3 may be all polyolefin chains, or some groups may be polyolefin chains and others may be hydrocarbon groups having 1 to 10 carbon atoms. .

上記式(1)において、mが2以上であり、Aのうちの少なくとも1つが他のAと異なる場合、複数種の下記ユニットが存在するが、その並ぶ順序に特に制限はなく、ブロック的であってもランダム的であってもよい。 In the above formula (1), m is equal to or greater than 2, when at least one of A 3 that is different from the other A 3, but plural kinds of the following units are present, not particularly limited in its aligned sequence, block Or random.

Figure 0006590587
Figure 0006590587

上記式(1)としては、下記(1A)、(1B)または(1C)で表される構造体が好ましく、その中でも(1A)がより好ましい。   As said formula (1), the structure represented by following (1A), (1B) or (1C) is preferable, and (1A) is more preferable among these.

(1A)上記式(1)において、AおよびAがポリオレフィン鎖であり、Aが炭素数1〜10の炭化水素基である、構造体。
(1B)上記式(1)において、A、Aの一方がポリオレフィン鎖であり、他方が炭素数1〜10の炭化水素基であり、Aが炭素数1〜10の炭化水素基である、構造体。
(1C)上記式(1)において、AおよびAが炭素数1〜10の炭化水素基であり、Aのうち少なくとも1つがポリオレフィン鎖である、構造体。
(1A) In the above formula (1), A 1 and A 2 are polyolefin chains, and A 3 is a hydrocarbon group having 1 to 10 carbon atoms.
(1B) In the above formula (1), one of A 1 and A 2 is a polyolefin chain, the other is a hydrocarbon group having 1 to 10 carbon atoms, and A 3 is a hydrocarbon group having 1 to 10 carbon atoms. There is a structure.
(1C) In the above formula (1), A 1 and A 2 are hydrocarbon groups having 1 to 10 carbon atoms, and at least one of A 3 is a polyolefin chain.

本実施形態に係るシリル化ポリオレフィンにおいて、シリコーン部分/ポリオレフィン部分(質量比)は特に限定されるものではないが、例えば、好ましくは5/95〜99/1であり、より好ましくは10/90〜95/5である。   In the silylated polyolefin according to the present embodiment, the silicone part / polyolefin part (mass ratio) is not particularly limited, but is preferably, for example, 5/95 to 99/1, and more preferably 10/90 to 95/5.

本実施形態に係るシリル化ポリオレフィンの製造方法は特に限定されるものではないが、例えば、国際公開第2012/098865号の段落0089〜0145や段落0196〜0207等に記載された方法により製造することができる。   The method for producing the silylated polyolefin according to the present embodiment is not particularly limited. For example, it may be produced by the method described in paragraphs 0089 to 0145 and paragraphs 0196 to 0207 of International Publication No. 2012/098865. Can do.

[有機溶媒]
本実施形態に係る有機溶媒は、上記ポリオレフィンと上記シリル化ポリオレフィンを溶解、もしくは分散可能なものであれば特に制限されない。
有機溶媒の好ましい例には、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素系溶媒;シクロヘキサン、シクロヘキセン、メチルシクロヘキサン、エチルシクロへキサン等の脂環族炭化水素系溶媒;トリクロルエチレン、ジクロルエチレン、クロルベンゼン等のハロゲン化炭化水素系溶媒;メタノール、エタノール、イソプロピルアルコール、ブタノール、ペンタノール、ヘキサノール、プロパンジオール、フェノール等のアルコール系溶媒;アセトン、メチルイソブチルケトン、メチルエチルケトンペンタノン、ヘキサノン、イソホロン、アセトフェノン等のケトン系溶媒;メチルセルソルブ、エチルセルソルブ等のセルソルブ系溶媒;酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、ギ酸ブチル等のエステル系溶媒;テトラヒドロフラン等のエーテル系溶媒;Nメチルピロリドン等のピロリドン系溶媒;が含まれる。
これらは、コーティング材中に、1種単独で含まれてもよく、2種以上含まれてもよい。
これらの中でも、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、または脂環族炭化水素系溶媒からなる炭化水素系溶媒、アルコール系溶媒、もしくはエステル系溶媒が好ましい。
[Organic solvent]
The organic solvent according to the present embodiment is not particularly limited as long as it can dissolve or disperse the polyolefin and the silylated polyolefin.
Preferred examples of the organic solvent include aromatic hydrocarbon solvents such as benzene, toluene and xylene; aliphatic hydrocarbon solvents such as hexane, heptane, octane and decane; cyclohexane, cyclohexene, methylcyclohexane, ethylcyclohexane and the like. Alicyclic hydrocarbon solvents; halogenated hydrocarbon solvents such as trichloroethylene, dichloroethylene and chlorobenzene; alcohol solvents such as methanol, ethanol, isopropyl alcohol, butanol, pentanol, hexanol, propanediol and phenol; Ketone solvents such as acetone, methyl isobutyl ketone, methyl ethyl ketone pentanone, hexanone, isophorone and acetophenone; Cellsolv solvents such as methyl cellosolve and ethyl cellosolve; methyl acetate, ethyl acetate and acetic acid Include; pyrrolidone solvents such as N-methyl pyrrolidone; ether solvents such as tetrahydrofuran; chill, methyl propionate, ester solvents such as butyl formate.
These may be included singly or in combination of two or more in the coating material.
Among these, an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, or a hydrocarbon solvent composed of an alicyclic hydrocarbon solvent, an alcohol solvent, or an ester solvent is preferable.

[コーティング材]
本実施形態に係るコーティング材中の上記シリル化ポリオレフィンの含有量は、上記ポリオレフィン1質量部に対し、0.005〜90質量部であることが好ましく、0.01〜20質量部であることがより好ましく、0.02〜10質量部であることがさらに好ましく、0.03〜5質量部であることが特に好ましい。
[Coating material]
The content of the silylated polyolefin in the coating material according to this embodiment is preferably 0.005 to 90 parts by mass, and 0.01 to 20 parts by mass with respect to 1 part by mass of the polyolefin. More preferably, it is 0.02 to 10 parts by mass, and particularly preferably 0.03 to 5 parts by mass.

本実施形態に係るコーティング材に含まれる溶質または分散質としては上記ポリオレフィンと上記シリル化ポリオレフィンのみでもよいが、所望により、本発明の目的を損なわない範囲、例えば上記ポリオレフィンと上記シリル化ポリオレフィンの合計100質量部に対して10質量部以下の範囲で、さらに他の樹脂や添加剤等を含むことができる。   As the solute or dispersoid contained in the coating material according to the present embodiment, only the polyolefin and the silylated polyolefin may be used, but if desired, a range that does not impair the object of the present invention, for example, the total of the polyolefin and the silylated polyolefin. In the range of 10 parts by mass or less with respect to 100 parts by mass, other resins, additives and the like can be further contained.

本実施形態に係るコーティング材中の上記ポリオレフィンの含有量は、有機溶媒100質量部に対し、0.1〜55質量部であることが好ましく、1〜40質量部であることがより好ましく、5〜30質量部であることがさらに好ましい。   The content of the polyolefin in the coating material according to this embodiment is preferably 0.1 to 55 parts by mass, more preferably 1 to 40 parts by mass with respect to 100 parts by mass of the organic solvent. More preferably, it is -30 mass parts.

本実施形態に係るコーティング材中の上記ポリオレフィンおよびシリル化ポリオレフィンの合計含有量は、コーティング材全体を100質量部としたとき、1〜50質量部であることが好ましく、2〜30質量部であることがより好ましく、3〜20質量部であることが特に好ましい。   The total content of the polyolefin and the silylated polyolefin in the coating material according to this embodiment is preferably 1 to 50 parts by mass and 2 to 30 parts by mass when the entire coating material is 100 parts by mass. It is more preferable, and it is especially preferable that it is 3-20 mass parts.

本実施形態に係るポリオレフィンおよびシリル化ポリオレフィンを有機溶媒に溶解、または分散させる方法は、特に制限されない。例えば、ポリオレフィンとシリル化ポリオレフィンと有機溶媒とを混合し、これらを攪拌することで、ポリオレフィンとシリル化ポリオレフィンを有機溶媒に溶解、分散させる方法;ポリオレフィンとシリル化ポリオレフィンと有機溶媒とを混合し、これらを攪拌しながら昇温する方法;さらに、有機溶媒とポリオレフィンとシリル化ポリオレフィンとの混合物を攪拌しながら昇温し、ポリオレフィンとシリル化ポリオレフィンを完全に、もしくはその一部を溶解させた状態から、徐々に冷却して、有機溶媒中で微粒子化する方法;等が挙げられる。   A method for dissolving or dispersing the polyolefin and the silylated polyolefin according to the present embodiment in an organic solvent is not particularly limited. For example, a method in which polyolefin, silylated polyolefin, and organic solvent are mixed and stirred to dissolve and disperse polyolefin and silylated polyolefin in an organic solvent; polyolefin, silylated polyolefin, and organic solvent are mixed, A method in which the temperature is raised while stirring; further, the temperature is raised while stirring a mixture of the organic solvent, polyolefin and silylated polyolefin, and the polyolefin and silylated polyolefin are completely dissolved or partially dissolved. And a method of gradually cooling to form fine particles in an organic solvent.

本実施形態に係るコーティング材は、被塗布物に直接塗布してもよく、各種プライマー等を使用した下塗りを経て塗布してもよく、各種フィラーや顔料、インキ等と混合して塗布してもよい。また、本実施形態に係るコーティング材から一度溶媒を除去した後、任意の溶媒中に樹脂成分を溶解または分散させて、被塗布物に塗布してもよい。   The coating material according to the present embodiment may be directly applied to an object to be coated, may be applied through an undercoat using various primers, or may be mixed with various fillers, pigments, inks, and the like. Good. Moreover, after removing a solvent once from the coating material which concerns on this embodiment, a resin component may be melt | dissolved or disperse | distributed in arbitrary solvents, and you may apply | coat to a to-be-coated article.

本実施形態に係るコーティング材を直接、被塗布物に塗布する場合、その塗布方法は特に限定されず、噴霧によって塗布してもよく、刷けやコーター等で塗布してもよい。本実施形態に係るコーティング材は、成分が分離し難いため、スプレー塗装、例えば、スプレーガンで被塗布物の表面に吹きつける(塗布する)ことができる。また、本実施形態に係るコーティング材を塗布する際の、塗料の温度は特に制限されず、加熱して塗布してもよいが、常温で塗布することもできる。   When the coating material according to the present embodiment is directly applied to an object to be applied, the application method is not particularly limited, and it may be applied by spraying, or may be applied by printing or a coater. Since the coating material according to this embodiment is difficult to separate components, it can be sprayed (applied) onto the surface of an object to be coated by spray coating, for example, a spray gun. In addition, the temperature of the coating material when applying the coating material according to the present embodiment is not particularly limited, and may be applied by heating, but can also be applied at room temperature.

本実施形態に係るコーティング材は、塗布後、当該コーティング材に含まれる有機溶媒を乾燥させることで、ベタつきのない塗膜が得られる。コーティング材の乾燥方法は特に制限されず、自然乾燥であってもよく、加熱強制乾燥であってもよい。   The coating material which concerns on this embodiment can obtain the coating film without stickiness by drying the organic solvent contained in the said coating material after application | coating. The drying method of the coating material is not particularly limited, and may be natural drying or heat forced drying.

本実施形態に係るコーティング材で各種の物品の表面をコーティングすると、コーティング表面の防汚性、撥水性、撥油性、離型性、耐熱性、耐候性、耐傷つき性、塗膜すべり性等を改善することができる。   When the surface of various articles is coated with the coating material according to the present embodiment, the coating surface has antifouling properties, water repellency, oil repellency, mold release properties, heat resistance, weather resistance, scratch resistance, coating slip properties, etc. Can be improved.

本実施形態に係るコーティング材を適用可能な物品の材質に特段の制限はないが、例えば、合成樹脂、エラストマー、ゴム、金属、ガラス、セラミックス、紙等を挙げることができる。
当該物品の形状については、例えば、フィルム、シート、中空体、繊維、チューブ等が挙げられるが、勿論その他の形状であってもよい。
Although there is no special restriction | limiting in the material of the articles | goods which can apply the coating material which concerns on this embodiment, For example, a synthetic resin, an elastomer, rubber | gum, a metal, glass, ceramics, paper etc. can be mentioned.
Examples of the shape of the article include a film, a sheet, a hollow body, a fiber, a tube, and the like, but other shapes may be used.

本実施形態に係るコーティング材でコートされた物品の用途として、例えば、電気電子部品、自動車部品、建材、容器・包装材、摺動部品、離型フィルムを挙げることができる。   Examples of the use of the article coated with the coating material according to the present embodiment include electrical and electronic parts, automobile parts, building materials, containers / packaging materials, sliding parts, and release films.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are also employable.

以下、実施例・比較例により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, the scope of the present invention is not limited to these Examples.

[製造例1]プロピレン・1−ブテン共重合体(A2−3)の製造
充分に窒素置換した2000mlの重合装置に、900mlの乾燥ヘキサン、1−ブテン65gとトリイソブチルアルミニウム(1.0mmol)を常温で仕込んだ後、重合装置内温を70℃に昇温し、プロピレンで0.7MPaに加圧した。次いで、ジメチルメチレン(3−tert−ブチル−5−メチルシクロペンタジエニル)フルオレニルジルコニウムジクロリド0.002mmolとアルミニウム換算で0.6mmolのメチルアルミノキサン(東ソー・ファインケム社製)を接触させたトルエン溶液を重合器内に添加し、内温62℃、プロピレン圧0.7MPaを保ちながら30分間重合し、20mlのメタノールを添加し重合を停止した。脱圧後、2Lのメタノール中で重合溶液から重合体を析出し、真空下130℃、12時間乾燥し、プロピレン・1−ブテン共重合体(A2−1)を得た。
[Production Example 1] Production of propylene / 1-butene copolymer (A2-3) To a 2000 ml polymerization apparatus sufficiently purged with nitrogen, 900 ml of dry hexane, 65 g of 1-butene and triisobutylaluminum (1.0 mmol) were added. After charging at room temperature, the internal temperature of the polymerization apparatus was raised to 70 ° C. and pressurized to 0.7 MPa with propylene. Next, a toluene solution in which 0.002 mmol of dimethylmethylene (3-tert-butyl-5-methylcyclopentadienyl) fluorenylzirconium dichloride and 0.6 mmol of methylaluminoxane (produced by Tosoh Finechem) in contact with aluminum were contacted. Was added to the polymerization vessel, polymerization was carried out for 30 minutes while maintaining an internal temperature of 62 ° C. and a propylene pressure of 0.7 MPa, and 20 ml of methanol was added to terminate the polymerization. After depressurization, a polymer was precipitated from the polymerization solution in 2 L of methanol and dried under vacuum at 130 ° C. for 12 hours to obtain a propylene / 1-butene copolymer (A2-1).

次いで攪拌装置、窒素導入管、コンデンサーを備えた1.5Lステンレス製熱分解装置に、上記製造した原料プロピレン・1−ブテン共重合体(A2−1)を200g入れ、系内を充分に窒素置換した。次に、窒素を流入したまま熱分解装置内の温度を380℃まで昇温し樹脂を溶融した後、攪拌を開始した。系内の樹脂温度が所定温度に達してから4.5時間加熱し熱分解を実施した。その後、常温まで冷却することにより、プロピレン・1−ブテン共重合体(A2−3)を得た。得られたプロピレン・1−ブテン共重合体の物性を表1に示す。   Next, 200 g of the raw material propylene / 1-butene copolymer (A2-1) produced above was put into a 1.5 L stainless steel pyrolysis apparatus equipped with a stirrer, a nitrogen inlet tube and a condenser, and the inside of the system was sufficiently replaced with nitrogen. did. Next, the temperature in the thermal decomposition apparatus was raised to 380 ° C. while flowing nitrogen, and the resin was melted, and then stirring was started. After the resin temperature in the system reached a predetermined temperature, it was heated for 4.5 hours to carry out thermal decomposition. Then, the propylene / 1-butene copolymer (A2-3) was obtained by cooling to normal temperature. Table 1 shows the physical properties of the resulting propylene / 1-butene copolymer.

[製造例2]プロピレン・1−ブテン共重合体(A2−4)の製造
充分に窒素置換した2000mlの重合装置に、900mlの乾燥ヘキサン、1−ブテン30gとトリイソブチルアルミニウム(1.0mmol)を常温で仕込んだ後、重合装置内温を70℃に昇温し、プロピレンで0.7MPaに加圧した。次いで、ジメチルメチレン(3−tert−ブチル−5−メチルシクロペンタジエニル)フルオレニルジルコニウムジクロリド0.002mmolとアルミニウム換算で0.6mmolのメチルアルミノキサン(東ソー・ファインケム社製)を接触させたトルエン溶液を重合器内に添加し、内温62℃、プロピレン圧0.7MPaを保ちながら30分間重合し、20mlのメタノールを添加し重合を停止した。脱圧後、2Lのメタノール中で重合溶液から重合体を析出し、真空下130℃、12時間乾燥し、プロピレン・1−ブテン共重合体(A2−2)を得た。
[Production Example 2] Production of propylene / 1-butene copolymer (A2-4) To a 2000 ml polymerization apparatus sufficiently purged with nitrogen, 900 ml of dry hexane, 30 g of 1-butene and triisobutylaluminum (1.0 mmol) were added. After charging at room temperature, the internal temperature of the polymerization apparatus was raised to 70 ° C. and pressurized to 0.7 MPa with propylene. Next, a toluene solution in which 0.002 mmol of dimethylmethylene (3-tert-butyl-5-methylcyclopentadienyl) fluorenylzirconium dichloride and 0.6 mmol of methylaluminoxane (produced by Tosoh Finechem) in contact with aluminum were contacted. Was added to the polymerization vessel, polymerization was carried out for 30 minutes while maintaining an internal temperature of 62 ° C. and a propylene pressure of 0.7 MPa, and 20 ml of methanol was added to terminate the polymerization. After depressurization, a polymer was precipitated from the polymerization solution in 2 L of methanol and dried under vacuum at 130 ° C. for 12 hours to obtain a propylene / 1-butene copolymer (A2-2).

次いで熱分解装置内の温度を395℃とした以外は製造例1と同様に熱分解して、プロピレン・1−ブテン共重合体(A2−4)を得た。得られたプロピレン・1−ブテン共重合体の物性を表1に示す。   Subsequently, it thermally decomposed similarly to manufacture example 1 except having set the temperature in a thermal decomposition apparatus to 395 degreeC, and obtained the propylene / 1-butene copolymer (A2-4). Table 1 shows the physical properties of the resulting propylene / 1-butene copolymer.

〔製造例3〕プロピレン・エチレン共重合体(A2−5)の製造
プロピレン・エチレン共重合体原料として、SM668(タイタンケミカル社)を用いた。
次いで製造例1と同様に熱分解して、プロピレン・エチレン共重合体(A2−5)を得た。得られたプロピレン・エチレン共重合体の物性を表1に示す。
[Production Example 3] Production of propylene / ethylene copolymer (A2-5) SM668 (Titan Chemical Co.) was used as a propylene / ethylene copolymer raw material.
Subsequently, it thermally decomposed similarly to manufacture example 1, and the propylene ethylene copolymer (A2-5) was obtained. Table 1 shows the physical properties of the resulting propylene / ethylene copolymer.

〔製造例4〕チーグラー系プロピレン・1−ブテン共重合体(A2−6)の製造
充分に窒素置換した2リットルのオートクレーブに、ヘキサンを830ml、1−ブテンを100g仕込み、トリイソブチルアルミニウムを1mmol加え、70℃に昇温した後、プロピレンを供給して全圧0.7MPaにし、トリエチルアルミニウム1mmol、および塩化マグネシウムに担持されたチタン触媒をTi原子に換算して0.005mmol加え、プロピレンを連続的に供給して全圧を0.7MPaに保ちながら30分間重合を行った以外は実施例1と同様の重合後処理を行い、チーグラー系プロピレン・1−ブテン共重合体(A2−6)を得た。得られたプロピレン・1−ブテン共重合体の物性を表1に示す。
[Production Example 4] Production of Ziegler-based propylene / 1-butene copolymer (A2-6) In a 2 liter autoclave sufficiently purged with nitrogen, 830 ml of hexane and 100 g of 1-butene were added, and 1 mmol of triisobutylaluminum was added. The temperature was raised to 70 ° C., and then propylene was supplied to a total pressure of 0.7 MPa, 1 mmol of triethylaluminum and 0.005 mmol of titanium catalyst supported on magnesium chloride were added in terms of Ti atoms, and propylene was continuously added. The polymerization was carried out in the same manner as in Example 1 except that the polymerization was carried out for 30 minutes while maintaining the total pressure at 0.7 MPa to obtain a Ziegler-based propylene / 1-butene copolymer (A2-6). It was. Table 1 shows the physical properties of the resulting propylene / 1-butene copolymer.

〔製造例5〕エチレン・1−ブテン共重合体(A2−7)の製造
充分に窒素置換した内容積2リットルのステンレス製オートクレーブにヘキサン950mlおよび1−ブテン50mlを装入し、水素を1.0kg/cm(ゲージ圧)となるまで導入した。次いで、系内の温度を150℃に昇温した後、トリイソブチルアルミニウム0.3ミリモル、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル) ボレート0.004ミリモル、(t−ブチルアミド)ジメチル(テトラメチル−η5−シクロペンタジエニル)シランチタンジクロライド(シグマアルドリッチ社製)0.02ミリモルをエチレンで圧入することにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を30kg/cm(ゲージ圧)に保ち、150℃で20分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレンおよび1−ブテンをパージした。得られたポリマー溶液を、100℃減圧下で一晩乾燥し、エチレン・1−ブテン共重合体(A2−7)を得た。得られたエチレン・1−ブテン共重合体の物性を表1に示す。
[Production Example 5] Production of ethylene / 1-butene copolymer (A2-7) 950 ml of hexane and 50 ml of 1-butene were charged into a 2-liter stainless steel autoclave sufficiently purged with nitrogen, and 1. It introduced until it became 0 kg / cm < 2 > (gauge pressure). Subsequently, after raising the temperature in the system to 150 ° C., 0.3 mmol of triisobutylaluminum, 0.004 mmol of triphenylcarbenium tetrakis (pentafluorophenyl) borate, (t-butylamido) dimethyl (tetramethyl-η5) -Cyclopentadienyl) silane titanium dichloride (manufactured by Sigma Aldrich) 0.02 mmol was injected with ethylene to initiate polymerization. Thereafter, only ethylene was continuously supplied to keep the total pressure at 30 kg / cm 2 (gauge pressure), and polymerization was carried out at 150 ° C. for 20 minutes. After the polymerization was stopped by adding a small amount of ethanol into the system, unreacted ethylene and 1-butene were purged. The obtained polymer solution was dried overnight at 100 ° C. under reduced pressure to obtain an ethylene / 1-butene copolymer (A2-7). The physical properties of the obtained ethylene / 1-butene copolymer are shown in Table 1.

〔製造例6〕エチレン重合体(A2−8)の製造
製造例5の重合において、ヘキサン1000mlおよび水素を1.2kg/cm(ゲージ圧)となるまで導入し、1−ブテンを導入しない以外は製造例5と同様に重合を行い、エチレン重合体(A2−8)を得た。得られたエチレン重合体の物性を表1に示す。
[Production Example 6] Production of ethylene polymer (A2-8) In the polymerization of Production Example 5, 1000 ml of hexane and hydrogen were introduced to 1.2 kg / cm 2 (gauge pressure), except that 1-butene was not introduced. Was polymerized in the same manner as in Production Example 5 to obtain an ethylene polymer (A2-8). The physical properties of the obtained ethylene polymer are shown in Table 1.

Figure 0006590587
Figure 0006590587

[参考例1]
<オレフィン系コーティング材の調製>
200mlセパラブルフラスコに、有機溶媒としてエチルシクロヘキサン180gを投入し、次いで製造例2で製造したプロピレン・1−ブテン共重合体(A2−4)を20g投入し、油浴上スターラーを用い、80℃にて攪拌し、放冷してオレフィン系コーティング材を得た。
[Reference Example 1]
<Preparation of olefin-based coating material>
Into a 200 ml separable flask, 180 g of ethylcyclohexane as an organic solvent was added, and then 20 g of the propylene / 1-butene copolymer (A2-4) produced in Production Example 2 was introduced. And the mixture was allowed to cool to obtain an olefin-based coating material.

<樹脂の溶解性>
オレフィン系コーティング材の調製、放冷後に静置し、以下の基準により、溶解性(常温)を評価した。
◎:樹脂が溶解し、コーティング材が透明であった
○:樹脂が溶解し、コーティング材が半透明であった
△:樹脂の一部が溶解し、重合体の残部が分散されていた
×:樹脂が膨潤、ゲル化、もしくは不溶解であった
<Solubility of resin>
Preparation of the olefin-based coating material, standing still after cooling, and the solubility (room temperature) was evaluated according to the following criteria.
A: The resin was dissolved and the coating material was transparent. O: The resin was dissolved and the coating material was translucent. Δ: A part of the resin was dissolved and the rest of the polymer was dispersed. The resin was swollen, gelled or insoluble

<静置安定性>
以下の基準により、オレフィン系コーティング材調製後、常温にて1日静置後のコーティング材の状態を評価した。
○:樹脂が溶解、もしくは分散した状態が保たれている
△:樹脂の一部が分離するが、容易に再分散する
×:樹脂がゲル化、スラリー化により、再分散が困難
<Standing stability>
According to the following criteria, the state of the coating material after standing at room temperature for 1 day after the preparation of the olefin-based coating material was evaluated.
○: Resin dissolved or dispersed state is maintained Δ: Part of resin is separated but easily redispersed ×: Resin is difficult to redisperse due to gelation or slurrying

<塗工性>
ガラスプレート上に、膜厚可変型アプリケーターを用い、塗膜の厚さが5μmになるようにオレフィン系コーティング材を塗布した。そして、常温乾燥後、および140℃×1時間乾燥後の表面状態を観察した。
◎:塗膜が透明であり、均一であった
○:塗膜に濁りがあるが、均一であった
△:塗膜の一部にムラがあった
×:塗膜にスジ、ムラがはっきりと発生している
<Coating property>
On the glass plate, an olefin-based coating material was applied using a film thickness variable type applicator so that the thickness of the coating film was 5 μm. And the surface state after drying at normal temperature and after drying at 140 ° C. for 1 hour was observed.
◎: The coating film was transparent and uniform ○: The coating film was turbid, but was uniform △: Part of the coating film was uneven ×: Stripes and unevenness were clearly observed on the coating film It has occurred

<塗膜すべり性>
上記、塗工性評価と同様の方法にて、ガラスプレート上に、オレフィン系コーティング材を塗布した。そして、140℃×1時間乾燥した後の塗膜に対しスリップ性試験を実施し、JIS K7125に従って動摩擦および静摩擦係数を測定した。
<Slipability of coating film>
The olefin-based coating material was applied on the glass plate by the same method as the coating property evaluation described above. And the slip property test was implemented with respect to the coating film after drying at 140 degreeC x 1 hour, and the dynamic friction and the static friction coefficient were measured according to JISK7125.

[実施例1]
<5%シリル化ポリエチレン含有オレフィン系コーティング材の調製>
200mlセパラブルフラスコに、有機溶媒としてエチルシクロヘキサン180gを投入し、次いで上記プロピレン・1−ブテン共重合体(A2−4)を19gと下記のシリル化ポリエチレン1gを投入し、油浴上スターラーを用い、80℃にて攪拌し、放冷してオレフィン系コーティング材とし、参考例1と同様に評価した。結果を表2に示す。
[Example 1]
<Preparation of olefinic coating material containing 5% silylated polyethylene>
Into a 200 ml separable flask, 180 g of ethylcyclohexane as an organic solvent was added, then 19 g of the propylene / 1-butene copolymer (A2-4) and 1 g of silylated polyethylene described below were added, and a stirrer on an oil bath was used. The mixture was stirred at 80 ° C. and allowed to cool to obtain an olefin-based coating material, which was evaluated in the same manner as in Reference Example 1. The results are shown in Table 2.

<シリル化ポリエチレン>
上記式(1)においてA、Aがエチレン単独重合体鎖(融点(Tm)127℃、 Mw=4800、Mn=2087、Mw/Mn=2.3)であり、Rがメチル基であり、Aがメチル基であり、m=12〜13である白色固体のシリル化ポリエチレン
なお、シリル化ポリエチレンは以下の方法により合成した。
<Silylated polyethylene>
In the above formula (1), A 1 and A 2 are ethylene homopolymer chains (melting point (Tm) 127 ° C., Mw = 4800, Mn = 2087, Mw / Mn = 2.3), and R is a methyl group , a 3 is a methyl group, silylated polyethylene white solid is m = 12 to 13 Incidentally, silylated polyethylene was synthesized by the following methods.

[合成例1]
国際公開第2012/098865号の合成例2に記載の方法に準じて片末端ビニル基含有エチレン系重合体(P−1)を合成した。この片末端ビニル基含有エチレン系重合体(P−1)(単体)の物性は以下の通りであった。
融点(Tm)127℃
Mw=4800、Mn=2087、Mw/Mn=2.3(GPC)
末端不飽和率 97%
[Synthesis Example 1]
According to the method described in Synthesis Example 2 of International Publication No. 2012/098865, a one-end vinyl group-containing ethylene polymer (P-1) was synthesized. The physical properties of this one-end vinyl group-containing ethylene polymer (P-1) (single unit) were as follows.
Melting point (Tm) 127 ° C
Mw = 4800, Mn = 2087, Mw / Mn = 2.3 (GPC)
Terminal unsaturation 97%

[合成例2]
300mlの2ツ口フラスコに、[合成例1]で得た片末端ビニル基含有エチレン系重合体(P−1)25.1g(11.8mmol)を装入し、窒素雰囲気下、下記構造のヒドロシランA(Gelest,Inc.製、DMS−H11)6.2g(5.9mmol;Si−H基として11.8mmol相当)と、国際公開第2012/098865号の合成例3に準じて調製した白金触媒組成物(C−1)をヒドロシランAで200倍希釈したもの150μl(Pt換算で1.4×10−6mmol)を装入した。予め内温130℃に昇温しておいた油浴中に、上記反応器をセットし、撹拌した。油浴中にて6時間撹拌した後に冷却し、メタノール約200mlを加え、300mlビーカーに内容物を取り出し2時間攪拌した。その後、固体をろ取し乾燥させることにより、上記式(1)において、A,Aがエチレン単独重合体鎖であり、Aがメチル基であり、Rがメチル基であり、mが12〜13である白色固体のシリル化ポリオレフィン33.5gを得た。
[Synthesis Example 2]
A 300 ml two-necked flask was charged with 25.1 g (11.8 mmol) of the one-end vinyl group-containing ethylene polymer (P-1) obtained in [Synthesis Example 1], and the following structure was obtained under a nitrogen atmosphere. 6.2 g (5.9 mmol; equivalent to 11.8 mmol as Si—H group) of hydrosilane A (Gelest, Inc., DMS-H11) and platinum prepared according to Synthesis Example 3 of International Publication No. 2012/098865 150 μl of the catalyst composition (C-1) diluted 200-fold with hydrosilane A (1.4 × 10 −6 mmol in terms of Pt) was charged. The reactor was set in an oil bath that had been heated to an internal temperature of 130 ° C. in advance, and stirred. The mixture was stirred in an oil bath for 6 hours and then cooled, about 200 ml of methanol was added, and the contents were taken out into a 300 ml beaker and stirred for 2 hours. Thereafter, the solid is filtered and dried, and in the above formula (1), A 1 and A 2 are ethylene homopolymer chains, A 3 is a methyl group, R is a methyl group, and m is 33.5 g of white solid silylated polyolefin 12-13 was obtained.

ヒドロシランA:HSi(CHO−(−Si(CH−O−)−Si(CHH(n=12〜13) Hydrosilane A: HSi (CH 3) 2 O - (- Si (CH 3) 2 -O-) n -Si (CH 3) 2 H (n = 12~13)

[実施例2]
<10%シリル化ポリエチレン含有オレフィン系コーティング材の調製>
上記プロピレン・1−ブテン共重合体(A2−4)を18gと上記シリル化ポリエチレン2gとした以外は実施例1と同様にコーティング材を調製し、参考例1と同様に評価した。結果を表2に示す。
[Example 2]
<Preparation of olefin-based coating material containing 10% silylated polyethylene>
A coating material was prepared in the same manner as in Example 1 except that 18 g of the propylene / 1-butene copolymer (A2-4) and 2 g of the silylated polyethylene were used, and evaluated in the same manner as in Reference Example 1. The results are shown in Table 2.

[実施例3]
<20%シリル化ポリエチレン含有オレフィン系コーティング材の調製>
上記プロピレン・1−ブテン共重合体(A2−4)を16gと上記シリル化ポリエチレン4gとした以外は実施例1と同様にコーティング材を調製し、参考例1と同様に評価した。結果を表2に示す。
[Example 3]
<Preparation of olefin-based coating material containing 20% silylated polyethylene>
A coating material was prepared in the same manner as in Example 1 except that 16 g of the propylene / 1-butene copolymer (A2-4) and 4 g of the silylated polyethylene were used, and evaluated in the same manner as in Reference Example 1. The results are shown in Table 2.

[実施例4]
<50%シリル化ポリエチレン含有オレフィン系コーティング材の調製>
上記プロピレン・1−ブテン共重合体(A2−4)を10gと上記シリル化ポリエチレン10gとした以外は実施例1と同様にコーティング材を調製し、参考例1と同様に評価した。結果を表2に示す。
[Example 4]
<Preparation of 50% Silylated Polyethylene-Containing Olefin Coating Material>
A coating material was prepared in the same manner as in Example 1 except that 10 g of the propylene / 1-butene copolymer (A2-4) and 10 g of the silylated polyethylene were used, and evaluated in the same manner as in Reference Example 1. The results are shown in Table 2.

[実施例5]
<70%シリル化ポリエチレン含有オレフィン系コーティング材の調製>
上記プロピレン・1−ブテン共重合体(A2−4)を6gと上記シリル化ポリエチレン14gとした以外は実施例1と同様にコーティング材を調製し、参考例1と同様に評価した。結果を表2に示す。
[Example 5]
<Preparation of 70% Silylated Polyethylene-Containing Olefin Coating Material>
A coating material was prepared in the same manner as in Example 1 except that 6 g of the propylene / 1-butene copolymer (A2-4) and 14 g of the silylated polyethylene were used, and evaluated in the same manner as in Reference Example 1. The results are shown in Table 2.

[実施例6]
上記プロピレン・1−ブテン共重合体(A2−3)を19gと上記シリル化ポリエチレン1gとした以外は実施例1と同様にコーティング材を調製し、塗膜すべり性評価を除き参考例1と同様に評価した。結果を表3に示す。
[Example 6]
A coating material was prepared in the same manner as in Example 1 except that 19 g of the propylene / 1-butene copolymer (A2-3) and 1 g of the silylated polyethylene were used, and the same as in Reference Example 1 except for the evaluation of the sliding property of the coating film. Evaluated. The results are shown in Table 3.

[実施例7]
上記エチレン・1−ブテン共重合体(A2−7)を19gと上記シリル化ポリエチレン1gとした以外は実施例1と同様にコーティング材を調製し、塗膜すべり性評価を除き参考例1と同様に評価した。結果を表3に示す。
[Example 7]
A coating material was prepared in the same manner as in Example 1 except that 19 g of the above ethylene / 1-butene copolymer (A2-7) and 1 g of the above silylated polyethylene were used. Evaluated. The results are shown in Table 3.

[比較例1]
上記プロピレン・1−ブテン共重合体(A2−6)を19gと上記シリル化ポリエチレン1gとした以外は実施例1と同様にコーティング材を調製し、塗膜すべり性評価を除き参考例1と同様に評価した。結果を表3に示す。
[Comparative Example 1]
A coating material was prepared in the same manner as in Example 1 except that 19 g of the propylene / 1-butene copolymer (A2-6) and 1 g of the silylated polyethylene were used, and the same as in Reference Example 1 except for the evaluation of the sliding property of the coating film. Evaluated. The results are shown in Table 3.

[比較例2]
上記エチレン重合体(A2−8)を19gと上記シリル化ポリエチレン1gとした以外は実施例1と同様にコーティング材を調製し、塗膜すべり性評価を除き参考例1と同様に評価した。結果を表3に示す。
[Comparative Example 2]
A coating material was prepared in the same manner as in Example 1 except that 19 g of the ethylene polymer (A2-8) and 1 g of the silylated polyethylene were used, and evaluation was performed in the same manner as in Reference Example 1 except for the evaluation of the sliding property of the coating film. The results are shown in Table 3.

[比較例3]
上記プロピレン・エチレン共重合体(A2−5)を19gと上記シリル化ポリエチレン1gとした以外は実施例1と同様にコーティング材を調製し、参考例1と同様に評価した。塗膜すべり性評価を除き参考例1と同様に評価した。結果を表3に示す。
[Comparative Example 3]
A coating material was prepared in the same manner as in Example 1 except that 19 g of the propylene / ethylene copolymer (A2-5) and 1 g of the silylated polyethylene were used, and evaluated in the same manner as in Reference Example 1. Evaluation was conducted in the same manner as in Reference Example 1 except for the evaluation of the sliding property of the coating film. The results are shown in Table 3.

Figure 0006590587
Figure 0006590587

Figure 0006590587
Figure 0006590587

表1〜3に示すように、融点が40℃以上105℃以下のポリオレフィンと、シリル化ポリオレフィンと、有機溶媒とを含む実施例1〜7のコーティング材は溶解性、静置安定性、塗工性のバランスに優れていた。また、表2に示すように、実施例1〜5のコーティング材はシリル化ポリオレフィンを含まない参考例1に比べて動摩擦および静摩擦係数がそれぞれ低下していた。すなわち、実施例1〜5のコーティング材はシリコーンワニスに期待される塗膜すべり性が付与されていた。
これに対し、融点が105℃を超えるポリオレフィンと、シリル化ポリオレフィンと、有機溶媒とを含む比較例1〜3のコーティング材は溶解性、静置安定性、塗工性のバランスに劣っていた。
以上の結果から、本実施形態に係るコーティング材は、保存安定性に優れ、かつ、シリコーンワニスに期待される特性(例えば、塗膜すべり性等)を、手軽な手段で基材に付与することが可能であることがわかった。
As shown in Tables 1 to 3, the coating materials of Examples 1 to 7 containing a polyolefin having a melting point of 40 ° C. or more and 105 ° C. or less, a silylated polyolefin, and an organic solvent are soluble, stationary stability, and coating. Excellent balance of sex. In addition, as shown in Table 2, the coating materials of Examples 1 to 5 had lower kinetic friction and static friction coefficients than those of Reference Example 1 that did not contain silylated polyolefin. That is, the coating materials of Examples 1 to 5 were provided with the coating slipperiness expected for the silicone varnish.
On the other hand, the coating materials of Comparative Examples 1 to 3 containing a polyolefin having a melting point exceeding 105 ° C., a silylated polyolefin, and an organic solvent were inferior in the balance of solubility, stationary stability, and coating property.
From the above results, the coating material according to the present embodiment is excellent in storage stability and imparts properties expected of a silicone varnish (for example, coating slip properties) to the substrate by a simple means. Was found to be possible.

Claims (6)

融点が40℃以上105℃以下のポリオレフィンと、シリル化ポリオレフィンと、有機溶媒とを含み、
前記ポリオレフィンおよび前記シリル化ポリオレフィンが前記有機溶媒中に溶解または分散しており、
前記シリル化ポリオレフィンが下記式(1)で表されるシリル化ポリオレフィンであるコーティング材。
Figure 0006590587
(前記式(1)において、A 、A およびA は各々独立に、ポリオレフィン鎖または炭素数1〜10の炭化水素基である。Rは炭素数1〜10の炭化水素基である。各Rは同一でも異なっていてもよい。mは1〜10,000の整数である。A が複数存在する場合、各A は同一でも異なっていてもよい。ただし、A 、A 、A のうち、少なくとも1つはポリオレフィン鎖を表す。)
Including a polyolefin having a melting point of 40 ° C. or higher and 105 ° C. or lower, a silylated polyolefin, and an organic solvent,
The polyolefin and the silylated polyolefin are dissolved or dispersed in the organic solvent ,
A coating material in which the silylated polyolefin is a silylated polyolefin represented by the following formula (1) .
Figure 0006590587
(In the formula (1), A 1 , A 2 and A 3 are each independently a polyolefin chain or a hydrocarbon group having 1 to 10 carbon atoms. R is a hydrocarbon group having 1 to 10 carbon atoms. Each R may be the same or different, m is an integer of 1 to 10,000, and when a plurality of A 3 are present, each A 3 may be the same or different, provided that A 1 , A 2 , A 3 represents at least one polyolefin chain.)
前記ポリオレフィンがエチレン・α−オレフィン共重合体(A1)およびプロピレン・α−オレフィン共重合体(A2)から選択される少なくとも一種を含む請求項1に記載のコーティング材。   The coating material according to claim 1, wherein the polyolefin contains at least one selected from an ethylene / α-olefin copolymer (A1) and a propylene / α-olefin copolymer (A2). 前記プロピレン・α−オレフィン共重合体(A2)が、以下の要件(i)および(ii)を満たす請求項2に記載のコーティング材。
(i)ゲル浸透クロマトグラフィ(GPC)で測定される重量平均分子量(Mw)が3,000以上40,000以下の範囲にある
(ii)前記プロピレン・α−オレフィン共重合体(A2)におけるプロピレン由来の構成単位(a)と、炭素数4以上のα−オレフィン由来の構成単位(b)の合計を100モル%としたとき、前記プロピレン・α−オレフィン共重合体(A2)における前記構成単位(a)の割合が60モル%以上95モル%以下であり、前記プロピレン・α−オレフィン共重合体(A2)における前記構成単位(b)の割合が5モル%以上40モル%以下である
The coating material according to claim 2, wherein the propylene / α-olefin copolymer (A2) satisfies the following requirements (i) and (ii).
(I) The weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) is in the range of 3,000 to 40,000. (Ii) Propylene origin in the propylene / α-olefin copolymer (A2) When the total of the structural unit (a) and the structural unit (b) derived from an α-olefin having 4 or more carbon atoms is 100 mol%, the structural unit (A2) in the propylene / α-olefin copolymer (A2) The proportion of a) is 60 mol% or more and 95 mol% or less, and the proportion of the structural unit (b) in the propylene / α-olefin copolymer (A2) is 5 mol% or more and 40 mol% or less.
前記コーティング材中の前記シリル化ポリオレフィンの含有量が、前記ポリオレフィン1質量部に対し、0.005質量部以上90質量部以下である、請求項1乃至のいずれか一項に記載のコーティング材。 The coating material according to any one of claims 1 to 3 , wherein a content of the silylated polyolefin in the coating material is 0.005 parts by mass or more and 90 parts by mass or less with respect to 1 part by mass of the polyolefin. . 前記コーティング材中の前記ポリオレフィンの含有量が、前記有機溶媒100質量部に対し、0.1質量部以上55質量部以下である、請求項1乃至のいずれか一項に記載のコーティング材。 The coating material according to any one of claims 1 to 4 , wherein a content of the polyolefin in the coating material is 0.1 parts by mass or more and 55 parts by mass or less with respect to 100 parts by mass of the organic solvent. 請求項1乃至のいずれか一項に記載のコーティング材により形成されたコーティング層を備える物品。 An article comprising a coating layer formed of the coating material according to any one of claims 1 to 5 .
JP2015163873A 2015-08-21 2015-08-21 Coating materials and articles Active JP6590587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015163873A JP6590587B2 (en) 2015-08-21 2015-08-21 Coating materials and articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163873A JP6590587B2 (en) 2015-08-21 2015-08-21 Coating materials and articles

Publications (2)

Publication Number Publication Date
JP2017039892A JP2017039892A (en) 2017-02-23
JP6590587B2 true JP6590587B2 (en) 2019-10-16

Family

ID=58206219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163873A Active JP6590587B2 (en) 2015-08-21 2015-08-21 Coating materials and articles

Country Status (1)

Country Link
JP (1) JP6590587B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002996A (en) * 1988-03-24 1991-03-26 Sumitomo Bakelite Company Limited Flame retardant olefinic resin composition
JPH0455491A (en) * 1990-06-22 1992-02-24 Goyo Paper Working Co Ltd Stain-proofing agent
EP2617740A1 (en) * 2010-09-16 2013-07-24 Idemitsu Kosan Co., Ltd. Highly viscous higher alphaolefin polymer and method for producing same
KR101609503B1 (en) * 2012-03-28 2016-04-05 미쓰이 가가쿠 가부시키가이샤 Propylene/alpha-olefin copolymer and application thereof
CN104797634B (en) * 2012-11-20 2017-12-19 3M创新有限公司 Block copolymer comprising polysiloxane block and polyolefin block
CN105264026B (en) * 2013-06-07 2018-04-03 三井化学株式会社 Olefines coating containing propylene alpha olefin copolymer

Also Published As

Publication number Publication date
JP2017039892A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
TWI516536B (en) Formed body
US10988644B2 (en) Hydrocarbon resin, method for preparing hydrocarbon resin, and adhesive composition
TW201704347A (en) Curable organopolysiloxane composition, a use thereof, and a laminate prepared from the composition
US20050158472A1 (en) Methods of treating polymeric subtrates
JP7322207B2 (en) Chlorinated polyolefin resin composition
TWI249553B (en) Curable rubber composition
TW201226504A (en) Block copolymer for adhesive, production method therefor, and adhesive composition
EP3715389B1 (en) Adhesive composition including ethylene/alpha-olefin copolymer
JPH07252360A (en) Silicone-based release composition
US9657117B2 (en) 4-methyl-1-pentene polymer, resin composition containing 4-methyl-1-pentene polymer, masterbatch thereof, and formed product thereof
WO2018170370A1 (en) Silicone release coating compositions
JP6152236B1 (en) Curable resin composition
KR102566182B1 (en) Filled polymer-based composition with low viscosity, good mechanical properties and adhesion
JP6590587B2 (en) Coating materials and articles
WO2007066712A1 (en) Resin for thermal imprinting
EP0694575B1 (en) Process for the in-line polymerization of olefinic monomers
WO2012124345A1 (en) Reactive polyolefin, method for producing same, and composition containing same
JP6829614B2 (en) Resin composition and its molded product
US6586082B1 (en) Polymer-saturated paper articles
US20210002483A1 (en) Silicone compositions containing acrylate cure accelerator
JP5457025B2 (en) Olefin resin paint
EP2163565A1 (en) Resin for thermal imprinting, resin solution for thermal imprinting, injection molded body for thermal imprinting, thin film for thermal imprinting, and process for producing the thin film
KR100404271B1 (en) Pressure-sensitive adhesive and surface protective material
WO2003046094A1 (en) Resin composition for primer
US20190232627A1 (en) Decorative film and method for producing decorative molded body using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190917

R150 Certificate of patent or registration of utility model

Ref document number: 6590587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250