JP6589267B2 - Method for producing positive electrode of lithium ion battery - Google Patents

Method for producing positive electrode of lithium ion battery Download PDF

Info

Publication number
JP6589267B2
JP6589267B2 JP2014207289A JP2014207289A JP6589267B2 JP 6589267 B2 JP6589267 B2 JP 6589267B2 JP 2014207289 A JP2014207289 A JP 2014207289A JP 2014207289 A JP2014207289 A JP 2014207289A JP 6589267 B2 JP6589267 B2 JP 6589267B2
Authority
JP
Japan
Prior art keywords
positive electrode
layer
battery
electrode
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014207289A
Other languages
Japanese (ja)
Other versions
JP2016076439A (en
Inventor
加藤 茂幹
茂幹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2014207289A priority Critical patent/JP6589267B2/en
Publication of JP2016076439A publication Critical patent/JP2016076439A/en
Application granted granted Critical
Publication of JP6589267B2 publication Critical patent/JP6589267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は高エネルギー密度を有する電池、特にリチウムイオン二次電池の正極電極、その製造方法及びそれを用いたリチウムイオン電池に関する。   The present invention relates to a battery having a high energy density, in particular, a positive electrode of a lithium ion secondary battery, a method for producing the same, and a lithium ion battery using the same.

リチウムイオン二次電池(以降、リチウムイオン電池又は単に電池という)は、そのエネルギー密度の高さから軽量かつ占有面積の少なさに優位性を持ち、ニッケル‐カドミウム電池やニッケル‐水素電池に比べてメモリー効果の少ない利点を備える事から、携帯電話やノートパソコンなどのポータブルデバイスに幅広く用いられている。また、近年では環境に対する影響から、これまで自動車に用いられてきた石油などの化石燃料に代わる動力源としても用いられる事が多くなってきた。さらに、最近では家庭への電力供給の一部を担う定置型蓄電池に対する期待も高い。   Lithium-ion secondary batteries (hereinafter referred to as lithium-ion batteries or simply batteries) are superior in terms of their high energy density in terms of light weight and small footprint, compared to nickel-cadmium batteries and nickel-hydrogen batteries. Because it has the advantage of less memory effect, it is widely used in portable devices such as mobile phones and notebook computers. Moreover, in recent years, it has been increasingly used as a power source to replace fossil fuels such as oil that have been used in automobiles because of its environmental impact. In addition, recently, there are high expectations for stationary storage batteries that are responsible for a part of power supply to homes.

一般的に用いられているリチウムイオン電池の構成部材は、電極、電解液、セパレータ、集電体、外装体等から成り、さらに電極は一般的には正極活物質又は負極活物質、導電剤、結着剤等で構成されている。活物質はリチウムイオン電池の正極および負極においてリチウムイオンの挿入脱離が可能な材料であり、挿入脱離の際に電子の授受を伴う事で電流を流す役割を担う。導電剤は活物質・活物質間および活物質・集電体間の電子移動を円滑に進める為に電極内部に配置される。結着剤は活物質、導電助剤および集電体の密着を高める為に電極内部に混合される。   Commonly used components of lithium ion batteries include electrodes, electrolytes, separators, current collectors, exterior bodies, etc., and the electrodes are generally positive electrode active materials or negative electrode active materials, conductive agents, It is composed of a binder and the like. The active material is a material capable of inserting and removing lithium ions at the positive electrode and the negative electrode of a lithium ion battery, and plays a role of flowing current by accompanying the exchange of electrons at the time of insertion and desorption. The conductive agent is disposed inside the electrode in order to smoothly move electrons between the active material and the active material and between the active material and the current collector. The binder is mixed inside the electrode in order to enhance the adhesion of the active material, the conductive additive and the current collector.

上述のように、自動車や家庭への電力供給を目的にリチウムイオン電池が使用される場合、携帯電話等の従来の民生用途に比べ、より大きな電池容量が必要とされる。このように、電池内に大きなエネルギーを蓄える事は、電池に異常が生じた際の危険度が飛躍的に上昇する事を意味する。特に電池を充電する際に本来の充電電位を超えて充電する状況、いわゆる過充電状態になると、正極の結晶構造変化に伴う発熱および電解液の分解、正極構造崩壊に伴う酸素の放出によって電池内部の温度が異常に高まり(いわゆる熱暴走状態になり)、発熱・発火に至る。一般的には、このような過充電における対策として、過充電に伴う電池内のガス発生による内圧上昇を検知手段とした外部回路による電流遮断機構を設ける事で、熱暴走に至る前に充電電流を止め、発火や発熱を抑制・停止する。しかしながら、上記対応だけでは安全性を確保する事ができない為、様々な取組みがなされている。   As described above, when a lithium ion battery is used for the purpose of supplying power to an automobile or a home, a larger battery capacity is required as compared with a conventional consumer application such as a mobile phone. Thus, storing a large amount of energy in the battery means that the degree of danger when an abnormality occurs in the battery dramatically increases. In particular, when the battery is charged beyond the original charging potential, when the battery is overcharged, the inside of the battery is heated due to heat generation due to the change in the crystal structure of the positive electrode, decomposition of the electrolyte, and release of oxygen due to the collapse of the positive electrode structure. The temperature rises abnormally (becomes a so-called thermal runaway state), leading to heat generation and ignition. In general, as a countermeasure against such overcharge, a current interruption mechanism by an external circuit that detects the increase in internal pressure due to gas generation in the battery due to overcharge is provided as a detection means, so that charging current can be reduced before thermal runaway occurs. Stop and stop or stop ignition and heat generation. However, since it is not possible to ensure safety only by the above measures, various efforts have been made.

特許文献1および2では、電解液中にLiCOやビフェニルのような過充電となる電位で分解し気体を発生する材料を添加する事によって過充電時に電池の内圧上昇を促進し、より早期に所定圧力で起動する電流遮断機構を作動させる事で熱暴走を防止している。 In Patent Documents 1 and 2, the increase in the internal pressure of the battery during overcharge is promoted by adding a material that decomposes at a potential that causes overcharge, such as Li 2 CO 3 or biphenyl, and generates gas in the electrolyte, Thermal runaway is prevented by operating a current interrupt mechanism that starts at a predetermined pressure at an early stage.

特許文献3では、電極中あるいは電極と集電体との間に設けた層中に熱膨張性マイクロカプセルを含ませる事で過充電に伴う発熱により熱膨張マイクロカプセルが膨張し、電極の抵抗増加を引き起こす事で電流を遮断し、熱暴走を抑制している。   In Patent Document 3, the thermal expansion microcapsule expands due to heat generated by overcharging by including the thermal expansion microcapsule in the electrode or in the layer provided between the electrode and the current collector, thereby increasing the resistance of the electrode. This interrupts the current and suppresses thermal runaway.

特許文献4では、正極集電体、導電剤、結着剤及び過充電状態での高電位で分解する物質から第1層と、第1層上に形成された正極活物質、導電剤及び結着剤からなる第2層とからなる2層構造の正極を採用することで、過充電により高電位となった場合に、高電位で分解する物質が分解されてガスを発生する。その結果、第1層を構造破壊するとともに、第1層と第2層との界面破壊を生じるように作用し、電池内部抵抗が上昇することで、充電電流を遮断し、過充電を抑制する手法が開示されている。   In Patent Document 4, a positive electrode current collector, a conductive agent, a binder, and a substance that decomposes at a high potential in an overcharged state, a first layer, and a positive electrode active material, a conductive agent, and a binder formed on the first layer. By adopting a positive electrode having a two-layer structure composed of a second layer made of an adhesive, when a high potential is caused by overcharging, a substance that decomposes at a high potential is decomposed to generate gas. As a result, the first layer is structurally destroyed and acts to cause interface destruction between the first layer and the second layer, and the internal resistance of the battery is increased to cut off the charging current and suppress overcharge. A technique is disclosed.

特許第3061759号公報Japanese Patent No. 3061759 特許第3575735号公報Japanese Patent No. 3575735 特許第4727021号公報Japanese Patent No. 4727021 特許第4236308号公報Japanese Patent No. 4236308

しかしながら特許文献1、特許文献2に示すような、電解液中に電位分解性材料を含有させる方法では、電解液中に分散した電位分解性材料が電池の充放電に伴うリチウムイオン移動の妨げとなり、大電流を流したときの電池容量維持特性(以降、電流負荷特性という)や充放電を繰り返した場合の電池容量維持特性(以降、充放電サイクル特性という)が低下してしまう。   However, in the method of including a potential decomposable material in the electrolyte solution as shown in Patent Document 1 and Patent Document 2, the potential decomposable material dispersed in the electrolyte solution hinders lithium ion movement associated with charge / discharge of the battery. Battery capacity maintenance characteristics (hereinafter referred to as current load characteristics) when a large current is passed and battery capacity maintenance characteristics (hereinafter referred to as charge / discharge cycle characteristics) when charging / discharging is repeated are deteriorated.

一方、特許文献3に示したような電極中あるいは電極と集電体との間に設けた層中に、熱によって機能する熱膨張性マイクロカプセルを含有する場合においても以下のような観点から課題が残る。まず、電極の基本構成は上述の通り活物質、導電剤及び結着剤で構成されており、活物質の量によって電池の容量が決まるため、電極層内に基本構成以外の材料を混入すると電極層内の活物質比率が減少してしまい、電極体積当たりの電池容量が減少してしまう。また、電極と集電体との間に層を設け、その層中に熱膨張性マイクロカプセルを含有する場合においても、層を新たに設けた分、電池全体の体積が上昇し、電池体積当たりの電池容量減少に繋がる。また、電極と集電体との間に新たに層を設ける事によって、電極層と集電体との間の電気抵抗が増大し、電流負荷特性の低下に繋がる。   On the other hand, even when a thermally expandable microcapsule that functions by heat is contained in an electrode as shown in Patent Document 3 or in a layer provided between an electrode and a current collector, there is a problem from the following viewpoints. Remains. First, the basic structure of the electrode is composed of an active material, a conductive agent and a binder as described above, and the capacity of the battery is determined by the amount of the active material. Therefore, if a material other than the basic structure is mixed in the electrode layer, the electrode The active material ratio in the layer decreases, and the battery capacity per electrode volume decreases. In addition, when a layer is provided between the electrode and the current collector and the thermally expandable microcapsule is contained in the layer, the volume of the entire battery is increased by the amount of the newly provided layer. Leading to a decrease in battery capacity. Further, by providing a new layer between the electrode and the current collector, the electrical resistance between the electrode layer and the current collector increases, leading to a decrease in current load characteristics.

また特許文献4では、電池内部抵抗が上昇することで、充電電流を遮断し、過充電を抑制する手法が開示されているが、第1層中の化合物が高電位で分解しガスを発生するとしており、気体発生という点では本発明と類似ではあるが、化合物の変化が高電位時ガス発生するため本発明と異なる。高電位時での分解反応のため、実際に高電位前に電池内温度が上昇してしまった場合は電解液の分解反応が発生してしまい、すぐに電池の暴走反応を抑制することができない。
また、逆に高電位でも過度の電池温度の上昇が見られない場合でも、第1層中の化合物の分解反応が生じてしまうため、少々の高電位で温度が上がり電池性能が上昇したとしても、化合物分解反応が生じ、正常な電池としては機能しなくなってしまう。さらに、電位値制御での分解反応のため、電極部ミクロでみると電子を通しやすい部分、通しにくい部分も生じ、不均一な反応となってしまう場合がある。そうなると、電池暴走を安定して抑制しきれないなどの課題も残ってしまう。
Further, Patent Document 4 discloses a technique for cutting off charging current and suppressing overcharge due to an increase in battery internal resistance, but the compound in the first layer decomposes at a high potential to generate gas. Although it is similar to the present invention in terms of gas generation, it is different from the present invention because the change of the compound generates gas at high potential. Because of the decomposition reaction at high potential, if the temperature inside the battery actually rises before the high potential, the decomposition reaction of the electrolyte will occur, and the runaway reaction of the battery cannot be suppressed immediately. .
On the other hand, even when the battery temperature does not increase excessively even at high potential, the decomposition reaction of the compound in the first layer occurs, so even if the temperature rises at a little high potential and the battery performance increases. A compound decomposition reaction occurs, and the battery does not function as a normal battery. Furthermore, because of the decomposition reaction under potential value control, there are cases where, when viewed in the electrode part micro, there are portions where electrons are easily passed and difficult to pass, resulting in a non-uniform reaction. In that case, the problem that the battery runaway cannot be stably suppressed remains.

本発明は、このような課題に鑑みてなされたものであり、その目的は、正極第1層に感温性の揮発材料、特に昇華材料を用いることにより、通常の電池使用時には影響なく、万が一、電池が過充電などの発熱状態となった場合には、電池反応の暴走、発火、爆発を抑制し安全性を確保できるリチウムイオン二次電池の正極電極、その製造方法及びそれを用いたリチウムイオン電池を提供することである。   The present invention has been made in view of such problems, and its purpose is to use a temperature-sensitive volatile material, particularly a sublimation material, in the positive electrode first layer, and without any influence during normal battery use. The positive electrode of a lithium ion secondary battery that can prevent battery runaway, ignition, and explosion and ensure safety when the battery is in an exothermic state such as overcharge, a method of manufacturing the same, and lithium using the same An ion battery is provided.

また、本発明の他の局面は、リチウムイオン電池の正極電極の製造方法であって、スロットダイ方式を用いて、リチウムイオン電池の正極集電体上に、80℃以上140℃以下で昇華する85重量部のガス発生材料と、10重量部の導電剤と、5重量部の結着剤とを有する正極第1層を形成する工程と、正極第1層を形成する工程に対してインラインで、正極第1層上に、正極活物質と、導電剤と、結着剤とを有する正極第2層を形成する工程とを含む、製造方法である。 Another aspect of the present invention is a method for producing a positive electrode of a lithium ion battery, which is sublimated at 80 ° C. or higher and 140 ° C. or lower on a positive electrode current collector of the lithium ion battery using a slot die method. 85 and the gas generating material parts, and the conductive agent 10 parts by weight, inline forming a positive electrode first layer and a binder 5 parts by weight, relative to the step of forming the Seikyokudai one layer in, the Seikyokudai one layer on, including a positive electrode active material, conductive agent, and, and forming a positive electrode second layer having a binder, a production process.

本発明によれば、通常の電池使用時には影響なく、万が一、電池が過充電などの発熱状態となった場合には、電池反応の暴走、発火、爆発を抑制し安全性を確保できるリチウムイオン電池の正極電極、その製造方法及びこれを用いたリチウムイオン電池を提供することができる。   According to the present invention, there is no effect when using a normal battery, and in the unlikely event that the battery is in a heat generation state such as overcharge, a lithium ion battery that can ensure safety by suppressing runaway, ignition, and explosion of the battery reaction The positive electrode, the manufacturing method thereof, and the lithium ion battery using the same can be provided.

実施例1、2、比較例2〜4に係る正極の模式断面図Schematic sectional view of positive electrodes according to Examples 1 and 2 and Comparative Examples 2 to 4 比較例1に係る正極の模式断面図Schematic cross-sectional view of the positive electrode according to Comparative Example 1 実施例1〜3、比較例1の正極評価2の際の電極状態の模式断面図Schematic cross-sectional view of electrode state during positive electrode evaluation 2 of Examples 1 to 3 and Comparative Example 1 比較例1の正極評価2の際の電極状態の模式断面図Schematic sectional view of the electrode state in the positive electrode evaluation 2 of Comparative Example 1 実施例1〜3、比較例2の正極評価3〜5の際のコイン型電池の模式断面図Schematic cross-sectional view of coin-type battery in positive electrode evaluation 3 to 5 of Examples 1 to 3 and Comparative Example 2 比較例1の正極評価3〜5の際のコイン型電池の模式断面図Schematic cross-sectional view of coin-type battery at positive electrode evaluation 3 to 5 of Comparative Example 1

本発明のリチウムイオン電池用正極は、正極集電体上に、過充電状態による高温状態において揮発してガスを発生するガス発生材料と、導電剤と、結着剤とを有する正極第1層と、正極活物質と、導電剤と、結着剤とを有し、正極第1層上に形成された正極第2層とを含み、過充電による高温状態になった場合に、正極第1層中のガス発生材料が揮発することで正極集電体と正極第2層との間の電気的抵抗が上昇する。   The positive electrode for a lithium ion battery according to the present invention comprises a positive electrode first layer having a gas generating material that volatilizes and generates a gas in a high temperature state due to an overcharged state, a conductive agent, and a binder on a positive electrode current collector. A positive electrode active material, a conductive agent, and a binder, and a positive electrode second layer formed on the positive electrode first layer. As the gas generating material in the layer volatilizes, the electrical resistance between the positive electrode current collector and the positive electrode second layer increases.

本発明者は、上述の課題を解決すべく鋭意検討した結果、正極第1層に過充電に伴う電圧上昇により分解されてガスを発生する化合物を導入するのではなく、過充電に伴う電圧上昇などによる温度上昇により正極第1層中でガスを発生させることで均一な揮発反応を促し、正極第1層がポーラスになることにより層が形成できなくなり、正極第1層部分が集電体と正極第2層との密着性を落とすことで抵抗となり電池として機能しないようにし電気的接触を遮断することができることを見出した。また、もちろん、定常での使用の場合は、正極第1層は抵抗となることなく、電池としての性能を低下させることはなく、効率的で安全性のみを向上させることができた。   As a result of intensive studies to solve the above-mentioned problems, the present inventor does not introduce a compound that generates gas by being decomposed by a voltage increase accompanying overcharge in the positive electrode first layer, but increases a voltage accompanying overcharge. A uniform volatilization reaction is promoted by generating a gas in the positive electrode first layer due to a temperature rise due to the above, and the positive electrode first layer becomes porous and the layer cannot be formed. It has been found that by reducing the adhesion to the positive electrode second layer, it becomes a resistance and does not function as a battery so that electrical contact can be cut off. Of course, in the case of steady use, the positive electrode first layer did not become a resistance, and the performance as a battery was not deteriorated, and only the safety and the safety could be improved.

この結果、本発明に係る、リチウムイオン電池の正極電極によれば、過充電などによりリチウムイオン電池やその電極が高温となった場合、正極第1層内でガスが発生することで、正極第1層の抵抗上昇、もしくは正極第1層と集電体あるいは正極第2層との界面抵抗上昇を引き起こし、過充電に伴う発火、爆発などの熱暴走反応を抑制することができ、リチウムイオン電池を常態では通常性能で作動させ、異常時には安全性を高めることができる。以下、本発明の一実施形態に係るリチウムイオン電池の正極電極、その製造方法及びこれを用いたリチウムイオン電池について説明する。   As a result, according to the positive electrode of the lithium ion battery according to the present invention, when the lithium ion battery or its electrode becomes high temperature due to overcharge or the like, gas is generated in the positive electrode first layer, Lithium-ion battery that can increase the resistance of one layer or increase the interface resistance between the positive electrode first layer and the current collector or the positive electrode second layer and suppress thermal runaway reaction such as ignition and explosion caused by overcharge Can be operated with normal performance under normal conditions, and safety can be improved in abnormal situations. Hereinafter, a positive electrode of a lithium ion battery according to an embodiment of the present invention, a manufacturing method thereof, and a lithium ion battery using the same will be described.

(正極)
リチウムイオン電池用正極は、少なくとも、ガス発生材料と導電材と結着剤などから構成される正極第1層を正極集電体上に形成し、正極第2層は、正極活物質、結着剤、導電材等をN−メチルピロリドンなどの溶媒中で混合した後、正極第1層上に積層塗布、乾燥することで2層以上の層から形成することができる正極電極である。
正極第1層に含まれるガス発生材料(揮発材料)は感熱性である必要があり、電池が異常と思われる温度域に入った際、すみやかにガスを発生させることが必要である。
たとえば、本実施形態では、ガス発生材料として、昇華性材料が挙げられる。昇華性材料には、無機材料、有機材料両方とも存在するが、目的に合致すればどちらを選択しても構わない。
例えば、無機材料としては代表的なものとしてはヨウ素などが挙げられる。
また、有機系材料としては、パラジクロロベンゼン、サリチル酸(2‐ヒドロキシ安息香酸)、ナフタレン、テレフタル酸、カフェイン(無水、一水和物)、メントール、食品添加物にも使用されるBHT(ブチルヒドロキシトルエン)、BHA(ブチルヒドロキシアニソール)なども挙げられる。
(Positive electrode)
A positive electrode for a lithium ion battery has a positive electrode first layer composed of at least a gas generating material, a conductive material, a binder and the like formed on a positive electrode current collector, and the positive electrode second layer includes a positive electrode active material and a binder. This is a positive electrode that can be formed from two or more layers by mixing an agent, a conductive material, etc. in a solvent such as N-methylpyrrolidone, then laminating and drying on the first positive electrode layer and drying.
The gas generating material (volatile material) contained in the positive electrode first layer needs to be heat-sensitive, and it is necessary to immediately generate gas when the battery enters a temperature range that seems to be abnormal.
For example, in this embodiment, a sublimable material is mentioned as a gas generating material. As the sublimation material, both inorganic materials and organic materials exist, but either one may be selected as long as it meets the purpose.
For example, a typical inorganic material includes iodine.
Organic materials include paradichlorobenzene, salicylic acid (2-hydroxybenzoic acid), naphthalene, terephthalic acid, caffeine (anhydrous, monohydrate), menthol, and BHT (butylhydroxy) that is also used in food additives. Toluene), BHA (butylhydroxyanisole) and the like are also included.

場合によっては、ガス発生材料に、塗工時には粉体で分散された状態で塗膜を形成し、所定温度における感熱性をもち、当該温度に融点を持つような光安定剤や防錆剤などを使用しても構わない。これは、当該温度で正極第1層が塗膜形成できなくなる効果とほぼ同じであるためである。但し、常温(25℃)、大気圧(1atm)下の状態で固体であることが好ましい。これは特に電池として使用する際に、正極第1層が液状となることを抑制するためである。
また、電池異常の温度域、例えば60℃以上140℃以下、特には80℃以上140℃以下付近で昇華する材料としては、上記の中では、ヨウ素、ナフタレン、BHTなどが挙げられる。
但し、たとえばシュウ酸のように、熱による揮発後、特に有毒であったり、爆発的な反応を引き起こしたりするものについては使用困難の可能性もあり、使用可否判断が必要である。
特には、ヨウ素は、発生したガスも不活性であり、熱暴走抑制とともに、万が一発火した場合でも、発生したガスですぐに発火抑制もできるため有効である。
Depending on the case, a light-stabilizing agent or a rust preventive agent that forms a coating film on the gas generating material while being dispersed in powder at the time of coating, has heat sensitivity at a predetermined temperature, and has a melting point at the temperature. May be used. This is because the effect is that the positive electrode first layer cannot form a coating film at that temperature. However, ambient temperature (25 ° C.), is preferably atmospheric pressure (1 atm) solid state below. This is to suppress the positive electrode first layer from becoming liquid especially when used as a battery.
In addition, examples of the material that sublimes in a temperature range of battery abnormality, for example, 60 ° C. or more and 140 ° C. or less, particularly 80 ° C. or more and 140 ° C. or less include iodine, naphthalene, BHT, and the like.
However, for example, oxalic acid, which is particularly toxic or causes an explosive reaction after volatilization by heat, may be difficult to use, and it is necessary to determine whether it can be used.
In particular, iodine is effective because the generated gas is also inactive, and thermal runaway is suppressed, and even if it ignites, the generated gas can be immediately suppressed.

次に、正極第1層に含まれる導電剤は、例えばアセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、カーボンナノチューブ等の公知の非晶質炭素等の材料を使用することができる。   Next, as the conductive agent contained in the positive electrode first layer, for example, a known amorphous carbon material such as acetylene black, ketjen black, carbon black, graphite, or carbon nanotube can be used.

正極第1層に含まれる結着剤は、耐電解液性のある樹脂を用いる。
具体的には、(ポリ)アクリル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、(シクロ)オレフィン系樹脂、ポリエーテル系樹脂、エンジニアリングプラスチック類、スーパーエンジニアリングプラスチック類、ウレア系樹脂、メラミン系樹脂、共重合系樹脂、アセテート系樹脂、シリコン系樹脂、シリカ系樹脂、酢酸ビニル系樹脂、ポリスチレン系樹脂、セルロース系樹脂、フッ素系樹脂などが挙げられる
従来より、溶剤系では、ポリフッ化ビニリデン樹脂、水系ではSBR(スチレン、ブタジエン共重合樹脂(ゴム)が用いられる場合が多い。
As the binder contained in the positive electrode first layer, a resin having an electrolyte solution resistance is used.
Specifically, (poly) acrylic resins, epoxy resins, polyurethane resins, polyester resins, (cyclo) olefin resins, polyether resins, engineering plastics, super engineering plastics, urea resins, melamine Resin, copolymer resin, acetate resin, silicon resin, silica resin, vinyl acetate resin, polystyrene resin, cellulose resin, fluorine resin, etc. Conventionally, in the solvent system, polyvinylidene fluoride is used. SBR (styrene, butadiene copolymer resin (rubber) is often used in resin and water systems.

正極第1層の塗料組成については、ガス発生材料、導電剤、結着剤のみで構成されていた場合、ガス発生材料の固形分比率は重量比で10重量%以上98重量%以下、特には15重量%以上98重量%であることが好ましい。
ガス発生させ安全性が担保される量を充填するとよい。
また残りの2重量%以上90重量%以下のうち、結着剤の量は最少量で構わない。このときの最少量とは、塗料が固練りでき、各層との密着性を維持し電池性能を低下させない量のことを言う。
それ以外はリチウムイオン電池の通常状態で正極第1層が抵抗となる層にならずに、導電剤がロスなく電子を集電体に移動させることができれば問題はない。
Regarding the coating composition of the positive electrode first layer, when it is composed only of a gas generating material, a conductive agent, and a binder, the solid content ratio of the gas generating material is 10% by weight to 98% by weight, particularly is preferably 15 wt% or more 98 wt%.
It is good to fill the quantity that generates gas and ensures safety.
Of the remaining 2% by weight or more and 90% by weight or less, the amount of the binder may be the minimum amount. The minimum amount at this time refers to an amount that allows the paint to be kneaded, maintains adhesion with each layer, and does not degrade battery performance.
Other than that, there is no problem if the positive electrode first layer does not become a resistance layer in the normal state of the lithium ion battery, and the conductive agent can move electrons to the current collector without loss.

上記のような材料を、プラネタリーミキサーで混練したりやディゾルバーで分散し塗料化をする。
ほとんどの場合は、できるだけ結着剤を少なくし、ガス発生材料や導電剤を多く盛り込むため粉体状態である場合が多く、プラネタリーミキサーで固練りを実施する場合が多い。
固練り後は、結着剤が溶解している溶剤や集電体(基材)への濡れ性を考慮し、さらに溶剤で希釈したり、他溶剤を混合したりして使用しても構わなく、塗工に適した固形分、粘度にするとよい。
The above materials are kneaded with a planetary mixer or dispersed with a dissolver to form a paint.
In most cases, the binder is reduced as much as possible, and a large amount of gas generating material and conductive agent are incorporated so that the powder is in many cases, and kneading is often performed with a planetary mixer.
After kneading, considering the wettability to the solvent in which the binder is dissolved and the current collector (base material), it may be further diluted with a solvent or mixed with another solvent. There is no solid content and viscosity suitable for coating.

塗工厚みは、電池の熱暴走を抑止できる厚みであれば構わない。但し、極端に薄いと抑止効果が薄く、極端に厚いと電池内での体積を取ってしまい都合が悪い。
正極第1層の厚みとしては、0.1μm以上10μm以下、好ましくは0.5μm以上5μm以下である。
The coating thickness may be any thickness that can prevent thermal runaway of the battery. However, if it is extremely thin, the deterrent effect is thin, and if it is extremely thick, it takes up the volume in the battery, which is inconvenient.
The thickness of the positive electrode first layer is 0.1 μm or more and 10 μm or less, preferably 0.5 μm or more and 5 μm or less.

塗料を塗工する際の方法としては、代表的なものとしてスロットダイ方式が挙げられる。その他に、ダイレクトグラビア方式、コンマコート方式、グラビアオフセット方式など、塗料の固形分、粘度、レオロジー特性を鑑みて選択するとよい。   As a typical method for applying the paint, there is a slot die method. In addition, the direct gravure method, the comma coat method, the gravure offset method, etc. may be selected in view of the solid content, viscosity, and rheological properties of the paint.

特にスロットダイ方式は、高粘度の塗料も塗工することができ好適である。
但し、正極第1層を薄く塗工する場合は、その限りではないが、ウェットテンションダイ方式も選択することができる。
In particular, the slot die method is suitable because a highly viscous paint can be applied.
However, in the case where the first positive electrode layer is thinly coated, a wet tension die method can be selected, although not limited thereto.

また、スロットダイ方式の場合、ヘッドの刃先形状、刃先角度、マニホールド形状、マニホールド容量、ヘッド内面の鏡面度、供給口径及び供給位置は、特に限定されるものでなく、各条件に応じ適宜設定するとよい。   In the case of the slot die method, the shape of the blade edge of the head, the blade edge angle, the manifold shape, the manifold capacity, the specularity of the inner surface of the head, the supply port diameter, and the supply position are not particularly limited, and can be appropriately set according to each condition. Good.

塗工ヘッド内のシムについては、塗料粘度、固形分、粘弾性、吐出量などの条件によって厚みを適宜選択するとよく、1条から多条まで塗工することも可能である。
厚みムラがないことは、当然であるが、特に多条の場合、幅方向に塗工、未塗工の部分ができるため、各条を形成するシム端部とダイヘッドリップ刃先とからの距離がどの条も同じなるように精度高く形成されている必要がある。可能であれば、1μm以下の精度で寸法が規定でき、直角となっているとなおよい。
As for the shim in the coating head, the thickness may be appropriately selected depending on the conditions such as the viscosity of the coating material, the solid content, the viscoelasticity, the discharge amount, etc.
It is natural that there is no unevenness in thickness, but in the case of multiple strips in particular, there are coated and uncoated portions in the width direction, so the distance from the end of the shim that forms each strip and the die head lip edge is small. Each strip needs to be formed with high precision so as to be the same. If possible, the dimensions can be defined with an accuracy of 1 μm or less, and it is more preferable that the dimensions are right angles.

また、塗工位置は、基材のセンターへの塗布が基本となるため、シム形状およびセッティング時にも、センター塗布できるようにすることが好ましい。塗布位置がセンターより大幅にズレてしまうと、場合によっては、搬送時に蛇行したり、テンションが均一に張れなかったりするなどの不具合を起こす場合もあるからである。   Further, since the coating position is basically applied to the center of the base material, it is preferable that the center coating can be performed even in the shim shape and setting. This is because if the application position is significantly deviated from the center, in some cases, problems such as meandering at the time of conveyance and tension may not be uniformly applied may occur.

送液ポンプは、モーノポンプ、ダイヤフラムポンプ、サインポンプ、ベローズポンプ、チューブフラムポンプ、プランジャポンプ、シリンジポンプなど、塗料粘度、吐出量、脈動、摺動異物等の特性に合わせ、適宜選択するとよい。1回転あたりの吐出量は、一定時間内に塗布する量、すなわち塗布幅、塗布厚み、塗布速度により決定され、回転数が送液ポンプの時間あたりの回転数の規格内であれば、制限されることはない。ただし、可能な限り規格内で運転し適切な吐出量を選択するとよい。
さらには、脈動を低減させる装置を付設しても構わない。
The liquid feed pump may be appropriately selected according to characteristics such as paint viscosity, discharge amount, pulsation, sliding foreign matter, such as a Mono pump, a diaphragm pump, a sine pump, a bellows pump, a tube pump, a plunger pump, and a syringe pump. The discharge amount per rotation is determined by the amount to be applied within a certain period of time, that is, the application width, the application thickness, and the application speed, and is limited if the rotation speed is within the specification of the rotation speed per time of the liquid feed pump. Never happen. However, it is preferable to operate within the standard as much as possible and select an appropriate discharge amount.
Furthermore, you may attach the apparatus which reduces a pulsation.

正極集電体は、特に限定されるものではなく、アルミニウム、ステンレス鋼、ニッケルメッキ鋼、導電性を有する樹脂基材や表面にコーティングされた基材等の公知の材質から成る集電体を使用することができる。   The positive electrode current collector is not particularly limited, and a current collector made of a known material such as aluminum, stainless steel, nickel-plated steel, a resin base material having conductivity, or a base material coated on the surface is used. can do.

正極第2層に含まれる正極活物質は、特に限定されるものではなく、従来公知の活物質を使用することが出来る。正極活物質としては、例えばリチウムイオンを放出出来るリチウム遷移金属複合酸化物を挙げることができて、その一例として、LiNiO、LiMnO、LiCoO、LiFePO等を挙げることができる。
特にLiCoOやLiNiO、LiNi(X)Co(Y)Mn(1‐X‐Y)Oなどのような層状化合物を電池の活物質として用いる場合、過充電時に熱暴走を引き起こしやすいことが知られている。
また、正極活物質としては、上記リチウム遷移金属酸化物を複数混合して使用することもでき、また、2元系、3元系材料を用いてよい。
The positive electrode active material contained in the positive electrode second layer is not particularly limited, and a conventionally known active material can be used. Examples of the positive electrode active material include a lithium transition metal composite oxide capable of releasing lithium ions, and examples thereof include LiNiO 2 , LiMnO 2 , LiCoO 2 , and LiFePO 4 .
In particular, when a layered compound such as LiCoO 2 , LiNiO 2 , LiNi (X) Co (Y) Mn (1-XY) O 2 is used as a battery active material, thermal runaway is likely to occur during overcharge. Are known.
As the positive electrode active material, a mixture of a plurality of the above lithium transition metal oxides can be used, and binary or ternary materials may be used.

結着剤は、正極第1層と同様である。特には、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等の化学的、物理的に安定な材料が好ましい。また、導電剤は、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等を挙げることができる。   The binder is the same as that of the positive electrode first layer. In particular, chemically and physically stable materials such as polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, and fluororubber are preferable. Examples of the conductive agent include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon.

正極第2層は、正極活物質、結着剤、導電剤等をN‐メチルピロリドンなどの溶媒中で混合した後、正極第1層上に積層塗布、乾燥することで形成することができる。   The positive electrode second layer can be formed by mixing a positive electrode active material, a binder, a conductive agent, and the like in a solvent such as N-methylpyrrolidone, then laminating and drying on the positive electrode first layer.

リチウムイオン電池の正極電極の製造方法には、正極集電体上に、高温状態において揮発してガスを発生するガス発生材料と、導電剤と、結着剤とを有する正極第1層を形成する工程と、正極第1層を形成する工程に対してインライン又はオフラインで、正極第1層上に、正極活物質と、導電剤と、結着剤とを有する正極第2層を形成する工程とを含むことができる。
更に、正極第1層と正極第2層とを連続的な製造工程(インライン)で作製する場合には、正極第1層及び正極第2層の乾燥を低温短時間で行うことが好ましい。設定温度は、ガス発生材料性状に合わせることが必要である。
In a method for manufacturing a positive electrode of a lithium ion battery, a positive electrode first layer having a gas generating material that volatilizes at a high temperature to generate gas, a conductive agent, and a binder is formed on a positive electrode current collector And a step of forming a positive electrode second layer having a positive electrode active material, a conductive agent, and a binder on the positive electrode first layer in-line or offline with respect to the step of forming the positive electrode first layer. Can be included.
Furthermore, when the positive electrode first layer and the positive electrode second layer are produced in a continuous manufacturing process (in-line), it is preferable to dry the positive electrode first layer and the positive electrode second layer in a low temperature in a short time. It is necessary to match the set temperature with the properties of the gas generating material.

(負極)
リチウムイオン電池の負極は、少なくとも、負極活物質、導電剤及び結着剤から構成される層を形成した、少なくとも1層以上からなる負極電極である。
負極に含まれる負極活物質は、特に限定されるものではなく、リチウム等の金属材料、ケイ素、スズ、チタン等を含有する合金系材料、グラファイト、コークス等の炭素材料のような、リチウムイオンを吸蔵・放出できる化合物を単独乃至は組み合わせて用いることができる。また、負極活物質としてリチウム金属箔を用いる場合、銅等の金属集電体上にリチウム箔を圧着して形成することができる。また負極活物質として合金材料、炭素材料を用いる場合は、負極活物質と結着剤、導電助剤等とを水、NMP等の溶媒中で混合した後、銅等の金属集電体上に塗布、乾燥することで形成することができる。
(Negative electrode)
The negative electrode of a lithium ion battery is a negative electrode composed of at least one layer in which a layer composed of at least a negative electrode active material, a conductive agent and a binder is formed.
The negative electrode active material contained in the negative electrode is not particularly limited, and lithium ions such as metal materials such as lithium, alloy materials containing silicon, tin, titanium, etc., carbon materials such as graphite, coke, etc. Compounds that can be occluded / released can be used alone or in combination. When a lithium metal foil is used as the negative electrode active material, the lithium foil can be formed by pressure bonding on a metal current collector such as copper. When an alloy material or a carbon material is used as the negative electrode active material, the negative electrode active material, a binder, a conductive additive, etc. are mixed in a solvent such as water or NMP, and then on a metal current collector such as copper. It can be formed by coating and drying.

結着剤は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等の化学的、物理的に安定な材料が好ましい。また、導電剤は、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等を挙げることができる。   The binder is preferably a chemically and physically stable material such as polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, or fluororubber. Examples of the conductive agent include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon.

負極集電体は、特に限定されるものではなく、銅箔などから成る金属箔やプラスチックフィルムに導電性を持たせたものなどでもよい。   The negative electrode current collector is not particularly limited, and may be a metal foil made of copper foil or the like, or a plastic film having conductivity.

(非水電解液)
非水電解液は、特に限定されるものではなく、有機溶媒などの溶媒に支持塩を溶解させたもの、電解質兼溶媒であるイオン液体、そのイオン液体に更に支持塩を溶解させたもの等を挙げることができる。
(Nonaqueous electrolyte)
The non-aqueous electrolyte is not particularly limited, and a non-aqueous electrolyte solution in which a supporting salt is dissolved in a solvent such as an organic solvent, an ionic liquid that is an electrolyte and solvent, a solution in which a supporting salt is further dissolved in the ionic liquid, and the like. Can be mentioned.

有機溶媒としては、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。また、プロピレンカーボネート、エチレンカーボネート、1,2‐ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の混合溶媒を用いることもできる。   As the organic solvent, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds and the like can be used. A mixed solvent such as propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate can also be used.

非水電解液に用いられる支持塩は、特に限定されるものではなく、例えばLiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiN(FSO、LiN(CFSO)(CSO)、LiN(CFSO等を挙げることができる。 The supporting salt used for the non-aqueous electrolyte is not particularly limited. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2) 3, LiN (FSO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2), mention may be made of LiN (CF 3 SO 2) 2 and the like.

非水電解液に用いられるイオン液体も、常温で液体である塩であれば特に限定されるものではなく、例えばアルキルアンモニウム塩、ピロリジニウム塩、ピラゾリウム塩、ピペリジニウム塩、イミダゾリウム塩、ピリジニウム塩、スルホニウム塩、ホスホニウム塩などを挙げることができる。また、広い電位領域において電気化学的に安定であると更に好ましい。   The ionic liquid used for the non-aqueous electrolyte is not particularly limited as long as it is a salt that is liquid at room temperature. For example, alkyl ammonium salt, pyrrolidinium salt, pyrazolium salt, piperidinium salt, imidazolium salt, pyridinium salt, sulfonium Examples thereof include salts and phosphonium salts. Further, it is more preferable that it is electrochemically stable in a wide potential region.

(電池)
正極と負極との接触を防止するためのセパレータとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン製や芳香族ポリアミド樹脂製の微孔膜または不織布、無機セラミック粉末を含む多孔質の樹脂コートなどを挙げることができる。
(battery)
Examples of the separator for preventing contact between the positive electrode and the negative electrode include a microporous membrane or nonwoven fabric made of polyolefin such as polyethylene and polypropylene, or an aromatic polyamide resin, and a porous resin coat containing inorganic ceramic powder. it can.

上述の正極、負極、非水電解液およびセパレータを、電解液の漏洩防止、外気進入の防止等を目的としたケースに収納して、リチウムイオン電池を作製することができる。   The above-described positive electrode, negative electrode, non-aqueous electrolyte, and separator can be housed in a case for the purpose of preventing leakage of the electrolyte, preventing intrusion of outside air, and the like, so that a lithium ion battery can be manufactured.

以下、実施例を用いて本発明を説明する。図1に実施例1、2及び比較例2〜4に係る正極の模式断面図、図2に比較例1に係る正極の模式断面図、図3に実施例1〜3、比較例1についての正極評価2の際の電極状態の模式断面図、図4に比較例1の正極評価2の際の電極状態の模式断面図、図5に実施例1〜3、比較例2の正極評価3〜5の際のコイン型電池の模式断面図、図6に比較例1の正極評価3〜5の際のコイン型電池の模式断面図を示す。   Hereinafter, the present invention will be described using examples. FIG. 1 is a schematic cross-sectional view of positive electrodes according to Examples 1 and 2 and Comparative Examples 2 to 4, FIG. 2 is a schematic cross-sectional view of positive electrodes according to Comparative Example 1, and FIG. 4 is a schematic cross-sectional view of the electrode state at the time of positive electrode evaluation 2, FIG. 4 is a schematic cross-sectional view of the electrode state at the time of positive electrode evaluation 2 of Comparative Example 1, and FIG. 5 is a schematic cross-sectional view of the coin-type battery in the case of 5, and FIG.

(実施例1)
正極第1層2の準備として、導電剤としてアセチレンブラック(HS‐100、電気化学工業製)10重量部、高温でガスを発生する材料として、ヨウ素(粉末)85質量部、結着剤として、スチレンブタジエン共重合体(ゴム)(BM‐400、JSR製)5重量部を投入し、ディゾルバーで分散を行った。
さらに水添加を添加し分散処理を行い、塗工に必要な固形分のペーストを調製した。このペーストをアルミニウム箔集電体1(20μm厚:東洋アルミニウム製)上に塗布し、乾燥処理を行うことで、正極第1層2を得た。乾燥処理後の正極第1層2の塗工量は、10g/mであった。
Example 1
As preparation of the positive electrode first layer 2, 10 parts by weight of acetylene black (HS-100, manufactured by Denki Kagaku Kogyo) as a conductive agent, 85 parts by mass of iodine (powder) as a material generating gas at high temperature, as a binder, 5 parts by weight of a styrene-butadiene copolymer (rubber) (BM-400, manufactured by JSR) was added and dispersed with a dissolver.
Furthermore, water addition was added and the dispersion process was performed and the solid content paste required for coating was prepared. This paste was applied onto an aluminum foil current collector 1 (20 μm thickness: manufactured by Toyo Aluminum Co., Ltd.) and subjected to a drying treatment, whereby a positive electrode first layer 2 was obtained. The coating amount of the positive electrode first layer 2 after the drying treatment was 10 g / m 2 .

次に、正極第2層3の準備は、活物質:LiCoO(日本化学産業製)導電剤:90重量部、アセチレンブラック(HS‐100、電気化学工業製)5重量部、結着剤:ポリフッ化ビニリデン(♯7200、クレハ・バッテリー・マテリアルズ・ジャパン製)5重量部を溶剤:N‐メチルピロリドン(NMP)に添加し、分散処理を行い、均質なペーストを調製した。このペーストを正極第1層2上に塗布し、乾燥処理を行うことで、正極第2層3を得た。乾燥処理後の正極第2層3の膜厚は、130g/mとなるよう塗布した。 Next, the preparation of the positive electrode second layer 3 includes active material: LiCoO 2 (manufactured by Nippon Chemical Industry) conductive agent: 90 parts by weight, acetylene black (HS-100, manufactured by Denki Kagaku Kogyo), binder: A homogeneous paste was prepared by adding 5 parts by weight of polyvinylidene fluoride (# 7200, manufactured by Kureha Battery Materials Japan) to the solvent: N-methylpyrrolidone (NMP) and performing a dispersion treatment. This paste was coated on the positive electrode first layer 2, by performing a drying treatment to obtain Seikyokudai two layers 3. The film thickness of the positive electrode second layer 3 after the drying treatment was applied to be 130 g / m 2 .

負極については、活物質:鱗片状黒鉛(日立化成製)95重量部、導電剤:アセチレンブラック(HS‐100電気化学工業製)4重慮部、結着剤:スチレンブタジエンラバー(BM‐400、JSR製)2重量部になるように混合し、ディゾルバーを用いて1時間攪拌して塗液を作製した。また、この時、塗液の粘度を調整するためにカルボキシメチルセルロースを前記組成の総重量部100に対して1重量部を添加して作製した。作製した塗液を銅箔(12μm厚み:古河電工製)上に目付け70g/mとなるように塗布した。さらに塗工した塗液の溶媒を完全に除去する為に、100℃で1時間乾燥処理を実施した後、真空環境下において再度100℃で12時間乾燥処理を実施した。 For the negative electrode, the active material: scaly graphite (manufactured by Hitachi Chemical Co., Ltd.) 95 parts by weight, conductive agent: acetylene black (manufactured by HS-100 Denki Kagaku Kogyo Co., Ltd.) 4 considerations, binder: styrene butadiene rubber (BM-400, (Made by JSR) was mixed so as to be 2 parts by weight, and stirred for 1 hour using a dissolver to prepare a coating solution. At this time, in order to adjust the viscosity of the coating solution, 1 part by weight of carboxymethylcellulose was added to the total weight part 100 of the composition. The prepared coating liquid was applied onto a copper foil (12 μm thickness: manufactured by Furukawa Electric Co., Ltd.) so as to have a basis weight of 70 g / m 2 . Further, in order to completely remove the solvent of the applied coating solution, a drying process was performed at 100 ° C. for 1 hour, and then a drying process was performed again at 100 ° C. for 12 hours in a vacuum environment.

作製したそれぞれの正極および負極を用いて、電解液に1mol/Lの六フッ化燐酸リチウムを含有し、且つ重量比が1対1となるような割合でエチレンカーボネートとジエチルカーボネートが混合された溶媒を用いたラミネート型電池を作製した。電池の容量は、正極と負極とを積層し500mAhとなるように設計した。   Using each of the produced positive and negative electrodes, a solvent in which 1 mol / L of lithium hexafluorophosphate is contained in the electrolytic solution and ethylene carbonate and diethyl carbonate are mixed in a ratio such that the weight ratio is 1: 1. A laminate type battery using was manufactured. The capacity of the battery was designed to be 500 mAh by stacking the positive electrode and the negative electrode.

(実施例2)
正極第1層2の高温でガスを発生する材料にナフタレンを85重量部用いた。それ以外は、実施例1と同様にしてラミネート型電池を作製した。
(Example 2)
85 parts by weight of naphthalene was used as a material for generating gas at a high temperature of the positive electrode first layer 2. Otherwise, a laminated battery was produced in the same manner as in Example 1.

(比較例1)
正極第1層2を形成することなく、アルミニウム箔集電体1(20μm厚)上に実施例1の正極第2層3を直接形成した正極を使用したこと以外は、実施例1と同様にしてラミネート型電池を作製した。
(Comparative Example 1)
The same as in Example 1 except that the positive electrode in which the positive electrode second layer 3 of Example 1 was directly formed on the aluminum foil current collector 1 (20 μm thickness) was used without forming the positive electrode first layer 2. Thus, a laminate type battery was produced.

(比較例2)
実施例1と同様の方法で準備をしたが、その際正極第1層2にガス発生材料を用いず(0重量部)、その分導電剤を増量し導電剤95重量部、結着剤を5重量部としたこと以外は、実施例1と同様にしてラミネート型電池を作製した。
(Comparative Example 2)
Preparation was carried out in the same manner as in Example 1, but at this time, no gas generating material was used for the positive electrode first layer 2 (0 parts by weight), and the amount of the conductive agent was increased accordingly, and 95 parts by weight of the conductive agent and the binder were added. A laminate type battery was produced in the same manner as in Example 1 except that the amount was 5 parts by weight.

(比較例3)
実施例1と同様の方法で準備をしたが、その際正極第1層2にガス発生材料としてヨウ素を99重量部、導電剤を1重量部、結着剤を1重量部としたこと以外は、実施例1と同様にしてラミネート型電池を作製した。
(Comparative Example 3)
Preparation was performed in the same manner as in Example 1, except that 99 parts by weight of iodine, 1 part by weight of conductive agent, and 1 part by weight of binder were used as the gas generating material in the positive electrode first layer 2. A laminated battery was produced in the same manner as in Example 1.

(比較例4)
実施例1と同様の方法で準備をしたが、その際正極第1層2にガス発生材料としてヨウ素を5重両部、導電剤を90重量部、結着剤を5重量部にしたこと以外は実施例1と同様にしてラミネート型電池を作製した。
(Comparative Example 4)
Preparations were made in the same manner as in Example 1, except that the positive electrode first layer 2 had 5 parts by weight of iodine as a gas generating material, 90 parts by weight of a conductive agent, and 5 parts by weight of a binder. Produced a laminated battery in the same manner as in Example 1.

(評価1)
過充電時の電池外観変化を比較した。
実施例1、2および比較例1〜4で作製したそれぞれの正極と実施例1の負極とを用いて、電解液に1mol/Lの六フッ化リン酸リチウムを含有し、且つ重量比が1対1となるような割合でエチレンカーボネートとジエチルカーボネートとが混合された溶媒を用いたラミネート型電池を作製した。電池の容量は、正極と負極とを積層し500mAhとなるように設計し、その電池について過充電試験を実施した。
測定温度を25℃として、充電電流1500mAで12Vまで充電し、その時の電池の様子を観察したところ、実施例1、2および比較例3の電池では、特に変化は生じず、比較例1、2および4の電池からは白煙が生じ、比較例1、2では最終的には発火した。結果は表1のようになった。
(Evaluation 1)
To compare the battery change in appearance at the time of overcharging.
Using each of the positive electrodes prepared in Examples 1 and 2 and Comparative Examples 1 to 4 and the negative electrode of Example 1, the electrolyte contains 1 mol / L lithium hexafluorophosphate and the weight ratio is 1 A laminate type battery using a solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 1 to 1 was produced. The capacity of the battery was designed such that the positive electrode and the negative electrode were laminated to 500 mAh, and an overcharge test was performed on the battery.
When the measurement temperature was 25 ° C., the battery was charged up to 12 V at a charging current of 1500 mA, and the state of the battery at that time was observed. In the batteries of Examples 1 and 2 and Comparative Example 3, no particular change occurred. White smoke was produced from the batteries of No. 4 and No. 4, and in Comparative Examples 1 and 2, eventually fired. The results are shown in Table 1.

Figure 0006589267
Figure 0006589267

(評価2)
TG/DTA(示差熱・熱重量変化測定)を行った。
実施例1、2および比較例1〜4で作製した各電極について、熱分析(TG/DTA)を行った。
条件は、窒素フロー下にて、昇温速度は2℃/minで室温から200℃まで実施した。
その結果、実施例1、2および比較例3においては、80℃〜140℃の間で揮発による重量減少が見られた。
また、比較例1、2及び4においては、顕著な重量変化は見られなかった。
(Evaluation 2)
TG / DTA (differential heat / thermogravimetric change measurement) was performed.
About each electrode produced in Examples 1, 2 and Comparative Examples 1-4, the thermal analysis (TG / DTA) was performed.
The conditions were a nitrogen flow and a temperature increase rate of 2 ° C./min from room temperature to 200 ° C.
As a result, in Examples 1 and 2 and Comparative Example 3, weight loss due to volatilization was observed between 80 ° C and 140 ° C.
In Comparative Examples 1, 2, and 4, no significant weight change was observed.

80℃〜140℃までの間のTG/DTA結果をまとめると、表2のようになった。

Figure 0006589267
To summarize the TG / DTA results for until 80 ° C. to 140 ° C., it was as shown in Table 2.
Figure 0006589267

(評価3)
通常作動時の電池の100サイクル後充放電容量維持率を比較した。
実施例1、2および比較例1〜4で作製した各電極を用いて、対極に金属リチウム、電解液に1mol/Lの六フッ化燐酸リチウムを含有し、且つ重量比が1対1となるような割合でエチレンカーボネートとジエチルカーボネートとが混合された溶媒を用いたラミネート型電池を作製し、充放電100サイクル後の容量維持率を評価した。
(Evaluation 3)
The charge / discharge capacity retention ratio after 100 cycles of the battery during normal operation was compared.
Using the electrodes prepared in Examples 1 and 2 and Comparative Examples 1 to 4, the counter electrode contains metallic lithium, the electrolyte contains 1 mol / L lithium hexafluorophosphate, and the weight ratio is 1: 1. A laminate type battery using a solvent in which ethylene carbonate and diethyl carbonate were mixed at such a ratio was produced, and the capacity retention rate after 100 cycles of charge / discharge was evaluated.

Figure 0006589267
Figure 0006589267

実施例1、2も比較例1、2も、ほぼ同等の値を示しており、過充電などの異常が生じない通常作動の場合は、正極第1層が存在しても、電池性能に影響ないことが確認された。
但し、比較例3のように正極第1層中にガス発生材料が顕著に多い場合は、電池性能が劣化していることが確認できた。
Examples 1 and 2 and Comparative Examples 1 and 2 show almost the same value, and in the case of normal operation in which no abnormality such as overcharge occurs, even if the first positive electrode layer is present, the battery performance is affected. Not confirmed.
However, when the gas generating material is remarkably large in the positive electrode first layer as in Comparative Example 3, it was confirmed that the battery performance was deteriorated.

(評価4)
過熱時の内部抵抗を測定した。
実施例1、2および比較例1〜4の各電極を用いて、評価3と同様にラミネート型電池を作製し、過充電し電池を過熱状態とした。
測定温度を25℃として、充電電流1mAで5Vまで充電した。活物質にLiCoOを用いた際の一般的な充電終止電圧である4.1Vを超えても電位上昇を強制的に継続し、電池内部の温度を上昇させた。正極第1層を設けた電極では過充電において充電電位が上昇やすくなっていくことも確認された。
(Evaluation 4)
The internal resistance during overheating was measured.
Using each electrode of Examples 1 and 2 and Comparative Examples 1 to 4, a laminate type battery was prepared in the same manner as in Evaluation 3, and the battery was overcharged to put it in an overheated state.
The measurement temperature was 25 ° C., and the battery was charged to 5 V with a charging current of 1 mA. Even if it exceeded 4.1 V which is a general charge end voltage when LiCoO 2 was used as an active material, the potential increase was forcibly continued to increase the temperature inside the battery. The electrode provided with Seikyokudai one layer charge potential in overcharging was also confirmed that will easily rise.

さらに継続して過充電、過熱を継続した際の電池の内部抵抗を測定したところ、比較例1及び2では過充電による温度上昇後で抵抗に顕著な違いは見られなく、実施例1、2及び比較例3では過充電試験後に電池内部の抵抗が確実に増加しおり、過充電時の正極第1層内での重合や正極第1層の硬化収縮に伴う電池内での抵抗増加効果が確認された。
通常のラミネートセル構成の比較例1の抵抗値を1とした場合の各例での抵抗値の比較を表4に示した。
Further, when the internal resistance of the battery was continuously measured when overcharging and overheating were continued, in Comparative Examples 1 and 2, there was no significant difference in resistance after the temperature increase due to overcharging. In Comparative Example 3, the internal resistance of the battery increased reliably after the overcharge test, and the effect of increasing the resistance in the battery due to polymerization in the first positive electrode layer and curing shrinkage of the positive first layer during overcharge was confirmed. It was done.
Table 4 shows a comparison of resistance values in each example when the resistance value of Comparative Example 1 having a normal laminate cell configuration is 1.

Figure 0006589267
Figure 0006589267

比較例1は一般的な電池電極構成で抵抗が低い状態である。それと比べると、各々で抵抗値が上昇しているのが分かる。特に実施例1、2および比較例3で抵抗が大きいが、前述より比較例3は通常作動時でも抵抗となり、電池性能が出にくいことが上記実験から分かっている。   Comparative Example 1 is a general battery electrode configuration in which the resistance is low. Compared to that, it can be seen that the resistance value increases in each. In particular, Examples 1 and 2 and Comparative Example 3 have a large resistance. From the above experiment, it is known from the above experiment that Comparative Example 3 becomes a resistance even during normal operation and the battery performance is difficult to be obtained.

(評価5)
過充電し過熱された電池内部状態を分解目視にて観察した。
評価4にて、過充電した実施例1、2および比較例1〜4のラミネート型電池を分解し、正極側の状態を目視にて確認した。
(Evaluation 5)
The internal state of the overcharged and overheated battery was observed by visual inspection.
In Evaluation 4, the overcharged laminated batteries of Examples 1 and 2 and Comparative Examples 1 to 4 were disassembled, and the state on the positive electrode side was visually confirmed.

その結果、実施例1、2および比較例3では、正極第1層2が非常にポーラスになっていたり、クラックが生じていたり、膜として形成されておらず、正極集電体1および正極第2層3から剥離している状態であった。また、比較例4においては、上記ほどではないが、正極第1層2が正極集電体1から剥離気味であった。いずれにしても、正極第2層3と正極集電体1との間で大きな抵抗となっていたことを確認した。それと比較して、比較例1、2においては、正極第2層3と正極集電体1とが密着しており、電池として機能し、過充電によって顕著な抵抗が発生することがなかったと思われる。その結果を表5に示した。   As a result, in Examples 1 and 2 and Comparative Example 3, the positive electrode first layer 2 was very porous, cracked, or not formed as a film. It was in a state of peeling from the second layer 3. Further, in Comparative Example 4, although not as described above, the positive electrode first layer 2 was slightly peeled from the positive electrode current collector 1. In any case, it was confirmed that there was a large resistance between the positive electrode second layer 3 and the positive electrode current collector 1. In comparison, in Comparative Examples 1 and 2, the positive electrode second layer 3 and the positive electrode current collector 1 were in close contact, functioning as a battery, and no significant resistance was generated due to overcharging. It is. The results are shown in Table 5.

Figure 0006589267
Figure 0006589267

本結果から、正極第1層2がガス発生する材料を含有することで、過熱状態になった場合、正極第1層2がポーラス、クラックが生じ脆くなり、膜として形成できなくなり、正極集電体1及び正極第2層3の密着不良を生じ、抵抗になり、電池の暴走反応抑制を確認できた。   From this result, when the positive electrode first layer 2 contains a material that generates gas, the positive electrode first layer 2 becomes porous and cracks, becomes brittle, and cannot be formed as a film. The adhesion failure of the body 1 and the positive electrode second layer 3 was caused, resulting in resistance, and suppression of the runaway reaction of the battery could be confirmed.

以上の結果から、正極第1層2を導入しない正極第2層3のみからなる正極の場合と比較して、正極第1層2中に、熱より昇華、ガスを発生する材料を適宜混合することにより、過電圧などにより電池が過熱状態になった場合や、その他、電池自体が過熱状態に陥り、熱暴走反応が生じた際に、正極第1層2中のガス発生物質が揮発することで、正極第1層2が抵抗となり、電池の熱暴走を抑制できることが確認できた。
また、平時使用の場合は、正極第1層2の存在は、正極第1層2がない場合と比較してその電池性能に遜色ないことも確認した。
From the above results, as compared with the case of the positive electrode composed only of the positive electrode second layer 3 without introducing the positive electrode first layer 2, the positive electrode first layer 2 is appropriately mixed with materials that generate sublimation and gas from heat. As a result, the gas generating material in the positive electrode first layer 2 volatilizes when the battery is overheated due to overvoltage or the like, or when the battery itself is overheated and a thermal runaway reaction occurs. It was confirmed that the positive electrode first layer 2 became a resistance and the thermal runaway of the battery could be suppressed.
In addition, in the case of normal use, it was also confirmed that the presence of the positive electrode first layer 2 was not inferior to the battery performance as compared with the case where the positive electrode first layer 2 was not provided.

更に、使用する溶媒、塗工、乾燥設備等によっては、正極第1層及び正極第第2層を連続製造工程で作製することも可能である。   Furthermore, the positive electrode first layer and the positive electrode second layer can be produced in a continuous production process depending on the solvent used, coating, drying equipment, and the like.

本発明は、ラミネート型、円筒型、コイン(ボタン)型等の様々タイプのリチウムイオン電池に有用である。   The present invention is useful for various types of lithium ion batteries such as a laminate type, a cylindrical type, and a coin (button) type.

1 正極集電体
2 正極第1層
3 正極第2層
4 セパレータ
5 負極集電体
6 負極層
7 電解液
8 正極ケース
9 負極ケース
10 ガスケット
21 正極電極(正極第1層あり):積層時両面塗布
22 正極電極(正極第1層なし):積層時両面塗布
31 負極電極:積層時両面塗布
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode 1st layer 3 Positive electrode 2nd layer 4 Separator 5 Negative electrode collector 6 Negative electrode layer 7 Electrolytic solution 8 Positive electrode case 9 Negative electrode case 10 Gasket 21 Positive electrode (the positive electrode 1st layer exists): Both sides at the time of lamination | stacking Application 22 Positive electrode (no positive first layer): Double-sided application during lamination 31 Negative electrode: Double-sided application during lamination

Claims (1)

リチウムイオン電池の正極電極の製造方法であって、
スロットダイ方式を用いて、前記リチウムイオン電池の正極集電体上に、80℃以上140℃以下で昇華する85重量部のガス発生材料と、10重量部の導電剤と、5重量部の結着剤とを有する正極第1層を形成する工程と、
前記正極第1層を形成する工程に対してインラインで、前記正極第1層上に、正極活物質と、導電剤と、結着剤とを有する正極第2層を形成する工程とを含む、製造方法。
A method of manufacturing a positive electrode of a lithium ion battery,
Using a slot die method, 85 parts by weight of a gas generating material that sublimates at 80 ° C. or higher and 140 ° C. or lower , 10 parts by weight of a conductive agent, and 5 parts by weight of a binder on the positive electrode current collector of the lithium ion battery. Forming a positive electrode first layer having an adhesive;
In inline against the step of forming the positive electrode first layer, the positive electrode first layer, including a positive electrode active material, conductive agent, and, and forming a positive electrode second layer having a binder ,Production method.
JP2014207289A 2014-10-08 2014-10-08 Method for producing positive electrode of lithium ion battery Active JP6589267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207289A JP6589267B2 (en) 2014-10-08 2014-10-08 Method for producing positive electrode of lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207289A JP6589267B2 (en) 2014-10-08 2014-10-08 Method for producing positive electrode of lithium ion battery

Publications (2)

Publication Number Publication Date
JP2016076439A JP2016076439A (en) 2016-05-12
JP6589267B2 true JP6589267B2 (en) 2019-10-16

Family

ID=55950007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207289A Active JP6589267B2 (en) 2014-10-08 2014-10-08 Method for producing positive electrode of lithium ion battery

Country Status (1)

Country Link
JP (1) JP6589267B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160572B1 (en) 2017-07-26 2020-09-28 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery comprising the same
KR102223721B1 (en) 2017-07-28 2021-03-05 주식회사 엘지화학 Positive electorde for secondary battery and lithium secondary battery including the same
KR102237952B1 (en) * 2017-07-28 2021-04-08 주식회사 엘지화학 Positive electorde for secondary battery and lithium secondary battery including the same
KR102465819B1 (en) * 2017-09-19 2022-11-11 주식회사 엘지에너지솔루션 Positive electrode for secondary battery and secondary battery comprising the same
CN110265665B (en) 2019-05-24 2020-11-17 宁德时代新能源科技股份有限公司 Positive current collector, positive pole piece and electrochemical device
CN110474114B (en) * 2019-08-08 2020-11-10 宁德时代新能源科技股份有限公司 Electrochemical energy storage device
CN110429240B (en) * 2019-08-08 2020-12-04 宁德时代新能源科技股份有限公司 Positive pole piece and electrochemical device comprising same
CN110400933B (en) 2019-08-08 2020-12-04 宁德时代新能源科技股份有限公司 Positive pole piece and electrochemical device comprising same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913176B1 (en) * 2007-11-28 2009-08-19 삼성에스디아이 주식회사 Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP2010146726A (en) * 2007-11-30 2010-07-01 Kyoritsu Kagaku Sangyo Kk Conductive composition
JP5747459B2 (en) * 2010-08-02 2015-07-15 凸版印刷株式会社 Intermittent coating device

Also Published As

Publication number Publication date
JP2016076439A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6589267B2 (en) Method for producing positive electrode of lithium ion battery
US10186700B2 (en) Heat-resistant microporous film and battery separator
US10897040B2 (en) Anode having double-protection layer formed thereon for lithium secondary battery, and lithium secondary battery comprising same
JP6176330B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
TWI666813B (en) Electrical insulation layer and battery device
US11688857B2 (en) Anti-corrosion for battery current collector
US8574760B2 (en) Safety-enhanced electrochemical device including electrode containing binder and wax
US9017865B2 (en) Lithium primary battery and method of producing same
WO2002031904A1 (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
KR20110021974A (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5641593B2 (en) Lithium ion battery
JP2007103356A (en) Non-aqueous secondary battery
WO2015046492A1 (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2013196781A (en) Positive electrode for electric device and electric device using the same
KR20140147412A (en) Case for electrochemical device containing volume expansibile material and electrochemical device comprising the same
JP2015181110A (en) Heat resistance microporous film, separator for lithium ion secondary batteries, and lithium ion secondary battery
JP2009199960A (en) Lithium-ion battery
JP2015088370A (en) Positive electrode, and lithium ion secondary battery
JP2015211004A (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP6664148B2 (en) Lithium ion secondary battery
JP2016004657A (en) Positive electrode, method of manufacturing positive electrode, and nonaqueous electrolyte secondary battery
JP2016062872A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2006073308A (en) Non-aqueous electrolytic liquid secondary battery
JP2015210846A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery
JP2007242575A (en) Nonaqueous electrolyte solution secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6589267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250