JP6590494B2 - Waste-derived biomass reactor - Google Patents

Waste-derived biomass reactor Download PDF

Info

Publication number
JP6590494B2
JP6590494B2 JP2015049200A JP2015049200A JP6590494B2 JP 6590494 B2 JP6590494 B2 JP 6590494B2 JP 2015049200 A JP2015049200 A JP 2015049200A JP 2015049200 A JP2015049200 A JP 2015049200A JP 6590494 B2 JP6590494 B2 JP 6590494B2
Authority
JP
Japan
Prior art keywords
reaction
ethanol
distillation
reaction vessel
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015049200A
Other languages
Japanese (ja)
Other versions
JP2016167997A (en
Inventor
豊 世良
豊 世良
茂男 冨山
茂男 冨山
研一 中森
研一 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2015049200A priority Critical patent/JP6590494B2/en
Publication of JP2016167997A publication Critical patent/JP2016167997A/en
Application granted granted Critical
Publication of JP6590494B2 publication Critical patent/JP6590494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Processing Of Solid Wastes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、廃棄物中に含まれるバイオマスを糖化・発酵反応によってエタノールに変換し、生成したエタノールの一次蒸留も同一の槽内で行う、廃棄物由来バイオマスの反応装置に関する。   The present invention relates to a waste-derived biomass reaction apparatus in which biomass contained in waste is converted into ethanol by saccharification / fermentation reaction, and primary distillation of the produced ethanol is also performed in the same tank.

近年、温室効果ガスによる地球温暖化が問題となっている。温室効果ガスの増加は、化石燃料の使用が原因の一つとして考えられ、その対策として、化石燃料の代替にバイオマス資源の活用を図る取り組みが進められている。バイオマス資源はカーボンニュートラルであることから、化石燃料の代替としてバイオマス由来の燃料を利用することにより、温室効果ガスの排出量削減に効果的と考えられるからである。   In recent years, global warming due to greenhouse gases has become a problem. The increase in greenhouse gas is considered to be caused by the use of fossil fuels. As a countermeasure, efforts to utilize biomass resources to replace fossil fuels are underway. This is because the biomass resource is carbon neutral, and it is considered effective to reduce greenhouse gas emissions by using biomass-derived fuel as an alternative to fossil fuel.

このようなバイオマス由来燃料の一つとして、バイオエタノールが製造されているが、現状はトウモロコシやサトウキビ、コムギなどが原料として用いられており、食糧との競合が問題となっている。この問題を解消する観点から、本発明者らは実用的、かつ食糧と競合しないバイオマス資源として廃棄物に着目した。   Bioethanol is produced as one of such biomass-derived fuels. Currently, corn, sugarcane, wheat, etc. are used as raw materials, and competition with food is a problem. From the viewpoint of solving this problem, the present inventors have focused on waste as a biomass resource that is practical and does not compete with food.

廃棄物は、大別して一般廃棄物と産業廃棄物とに分けられるが、平成24年度の時点で焼却処分されている一般廃棄物は年間約3,490万tであり、そのうち紙類と厨芥類の焼却量は2,200万tと、国産エタノール原料として十分な賦存量がある。また、産業廃棄物の中には多くの食品廃棄物も含まれており、その利活用が求められている。   Waste is roughly classified into general waste and industrial waste, but the amount of general waste that is incinerated as of 2012 is approximately 34.9 million tons per year, of which paper and potatoes The incineration amount is 22 million tons, which is sufficient as a domestic ethanol raw material. In addition, industrial waste contains a lot of food waste, and its utilization is required.

以降において説明するように、本願の処理対象である紙類や厨芥類(セルロース)を主に含むのは一般廃棄物だが、産業廃棄物中にもセルロースは含まれ得るので、以下の説明においては、これらを区別せずに、「廃棄物」と称することとする。   As will be described later, it is general waste that mainly contains papers and moss (cellulose) that are the subject of processing of this application, but cellulose can also be included in industrial waste, so in the following explanation These are referred to as “waste” without distinction.

季節による収量変化や収集コストが問題となる廃木材や農産廃棄物に対し、廃棄物は年間を通して排出量の変動が小さく、各自治体などによる収集インフラも整っているため、有望かつ現実的なバイオマス資源となり得る。   Compared to waste wood and agricultural waste, where yield changes and collection costs vary depending on the season, the amount of waste emissions is small throughout the year, and collection infrastructure by local governments is also in place. It can be a resource.

廃棄物中のバイオマスを有効活用する方法として、例えば特許文献1では、廃棄物中の紙類を分離回収して酵素で糖化した後、酵母でエタノール発酵する方法が検討されている。   As a method for effectively utilizing biomass in waste, for example, Patent Document 1 discusses a method in which paper in waste is separated and recovered, saccharified with an enzyme, and then ethanol fermented with yeast.

特開2010−246421号公報JP 2010-246421 A

現状、一般的な燃料用エタノール製造では、サトウキビやサトウダイコンの搾汁(糖液)、あるいはトウモロコシデンプンやキャッサバデンプンを酵素(アミラーゼ)で処理した酵素糖化液といった、糖濃度の高いものを発酵させて得た発酵醪を蒸留している。この場合、醪が発酵槽に入ったまま同槽をエタノールの沸点まで加熱、或いは発酵醪を専用の蒸留装置の蒸留缶に移送し、減圧あるいは常圧条件下で缶を加熱しながらエタノール分を沸騰、気化させ、その後は気体を冷却してエタノール分を凝縮させることで、醪から分離、濃縮するが、これらの原料由来の発酵醪中には酵母以外の固形分や残渣も少ない。   Currently, in general production of ethanol for fuel, fermenting sugar cane and sugar beet juice (sugar solution), or enzyme saccharified solution obtained by treating corn starch or cassava starch with enzyme (amylase) is fermented. The fermented rice cake obtained is distilled. In this case, the tank is heated to the boiling point of ethanol while the koji is in the fermenter, or the fermented koji is transferred to a distillation can of a dedicated distillation device, and the ethanol content is reduced while heating the can under reduced pressure or atmospheric pressure. By boiling and vaporizing, and then condensing the ethanol by cooling the gas, it is separated and concentrated from the koji, but the fermented koji derived from these raw materials has few solids and residues other than yeast.

これに対して、廃棄物中の紙類と厨芥類を酵素糖化してエタノール発酵させた醪の場合、糖化(=液化)されなかった紙類由来の残渣、あるいはエタノール原料にならない厨芥類由来の脂質やタンパク質などが未反応の固形分として発酵醪中に存在しており、粘性も高い特異な性状である。   On the other hand, in the case of koji that is enzymatically saccharified from waste paper and koji and ethanol-fermented, it is derived from paper that has not been saccharified (= liquefied) or from koji that does not become an ethanol raw material. Lipids, proteins, etc. are present in the fermented rice cake as unreacted solids, and have a unique property with high viscosity.

廃棄物中のバイオマスから得られる発酵醪を従来型の装置、すなわち、サトウキビ搾汁やトウモロコシデンプン等に由来する発酵醪に用いられる蒸留装置で廃棄物由来エタノールを蒸留すると、反応槽あるいは蒸留釜内壁の気相部分の伝熱面に固形分が飛散してそのまま乾燥、固着するため、次バッチの糖化・発酵反応あるいは蒸留処理の前に固着した部分の掻き落し作業、および洗浄作業が必要になるとの課題があった。   When the waste-derived ethanol is distilled from the fermented rice cake obtained from the biomass in the waste with a conventional device, that is, a distillation device used for the fermentation rice cake derived from sugarcane juice or corn starch, the inner wall of the reaction tank or distillation kettle Since solids are scattered on the heat transfer surface of the gas phase of the product and dried and fixed as it is, it is necessary to scrape and clean the fixed part before the saccharification / fermentation reaction or distillation treatment of the next batch. There was a problem.

本発明は、上記事情に鑑みてなされたものであり、蒸発操作中に発酵醪中の固形分が飛散するのを抑制することができ、反応槽あるいは蒸留釜の内壁の気相部分の伝熱面に固形分が固着する問題が生じない反応装置の提供を目的とする。   The present invention has been made in view of the above circumstances, can suppress the solid content in the fermenter from being scattered during the evaporation operation, and heat transfer in the gas phase portion of the inner wall of the reaction tank or distillation kettle. An object of the present invention is to provide a reaction apparatus that does not cause a problem that solids adhere to the surface.

上記課題を解決するため、本発明者らが鋭意検討したところ、以下に示すような発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors diligently studied and have come to complete the invention as shown below.

すなわち、本発明の反応装置は、廃棄物中に含まれるバイオマスを糖化・発酵反応させてエタノールを生成すると共に生成したエタノールを一次蒸留する反応装置であって、
バイオマス原料と水とを混合した原料スラリーを収容し、該スラリー中のバイオマスを糖化・発酵反応させてエタノールを生成するとともに、該反応によって生成したエタノールを一次蒸留するための反応槽であって、該エタノールの減圧蒸留にも対応できる耐圧性を有している反応槽と、
該反応槽に収容した原料スラリーおよびその反応によって得られた発酵醪を撹拌するための撹拌手段と、
該反応槽の周囲に付設され、糖化・発酵反応、またはエタノール蒸留のために該反応槽内の原料スラリーまたは発酵醪を加熱するための加熱手段と、
該反応槽内の液面高さを測定するための測定部と、
該測定部により測定された液面高さに基づいて、該加熱手段によって加熱される上限高さを、該反応槽内の液面高さ以下に制御するための制御部と
を具備することを特徴とするものである。
That is, the reactor of the present invention is a reactor for saccharification and fermentation reaction of biomass contained in waste to produce ethanol and primary distillation of the produced ethanol,
A reaction vessel for containing a raw material slurry in which a biomass raw material and water are mixed, saccharifying and fermenting biomass in the slurry to produce ethanol, and primary distillation of ethanol produced by the reaction, A pressure-resistant reaction tank that can handle vacuum distillation of the ethanol;
A stirring means for stirring the raw slurry contained in the reaction tank and the fermented rice cake obtained by the reaction;
A heating means attached to the periphery of the reaction vessel, for heating the raw slurry or fermenter in the reaction vessel for saccharification / fermentation reaction or ethanol distillation;
A measuring unit for measuring the liquid level in the reaction vessel;
A control unit for controlling the upper limit height heated by the heating means to be equal to or lower than the liquid level in the reaction vessel based on the liquid level measured by the measuring unit. It is a feature.

前記加熱手段は、上下方向に沿って少なくとも2段の多段の加熱面を有しており、電気ヒータであることが好ましい。   The heating means has at least two multi-stage heating surfaces along the vertical direction, and is preferably an electric heater.

また、前記反応槽に蒸留塔が付設されていることが好ましい。   Moreover, it is preferable that a distillation tower is attached to the reaction vessel.

本発明の反応装置では、加熱手段によって加熱する反応槽の上限高さが該反応槽内の液面高さ以下に制御、すなわち、加熱面積を可変式とすることにより、発酵醪がない気相部分の内壁が加熱されないため、同部分内壁への蒸留残渣の飛散、乾燥、固着が起こらず、内壁固着物の掻き落としや洗浄作業を軽減することができる。   In the reaction apparatus of the present invention, the upper limit height of the reaction tank heated by the heating means is controlled to be equal to or lower than the liquid level in the reaction tank, that is, the heating area is made variable so that the gas phase without fermenter is present. Since the inner wall of the portion is not heated, the distillation residue does not scatter, dry, or adhere to the inner wall of the portion, and the inner wall adhering matter can be scraped off or cleaned.

さらには、本発明の反応装置は、具体的に以下のような適用例も考えられる。
(1)糖化・発酵反応時には原料スラリー(=液相)のみを常圧条件下で加熱して反応液が糖化・発酵反応に最適な範囲の40℃前後になるように制御し、反応の進行に伴いエタノールが生成したら40℃前後のまま反応槽内を減圧条件にすることで醪中のエタノールを気化させ、これを蒸発塔に送って連続的に系外に留去する。これにより反応液中のエタノールは低濃度に保たれ、エタノールの蓄積による酵母の活性低下を回避することができる。
(2)糖化・発酵反応終了後に継続して蒸留処理も実施できるため、専用の蒸留装置への発酵醪の移送が不要となり、粘性の高い発酵醪を移送する動力や時間のみならず、移送に伴う醪のロス、ひいてはエタノールのロスがなくなる。
(3)糖化・発酵反応終了後に発酵醪が充填された液相部のみを常圧条件下では80℃前後、或いは減圧条件下ではそれ以下の温度で加熱することで、発酵醪の沸騰に伴う気相部分内壁への固形分の飛散、固着を回避することができる。
(4)蒸留の進行に伴って液相面が低下した場合、加熱面積をそれに併せて減らすことで、固形分の気相面内壁への固着を回避することができる。
Furthermore, the following application examples of the reaction apparatus of the present invention can be specifically considered.
(1) During the saccharification / fermentation reaction, only the raw material slurry (= liquid phase) is heated under normal pressure to control the reaction solution to be around 40 ° C., which is the optimum range for the saccharification / fermentation reaction, and the reaction proceeds. If ethanol is produced along with this, the ethanol in the soot is vaporized by setting the inside of the reaction vessel under reduced pressure while maintaining the temperature around 40 ° C., and this is sent to the evaporation tower and continuously distilled out of the system. As a result, the ethanol in the reaction solution is kept at a low concentration, and a decrease in yeast activity due to the accumulation of ethanol can be avoided.
(2) Distillation can be continued after completion of the saccharification / fermentation reaction, which eliminates the need to transfer the fermented koji to a dedicated distillation device. The loss of sputum and the loss of ethanol are eliminated.
(3) Only the liquid phase part filled with the fermented rice cake after the saccharification / fermentation reaction is heated at about 80 ° C. under normal pressure conditions or at a temperature lower than that under reduced pressure conditions. It is possible to avoid scattering and sticking of solid content to the inner wall of the gas phase portion.
(4) When the liquid phase surface decreases with the progress of distillation, the solid area can be prevented from sticking to the gas phase inner wall by reducing the heating area accordingly.

本発明の反応装置を示す模式図である。It is a schematic diagram which shows the reaction apparatus of this invention. 同時糖化発酵反応によって得られた醪1m(1,000L)を引き続き同槽で一次蒸留するまでを説明する概略フロー図である。It is a general | schematic flowchart explaining the process until 1 m < 3 > (1,000L) obtained by simultaneous saccharification and fermentation reaction carries out primary distillation in the same tank continuously.

以下、本発明の反応装置について具体的に説明する。   Hereinafter, the reaction apparatus of the present invention will be described in detail.

本発明の反応装置は、廃棄物中に含まれる紙類および厨芥類(=バイオマス)を糖化・発酵反応させてエタノールを生成すると共に、該エタノールを蒸留するものである。当該反応装置は、紙類と厨芥類の混合物に水を加えた原料スラリーを収容する反応槽を有し、この反応槽は、スラリーを糖化・発酵反応させてエタノールを生成した後、エタノールを常圧条件下のみならず減圧条件下(常圧よりも低温でエタノールが気化)でも蒸留できるよう、耐圧仕様を備えている。本反応装置は、さらに、反応槽に収容する原料スラリー、および糖化・発酵反応によって得られる発酵醪を撹拌するための撹拌手段と、反応槽の周囲に付設され、糖化・発酵反応のために、またはエタノール蒸留のために反応槽内のスラリーまたは発酵醪を加熱する加熱手段と、反応槽内の液面高さを測定する測定部と、測定部により測定された液面高さに基づき、加熱手段によって加熱する上限高さを該反応槽内の液面高さ以下に制御する制御部とを具備している。   The reaction apparatus of the present invention is a saccharification / fermentation reaction of papers and moss (= biomass) contained in waste to produce ethanol and distill the ethanol. The reaction apparatus has a reaction tank that contains a raw slurry obtained by adding water to a mixture of paper and moss, and this reaction tank generates ethanol by saccharification and fermentation reaction of the slurry, and then the ethanol is normally used. It has pressure resistance specifications so that it can be distilled not only under pressure conditions but also under reduced pressure conditions (ethanol is vaporized at a temperature lower than normal pressure). This reaction apparatus is further provided around the reaction tank and stirring means for stirring the raw material slurry accommodated in the reaction tank, and the fermentation cake obtained by the saccharification / fermentation reaction, and for the saccharification / fermentation reaction, Alternatively, heating means for heating the slurry or fermenter in the reaction tank for ethanol distillation, a measuring unit for measuring the liquid level in the reaction tank, and heating based on the liquid level measured by the measuring unit And a control unit for controlling the upper limit height heated by the means to be equal to or lower than the liquid level in the reaction vessel.

以下に、本反応装置における反応槽、撹拌手段、加熱手段、測定部、および制御部の各要素についてさらに詳細に説明する。   Below, each element of the reaction tank in this reaction apparatus, a stirring means, a heating means, a measurement part, and a control part is demonstrated in detail.

反応槽は、バイオマス由来の原料スラリーを収容する容積を有しており、これを撹拌・加熱しながら糖化・発酵反応が進行することでエタノールが生成する。反応終了後には、そのままこの反応槽内を減圧、かつ加熱することにより、エタノールを蒸留する。反応槽はエタノールを蒸留する際に減圧条件または常圧条件のいずれの条件でも運転できる耐圧仕様とする。   The reaction tank has a volume that accommodates the biomass-derived raw material slurry, and ethanol is generated by the saccharification / fermentation reaction proceeding while stirring and heating the slurry. After completion of the reaction, ethanol is distilled by heating and reducing the pressure in the reaction tank. The reaction tank has a pressure-resistant specification that can be operated under either reduced pressure conditions or normal pressure conditions when ethanol is distilled.

反応槽は、当業者に公知の任意の形状を有してよいが、円筒形状であることが好ましい。反応槽には、原料を投入する投入口と、反応後の反応槽内の内容物を排出する排出口とが設けられている。投入口には投入管を介して原料供給源(図示せず)が、排出口には排出管を介して排出槽(図示せず)がそれぞれ接続されている。また、本実施の形態においては、原料をスラリーとして貯留するため、反応槽には、溶液供給口が設けられ、溶液供給口には溶液供給管を介して溶液供給源(図示せず)が接続されている。   The reaction vessel may have any shape known to those skilled in the art, but is preferably cylindrical. The reaction tank is provided with an input port for supplying raw materials and an exhaust port for discharging contents in the reaction tank after the reaction. A raw material supply source (not shown) is connected to the input port via an input tube, and a discharge tank (not shown) is connected to the output port via an output tube. In this embodiment, since the raw material is stored as slurry, the reaction tank is provided with a solution supply port, and a solution supply source (not shown) is connected to the solution supply port via a solution supply pipe. Has been.

撹拌手段は、原料スラリーおよび発酵醪を撹拌するために設けられる。発酵醪は粘性が高いため、これを十分に撹拌する性能を有することが必要だが、十分に撹拌できれば、当業者に公知の如何なるものを用いてもよく、例えば撹拌機を挙げることができる。具体的には、回転軸であるシャフトと、シャフトの下端部に設けられたインペラと、シャフトの上部に設けられて、シャフトを回転駆動するモーターとで構成されるものである。   The stirring means is provided for stirring the raw material slurry and the fermentation broth. Since the fermented rice cake has high viscosity, it is necessary to have sufficient ability to stir the fermenter. However, any material known to those skilled in the art may be used as long as it can be sufficiently stirred, and examples thereof include a stirrer. Specifically, it is composed of a shaft that is a rotating shaft, an impeller provided at the lower end portion of the shaft, and a motor that is provided at the upper portion of the shaft and rotationally drives the shaft.

さらに、反応槽内の壁面に飛散、固着した醪中の固形分を掻き落とせるよう、反応槽内壁と撹拌翼との隙間を回転に支障のない範囲で狭くし、撹拌翼の端にシリコーンゴム製の「調理用のヘラ」の様な素材を付加したようなものであってもよい。   In addition, the gap between the inner wall of the reaction tank and the stirring blade is narrowed within a range that does not interfere with rotation so that the solid content in the soot scattered and adhered to the wall surface in the reaction tank can be scraped off, and the end of the stirring blade is made of silicone rubber. It is also possible to add a material such as “a spatula for cooking”.

加熱手段は、糖化・発酵反応のため、またはエタノール蒸留のために上記の反応槽内の原料スラリーおよび発酵醪を加熱するために設けられる。この目的を達成することができれば、如何なる形態を有するものであってもよいが、好ましくは、反応槽の外周面に取り付けられる形態のものであり、例えば、電気ヒータを用いることができる。この電気ヒータは、上下方向において二段以上の多段の加熱面を有するよう、複数を設けてもよく、この場合、それぞれ電気ヒータの上下方向の幅は、100〜1,000mmの単位となるようにし、この上下方向の幅に応じた多段の加熱面を構成してよい。また、「空焚き」状態にならない範囲で、反応槽の下値に固定ヒータを設置してもよい。   The heating means is provided for heating the raw material slurry and the fermenter in the reaction tank for saccharification / fermentation reaction or for ethanol distillation. As long as this object can be achieved, it may have any form, but is preferably attached to the outer peripheral surface of the reaction vessel, and for example, an electric heater can be used. A plurality of the electric heaters may be provided so as to have two or more heating surfaces in the vertical direction. In this case, the vertical width of the electric heater is in units of 100 to 1,000 mm. In addition, a multi-stage heating surface according to the vertical width may be configured. Further, a fixed heater may be installed at the lower value of the reaction tank as long as it does not become an “empty” state.

なお、加熱手段の他の例として、熱媒を用いた加熱ジャケットを用いてもよく、熱媒としては、例えば、水、有機媒体のいずれも可能である。   As another example of the heating means, a heating jacket using a heat medium may be used. As the heat medium, for example, either water or an organic medium is possible.

測定部は、反応槽内の液面高さを測定するために設けられるものであり、この目的を達成することができれば当業者に公知のあらゆるものを用いてもよいが、例えば、糖化・発酵反応終了時の醪は比較的液化が促進されていることを考慮して、レーザー式液面計や、フロート式液面計を使用することが出来る。   The measurement unit is provided to measure the liquid level in the reaction tank, and any one known to those skilled in the art may be used as long as this purpose can be achieved. Considering that liquefaction is relatively accelerated at the end of the reaction, a laser-type liquid level gauge or a float-type liquid level gauge can be used.

また、反応槽の外周面に、反応槽内の状態を確認することができるのぞき窓を設けてこれを測定部とすることも可能である。なお、液面高さを測定する測定部としては、醪の量、それを蒸留して得られる一次蒸留液の量、同液中のエタノール濃度を定量的に計測する手段を設け、これを測定部とし、この計測結果に基づいて液面高さを把握するようにすることも可能である。   Moreover, it is also possible to provide a viewing window on the outer peripheral surface of the reaction tank so that the state in the reaction tank can be confirmed, and this can be used as a measurement unit. In addition, as a measuring part that measures the liquid level height, there is provided a means for quantitatively measuring the amount of soot, the amount of primary distilled liquid obtained by distilling it, and the ethanol concentration in the same liquid. It is also possible to determine the liquid level height based on the measurement result.

制御部は、上記の測定部により測定された液面高さに基づき、上記の加熱手段によって加熱される上限高さを液面高さ以下に制御するものであり、これを達成することができれば当業者に公知のあらゆるものを用いてもよい。例えば、上記の加熱手段を上下方向に多段に設けることで多段の加熱面を有することとなり、電気ヒータを用いる場合には各電気ヒータの駆動をオン/オフするスイッチが制御部であり、測定された液面高さより上部の電気ヒータをオフにすることで制御する。   Based on the liquid level height measured by the measurement unit, the control unit controls the upper limit height heated by the heating means to be equal to or lower than the liquid level height, and if this can be achieved, Anything known to those skilled in the art may be used. For example, by providing the above heating means in multiple stages in the vertical direction, a multi-stage heating surface is provided. When an electric heater is used, a switch for turning on / off the driving of each electric heater is a control unit and is measured. It is controlled by turning off the electric heater above the liquid level.

一方、加熱手段に熱媒式のヒータを用いる場合には、反応槽の外周を循環する熱媒流通路が複数設けられる。各熱媒流通炉の流通を制御する弁が制御部であり、この弁を開閉制御することにより、加熱手段の加熱面が制御される。   On the other hand, when a heat medium heater is used as the heating means, a plurality of heat medium flow passages that circulate around the outer periphery of the reaction tank are provided. A valve that controls the flow of each heat medium flow furnace is a control unit, and the heating surface of the heating means is controlled by opening and closing the valve.

次に、上記の各要素を含んでなる本発明の反応装置によるエタノールの製造法について詳細に説明する。   Next, a method for producing ethanol by the reaction apparatus of the present invention comprising the above-described elements will be described in detail.

廃棄物中には、エタノール原料となるバイオマスの他、好ましくないごみ類も含まれているため、これらを除くための前処理を行う。先ず、原料である廃棄物に含まれるバイオマス(紙類および厨芥類)と、非バイオマス(ビニルやプラスチック、金属類)とを以下の手順で機械分別する。
(1)指定ビニール袋に入った状態で回収されてきた一般廃棄物等の廃棄物を二軸破砕機によって粗破砕する。
(2)粗破砕した廃棄物を破砕分別機で厨芥類を中心とした重量物、紙類、プラスチック・ビニール類を中心とした軽量物とに分離する。
(3)パルパーに軽量物と水を加えて処理することで、紙類は離解されてパルプスラリーになり、離解されないプラスチック・ビニール類(=異物)とスクリーンを介して分離される。
(4)異物と分離されたパルプスラリーは脱水処理して脱水パルプが得られる。
In addition to biomass as a raw material for ethanol, undesired garbage is also contained in the waste, so pretreatment for removing these is performed. First, biomass (paper and cocoons) contained in the waste material as raw material and non-biomass (vinyl, plastic, metals) are mechanically separated by the following procedure.
(1) Roughly crush waste such as general waste collected in a designated plastic bag with a biaxial crusher.
(2) The roughly crushed waste is separated into heavy items, mainly papers, and light items, mainly papers and plastics, using a crushing and sorting machine.
(3) By adding a light weight and water to the pulper and treating the paper, the papers are disaggregated into pulp slurry, and separated from the plastics and vinyls (= foreign matter) that are not disaggregated through the screen.
(4) The pulp slurry separated from the foreign matter is dehydrated to obtain dehydrated pulp.

以上の前処理によって得られた重量物(=厨芥類)および脱水パルプ(=紙類;以降、「原料」と略記)を反応槽に充填する。当該反応槽には、さらに適量の水を加えて、撹拌手段により撹拌することで原料と水からなるスラリー状とし、加熱殺菌を施したうえで糖化・反応の適温(40℃前後)まで下げ、ここにセルロースを糖化するための酵素、例えばセルラーゼ、そして糖化により生成した糖をエタノール発酵させるための微生物、例えば酵母を添加し、撹拌手段による撹拌、加熱手段による反応槽内の適温維持をしながら、糖化・発酵させる。   The reaction vessel is filled with the heavy material (= soil) and dehydrated pulp (= papers; hereinafter abbreviated as “raw material”) obtained by the above pretreatment. An appropriate amount of water is further added to the reaction tank, and the mixture is stirred by a stirring means to form a slurry consisting of a raw material and water. After heat sterilization, the temperature is lowered to an appropriate temperature for saccharification / reaction (about 40 ° C.), An enzyme for saccharifying cellulose, such as cellulase, and a microorganism for ethanol fermentation of saccharides produced by saccharification, such as yeast, are added here, while stirring by stirring means and maintaining an appropriate temperature in the reaction tank by heating means. Saccharification and fermentation.

反応の進行に伴いエタノールが生成したら40℃前後のまま反応槽内を減圧条件にして発酵醪中のエタノールを気化させ、これを蒸発塔に送って連続的に系外に留去する。これにより発酵醪中のエタノールは低濃度に保たれ、エタノールの蓄積による酵母の活性低下を回避することができる。   When ethanol is generated as the reaction proceeds, the ethanol in the fermenter is vaporized under reduced pressure in the reaction vessel with the temperature kept at around 40 ° C., and this is sent to an evaporation tower and continuously distilled out of the system. As a result, the ethanol in the fermenter is kept at a low concentration, and a decrease in yeast activity due to the accumulation of ethanol can be avoided.

なお、糖化のための酵素およびエタノール発酵のための微生物は、順次、あるいは同時に反応槽に添加してもよい。糖化反応と発酵反応が同時進行する後者は、「同時糖化発酵反応」といい、糖化反応で生成した糖(グルコース)が酵母によって直ちにエタノールに変換されるため、グルコースが酵素活性の阻害因子となるセルラーゼの欠点を改善できる。   The enzyme for saccharification and the microorganism for ethanol fermentation may be added to the reaction vessel sequentially or simultaneously. The latter, in which the saccharification reaction and the fermentation reaction proceed simultaneously, is called “simultaneous saccharification and fermentation reaction”. The sugar (glucose) produced in the saccharification reaction is immediately converted into ethanol by the yeast, so that glucose becomes an inhibitor of enzyme activity. The drawbacks of cellulase can be improved.

糖化・発酵反応終了後、反応槽内の発酵醪を蒸留して一次蒸留タンクに送る。この工程は、発酵醪の温度が常圧下なら80℃に、減圧下ならそれ以下の温度になるよう加熱手段により加熱することで、醪に含まれるエタノールを気化させるが、反応槽の上部に蒸留塔を設置することで、同槽で一次蒸留まで行うことが出来る。   After completion of the saccharification / fermentation reaction, the fermentation cake in the reaction tank is distilled and sent to the primary distillation tank. In this step, the ethanol contained in the koji is vaporized by heating with a heating means so that the temperature of the fermentation koji is 80 ° C. under normal pressure and lower than that under reduced pressure. By installing a tower, it is possible to perform primary distillation in the same tank.

ここで、本発明の装置では、測定部により反応槽内の液面高さを測定し、この高さに基づいて、制御部が加熱手段によって加熱される上限高さを反応槽内の液面高さ以下に制御するようになっている。反応槽内壁の気相に相当する部分は加熱されないため、発酵醪の沸騰に伴い固形分が飛散しても、気相部分内壁への固着を回避することができる。   Here, in the apparatus of the present invention, the liquid surface height in the reaction vessel is measured by the measurement unit, and based on this height, the upper limit height that the control unit is heated by the heating means is determined as the liquid surface in the reaction vessel. It is designed to control below the height. Since the portion corresponding to the gas phase on the inner wall of the reaction vessel is not heated, even if the solid content is scattered with the boiling of the fermenter, it is possible to avoid sticking to the inner wall of the gas phase portion.

また、蒸留の進行に伴い発酵醪の液面が低下してきた場合も、制御部により、加熱手段による熱供給上限高さもそれに併せて減らすことで、固形分が気相内壁に固着するのを回避することができる。   In addition, even when the liquid level of the fermenter has decreased with the progress of distillation, the control unit also reduces the upper limit of the heat supply by the heating means, thereby preventing solids from sticking to the gas phase inner wall. can do.

本発明の装置では、糖化・発酵反応、およびその後の一次蒸留のために、反応槽内の液相に接触する同槽内壁部分のみを加熱できるよう加熱手段を制御する。また、ひとつの反応槽において、一次蒸留まで実施することで、原料スラリーやそれから得られた発酵醪の撹拌に要する機器類をひとつに集約して兼用でき、かつ発酵醪を専用の蒸留装置に移送することも不要になり、移送に伴う醪のロス、ひいてはエタノールのロスがなくなる。   In the apparatus of the present invention, for the saccharification / fermentation reaction and the subsequent primary distillation, the heating means is controlled so that only the inner wall portion in contact with the liquid phase in the reaction tank can be heated. In addition, by carrying out up to the primary distillation in one reaction tank, it is possible to consolidate and combine the raw material slurry and the equipment required for stirring the fermenter obtained from it, and transfer the fermenter to a dedicated distillation device. This also eliminates the need to carry out the loss of soot and the loss of ethanol associated with the transfer.

図1に本発明のエタノール生成および蒸留装置の模式図を示す。この装置は、円筒縦型下部円錐式反応槽を有するものである。   FIG. 1 shows a schematic diagram of the ethanol production and distillation apparatus of the present invention. This apparatus has a cylindrical vertical lower conical reaction tank.

同図中の例1に示す通り、本実施例では、加熱手段として、反応槽の外側に電源が独立した電気ヒータを複数巻いたオン/オフが可能な多段式とすることで、加熱面を容易に調節することができる。   As shown in Example 1 in the figure, in this example, the heating surface is set as a heating means by using a multi-stage system that can be turned on / off by winding a plurality of electric heaters with independent power sources outside the reaction tank. Can be easily adjusted.

そして、糖化工程、発酵工程、およびエタノール一次蒸留工程のいずれにおいても、液相と気相の境界線を伝熱面の上限とするように制御することを基本とし、すなわち、同境界線より下の液相部分のみが加熱されることとなる。   And in any of saccharification process, fermentation process, and ethanol primary distillation process, it is based on controlling so that the boundary line of a liquid phase and a gas phase may become the upper limit of a heat transfer surface, that is, below the boundary line. Only the liquid phase part is heated.

あるいは、同図中の例2に示す通り、実際の境界線よりも下に任意の境界線を設けてそれよりも下の液相部分のみを加熱しても良い。   Alternatively, as shown in Example 2 in the figure, an arbitrary boundary line may be provided below the actual boundary line, and only the liquid phase portion below it may be heated.

前記多段の加熱面の1段の高さは、液相縦幅の5〜10%の長さであることが好ましく、前記多段の加熱面の1段の高さは、100〜1000mmであることが好ましい。さらには、反応槽の液面高さを測定するための液面計を設けて、この液面計により液面高さを測定し、この測定結果に基づいて、各電気ヒータの電源のオン/オフを制御して、電気ヒータの熱供給上限高さを反応槽内の液面高さ以下に制御されるようにすれば、加熱面の自動制御が可能になる。   The height of one stage of the multistage heating surface is preferably 5 to 10% of the liquid phase longitudinal width, and the height of one stage of the multistage heating surface is 100 to 1000 mm. Is preferred. Furthermore, a liquid level gauge for measuring the liquid level in the reaction tank is provided, and the liquid level is measured with the liquid level gauge. Based on the measurement result, the power of each electric heater is turned on / off. If the power supply upper limit height of the electric heater is controlled to be equal to or lower than the liquid level in the reaction tank by controlling the off, the heating surface can be automatically controlled.

これにより、一次蒸留処理の際に発酵醪が沸騰して反応槽の気相部分内壁に飛散しても、同部分が加熱されていなため、固形分の固着を回避することができる。   Thereby, even if the fermenter is boiled during the primary distillation treatment and scattered on the inner wall of the gas phase portion of the reaction tank, the solid portion can be prevented from sticking because the portion is not heated.

また、エタノール成分の蒸発に伴い醪の量が減った(境界線が下がった)場合も同様の対応が容易である。例えば、図1中の例1において、発酵醪の温度が80℃になるよう電気ヒータ1〜6の電源をオンにして液相、気相部分の伝熱面ともに加熱して常圧蒸留すると、実際の境界線より上、液相縦幅の約10%の長さまで固形分が飛散して固着するが、液相部分の伝熱面のみを加熱、つまり電気ヒータ1〜3のみをオンにした場合、気相部分内壁への固着はほとんどない。   Further, when the amount of soot is reduced with the evaporation of the ethanol component (the boundary line is lowered), the same measures can be easily taken. For example, in Example 1 in FIG. 1, the electric heaters 1 to 6 are turned on so that the temperature of the fermenter is 80 ° C. Above the actual boundary line, solids are scattered and fixed to a length of about 10% of the liquid phase length, but only the heat transfer surface of the liquid phase part is heated, that is, only the electric heaters 1 to 3 are turned on. In this case, there is almost no sticking to the inner wall of the gas phase portion.

図2には、同時糖化発酵反応によって得られた醪1m(1,000L)を引き続き同槽で一次蒸留するまでの概略フローを示す。 FIG. 2 shows a schematic flow until 1 m 3 (1,000 L) obtained by the simultaneous saccharification and fermentation reaction is continuously subjected to primary distillation in the same tank.

反応終了後、40℃弱だった反応温度を70℃弱まで上げ、常圧だった槽内を25kPa(A)に減圧することでエタノール成分を気化させ、同槽に付設した蒸発塔に導入し、気化したエタノールをコンデンサーで冷却して専用の一次蒸留タンクに貯留する。一次蒸留条件については下記の表1に詳細に記載する。   After completion of the reaction, the reaction temperature, which was less than 40 ° C, was raised to less than 70 ° C, and the pressure inside the tank was reduced to 25 kPa (A) to evaporate the ethanol component, which was then introduced into the evaporation tower attached to the tank. The vaporized ethanol is cooled by a condenser and stored in a dedicated primary distillation tank. The primary distillation conditions are described in detail in Table 1 below.

Figure 0006590494
Figure 0006590494

約4時間の減圧蒸留によって、醪中のエタノール成分およびエタノールとの共沸によって水分も付随するため、エタノール濃度25vol%の一次蒸留液198L(内訳は水149L、エタノール49L)が得られる。   By distillation under reduced pressure for about 4 hours, water is also accompanied by azeotropy with the ethanol component in ethanol and ethanol, so that a primary distillate 198 L (with a breakdown of 149 L of water and 49 L of ethanol) is obtained with an ethanol concentration of 25 vol%.

一方、反応槽内には、エタノールの抜けた蒸留残渣800L(内訳は水799.6L、エタノール0.4L程度)が残る。なお、蒸発塔内部や一次蒸留タンクまでの配管内に若干量のエタノール成分や水分が残存するため、1〜2%程度のロスとなる。   On the other hand, in the reaction tank, 800 L of distilled residue from which ethanol has been removed (the breakdown is 799.6 L of water and about 0.4 L of ethanol) remains. In addition, since some ethanol components and water | moisture content remain | survive in the inside of an evaporation tower or the piping to a primary distillation tank, it will be about 1-2% loss.

以上の通り、本発明は、廃棄物を原料とした粘性の高い特異な性状の醪に対して特に有効な蒸留方法に関するものである。なお、加熱面を100〜1,000mm幅の単位で加熱・制御する方法は電熱式に何ら限定されず、例えば加熱面に接するジャケットを設けてそのジャケット内に油や水などの熱媒体を流すジャケット式でも構わない。   As described above, the present invention relates to a distillation method that is particularly effective for high-viscosity and peculiar properties using waste as a raw material. The method of heating and controlling the heating surface in units of 100 to 1,000 mm width is not limited to the electrothermal method. For example, a jacket that contacts the heating surface is provided and a heat medium such as oil or water is allowed to flow in the jacket. Jacket type is also acceptable.

Claims (4)

紙類や厨芥類を主に含む一般廃棄物中に含まれるバイオマスを糖化・発酵反応させてエタノールを生成すると共に生成したエタノールを一次蒸留する反応装置であって、
バイオマス原料と水とを混合した原料スラリーを収容し、該スラリー中のバイオマスを糖化・発酵反応させてエタノールを生成するとともに、該反応によって生成したエタノールを一次蒸留するための反応槽であって、該エタノールの減圧蒸留にも対応できる耐圧性を有している反応槽と、
該反応槽に収容した原料スラリーおよびその反応によって得られた紙由来の残渣、厨芥類由来の脂質やタンパク質などが未反応の固形分として存在する粘性の高い特異な性状である発酵醪を撹拌するための撹拌手段と、
該反応槽の周囲に付設され、糖化・発酵反応、またはエタノール蒸留のために該反応槽内の原料スラリーまたは発酵醪を加熱するための加熱手段と、
該反応槽内の液面高さを測定するための測定部と、
該測定部により測定された液面高さに基づいて、該加熱手段によって加熱される上限高さを、該反応槽内の液面高さ以下に制御するための制御部と
を具備することを特徴とする反応装置。
A reactor for saccharifying and fermenting biomass contained in general waste mainly containing papers and moss to produce ethanol and primary distillation of the produced ethanol,
A reaction vessel for containing a raw material slurry in which a biomass raw material and water are mixed, saccharifying and fermenting biomass in the slurry to produce ethanol, and primary distillation of ethanol produced by the reaction, A pressure-resistant reaction tank that can handle vacuum distillation of the ethanol;
The raw slurry contained in the reaction vessel and the residue obtained from the reaction, the fermented koji, which is a unique property with high viscosity, in which lipids and proteins derived from moss are present as unreacted solids, are stirred. Stirring means for,
A heating means attached to the periphery of the reaction vessel, for heating the raw slurry or fermenter in the reaction vessel for saccharification / fermentation reaction or ethanol distillation;
A measuring unit for measuring the liquid level in the reaction vessel;
A control unit for controlling the upper limit height heated by the heating means to be equal to or lower than the liquid level in the reaction vessel based on the liquid level measured by the measuring unit. Characteristic reactor.
前記加熱手段は、上下方向に沿って少なくとも2段の多段の加熱面を有している、請求項1に記載の反応装置。   The reaction apparatus according to claim 1, wherein the heating means has at least two multi-stage heating surfaces along the vertical direction. 前記加熱手段は、電気ヒータである、請求項2に記載の反応装置。   The reaction apparatus according to claim 2, wherein the heating means is an electric heater. 前記反応槽に蒸留塔が付設されている、請求項1〜3のいずれか1つに記載の反応装置。   The reaction apparatus according to claim 1, wherein a distillation column is attached to the reaction tank.
JP2015049200A 2015-03-12 2015-03-12 Waste-derived biomass reactor Active JP6590494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049200A JP6590494B2 (en) 2015-03-12 2015-03-12 Waste-derived biomass reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049200A JP6590494B2 (en) 2015-03-12 2015-03-12 Waste-derived biomass reactor

Publications (2)

Publication Number Publication Date
JP2016167997A JP2016167997A (en) 2016-09-23
JP6590494B2 true JP6590494B2 (en) 2019-10-16

Family

ID=56981630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049200A Active JP6590494B2 (en) 2015-03-12 2015-03-12 Waste-derived biomass reactor

Country Status (1)

Country Link
JP (1) JP6590494B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391075A (en) * 1986-10-06 1988-04-21 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Cultivation of mold and device therefor
JPH06169751A (en) * 1992-12-08 1994-06-21 Fukushima Pref Gov Device for fermenting unrefined sake, equipped with multi-stage jacket
JP2004242673A (en) * 2003-01-23 2004-09-02 Lanabake Co Ltd Microbial enzyme activation unit
JP4771307B2 (en) * 2005-07-12 2011-09-14 日立造船株式会社 Biomass ethanol production equipment
JP2010268705A (en) * 2009-05-20 2010-12-02 Hitachi Zosen Corp Saccharification reaction vessel
CA2741602C (en) * 2010-03-10 2013-04-30 Mitsubishi Heavy Industries, Ltd. Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
JP5564309B2 (en) * 2010-03-31 2014-07-30 日立造船株式会社 Method for preparing waste-derived biomass material
JP5564310B2 (en) * 2010-03-31 2014-07-30 日立造船株式会社 Method for saccharification and fermentation of waste-derived biomass material
JP5850608B2 (en) * 2010-10-18 2016-02-03 株式会社ダスキン Bioethanol production method
AU2013272715B2 (en) * 2012-06-05 2017-11-02 Genomatica, Inc. Production method for 1, 4-butanediol

Also Published As

Publication number Publication date
JP2016167997A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
Huang et al. Ethanol production from food waste at high solids content with vacuum recovery technology
CN102292170B (en) Method for recovering and producing ethanol and oil
RU2610988C2 (en) Method and apparatus for producing liquid hydrocarbons
US8372614B2 (en) Ethanol production from solid citrus processing waste
US20080020437A1 (en) Apparatus and method for producing fuel ethanol from biomass
US20060177916A1 (en) Ethanol production from citrus processing waste
Tasić et al. Simulation of fuel ethanol production from potato tubers
Swart et al. Intensification of Xylo-oligosaccharides production by hydrothermal treatment of Brewer’s spent grains: The use of extremely Low acid catalyst for reduction of degradation products associated with high solid loading
JP6590494B2 (en) Waste-derived biomass reactor
US12011677B2 (en) Process for evaporating water from stillage
CN107708882A (en) It is attached to the high efficiency of energy Application way of the castoff burning facility of ethanol manufacturing equipment
WO2010135366A1 (en) System for treatment of biomass to facilitate the production of ethanol
WO2014033476A2 (en) Hydrolysis and fermentation process
JP2010268705A (en) Saccharification reaction vessel
Stewart Co-products
Meredith Dryhouse design: focusing on reliability and return on investment
CA2724832C (en) Method and apparatus for processing waste containing fermentable raw material
JP5520495B2 (en) Method and apparatus for producing ethanol from food waste
JP2007202517A (en) Method for production of ethanol from biomass and system for producing the same
JP6737986B2 (en) Apparatus for producing ethanol from biomass resources and method for producing ethanol from biomass resources
JP2009007563A (en) Organic waste fuel and manufacturing method for it
Rakshitha et al. Statistical optimisation of saccharification process using Amorphophallus paeoniifolius tubers into fermentable sugars for bioethanol production in stirred tank batch reactor (STBR)
WO2008022587A1 (en) A method of brewing ethanol
JP2017063741A (en) Ethanol production method
De Blasio et al. Processes of bioethanol production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190917

R150 Certificate of patent or registration of utility model

Ref document number: 6590494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250