JP6589450B2 - Chemical imaging sensor and method for measuring change in pH distribution over time using chemical imaging sensor - Google Patents

Chemical imaging sensor and method for measuring change in pH distribution over time using chemical imaging sensor Download PDF

Info

Publication number
JP6589450B2
JP6589450B2 JP2015157262A JP2015157262A JP6589450B2 JP 6589450 B2 JP6589450 B2 JP 6589450B2 JP 2015157262 A JP2015157262 A JP 2015157262A JP 2015157262 A JP2015157262 A JP 2015157262A JP 6589450 B2 JP6589450 B2 JP 6589450B2
Authority
JP
Japan
Prior art keywords
sample
test solution
imaging sensor
chemical imaging
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015157262A
Other languages
Japanese (ja)
Other versions
JP2017036958A (en
Inventor
達夫 吉信
達夫 吉信
浩一郎 宮本
浩一郎 宮本
志照 木村
志照 木村
悟 三好
悟 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2015157262A priority Critical patent/JP6589450B2/en
Publication of JP2017036958A publication Critical patent/JP2017036958A/en
Application granted granted Critical
Publication of JP6589450B2 publication Critical patent/JP6589450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、一方向に連続して流下する試験溶液中に試料が常時浸漬されている環境において、試料の間隙を通過する試験溶液に形成されるpH分布の経時変化を測定するための化学イメージングセンサ、および化学イメージングセンサを用いたpH分布の経時変化測定方法に関する。   The present invention is a chemical imaging for measuring the temporal change of pH distribution formed in a test solution passing through a gap in a sample in an environment in which the sample is constantly immersed in a test solution flowing down continuously in one direction. The present invention relates to a sensor and a method for measuring a change in pH distribution over time using a chemical imaging sensor.

従来より、サンプルを含有した電解質中におけるpH等の化学的情報を、2次元的な空間分布として画像化することを可能にした化学イメージングセンサは、様々な分野に応用されており、たとえば非特許文献1では、化学イメージングセンサにて固体表面の経時変化を分析する方法が開示されている。   Conventionally, chemical imaging sensors capable of imaging chemical information such as pH in an electrolyte containing a sample as a two-dimensional spatial distribution have been applied to various fields. Document 1 discloses a method of analyzing a change over time of a solid surface with a chemical imaging sensor.

これは、化学イメージングセンサのセンサ本体が平滑な測定面を有することを利用し、このセンサ本体と測定対象の固体試料の間に薄い溶液層を挟み込み、溶液層に形成されるpH分布を可視化して経時的に観察するものである。具体事例として、測定対象の固体に金属材料を、また溶液層として塩化カリウムを含有させた寒天ゲルフィルムを採用し、寒天ゲルフィルムの上に金属材料を接触させて、寒天ゲルフィルム内に形成されたpH分布の経時変化を観察する。これにより、金属材料表面における腐食反応の把握を可能にしたものである。   This utilizes the fact that the sensor body of the chemical imaging sensor has a smooth measurement surface. A thin solution layer is sandwiched between the sensor body and the solid sample to be measured, and the pH distribution formed in the solution layer is visualized. Observe over time. As a specific example, an agar gel film containing a metal material for the solid to be measured and potassium chloride as the solution layer is used, and the metal material is brought into contact with the agar gel film to form the agar gel film. Observe the change in pH distribution over time. This makes it possible to grasp the corrosion reaction on the surface of the metal material.

半導体シリコンセンサーを用いたpHイメージング顕微鏡による固体上面分析、BUNSEKI KAGAKU、Vol.58、No.7、pp.595−601、2009Solid top surface analysis by pH imaging microscope using semiconductor silicon sensor, BUNSEKI KAGAKA, Vol. 58, no. 7, pp. 595-601, 2009

上記の方法は、固体試料に対して溶液が静止している状態の経時変化を把握する場合には有効な分析方法である。しかし、例えば、汚染物質が存在する領域に近接する地盤を、汚染物質に接触して汚染された地下水が常時流下する環境をセンサ本体上で再現し、地盤への経時的な影響を化学イメージングセンサにて把握したい場合には、上記の方法を採用することができない。   The above method is an effective analysis method for grasping the change with time of the state in which the solution is stationary with respect to the solid sample. However, for example, the environment close to the area where pollutants are present is reproduced on the sensor body in the environment where the contaminated groundwater always flows in contact with the pollutants, and the effects on the ground over time are reflected in the chemical imaging sensor. The above method cannot be adopted when it is desired to grasp the above.

また、固体状の試料が水膨潤性を有する場合には、センサ本体の測定面上で経時的に固体試料の容積変化が生じて、正確なpH分布を測定することが困難となる。   Further, when the solid sample has water swellability, the volume of the solid sample changes over time on the measurement surface of the sensor body, making it difficult to measure an accurate pH distribution.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、測定対象となる固体状の試料が一方向に連続して流下する試験溶液中に常時浸漬される状態を形成でき、かつ試料の間隙を通過する試験溶液に形成されるpH分布の経時変化を、高精度で測定することの可能な、化学イメージングセンサおよび化学イメージングセンサを用いたpH分布の経時変化測定方法を提供することである。   The present invention has been made in view of such problems, and its main purpose is to form a state in which a solid sample to be measured is constantly immersed in a test solution that continuously flows down in one direction. A chemical imaging sensor and a method for measuring pH distribution over time using a chemical imaging sensor capable of measuring with high accuracy the time-dependent change in pH distribution formed in a test solution passing through a gap between samples. It is to be.

かかる目的を達成するため本発明の化学イメージングセンサは、上面にセンサ面が形成される半導体基板よりなるセンサ本体を備え、前記センサ面上における固体状の試料に接触する試験溶液中に分布するイオン濃度の二次元分布を測定する化学イメージングセンサであって、前記センサ本体の下面側に配置され、該センサ本体にて中央に形成された開口が覆われる環状の基板と、該基板の上面に前記センサ本体を囲うよう配置され、中空部に試料充填空間を有する試料支持筒と、該試料支持筒に前記試料充填空間と連通するよう形成され、互いに対向して配置される前記試験溶液の流入路および流出路と、を備え、前記基板の開口に、複数の貫通孔を有するせん断補強材が設置されるとともに、前記試料支持筒の上端に、着脱自在な試料保護蓋が設置され、前記試料充填空間を拘束するよう、前記試料保護蓋、前記試料支持筒および前記基板が、固定治具にて固定されることを特徴とする。 In order to achieve this object, a chemical imaging sensor of the present invention comprises a sensor body made of a semiconductor substrate having a sensor surface formed on an upper surface, and ions distributed in a test solution in contact with a solid sample on the sensor surface. A chemical imaging sensor for measuring a two-dimensional distribution of concentration, which is disposed on a lower surface side of the sensor body, and an annular substrate that covers an opening formed in the center of the sensor body; A sample support cylinder disposed so as to surround the sensor main body and having a sample filling space in a hollow portion, and an inflow path of the test solution formed in the sample support cylinder so as to communicate with the sample filling space and arranged to face each other and an outflow path comprises, at the opening of the substrate, together with the shear reinforcement member having a plurality of through-holes is placed, the upper end of the sample support tube, removable sample holding The lid is placed, so as to restrain the sample filling space, the sample protective cover, wherein the sample support tube and said substrate, characterized in Rukoto fixed by a fixing jig.

上記の化学イメージングセンサによれば、試料支持筒に形成された流入路を介して試料支持筒に備える試料充填空間に試験溶液を供給し、供給後の試験溶液を流入路に対向して試料支持筒に形成された流出路を介して排水することができる。これにより、センサ面上で固体状の試料が一方向に連続して流下する試験溶液中に常時浸漬される環境を形成できるとともに、固体状の試料の間隙を通過する試験溶液に形成されるpH分布を測定することも可能となる。   According to the above chemical imaging sensor, the test solution is supplied to the sample filling space provided in the sample support cylinder through the inflow path formed in the sample support cylinder, and the test solution after supply is opposed to the inflow path and is supported by the sample. Water can be drained through an outflow passage formed in the cylinder. As a result, it is possible to form an environment where the solid sample is constantly immersed in the test solution in which the solid sample continuously flows in one direction on the sensor surface, and the pH formed in the test solution passing through the gap between the solid samples. It is also possible to measure the distribution.

また、固体状の試料が膨潤性を有する材料であっても、センサ本体に作用する膨潤圧を複数の貫通孔を有するせん断補強材にて支持することができるため、センサ本体のせん断破壊現象を抑制することが可能となる。さらに、試料保護蓋、試料支持筒および基板を固定して試料充填空間を拘束することにより、試料充填空間内で経時的に膨潤する固体状の試料を定容に保持できるため、試料の間隙を通過する試験溶液中に形成されるpH分布の経時変化を高精度に把握することが可能となる。In addition, even if the solid sample is a swellable material, the swelling pressure acting on the sensor body can be supported by a shear reinforcement material having a plurality of through holes. It becomes possible to suppress. Furthermore, by fixing the sample protection lid, the sample support cylinder, and the substrate to restrain the sample filling space, a solid sample that swells with time in the sample filling space can be held at a constant volume. It becomes possible to grasp the change with time of pH distribution formed in the passing test solution with high accuracy.

本発明の化学イメージングセンサは、前記流入路に連通して、前記試験溶液を前記試料充填空間に圧送供給するための圧送装置が備えられることを特徴とする。The chemical imaging sensor according to the present invention is characterized in that a pressure feeding device is provided in communication with the inflow path for feeding the test solution to the sample filling space.

上記の化学イメージングセンサによれば、固体状の試料の間隙率が小さい場合にも、圧送装置を用いて強制的に試験溶液を固体状の試料中に流下させることが可能となる。また、圧送装置にて試験溶液の圧送速度を調整することにより、固体状の試料中を連続して流下する試験溶液の流速を適宜変更することができるため、試験溶液が固体状の試料中を連続して流下することにより生じる試料の経時的な変状状況を、所望の流速にて把握することが可能となる。According to the above chemical imaging sensor, even when the porosity of the solid sample is small, it is possible to force the test solution to flow down into the solid sample using the pumping device. In addition, by adjusting the pumping speed of the test solution with the pumping device, the flow rate of the test solution that continuously flows down in the solid sample can be changed as appropriate, so that the test solution passes through the solid sample. It is possible to grasp the state of deformation of the sample over time caused by the continuous flow down at a desired flow rate.

本発明の化学イメージングセンサを用いたpH分布の経時変化測定方法は、前記固体状の試料を前記試料充填空間に充填した後、前記試験溶液を前記流入路から前記試料充填空間へ連続的に供給しつつ、固体状の試料内の間隙を通過する前記試験溶液に形成されるpH分布を経時的に測定することを特徴とする。   According to the method for measuring a change in pH distribution over time using the chemical imaging sensor of the present invention, after the solid sample is filled in the sample filling space, the test solution is continuously supplied from the inflow path to the sample filling space. However, the pH distribution formed in the test solution passing through the gap in the solid sample is measured over time.

本発明の化学イメージングセンサを用いたpH分布の経時変化測定方法によれば、一方向に連続して流下する試験溶液中に常時浸漬された状態の固体状の試料について、その表面が経時的に変状する様子を、試料の間隙を通過する試験溶液に形成されるpH分布の経時変化から高精度に把握することが可能となる。   According to the method for measuring pH distribution over time using the chemical imaging sensor of the present invention, the surface of a solid sample that is constantly immersed in a test solution that continuously flows in one direction is changed over time. The state of deformation can be grasped with high accuracy from the change over time of the pH distribution formed in the test solution passing through the gap between the samples.

本発明によれば、測定対象の試料に対して試験溶液を流下させて、固体状の試料が一方向に連続して流下する試験溶液中に常時浸漬される環境をセンサ本体のセンサ面上にて形成できるとともに、試料の表面が経時的に変状する様子を、試料の間隙を通過する試験溶液に形成されるpH分布の経時変化から高精度に把握することが可能となる。   According to the present invention, an environment in which a test solution is allowed to flow down a sample to be measured and the solid sample is constantly immersed in the test solution flowing down continuously in one direction is placed on the sensor surface of the sensor body. In addition, it is possible to grasp the state in which the surface of the sample changes with time from the change with time of the pH distribution formed in the test solution passing through the gap between the samples with high accuracy.

本実施の形態におけるpH分布測定装置の概略を示す図である。It is a figure which shows the outline of the pH distribution measuring apparatus in this Embodiment. 本実施の形態における基板を示す図である。It is a figure which shows the board | substrate in this Embodiment. 本実施の形態における試料充填空間を示す図である。It is a figure which shows the sample filling space in this Embodiment. 本実施の形態における試料充填空間の平面視を示す図である。It is a figure which shows the planar view of the sample filling space in this Embodiment. 本実施の形態における化学イメージングセンサのxyステージによる光走査を示す図である。It is a figure which shows the optical scanning by the xy stage of the chemical imaging sensor in this Embodiment. 本実施の形態における試料が膨潤する場合の試料充填空間を示す図である。It is a figure which shows the sample filling space in case the sample in this Embodiment swells. 本実施の形態における膨潤性を有する試料を測定する場合の基板を示す図である。It is a figure which shows the board | substrate in the case of measuring the sample which has the swelling property in this Embodiment. 本実施の形態における基板にせん断補強材を設置した場合の化学イメージングセンサのxyステージによる光走査を示す図である。It is a figure which shows the optical scanning by xy stage of a chemical imaging sensor at the time of installing the shear reinforcement material in the board | substrate in this Embodiment. 電解質のpH変化に対するI−V曲線を示す図である。It is a figure which shows the IV curve with respect to pH change of electrolyte.

以下、固体状の試料に土質試料1を用いる場合を例に挙げ、本発明の化学イメージングセンサ2を、図1〜図9を参照して詳述する。
なお、固体状の試料は必ずしも土質試料1に限定されるものではなく、粒状体の集合や空隙を有する固形物等、試験溶液が流下可能な間隙もしくは空隙を有する固体状の材料であれば、いずれを採用してもよい。
Hereinafter, the case where the soil sample 1 is used as a solid sample will be described as an example, and the chemical imaging sensor 2 of the present invention will be described in detail with reference to FIGS.
In addition, the solid sample is not necessarily limited to the soil sample 1, as long as it is a solid material having gaps or voids through which the test solution can flow, such as a solid body having an aggregate of particles or voids, Either may be adopted.

<第1の実施の形態>
本実施の形態における化学イメージングセンサ2は、図3で示すように、測定対象の土質試料1を一方向に連続して流下する試験溶液4中に常時浸漬させた状態において、土質試料1の土粒子3間の間隙中を通過する試験溶液4内に形成されるpH分布を測定するものである。
<First embodiment>
As shown in FIG. 3, the chemical imaging sensor 2 in the present embodiment has a soil of the soil sample 1 in a state where the soil sample 1 to be measured is constantly immersed in a test solution 4 that continuously flows down in one direction. The pH distribution formed in the test solution 4 passing through the gap between the particles 3 is measured.

化学イメージングセンサ2は、電解質中のpH分布を測定する際に使用される半導体化学センサであり、図1及び図2で示すように、半導体(Si)211上に絶縁体(SiO2/Si34)212を積層した半導体基板よりなるセンサ本体21と、試験溶液4に浸される参照電極25と、センサ本体21の下面側に設置される対極26と、センサ本体21の近傍であって、センサ本体21の下面にレーザー光271を照射するための半導体レーザー27と、レーザー光271がセンサ本体21の下面全域を移動しながら照射するよう、レーザー光271を移動させるためのxyステージ28を備える。 The chemical imaging sensor 2 is a semiconductor chemical sensor used when measuring the pH distribution in an electrolyte. As shown in FIGS. 1 and 2, an insulator (SiO 2 / Si 3 ) is formed on a semiconductor (Si) 211. N 4 ) 212, a sensor body 21 made of a semiconductor substrate, a reference electrode 25 immersed in the test solution 4, a counter electrode 26 installed on the lower surface side of the sensor body 21, and the vicinity of the sensor body 21. A semiconductor laser 27 for irradiating the lower surface of the sensor body 21 with the laser beam 271 and an xy stage 28 for moving the laser beam 271 so that the laser beam 271 irradiates the entire lower surface of the sensor body 21 while moving. Prepare.

また、図1で示すように、センサ本体21の下面側に基板5を備えるとともに、センサ本体21を囲うように配置される試料支持筒6を備えている。基板5は、図2で示すように、中央部分に開口51を有する環状の板材よりなり、その上面に、図1で示すように、開口51を覆うようにセンサ本体21が配置されるとともに、試料支持筒6が設置される。   In addition, as shown in FIG. 1, the substrate 5 is provided on the lower surface side of the sensor main body 21, and the sample support cylinder 6 is provided so as to surround the sensor main body 21. As shown in FIG. 2, the substrate 5 is made of an annular plate member having an opening 51 in the center portion, and the sensor body 21 is disposed on the upper surface so as to cover the opening 51 as shown in FIG. 1. A sample support cylinder 6 is installed.

試料支持筒6は、土質試料1が充填される試料充填空間7となる中空部を有する筒状体よりなり、その上部に土質試料1を保護するための試料保護蓋61を備えている。また、試料支持筒6には、試料充填空間7と連通して試験溶液4を供給および排出するための流入路62および流出路63が備えられており、流入路62と流出路63は互いに対向するよう配置されている。これにより、試験溶液4は、図3で示すように、流入路62から試料充填空間7に流入するとともに、試料充填空間7内より流出路63を介して排出されて、土質試料1を一方向に連続して流下する試験溶液4中に常時浸漬された状態とすることが可能となる。   The sample support cylinder 6 is formed of a cylindrical body having a hollow portion serving as a sample filling space 7 in which the soil sample 1 is filled, and a sample protection lid 61 for protecting the soil sample 1 is provided on the upper portion thereof. In addition, the sample support cylinder 6 is provided with an inflow path 62 and an outflow path 63 for communicating with the sample filling space 7 and supplying and discharging the test solution 4, and the inflow path 62 and the outflow path 63 are opposed to each other. Arranged to do. As a result, as shown in FIG. 3, the test solution 4 flows into the sample filling space 7 from the inflow passage 62 and is discharged from the sample filling space 7 through the outflow passage 63 to allow the soil sample 1 to flow in one direction. It is possible to make it always immersed in the test solution 4 flowing down continuously.

なお、試料支持筒6の上面と試料保護蓋61との接合部、および試料支持筒6の下面と基板5との接合部には、図1で示すように、試料充填空間7に流入した試験溶液4が漏れ出ることのないよう、ゴムパッキン13を設置しておくとよい。   As shown in FIG. 1, the test flowing into the sample filling space 7 is made at the joint between the upper surface of the sample support cylinder 6 and the sample protection lid 61 and at the joint between the lower surface of the sample support cylinder 6 and the substrate 5. A rubber packing 13 is preferably installed so that the solution 4 does not leak.

上記の化学イメージングセンサ2に対して本実施の形態ではさらに、試料支持筒6の中空部に試料充填空間7を挟んで一対の多孔質部材81、82を備えている。多孔質部材81、82は、それぞれを流入路62及び流出路63に接続するとともに対向するように配置されており、図4の平面図で示すように、試料充填空間7と接する面積を広く確保している、これにより、試料充填空間7に充填される土質試料1に対して、平面視で広い範囲に試験溶液4を均等に流下させることができる。なお、多孔質部材81、82は、少なくとも土質試料1を充填する際の側圧で変形しない程度の剛性を備える材料であれば、いずれの多孔質材料を採用してもよい。   In the present embodiment, the chemical imaging sensor 2 further includes a pair of porous members 81 and 82 sandwiching the sample filling space 7 in the hollow portion of the sample support cylinder 6. The porous members 81 and 82 are respectively connected to the inflow path 62 and the outflow path 63 and arranged so as to face each other, and as shown in the plan view of FIG. 4, a wide area in contact with the sample filling space 7 is secured. Thus, the test solution 4 can be made to flow uniformly over a wide range in plan view with respect to the soil sample 1 filled in the sample filling space 7. The porous members 81 and 82 may employ any porous material as long as the material has rigidity sufficient to prevent deformation due to a lateral pressure when filling the soil sample 1.

また、本実施の形態では、図1で示すように、流入配管9を介して流入路62と接続する溶液タンク10、および流出配管11を介して流出路63と接続する排水タンク12を備えるとともに、流入配管9および流出配管11にそれぞれバルブ91、111を備えている。溶液タンク10は、試験溶液4を貯留する密閉構造のタンクであり、図示しない送気調整バルブを備えた窒素タンクよりなる圧送装置101が接続されている。   Further, in the present embodiment, as shown in FIG. 1, a solution tank 10 connected to the inflow passage 62 through the inflow piping 9 and a drain tank 12 connected to the outflow passage 63 through the outflow piping 11 are provided. The inflow pipe 9 and the outflow pipe 11 are provided with valves 91 and 111, respectively. The solution tank 10 is a sealed tank that stores the test solution 4, and is connected to a pressure feeding device 101 including a nitrogen tank provided with an air supply adjustment valve (not shown).

これにより、圧送装置101から溶液タンク10へ送気調整バルブを介して送気量を調整した窒素ガスを供給することで、試験溶液4を流入配管9および流入路62を介して試料充填空間7に所望の送圧にて供給することができる。このため、例えば試料充填空間7に土質試料1が密に充填されて土粒子3間の間隙が小さい場合であっても、試験溶液4は滞留することなく土質試料1内を流下することが可能となる。また、試験溶液4が土質試料1中を流下することにより生じる土質試料1の変状状況を把握したい場合にも、溶液タンク10へ送気調整バルブを介して窒素ガスを送気する際の流速を調整することで、試験溶液4が土質試料1中を流下する流速を、適宜変更することが可能となる。   Accordingly, the test solution 4 is supplied to the sample filling space 7 via the inflow pipe 9 and the inflow path 62 by supplying nitrogen gas whose air supply amount is adjusted from the pressure feeding device 101 to the solution tank 10 via the air supply adjustment valve. Can be supplied at a desired pressure. For this reason, for example, even when the soil sample 1 is closely packed in the sample filling space 7 and the gap between the soil particles 3 is small, the test solution 4 can flow down in the soil sample 1 without staying. It becomes. Further, when it is desired to grasp the state of deformation of the soil sample 1 caused by the test solution 4 flowing down through the soil sample 1, the flow rate when nitrogen gas is supplied to the solution tank 10 via the air supply adjustment valve. It is possible to appropriately change the flow rate at which the test solution 4 flows down through the soil sample 1 by adjusting.

なお、本実施の形態では、溶液タンク10に設置する圧送装置101に送気調整バルブを備えた窒素タンクを用いたが、必ずしも上記の構成に限定されるものではなく、例えば圧縮空気を利用するコンプレッサを採用する等、試験溶液4を試料充填空間7へ圧送供給できる構成を有していれば、いずれの構造を有するものであってもよい。そして、これら溶液タンク10には、先に述べた参照電極25が設置されるとともに、図2および図4で示すように、対極26がセンサ本体21の下面側に配置される前述した基板5の突出部52に設置される。   In this embodiment, a nitrogen tank provided with an air supply adjustment valve is used for the pressure supply device 101 installed in the solution tank 10, but the present invention is not necessarily limited to the above-described configuration, and for example, compressed air is used. Any structure may be used as long as the test solution 4 can be pumped and supplied to the sample filling space 7 such as by using a compressor. These solution tanks 10 are provided with the reference electrode 25 described above, and as shown in FIGS. 2 and 4, the counter electrode 26 is disposed on the lower surface side of the sensor body 21. Installed in the protrusion 52.

上述する構成を備える化学イメージングセンサ2は、半導体(Si)211と試験溶液4間にバイアス電圧を印加しつつ、センサ本体21の下面全域を網羅するよう、レーザー光271を図5で示すように移動させながら順に照射する。そして、センサ本体21の下面におけるレーザー光271が照射された局所領域22各々の交流光電流を測定する。局所領域22ごとで測定された交流光電流は、位置座標と共にパソコン等の端末装置23に記録されるとともにpHに変換され、土質試料1の間隙を通過する試験溶液4に形成されたpHの2次元的な空間分布としてグレースケールやカラースケールでモニタ24に画像表示される。   In the chemical imaging sensor 2 having the above-described configuration, the laser light 271 is applied as shown in FIG. 5 so as to cover the entire lower surface of the sensor body 21 while applying a bias voltage between the semiconductor (Si) 211 and the test solution 4. Irradiate sequentially while moving. And the alternating current photocurrent of each local area | region 22 irradiated with the laser beam 271 in the lower surface of the sensor main body 21 is measured. The alternating photocurrent measured for each local region 22 is recorded together with the position coordinates in a terminal device 23 such as a personal computer and converted to pH, and the pH of 2 formed in the test solution 4 passing through the gap between the soil samples 1. An image is displayed on the monitor 24 as a dimensional spatial distribution in gray scale or color scale.

なお、pHは、交流光電流のバイアス電圧特性が、土質試料1中のpHに依存してバイアス電圧方向にシフトすることを利用して測定されるものである。ここで用いるバイアス電圧とは、半導体(Si)211に対する参照電極25の電位をいう。また、センサ本体21は、基板5の上面に配置されているものの、先にも述べたように開口51の上方に配置されているため、基板5がセンサ本体21の下面に対するレーザー光271の照射を妨げることはない。   The pH is measured by utilizing the fact that the bias voltage characteristic of the alternating photocurrent shifts in the bias voltage direction depending on the pH in the soil sample 1. The bias voltage used here refers to the potential of the reference electrode 25 with respect to the semiconductor (Si) 211. Although the sensor main body 21 is disposed on the upper surface of the substrate 5, as described above, the sensor main body 21 is disposed above the opening 51. Therefore, the substrate 5 is irradiated with the laser light 271 on the lower surface of the sensor main body 21. Will not interfere.

<第2の実施の形態>
ところで、土質試料1が水膨潤性を有する場合において、土質試料1は試験溶液4に接することにより試料充填空間7内で経時的に膨潤し、図6で示すように、試料支持筒6、試料保護蓋61、多孔質部材81、82、およびセンサ本体21に膨潤圧を作用させる。なかでも、センサ本体21に膨潤圧が作用すると、センサ本体21にせん断破壊が生じてpH分布の測定が不能となる事態が想定される。
<Second Embodiment>
By the way, when the soil sample 1 has water swellability, the soil sample 1 swells with time in the sample filling space 7 by coming into contact with the test solution 4, and as shown in FIG. Swelling pressure is applied to the protective lid 61, the porous members 81 and 82, and the sensor body 21. In particular, when a swelling pressure acts on the sensor main body 21, it is assumed that a shear failure occurs in the sensor main body 21 and the pH distribution cannot be measured.

そこで、図6で示すように、基板5の開口51に、複数の貫通孔を有するせん断補強材14を設置し、せん断補強材14にて膨潤圧を支持することでセンサ本体21のせん断破壊を防止している。本実施の形態では、図7で示すように、基板5の開口51に相当する領域に、パンチングメタルよりなるせん断補強材14を装着する構成としているが、必ずしもこれに限定されるものではなく、ラス網や複数の貫通孔を有する板材等、いずれのせん断補強材14を採用してもよい。また、複数の貫通孔を有するせん断補強材14の材質および部材厚は、土質試料1が膨潤することにより生じる膨潤圧に応じて、適宜決定すればよい。   Therefore, as shown in FIG. 6, the shear reinforcement 14 having a plurality of through holes is installed in the opening 51 of the substrate 5, and the shear pressure is supported by the shear reinforcement 14, so that the sensor body 21 is sheared and broken. It is preventing. In the present embodiment, as shown in FIG. 7, the shear reinforcement material 14 made of a punching metal is attached to a region corresponding to the opening 51 of the substrate 5, but the present invention is not necessarily limited thereto. Any shear reinforcement 14 such as a lath net or a plate having a plurality of through holes may be employed. In addition, the material and member thickness of the shear reinforcement member 14 having a plurality of through holes may be appropriately determined according to the swelling pressure generated when the soil sample 1 swells.

しかし、基板5の開口51にせん断補強材14を設置すると、せん断補強材14がセンサ本体21の下面に対するレーザー光271の照射を妨げることとなり、図8で示すように、レーザー光271の照射面が必ずしもセンサ本体21の下面とならず、交流光電流が測定できない局所領域221が存在することとなる。このため、せん断補強材14における孔141の配置間隔を、図8で示すように、レーザー光271の進行方向及び進行方向直交方向ともに、交流光電流を測定できない局所領域221が、隣り合う交流光電流を測定可能な局所領域22の間に多くても2個存在するまでにとどまるように設定している。   However, when the shear reinforcement member 14 is installed in the opening 51 of the substrate 5, the shear reinforcement member 14 prevents the laser beam 271 from being irradiated on the lower surface of the sensor body 21, and the irradiation surface of the laser beam 271 as shown in FIG. However, this is not necessarily the lower surface of the sensor body 21, and there is a local region 221 in which AC photocurrent cannot be measured. For this reason, as shown in FIG. 8, the local region 221 in which the alternating current photocurrent cannot be measured in both the traveling direction and the traveling direction orthogonal direction of the laser light 271 is arranged between adjacent alternating current lights. It is set so that at most two exist between the local regions 22 where the current can be measured.

こうすると、交流光電流を測定できない局所領域221は交流光電流を測定可能な局所領域22と、レーザー光271の進行方向もしくは進行方向直交方向のいずれかで必ず隣接することとなる。よって、例えば、交流光電流を測定できない局所領域221に、隣接する交流光電流を測定可能な局所領域22の測定値を代用させる等することで、pHの2次元的な空間分布を画像表示することができ、基板5の開口51にせん断補強材14を設置しない場合と、同程度の精度を確保することが可能となる。   In this way, the local region 221 in which the AC photocurrent cannot be measured is necessarily adjacent to the local region 22 in which the AC photocurrent can be measured in either the traveling direction of the laser light 271 or the direction orthogonal to the traveling direction. Therefore, for example, by substituting the measurement value of the local region 22 that can measure the adjacent AC photocurrent into the local region 221 where the AC photocurrent cannot be measured, the two-dimensional spatial distribution of pH is displayed as an image. It is possible to ensure the same degree of accuracy as when the shear reinforcement member 14 is not installed in the opening 51 of the substrate 5.

なお、センサ本体21とレーザー27との間にせん断補強材14を介在させた場合における交流光電流を測定できない局所領域221の処理方法は、必ずしも上記の方法に限定されるものではなく、いずれの画像処理方法を採用してもよい。また、せん断補強材14における孔141の配置形状や孔141の大きさは、土質試料1より作用される膨潤圧を支持可能な強度を有するとともに、上記の配置間隔を満足していれば、何ら限定されるものではない。しかし、せん断補強材14の開口率は、pHの2次元的な空間分布を画像表示する際の信頼性を考慮すると、発明者の知見から、少なくとも20%以上に設定することが好ましい。   In addition, the processing method of the local area | region 221 which cannot measure the alternating current photocurrent when the shear reinforcement 14 is interposed between the sensor main body 21 and the laser 27 is not necessarily limited to the above method. An image processing method may be adopted. In addition, the arrangement shape of the holes 141 and the size of the holes 141 in the shear reinforcing material 14 are strong enough to support the swelling pressure applied from the soil sample 1 and satisfy the above-described arrangement interval. It is not limited. However, the aperture ratio of the shear reinforcement member 14 is preferably set to at least 20% or more from the inventor's knowledge, considering the reliability when displaying a two-dimensional spatial distribution of pH as an image.

また、本実施の形態では、図1で示すように、試料支持筒6を試料保護蓋61及び基板5にて挟持するようにして締め付けボルトよりなる固定手段15にて締付け固定し、試料充填空間7を拘束している。これにより、水膨潤性を有する土質試料1を試験溶液4中に浸漬させた状態においても、土質試料1を試料充填空間7内で定容に保持でき、pH分布の経時変化を高精度に把握することが可能となる。なお、固定手段15は、試料充填空間7を定容に保持できるものであればいずれを採用してもよく、また、多孔質部材81、82は、少なくとも土質試料1が継時的に膨潤することにより生じる膨潤圧にて変形しない程度の剛性を備える材料を採用するとよい。   Further, in the present embodiment, as shown in FIG. 1, the sample support cylinder 6 is clamped and fixed by the fixing means 15 made of a clamping bolt so as to be clamped by the sample protection lid 61 and the substrate 5, and the sample filling space is obtained. 7 is restrained. Thereby, even when the soil sample 1 having water swellability is immersed in the test solution 4, the soil sample 1 can be maintained at a constant volume in the sample filling space 7, and the change in pH distribution over time can be grasped with high accuracy. It becomes possible to do. Any fixing means 15 may be used as long as it can hold the sample filling space 7 at a constant volume, and the porous members 81 and 82 swell at least the soil sample 1 over time. It is advisable to employ a material having such a rigidity that it does not deform due to the swelling pressure generated by this.

上記の化学イメージングセンサ2によれば、土質試料1が膨潤性を有する材料であっても、センサ本体21に作用する膨潤圧をせん断補強材14にて支持することができるため、センサ本体21のせん断破壊現象を抑制することが可能となる。また、試料保護蓋61、試料支持筒6および基板5を固定して試料充填空間7を拘束することにより、試料充填空間7内で経時的に膨潤する土質試料1を定容に保持できるため、土質試料1の間隙を通過する試験溶液4中に形成されるpH分布の経時変化を高精度に把握することが可能となる。   According to the chemical imaging sensor 2 described above, the swelling pressure acting on the sensor body 21 can be supported by the shear reinforcement material 14 even if the soil sample 1 is a material having swelling properties. It becomes possible to suppress the shear fracture phenomenon. In addition, by fixing the sample protection lid 61, the sample support cylinder 6 and the substrate 5 and restraining the sample filling space 7, the soil sample 1 that swells with time in the sample filling space 7 can be held at a constant volume. It becomes possible to grasp the change with time of the pH distribution formed in the test solution 4 passing through the gap between the soil samples 1 with high accuracy.

<化学イメージングセンサを用いたpH分布の経時変化測定方法>
上述する構成の化学イメージングセンサ2を用いたpH分布の経時変化測定方法を、以下に説明する。
<Measurement method of pH distribution over time using chemical imaging sensor>
A method for measuring a change in pH distribution over time using the chemical imaging sensor 2 having the above-described configuration will be described below.

本実施の形態では、産業廃棄物や放射性廃棄物等を格納したコンクリート造の地下構造物における地下水の下流側に、セメント系材料やベントナイト等からなる人工バリアを構築した場合において、地下構造物に接触して強アルカリ性を呈した地下水が、ベントナイトに及ぼす影響を経時的に把握するべく、土質材料1にベントナイトを、また試験溶液4にpH調整した水酸化ナトリウム溶液を採用した。また、ベントナイトは水膨潤性を有する材料であるため、化学イメージングセンサ2に用いる基板5の開口51には、せん断補強材14を装着した。   In the present embodiment, when an artificial barrier made of cement-based material or bentonite is constructed on the downstream side of groundwater in a concrete underground structure storing industrial waste, radioactive waste, etc., the underground structure Bentonite was used as the soil material 1 and a sodium hydroxide solution adjusted to pH as the test solution 4 in order to grasp the influence of the groundwater that was brought into contact and strongly alkaline on the bentonite over time. In addition, since bentonite is a material having water swellability, the shear reinforcement material 14 is attached to the opening 51 of the substrate 5 used in the chemical imaging sensor 2.

まず、溶液タンク10に試験溶液4を貯留し、流入配管9のバルブ91および流出配管11のバルブ111を閉状態にするとともに、試料支持筒22の内方における試料充填空間7に土質試料1を充填し、固定手段15にて試料支持筒6、試料保護蓋61及び基板5締付け固定する。このとき、センサ本体21と土質試料1との間には、空隙ができないよう密着させる。   First, the test solution 4 is stored in the solution tank 10, the valve 91 of the inflow pipe 9 and the valve 111 of the outflow pipe 11 are closed, and the soil sample 1 is placed in the sample filling space 7 inside the sample support cylinder 22. The sample support cylinder 6, the sample protection cover 61 and the substrate 5 are fastened and fixed by the fixing means 15. At this time, the sensor main body 21 and the soil sample 1 are brought into close contact with each other so that there is no gap.

次に、流入配管9のバルブ91および流出配管11のバルブ111を開状態にして、試験溶液4を試料充填空間7に供給する。土質試料1が試験溶液4に浸漬したことを排水タンク12にて確認した後、流出配管11のバルブ111を閉状態にする。なお、試験溶液4が試排水タンク12にて確認できない場合には、溶液タンク10に設置した圧送装置101を作動させて試験溶液4を試料充填空間7に圧送供給する。   Next, the valve 91 of the inflow pipe 9 and the valve 111 of the outflow pipe 11 are opened, and the test solution 4 is supplied to the sample filling space 7. After confirming that the soil sample 1 is immersed in the test solution 4 in the drainage tank 12, the valve 111 of the outflow pipe 11 is closed. When the test solution 4 cannot be confirmed in the test drain tank 12, the pressure feeding device 101 installed in the solution tank 10 is operated to feed the test solution 4 to the sample filling space 7 by pressure.

この後、図1に示すように、バイアス電圧を印加するとともに、半導体(Si)211の下面にレーザー光271を照射して、半導体(Si)211の下面におけるレーザー光271が照射された局所領域22各々の交流光電流を測定する。これにより局所領域22各々でI−V曲線が得られるから、各々のI−V曲線から任意に固定したバイアス電圧の交流光電流値を検出し、これを土質試料1を試験溶液4に浸漬させた初期状態における局所領域22各々の基準電流値として設定する。   Thereafter, as shown in FIG. 1, a bias voltage is applied and the lower surface of the semiconductor (Si) 211 is irradiated with the laser light 271, and the local region irradiated with the laser light 271 on the lower surface of the semiconductor (Si) 211. Each of the 22 alternating photocurrents is measured. As a result, an IV curve is obtained in each local region 22, and an AC photocurrent value of an arbitrarily fixed bias voltage is detected from each IV curve, and the soil sample 1 is immersed in the test solution 4. It is set as a reference current value for each local region 22 in the initial state.

上記の測定が終了した後、流出配管11のバルブ111を開状態として、試験溶液4を土質試料1中に一方向に連続して流下させて、バイアス電圧を印加するとともに、センサ本体21の下面にレーザー光271を照射して、所定時間後のレーザー光271が照射された局所領域22各々の交流光電流を測定する。   After the above measurement is completed, the valve 111 of the outflow pipe 11 is opened, the test solution 4 is continuously flowed down in the soil sample 1 in one direction, a bias voltage is applied, and the lower surface of the sensor body 21 is Are irradiated with laser light 271 and the AC photocurrent of each local region 22 irradiated with the laser light 271 after a predetermined time is measured.

先にも述べたが、I−V曲線は図9で示すように、土質試料1内を流下する試験溶液4のpHに依存してバイアス電圧方向にシフトすることが知られている。そして、試験溶液4内は、土質試料1の表面状態に応じてプロトンが放出されるから、土質試料1を試験溶液4に浸漬させた初期状態とは異なるpH分布が形成される。したがって、所定時間後に局所領域22各々で得られるI−V曲線は、土質試料1を試験溶液4に浸漬させた初期状態で得たI−V曲線と比較して、pHの変化量に応じてバイアス電圧方向にシフトする。   As described above, it is known that the IV curve shifts in the bias voltage direction depending on the pH of the test solution 4 flowing down in the soil sample 1 as shown in FIG. Since protons are released in the test solution 4 according to the surface state of the soil sample 1, a pH distribution different from the initial state in which the soil sample 1 is immersed in the test solution 4 is formed. Therefore, the IV curve obtained in each of the local regions 22 after a predetermined time is compared with the IV curve obtained in the initial state where the soil sample 1 is immersed in the test solution 4 according to the amount of change in pH. Shift in the bias voltage direction.

そこで、局所領域22各々において、所定時間後のI−V曲線から先に設定した基準電流値に対応するバイアス電圧値を検出し、このバイアス電圧値と先に固定したバイアス電圧値との差から、土質試料1を試験溶液4に浸漬させた初期状態のI−V曲線に対する、試験溶液4を連続的に流下させてから所定時間経過後のI−V曲線のバイアス電圧のシフト量を算定する。そして、このシフト量をpHあたりの起電力の理論値(59mv/pH)で除することにより、局所領域22各々のpHの変化量を算出する。   Therefore, in each local region 22, a bias voltage value corresponding to the previously set reference current value is detected from the IV curve after a predetermined time, and the difference between the bias voltage value and the previously fixed bias voltage value is detected. The shift amount of the bias voltage of the IV curve after a predetermined time has elapsed after the test solution 4 is continuously flowed down with respect to the initial IV curve in which the soil sample 1 is immersed in the test solution 4 is calculated. . Then, the amount of change in pH of each local region 22 is calculated by dividing this shift amount by the theoretical value of electromotive force per pH (59 mV / pH).

上記の測定を適宜な時間間隔で繰り返し、経過時間ごとで土質試料1を試験溶液4に浸漬させた初期状態で得たpH分布に対するpHの変化量を測定し、グレースケールにて画像表示することにより、土質試料1の間隙を通過する試験溶液4内におけるpH分布の経時変化を可視化する。   Repeat the above measurement at appropriate time intervals, measure the amount of change in pH with respect to the pH distribution obtained in the initial state in which the soil sample 1 is immersed in the test solution 4 for each elapsed time, and display an image in gray scale. Thus, the change with time of the pH distribution in the test solution 4 passing through the gap between the soil samples 1 is visualized.

このように、本発明の化学イメージングセンサ2によるpH分布の経時変化測定方法によれば、一方向に連続して流下する強アルカリ性を呈する試験溶液4中に浸漬されたベントナイトよりなる土質試料1の表面が経時的に劣化もしくは変状する様子を、pH分布の経時変化から高精度に把握することが可能となる。   As described above, according to the method for measuring a change in pH distribution with time by the chemical imaging sensor 2 of the present invention, the soil sample 1 made of bentonite immersed in the test solution 4 exhibiting strong alkalinity flowing down continuously in one direction. It is possible to accurately grasp the state of deterioration or deformation of the surface over time from the change in pH distribution over time.

なお、本実施の形態では、土質試料1にベントナイトを採用したが、必ずしもこれに限定されるものではなく、いずれの自然土質試料もしくは人工土質試料を採用してもよい。また、試験溶液4についてもアルカリ溶液に限定されるものではなく、電解質であればいずれを採用してもよい。したがって、例えば試験溶液4に地下汚染物質を含む溶液を採用して、センサ本体21上で土質試料1の汚染状態や劣化状態等の経時的な変状を再現し、これをpH分布の経時変化から高精度に把握することも可能である。   In the present embodiment, bentonite is adopted as the soil sample 1, but it is not necessarily limited to this, and any natural soil sample or artificial soil sample may be employed. Further, the test solution 4 is not limited to the alkaline solution, and any one may be adopted as long as it is an electrolyte. Therefore, for example, a solution containing an underground contaminant is used as the test solution 4 to reproduce the temporal change of the soil sample 1 such as the contamination state and the deterioration state on the sensor body 21, and this change with time in the pH distribution. It is also possible to grasp with high accuracy.

本発明の化学イメージングセンサ2および化学イメージングセンサ2を用いたpH分布の経時変化測定方法は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能であることはいうまでもない。   The chemical imaging sensor 2 of the present invention and the method for measuring the change in pH distribution over time using the chemical imaging sensor 2 are not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say.

例えば、本実施の形態では、半導体レーザー27を用いて半導体(Si)211の下面にレーザー光271を照射したが、必ずしもこれに限定されるものではなく、LEDを用いて半導体(Si)211の下面にLED光を照射してもよい。   For example, in the present embodiment, the semiconductor laser 27 is used to irradiate the lower surface of the semiconductor (Si) 211 with the laser light 271, but the present invention is not limited to this, and the LED is used for the semiconductor (Si) 211. The lower surface may be irradiated with LED light.

1 土質試料
2 化学イメージングセンサ
21 センサ本体
211 半導体
212 絶縁体
22 局所領域
221 交流光電流を測定できない局所領域
23 パソコン
24 モニタ
25 参照電極
26 対極
27 半導体レーザー
271 レーザー光
28 XYステージ
3 粒子
4 試験溶液
5 基板
51 開口
6 試料支持筒
61 試料保護蓋
62 流入路
63 流出路
7 試料充填空間
81 多孔質部材
82 多孔質部材
9 流入配管
91 バルブ
10 溶液タンク
11 流出配管
111 バルブ
12 排水タンク
13 ゴムパッキン
14 せん断補強材
15 固定治具
DESCRIPTION OF SYMBOLS 1 Soil sample 2 Chemical imaging sensor 21 Sensor main body 211 Semiconductor 212 Insulator 22 Local area | region 221 Local area | region which cannot measure alternating current photocurrent 23 Personal computer 24 Monitor 25 Reference electrode 26 Counter electrode 27 Semiconductor laser 271 Laser light 28 XY stage 3 Particle 4 Test solution 5 Substrate 51 Opening 6 Sample support cylinder 61 Sample protection lid 62 Inflow path 63 Outflow path 7 Sample filling space 81 Porous member 82 Porous member 9 Inflow pipe 91 Valve 10 Solution tank 11 Outflow pipe 111 Valve 12 Drain tank 13 Rubber packing 14 Shear reinforcement 15 Fixing jig

Claims (3)

上面にセンサ面が形成される半導体基板よりなるセンサ本体を備え、前記センサ面上における固体状の試料に接触する試験溶液中に分布するイオン濃度の二次元分布を測定する化学イメージングセンサであって、
前記センサ本体の下面側に配置され、該センサ本体にて中央に形成された開口が覆われる環状の基板と、
該基板の上面に前記センサ本体を囲うよう配置され、中空部に試料充填空間を有する試料支持筒と、
該試料支持筒に前記試料充填空間と連通するよう形成され、互いに対向して配置される前記試験溶液の流入路および流出路と、
を備え
前記基板の開口に、複数の貫通孔を有するせん断補強材が設置されるとともに、前記試料支持筒の上端に、着脱自在な試料保護蓋が設置され、
前記試料充填空間を拘束するよう、前記試料保護蓋、前記試料支持筒および前記基板が、固定治具にて固定されることを特徴とする化学イメージングセンサ。
A chemical imaging sensor comprising a sensor body made of a semiconductor substrate having a sensor surface formed on an upper surface, and measuring a two-dimensional distribution of ion concentrations distributed in a test solution in contact with a solid sample on the sensor surface. ,
An annular substrate that is disposed on the lower surface side of the sensor body and covers an opening formed in the center of the sensor body;
A sample support cylinder disposed on the upper surface of the substrate so as to surround the sensor body, and having a sample filling space in a hollow portion;
An inflow path and an outflow path for the test solution formed in the sample support cylinder so as to communicate with the sample filling space and arranged to face each other;
Equipped with a,
A shear reinforcing material having a plurality of through holes is installed at the opening of the substrate, and a detachable sample protection lid is installed at the upper end of the sample support cylinder,
It said to restrain the sample filling space, the sample protective cover, wherein the sample support tube and the substrate, chemical imaging sensor, characterized in Rukoto fixed by a fixing jig.
請求項1に記載の化学イメージングセンサにおいて、
前記流入路に連通して、前記試験溶液を前記試料充填空間に圧送供給するための圧送装置が備えられることを特徴とする化学イメージングセンサ。
The chemical imaging sensor of claim 1,
A chemical imaging sensor comprising: a pumping device that communicates with the inflow path and pumps and supplies the test solution to the sample filling space.
請求項1また2に記載の化学イメージングセンサを用いたpH分布の経時変化測定方法であって、
前記固体状の試料を前記試料充填空間に充填した後、前記試験溶液を前記流入路から前記試料充填空間へ連続的に供給しつつ、固体状の試料内の間隙を通過する前記試験溶液に形成されるpH分布を経時的に測定することを特徴とするpH分布の経時変化測定方法。
A method for measuring a change in pH distribution over time using the chemical imaging sensor according to claim 1 or 2 ,
After filling the sample filling space with the solid sample, the test solution is formed into the test solution passing through the gap in the solid sample while continuously supplying the test solution from the inflow path to the sample filling space. A method for measuring a change in pH distribution over time, wherein the measured pH distribution is measured over time.
JP2015157262A 2015-08-07 2015-08-07 Chemical imaging sensor and method for measuring change in pH distribution over time using chemical imaging sensor Active JP6589450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015157262A JP6589450B2 (en) 2015-08-07 2015-08-07 Chemical imaging sensor and method for measuring change in pH distribution over time using chemical imaging sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157262A JP6589450B2 (en) 2015-08-07 2015-08-07 Chemical imaging sensor and method for measuring change in pH distribution over time using chemical imaging sensor

Publications (2)

Publication Number Publication Date
JP2017036958A JP2017036958A (en) 2017-02-16
JP6589450B2 true JP6589450B2 (en) 2019-10-16

Family

ID=58047512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157262A Active JP6589450B2 (en) 2015-08-07 2015-08-07 Chemical imaging sensor and method for measuring change in pH distribution over time using chemical imaging sensor

Country Status (1)

Country Link
JP (1) JP6589450B2 (en)

Also Published As

Publication number Publication date
JP2017036958A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US10458960B2 (en) Integrated system for quantitative real-time monitoring of hydrogen-induced cracking in simulated sour environment
US20190128792A1 (en) Horizontal soil permeability testing device
Wilkinson et al. Methane dynamics and thermal response in impoundments of the Rhine River, Germany
Yeung et al. Design, fabrication, and assembly of an apparatus for electrokinetic remediation studies
CN105784415A (en) Passive sampler for high-resolution determination of freely dissolved pollutant concentration of pore water
Sagüés et al. Kelvin Probe electrode for contactless potential measurement on concrete–Properties and corrosion profiling application
Zhang et al. Dynamic effect of water penetration on steel corrosion in carbonated mortar: A neutron imaging, electrochemical, and modeling study
JPH02502574A (en) Device for measuring liquid flow rate through a leak point in an impermeable membrane liner
JP6589450B2 (en) Chemical imaging sensor and method for measuring change in pH distribution over time using chemical imaging sensor
JP2005315607A (en) Underground environment assessment device and method
Mengistu et al. Diffusive gradient in thin-films (DGT) as risk assessment and management tools in the Central Witwatersrand Goldfield, South Africa
JP3688096B2 (en) Material evaluation method
JP4915094B2 (en) Ground / groundwater model test method and equipment
WO2006083346A2 (en) Device and method for passively measuring fluid and target chemical mass fluxes
Mahure et al. Corrosion monitoring of reinforcement in underground galleries of hydro electric project
JP6449757B2 (en) Test apparatus and test method
Ho Experimental and numerical investigation of infiltration ponding in one-dimensional sand-geotextile columns
JP4641322B2 (en) Subsurface environment evaluation apparatus and method
CZ34058U1 (en) Equipment for monitoring waterproofing membranes
Faeli et al. A new monitoring approach for sustainability assessment of subsurface utilities gasket materials against gasoline and chlorinated solvents: Field evaluation and model development
Boogaard et al. Long term infiltration capacity of permeable pavement determined with new full scale test method
Bigler et al. High-Resolution Depth-Discrete Analysis of PFAS Distribution and Leaching for a Vadose-Zone Source at an AFFF-Impacted Site
JP2005084043A (en) Circulated type humidity controller
Frangos Electrical detection of leaks in lined waste ponds
Frangos Electrical detection and monitoring of leaks in lined waste disposal ponds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6589450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150