JP6586616B2 - Standard sample for radioactivity measurement, and method for producing standard sample for radioactivity measurement - Google Patents

Standard sample for radioactivity measurement, and method for producing standard sample for radioactivity measurement Download PDF

Info

Publication number
JP6586616B2
JP6586616B2 JP2015034538A JP2015034538A JP6586616B2 JP 6586616 B2 JP6586616 B2 JP 6586616B2 JP 2015034538 A JP2015034538 A JP 2015034538A JP 2015034538 A JP2015034538 A JP 2015034538A JP 6586616 B2 JP6586616 B2 JP 6586616B2
Authority
JP
Japan
Prior art keywords
standard sample
radioactivity measurement
wood
core material
radioactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015034538A
Other languages
Japanese (ja)
Other versions
JP2016156698A (en
Inventor
陸夫 福井
陸夫 福井
洋一 石川
洋一 石川
将生 吉野
将生 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Prefecture
Furukawa Co Ltd
Original Assignee
Tochigi Prefecture
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Prefecture, Furukawa Co Ltd filed Critical Tochigi Prefecture
Priority to JP2015034538A priority Critical patent/JP6586616B2/en
Publication of JP2016156698A publication Critical patent/JP2016156698A/en
Application granted granted Critical
Publication of JP6586616B2 publication Critical patent/JP6586616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は放射能測定用標準試料、および放射能測定用標準試料の製造方法に関する。   The present invention relates to a standard sample for measuring radioactivity and a method for producing a standard sample for measuring radioactivity.

食品等の放射能を非破壊検査するには、標準試料が用いられる。   Standard samples are used for nondestructive inspection of radioactivity of foods and the like.

特許文献1には、りんご、魚、野菜、袋詰めの米に模した模擬食品放射線源が記載されている。特許文献1では、模擬食品放射線源は環境放射性材料を粉砕し、有機材質あるいは無機材質の内蔵構成材と混合され、攪拌、均一化された後、形成等されて作製される。   Patent Document 1 describes a simulated food radiation source simulating apples, fish, vegetables, and packed rice. In Patent Document 1, a simulated food radiation source is produced by pulverizing an environmental radioactive material, mixing with an organic or inorganic built-in component, stirring, homogenizing, forming, and the like.

特許第5337288号公報Japanese Patent No. 5337288

しかし、きのこ栽培用原木では、放射性物質の分布が一様ではなく、特許文献1のような方法で精度の良い標準試料を得ることが難しかった。そのため、信頼性の高い非破壊検査は実現しておらず、測定対象の原木をオガ粉に加工して測定する必要があった。   However, in the raw wood for mushroom cultivation, the distribution of radioactive substances is not uniform, and it has been difficult to obtain a highly accurate standard sample by the method as described in Patent Document 1. Therefore, highly reliable non-destructive inspection has not been realized, and it has been necessary to measure the raw wood to be measured into sawdust.

きのこ栽培用原木に含まれる放射性物質のうち大部分は樹皮表面および内樹皮に含まれ、木質部に含まれる放射性物質の量は非常に少ない。放射能測定に用いられる標準試料では信頼性向上のため、形態等を実物に近づけることが望まれ、また、長期の使用に耐える安定性が求められるが、きのこ栽培用原木において、そのような標準試料を作製することは難しかった。   Most of the radioactive substances contained in the logs for mushroom cultivation are contained in the bark surface and the inner bark, and the amount of radioactive substances contained in the woody part is very small. In order to improve the reliability of standard samples used for radioactivity measurement, it is desirable to bring the form close to the real thing, and stability that can withstand long-term use is required. It was difficult to make a sample.

本発明は、きのこ栽培に使用する原木の放射能測定に用いることができ、信頼性と安定性に優れる標準試料を提供する。   The present invention provides a standard sample that can be used for measuring the radioactivity of raw wood used for mushroom cultivation and is excellent in reliability and stability.

本発明によれば、
きのこ栽培に使用する原木の放射能測定に用いる標準試料であって、
木材を含む円柱形のコア材と、
前記コア材を覆う被覆部材とを備え、
前記コア材は側面部に放射性物質含有領域を有する、
放射能測定用標準試料
が提供される。
According to the present invention,
It is a standard sample used for radioactivity measurement of raw wood used for mushroom cultivation,
A cylindrical core material containing wood,
A covering member covering the core material,
The core material has a radioactive substance-containing region on the side surface part,
A standard sample for radioactivity measurement is provided.

本発明によれば、
きのこ栽培に使用する原木の放射能測定に用いる標準試料の製造方法であって、
側面部に放射性物質含有領域を有し、木材を含むコア材を準備する工程と、
前記コア材を被覆部材で覆う工程とを備える、
放射能測定用標準試料の製造方法
が提供される。
According to the present invention,
A method for producing a standard sample used for measuring radioactivity of raw wood used for mushroom cultivation,
A step of preparing a core material including a wood having a radioactive substance-containing region on a side surface;
Covering the core material with a covering member,
A method for producing a standard sample for radioactivity measurement is provided.

本発明によれば、きのこ栽培に使用する原木の放射能測定に用いることができ、信頼性と安定性に優れる標準試料を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it can use for the radioactivity measurement of the raw wood used for mushroom cultivation, and can provide the standard sample which is excellent in reliability and stability.

第1の本実施形態に係る放射能測定用標準試料を示す図である。It is a figure which shows the standard sample for radioactivity measurement which concerns on 1st this embodiment. 第1の本実施形態に係る標準試料の長さ方向に垂直な断面を示す断面図である。It is sectional drawing which shows a cross section perpendicular | vertical to the length direction of the standard sample which concerns on 1st this embodiment. 第1の実施形態に係る標準試料の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the standard sample which concerns on 1st Embodiment. (a)は第2の実施形態に係る標準試料の長さ方向に垂直な断面を示す断面図、(b)は第2の実施形態の変形例に係る標準試料の長さ方向に垂直な断面を示す断面図である。(A) is sectional drawing which shows a cross section perpendicular | vertical to the length direction of the standard sample which concerns on 2nd Embodiment, (b) is a cross section perpendicular | vertical to the length direction of the standard sample which concerns on the modification of 2nd Embodiment. FIG. 第2の実施形態に係る標準試料の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the standard sample which concerns on 2nd Embodiment. 第3の実施形態に係る標準試料の長さ方向に垂直な断面を示す断面図である。It is sectional drawing which shows a cross section perpendicular | vertical to the length direction of the standard sample which concerns on 3rd Embodiment. 第3の実施形態に係る標準試料の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the standard sample which concerns on 3rd Embodiment. 実施例1〜3の機器換算係数と、標準試料の重さとの関係を示す図である。It is a figure which shows the relationship between the apparatus conversion factor of Examples 1-3 and the weight of a standard sample. 比較例1〜3の機器換算係数と、標準試料の重さとの関係を示す図である。It is a figure which shows the relationship between the apparatus conversion factor of Comparative Examples 1-3, and the weight of a standard sample.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

(第1の実施形態)
図1は、第1の本実施形態に係る放射能測定用標準試料10を示す図である。以下、「放射能測定用標準試料」を単に「標準試料」と呼ぶ。図2は本実施形態に係る標準試料10の長さ方向に垂直な断面を示す断面図である。
標準試料10は、きのこ栽培に使用する原木の放射能測定に用いる標準試料である。標準試料10は、木材を含む円柱形のコア材20と、コア材20を覆う被覆部材40とを備える。コア材20は側面部に放射性物質含有領域220を有する。以下で、詳しく説明する。
(First embodiment)
FIG. 1 is a view showing a standard sample 10 for measuring radioactivity according to the first embodiment. Hereinafter, the “standard sample for measuring radioactivity” is simply referred to as “standard sample”. FIG. 2 is a cross-sectional view showing a cross section perpendicular to the length direction of the standard sample 10 according to the present embodiment.
The standard sample 10 is a standard sample used for radioactivity measurement of raw wood used for mushroom cultivation. The standard sample 10 includes a cylindrical core material 20 including wood and a covering member 40 that covers the core material 20. The core material 20 has the radioactive substance containing area | region 220 in a side part. This will be described in detail below.

標準試料10は、放射線測定装置が正常に測定可能な状態かどうかや、測定精度を確認するために用いられる。たとえば、放射能量を知ろうとするきのこ栽培に使用する原木(きのこ栽培用原木)の測定に先立ち、標準試料10を放射線測定装置で測定する。そして、放射線測定装置が標準試料10の既知の放射線量を正しく測定できるかどうかを確認する。その後、きのこ栽培用原木の測定を行うことにより、測定結果の信頼性を確保できる。標準試料10の測定は、1日1度行えばよいが、きのこ栽培用原木の測定ごとに行ってもよい。また、標準試料10は、放射線測定装置の校正や、機器換算係数の導出にも用いることができる。   The standard sample 10 is used for confirming whether the radiation measuring apparatus is in a state where it can be normally measured and the measurement accuracy. For example, prior to the measurement of a log (mushroom growing log) used for mushroom cultivation to know the amount of radioactivity, the standard sample 10 is measured with a radiation measuring device. Then, it is confirmed whether the radiation measuring apparatus can correctly measure the known radiation dose of the standard sample 10. Then, the reliability of a measurement result is securable by measuring the raw wood for mushroom cultivation. The measurement of the standard sample 10 may be performed once a day, but may be performed every time the raw wood for mushroom cultivation is measured. The standard sample 10 can also be used for calibration of the radiation measuring apparatus and derivation of an equipment conversion coefficient.

なお、標準試料10および原木の測定においては、標準試料10と同様の構造で、放射線物質を含ませていないバックグラウンド測定用試料を合わせて用いることが好ましい。標準試料10や原木の測定で得られたカウント数から、バックグラウンド測定用試料の測定で得られたカウント数を差し引くことで、標準試料10や原木の真のカウント数を得ることができる。   In the measurement of the standard sample 10 and the raw wood, it is preferable to use a background measurement sample that has the same structure as the standard sample 10 and does not contain a radioactive substance. By subtracting the count number obtained by measuring the background measurement sample from the count number obtained by measuring the standard sample 10 or the raw wood, the true count number of the standard sample 10 or the raw wood can be obtained.

ここで、標準試料10において、測定器の見込み角度等の測定特性、自己吸収効果、および遮断効果等の条件を、測定対象とできるだけ同一にすることが信頼性の観点から重要である。また、長期間に渡り使用に耐える安定性が求められる。   Here, in the standard sample 10, it is important from the viewpoint of reliability that the measurement characteristics such as the expected angle of the measuring instrument, the conditions such as the self-absorption effect, and the blocking effect are made the same as those of the measurement object. Moreover, the stability which can be used for a long time is calculated | required.

なお、測定対象とするきのこ栽培用の原木で栽培されるきのこの種類は、特に限定されないが、たとえば、シイタケ、マイタケ、エノキタケ、ナメコ、キクラゲ、クリタケ、ヒラタケ等が挙げられる。   In addition, the kind of mushroom cultivated with the raw material for mushroom cultivation to be measured is not particularly limited, and examples thereof include shiitake mushroom, maitake mushroom, enokitake mushroom, sea cucumber, mushroom, chestnut mushroom, oyster mushroom and the like.

なお、原木とは、伐採した直後の原木、伐採後に数ヶ月間乾燥等させた原木、および、きのこ栽培に使用された原木等を含む。原木の種類は特に限定されないが、たとえば、ミズナラ、シイ、サクラ、シデ、クヌギ、コナラ、ブナ、カキ、クリ、クルミ等の広葉樹、スギ、カラマツ、アカマツなどの針葉樹などが挙げられる。   The raw wood includes raw wood immediately after cutting, raw wood dried for several months after cutting, and raw wood used for mushroom cultivation. The type of raw wood is not particularly limited, and examples thereof include broadleaf trees such as Mizunara, Shii, Sakura, Side, Kunugi, Quercus, Beech, Oyster, Chestnut, and Walnut, and conifers such as Sugi, Larch, and Pinus.

なお、標準試料10は含水率、密度、寸法等を変えて複数準備しておき、測定対象とするきのこ栽培用原木に合わせて選択して用いることができる。   A plurality of standard samples 10 can be prepared by changing the moisture content, density, dimensions, etc., and can be selected and used in accordance with the mushroom cultivation raw wood to be measured.

標準試料10は、円柱状をしている。図2は、標準試料10の長さ方向、すなわち当該円柱の回転軸に垂直な断面の図である。なお、標準試料10の形状は真の円柱状に限らない。すなわち、底面が真円に限らず、楕円であったり、凹凸がある丸みの帯びた形状であったりしても良い。また、円柱の軸が底面の法線方向からわずかに傾いていたり、側面にわずかに凹凸があったりしてもよい。   The standard sample 10 has a cylindrical shape. FIG. 2 is a cross-sectional view perpendicular to the longitudinal direction of the standard sample 10, that is, the rotation axis of the cylinder. Note that the shape of the standard sample 10 is not limited to a true cylindrical shape. That is, the bottom surface is not limited to a perfect circle, but may be an ellipse or a rounded shape with irregularities. Further, the axis of the cylinder may be slightly inclined from the normal direction of the bottom surface, or the side surface may be slightly uneven.

コア材20は、放射性物質含有領域220と、内部領域210とを有する。放射性物質含有領域220はコア材20の側面から、内部に向かって形成されている。一方、内部領域210はコア材20の中心軸を含み、側面に向かって形成されている。放射性物質含有領域220は内部領域210よりも放射性物質の含有密度が高い。内部領域210と放射性物質含有領域220の境界は明確であって良い。すなわち、コア材20の半径方向の放射性物質の含有密度分布が、内部領域210と放射性物質含有領域220の境界において非連続であって良い。一方、内部領域210と放射性物質含有領域220の境界は必ずしも明確でなくても良い。すなわち、コア材20の側面から内部に向かって連続的に放射性物質の含有密度が小さくなっていても良い。   The core material 20 has a radioactive substance-containing region 220 and an inner region 210. The radioactive substance containing region 220 is formed from the side surface of the core material 20 toward the inside. On the other hand, the inner region 210 includes the central axis of the core material 20 and is formed toward the side surface. The radioactive substance containing region 220 has a higher density of radioactive substances than the inner region 210. The boundary between the inner region 210 and the radioactive substance-containing region 220 may be clear. That is, the content density distribution of the radioactive material in the radial direction of the core material 20 may be discontinuous at the boundary between the internal region 210 and the radioactive material-containing region 220. On the other hand, the boundary between the inner region 210 and the radioactive substance-containing region 220 is not necessarily clear. That is, the content density of the radioactive substance may continuously decrease from the side surface of the core material 20 toward the inside.

信頼性の観点から、放射性物質含有領域220はコア材20の側面の全体に形成されていることが好ましい。すなわち、コア材20の側面は全て放射性物質含有領域220で構成されていることが好ましい。ただし、そのような構造に限定されず、放射性物質含有領域220はコア材20の側面の一部分にのみ形成されていても良い。なお、コア材20の底面部にも放射性物質含有領域220が形成されていても良い。   From the viewpoint of reliability, the radioactive substance-containing region 220 is preferably formed on the entire side surface of the core material 20. That is, it is preferable that all the side surfaces of the core material 20 are configured by the radioactive substance-containing region 220. However, the structure is not limited to such a structure, and the radioactive substance-containing region 220 may be formed only on a part of the side surface of the core material 20. The radioactive substance-containing region 220 may also be formed on the bottom surface of the core material 20.

コア材20が、側面部に放射性物質含有領域220を備えることにより、きのこ栽培に使用する原木における放射性物質の不均一な分布に近づけることができ、信頼性を向上させることができる。   When the core material 20 includes the radioactive substance-containing region 220 on the side surface portion, the core material 20 can be close to the non-uniform distribution of the radioactive substance in the raw wood used for mushroom cultivation, and the reliability can be improved.

コア材20は少なくとも一部に木材を含む。本実施形態において、コア材20は表面に放射性物質の溶液が塗布された円柱状木材である。放射性物質は測定対象とする物質であり、特に限定されないが、たとえば放射性セシウム(134Csおよび137Cs)である。コア材20として木材を用いることにより、測定対象とする原木の含水率および密度等に近い含水率および密度等を有する標準試料10を、容易に得ることができる。 The core material 20 includes wood at least partially. In the present embodiment, the core material 20 is a cylindrical wood whose surface is coated with a radioactive material solution. The radioactive substance is a substance to be measured, and is not particularly limited. For example, radioactive cesium ( 134 Cs and 137 Cs) is used. By using wood as the core material 20, it is possible to easily obtain the standard sample 10 having a moisture content and density close to the moisture content and density of the raw wood to be measured.

標準試料10において、コア材20は被覆部材40に覆われている。被覆部材40はたとえば、樹脂製の膜や管である。被覆部材40の材質としては、特に限定されないが、たとえば繊維強化プラスチック(Fiber Reinforced Plastics:FRP)、塩化ビニル樹脂、アクリル樹脂、ポリテトラフルオロエチレン等のフッ素樹脂、シリコン樹脂、ウレタン樹脂、エポキシ樹脂等が挙げられる。被覆部材40はいずれかの樹脂からなる単層構造であっても良いし、複数の層から構成されていても良い。コア材20が被覆部材40に覆われていることにより、含水率や放射性物質の含有量を安定化させることができ、長期の使用が可能となる。安定性向上の観点から、被覆部材40の厚みは、0.1mm以上が好ましい。一方、信頼性向上の観点から、被覆部材40の厚みは、2.0mm以下が好ましく、1.0mm以下がより好ましい。   In the standard sample 10, the core material 20 is covered with a covering member 40. The covering member 40 is, for example, a resin film or tube. The material of the covering member 40 is not particularly limited. For example, fiber reinforced plastics (FRP), vinyl chloride resin, acrylic resin, fluorine resin such as polytetrafluoroethylene, silicon resin, urethane resin, epoxy resin, etc. Is mentioned. The covering member 40 may have a single layer structure made of any resin or may be composed of a plurality of layers. By covering the core material 20 with the covering member 40, the moisture content and the content of the radioactive substance can be stabilized, and long-term use becomes possible. From the viewpoint of improving stability, the thickness of the covering member 40 is preferably 0.1 mm or more. On the other hand, from the viewpoint of improving reliability, the thickness of the covering member 40 is preferably 2.0 mm or less, and more preferably 1.0 mm or less.

標準試料10の含水率は35%以上であることが好ましく、38%以上であることがより好ましい。一方、標準試料10の含水率は45%以下であることが好ましく、43%以下であることがより好ましい。そうすれば、伐採直後から1ヶ月までの原木の測定において、特に信頼性が向上する。   The moisture content of the standard sample 10 is preferably 35% or more, and more preferably 38% or more. On the other hand, the moisture content of the standard sample 10 is preferably 45% or less, and more preferably 43% or less. If it does so, especially in the measurement of the raw wood from immediately after logging to one month, reliability will improve.

一方、標準試料10の含水率は25%以上40%以下であることが好ましい。そうすれば、伐採後に乾燥させた原木の測定において、特に信頼性が向上する。きのこ栽培では伐採後に少なくとも一度乾燥させた原木を用いるため、そのような原木の測定に適応することが重要である。伐採後に乾燥させた原木は、必要に応じて含水処理等をされるが、当該原木の放射能測定は、たとえば105℃で定重量になるまで乾燥させた後に行うことができる。   On the other hand, the moisture content of the standard sample 10 is preferably 25% or more and 40% or less. In this way, reliability is particularly improved in the measurement of raw wood dried after cutting. Since mushroom cultivation uses logs that have been dried at least once after logging, it is important to adapt to the measurement of such logs. The raw wood that has been dried after felling is subjected to water treatment or the like as necessary, and the radioactivity of the raw wood can be measured after drying to a constant weight at 105 ° C., for example.

なお、含水率とは湿潤基準の含水率であり、標準試料10に含まれる水分の重量を、水分を含む標準試料10全体の重量で除した値である。標準試料10の含水率は、たとえば電気抵抗式水分計を用いてコア材20部分の含水率を測定することで得られる。特に、内部領域210が標準試料10の主な体積部分である場合、たとえば内部領域210部分について電気抵抗式水分計を用いて測定した含水率を、標準試料10の含水率とみなすことができる。   The moisture content is a moisture content on a wet basis and is a value obtained by dividing the weight of moisture contained in the standard sample 10 by the weight of the entire standard sample 10 containing moisture. The moisture content of the standard sample 10 can be obtained by measuring the moisture content of the core material 20 using, for example, an electric resistance moisture meter. In particular, when the internal region 210 is the main volume portion of the standard sample 10, for example, the moisture content measured using an electric resistance moisture meter for the internal region 210 portion can be regarded as the moisture content of the standard sample 10.

標準試料10の密度は0.5g/cm以上であることが好ましく、0.8g/cm以上であることがより好ましい。一方、標準試料10の密度は1.5g/cm以下であることが好ましく、1.1g/cm以下であることがより好ましい。そうすれば、伐採直後から1ヶ月までの原木の測定において、特に信頼性が向上する。 The density of the standard sample 10 is preferably 0.5 g / cm 3 or more, and more preferably 0.8 g / cm 3 or more. On the other hand, the density of the standard sample 10 is preferably 1.5 g / cm 3 or less, and more preferably 1.1 g / cm 3 or less. If it does so, especially in the measurement of the raw wood from immediately after logging to one month, reliability will improve.

標準試料10の密度は0.30g/cm以上であることが好ましく、0.35g/cm以上であることがより好ましい。一方、標準試料10の密度は0.95g/cm以下であることが好ましく、0.80g/cm以下であることがより好ましい。そうすれば、伐採後に乾燥させた原木の測定において、特に信頼性が向上する。 The density of the standard sample 10 is preferably 0.30 g / cm 3 or more, and more preferably 0.35 g / cm 3 or more. On the other hand, the density of the standard sample 10 is preferably 0.95 g / cm 3 or less, and more preferably 0.80 g / cm 3 or less. In this way, reliability is particularly improved in the measurement of raw wood dried after cutting.

たとえば、標準試料10の長さは12cm以上120cm以下、直径は6cm以上18cm以下、重量は330g以上31000g以下とすることができる。   For example, the standard sample 10 can have a length of 12 cm to 120 cm, a diameter of 6 cm to 18 cm, and a weight of 330 g to 31000 g.

以下に、本実施形態に係る標準試料10の製造方法を説明する。
図3は、本実施形態に係る標準試料10の製造方法を説明するための図である。本実施形態に係る標準試料10の製造方法は、側面部に放射性物質含有領域220を有し、木材を含むコア材20を準備する工程と、コア材20を被覆部材40で覆う工程とを備える。
Below, the manufacturing method of the standard sample 10 which concerns on this embodiment is demonstrated.
FIG. 3 is a diagram for explaining a method of manufacturing the standard sample 10 according to this embodiment. The method for manufacturing the standard sample 10 according to the present embodiment includes a step of preparing a core material 20 including a radioactive material-containing region 220 on a side surface portion and including wood, and a step of covering the core material 20 with a covering member 40. .

本実施形態に係る標準試料10において、コア材20は表面に放射性物質の溶液が塗布された円柱状木材である。コア材20を準備する工程では、図3(a)に示す様に、円柱状木材100を準備する。円柱状木材100は伐採した直後(たとえば伐採後2ヶ月以内)の木材を円柱状に加工したものである。ただし、これに限定されず、必要に応じて伐採後に時間が経過した木材や、乾燥させた木材、市販の木材等を用いて準備することができる。   In the standard sample 10 according to the present embodiment, the core material 20 is a cylindrical wood whose surface is coated with a radioactive substance solution. In the step of preparing the core material 20, the columnar wood 100 is prepared as shown in FIG. The columnar timber 100 is obtained by processing timber immediately after logging (for example, within two months after logging) into a columnar shape. However, it is not limited to this, and it can prepare using the wood which time passed after felling, the dried wood, the commercially available wood, etc. as needed.

円柱状木材100の種類は特に限定されないが、たとえばミズナラ、シイ、シデ、サクラ、クヌギ、コナラ、ブナ、カキ、クリ、クルミ等の広葉樹、スギ、カラマツ、アカマツなどの針葉樹を用いることができる。なお、円柱状木材100は測定対象とする放射性物質を含まない木材であることが好ましい。   The type of the columnar timber 100 is not particularly limited. For example, broad-leaved trees such as Mizunara, Shii, Side, Sakura, Kunugi, Quercus, Beech, Oyster, Chestnut, and Walnut, and conifers such as cedar, larch, and red pine can be used. Note that the columnar wood 100 is preferably wood that does not contain a radioactive substance to be measured.

準備した円柱状木材100の表面に、放射性物質の溶液を塗布して、図3(b)に示す様なコア材20を得ることができる。円柱状木材100のうち、当該溶液が染み込み、放射性物質を含有した領域が、放射性物質含有領域220となり、その他の領域が内部領域210となる。放射性物質は、きのこ栽培用原木の放射能測定を行う際に測定対象とする物質であり、たとえば放射性セシウム(134Csおよび137Cs)である。放射性物質は、たとえばきのこ栽培用原木の生育地域において採取することができる。放射性物質の溶液は、放射性物質をたとえば水に溶かすことで得ることができる。 The core material 20 as shown in FIG. 3B can be obtained by applying a radioactive substance solution to the surface of the prepared columnar wood 100. In the columnar wood 100, the region in which the solution permeates and contains the radioactive substance becomes the radioactive substance-containing region 220, and the other region becomes the inner region 210. The radioactive substance is a substance to be measured when measuring the radioactivity of the raw wood for mushroom cultivation, and is, for example, radioactive cesium ( 134 Cs and 137 Cs). The radioactive substance can be collected, for example, in an area where mushroom cultivation raw wood is grown. The solution of the radioactive substance can be obtained by dissolving the radioactive substance in, for example, water.

放射性物質の溶液は、少なくとも円柱状木材100の側面に塗布する。このとき、側面の一部のみに塗布しても良いが、測定の再現性向上の観点から、側面全体に塗布することが好ましく、側面全体に均一に塗布することがより好ましい。なお、側面のみならず、円柱状木材100の底面部、すなわち円柱状木材100の木口部分にも当該溶液を塗布して良い。   The radioactive substance solution is applied to at least the side surface of the cylindrical wood 100. At this time, it may be applied to only a part of the side surface, but from the viewpoint of improving the reproducibility of measurement, it is preferably applied to the entire side surface, more preferably uniformly applied to the entire side surface. In addition, you may apply | coat the said solution not only to a side surface but to the bottom face part of the columnar timber 100, ie, the mouth part of the columnar timber 100. FIG.

溶液の濃度および塗布量の少なくとも一方を調整することで、標準試料10の放射能量を調整することができる。   By adjusting at least one of the concentration of the solution and the coating amount, the amount of radioactivity of the standard sample 10 can be adjusted.

次いで、コア材20を被覆部材40で覆う工程を行う。当該工程では、コア材20に液状の樹脂を塗布して硬化させることにより、コア材20を樹脂からなる被覆部材40で覆い、図3(c)の様に標準試料10を得ることができる。ここで、樹脂としては、たとえばポリテトラフルオロエチレン等のフッ素樹脂、FRP、シリコン樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂等が挙げられるが、これらに限定されない。また、液状の樹脂を塗布して硬化させる代わりに、たとえば、シート状の樹脂を被覆部材40としてコア材20にラミネートしても良いし、樹脂管の内部にコア材20を密閉しても良い。被覆部材40として樹脂管を用いる場合、その材質としては、たとえば、塩化ビニル樹脂、アクリル樹脂、シリコン樹脂等が挙げられる。   Next, a step of covering the core material 20 with the covering member 40 is performed. In this process, by applying a liquid resin to the core material 20 and curing it, the core material 20 is covered with the covering member 40 made of resin, and the standard sample 10 can be obtained as shown in FIG. Here, examples of the resin include fluorine resins such as polytetrafluoroethylene, FRP, silicon resin, acrylic resin, urethane resin, and epoxy resin, but are not limited thereto. Instead of applying and curing a liquid resin, for example, a sheet-like resin may be laminated on the core material 20 as the covering member 40, or the core material 20 may be sealed inside the resin tube. . When a resin tube is used as the covering member 40, examples of the material include vinyl chloride resin, acrylic resin, and silicon resin.

本工程では、含水率や放射能量の変動を防ぎ、標準試料の安定性を高めるため、コア材20の全体を被覆部材40で覆うことが好ましい。被覆部材40は一層構造であっても良いし、複数の材料からなる複層構造であっても良い。また、コア材20と被覆部材40の間には、密着性向上等の目的で、他の部材を介在させても良いし、コア材20と被覆部材40が直接接触するようにしても良い。また、コア材20と被覆部材40は接着剤等を用いて貼り合わされていても良い。   In this step, it is preferable to cover the entire core member 20 with the covering member 40 in order to prevent fluctuations in the moisture content and the amount of radioactivity and to improve the stability of the standard sample. The covering member 40 may have a single layer structure or a multilayer structure made of a plurality of materials. Further, another member may be interposed between the core material 20 and the covering member 40 for the purpose of improving adhesion, or the core material 20 and the covering member 40 may be in direct contact with each other. Further, the core material 20 and the covering member 40 may be bonded together using an adhesive or the like.

次に、本実施形態の作用および効果について説明する。
本実施形態に係る標準試料は、きのこ栽培に使用する原木の放射能測定に用いることができ、信頼性と安定性に優れる。
Next, the operation and effect of this embodiment will be described.
The standard sample which concerns on this embodiment can be used for the radioactivity measurement of the raw wood used for mushroom cultivation, and is excellent in reliability and stability.

コア材20が、側面部に放射性物質含有領域220を備えることにより、きのこ栽培に使用する原木における放射性物質の不均一な分布に近づけることができ、信頼性を向上させることができる。   When the core material 20 includes the radioactive substance-containing region 220 on the side surface portion, the core material 20 can be close to the non-uniform distribution of the radioactive substance in the raw wood used for mushroom cultivation, and the reliability can be improved.

また、コア材20が被覆部材40に覆われていることにより、含水率や放射性物質の含有量を安定化させることができ、長期の使用が可能となる。   Further, since the core material 20 is covered with the covering member 40, the moisture content and the content of the radioactive substance can be stabilized, and long-term use is possible.

また、コア材20として表面に放射性物質の溶液が塗布された木材を用いることにより、測定対象とする原木の含水率および密度等に近い含水率および密度等を有する標準試料10を、容易に得ることができる。   Further, by using wood whose surface is coated with a radioactive material solution as the core material 20, the standard sample 10 having a moisture content and density close to the moisture content and density etc. of the raw wood to be measured is easily obtained. be able to.

(第2の実施形態)
第2の実施形態に係る標準試料10について、以下に説明する。
図4(a)は本実施形態に係る標準試料10の長さ方向に垂直な断面を示す断面図である。本実施形態に係る標準試料10は、コア材20が、木材を含む第1部材120と、第1部材120を覆い放射性物質含有領域220を構成する第2部材140とからなる点を除いて、第1の実施形態に係る標準試料10と同様である。以下に詳細に説明する。
(Second Embodiment)
The standard sample 10 according to the second embodiment will be described below.
FIG. 4A is a cross-sectional view showing a cross section perpendicular to the length direction of the standard sample 10 according to this embodiment. In the standard sample 10 according to the present embodiment, the core material 20 includes a first member 120 containing wood and a second member 140 that covers the first member 120 and forms the radioactive substance-containing region 220. This is the same as the standard sample 10 according to the first embodiment. This will be described in detail below.

本実施形態に係るコア材20は、第1部材120および第2部材140を含み、第1部材120は円柱状木材である。第1部材120としては、第1の実施形態に係る円柱状木材100と同様のものを用いることができる。そうすることにより、測定対象とする原木の含水率および密度等に近い含水率および密度等を有する標準試料10を、容易に得ることができる。   The core material 20 according to the present embodiment includes a first member 120 and a second member 140, and the first member 120 is columnar wood. As the 1st member 120, the thing similar to the columnar timber 100 which concerns on 1st Embodiment can be used. By doing so, the standard sample 10 which has a moisture content, a density, etc. close | similar to the moisture content, the density, etc. of the raw wood used as a measuring object can be obtained easily.

なお、第1部材120として円柱状木材の代わりに、樹脂製の円筒に少なくとも木材粉を充填したものを用いてもよい。円筒の材質としては、たとえば、塩化ビニル樹脂、アクリル樹脂、シリコン樹脂等が挙げられる。木材粉の種類は特に限定されないが、たとえばミズナラ、シイ、シデ、サクラ、クヌギ、コナラ、ブナ、カキ、クリ、クルミ等の広葉樹、スギ、カラマツ、アカマツなどの針葉樹を用いることができ、中でも、信頼性の観点から、広葉樹であることが好ましい。また、木材粉は必要に応じて含水したものであっても良い。木材粉の大きさは特に限定されず、粉末状またはチップ状のものを用いることができる。なお、円筒には木材粉に加えて、玄米など、他の材料が合わせて充填されても良い。   The first member 120 may be made of a resin cylinder filled with at least wood powder instead of columnar wood. Examples of the material of the cylinder include vinyl chloride resin, acrylic resin, and silicon resin. The type of wood powder is not particularly limited, but for example, broad-leaved trees such as Mizunara, Shii, Side, Sakura, Kunugi, Quercus, Beech, Oyster, Chestnut, Walnut, etc., conifers such as cedar, larch, red pine, etc. can be used. From the viewpoint of reliability, it is preferably a hardwood. Moreover, the wood powder may be water-containing if necessary. The magnitude | size of wood powder is not specifically limited, A powder form or a chip-like thing can be used. In addition to the wood powder, the cylinder may be filled with other materials such as brown rice.

木材粉を充填した樹脂製の円筒を第1部材120として用いることにより、標準試料10、特に内部領域210の密度や含水率の調整が行いやすくなる。たとえば、伐採後に長期間(たとえば3ヶ月以上)乾燥させた原木(ほだ木)を測定対象とする場合、このような原木は伐採直後の原木よりも密度が低く、含水率が低い。そのため、伐採直後の木材を用いた円柱状木材100を第1部材120とするよりも、木材粉を充填した樹脂製の円筒を第1部材120とする方が、密度や含水率を調整して、信頼性の高い標準試料10を得られる。   By using a resin-made cylinder filled with wood powder as the first member 120, it is easy to adjust the density and moisture content of the standard sample 10, particularly the internal region 210. For example, in the case where raw wood (hodwood) that has been dried for a long period of time (for example, three months or more) after logging is to be measured, such raw wood has a lower density and lower moisture content than the raw wood immediately after logging. Therefore, rather than using the columnar timber 100 using the timber immediately after cutting as the first member 120, the resin cylinder filled with wood powder is used as the first member 120 to adjust the density and moisture content. A highly reliable standard sample 10 can be obtained.

本実施形態に係る標準試料10のコア材20は、第1部材120を覆う第2部材140を有する。第2部材140はシート状であり、紙、コルク、および木材から選択される1種以上からなる。第2部材140が木材からなる場合、より大きな木材から薄く切り出してシート状にしたものでも良いし、木材粉をシート状に凝集させたものでも良い。第2部材140は放射性物質を含有し、放射性物質含有領域220を構成している。   The core material 20 of the standard sample 10 according to the present embodiment has a second member 140 that covers the first member 120. The second member 140 has a sheet shape and is made of one or more selected from paper, cork, and wood. In the case where the second member 140 is made of wood, the second member 140 may be cut into a sheet from a larger piece of wood, or may be obtained by agglomerating wood powder into a sheet. The second member 140 contains a radioactive substance and constitutes a radioactive substance-containing region 220.

コア材20が、第1部材120および第2部材140を備えることにより、きのこ栽培に使用する原木における放射性物質の不均一な分布に近づけることができ、信頼性を向上させることができる。   When the core material 20 includes the first member 120 and the second member 140, the core material 20 can be brought close to the non-uniform distribution of the radioactive substance in the raw wood used for mushroom cultivation, and the reliability can be improved.

なお、第2部材140は少なくとも第1部材120の側面の一部を覆っていればよいが、再現性向上の観点から、第1部材120の全体を覆っていることが好ましい。また、側面だけでなく、円筒形の第1部材120の底面部分をさらに覆っていてもよい。
なお、第1部材120と第2部材140は直接接していても良いし、間に介在層があっても良い。
The second member 140 only needs to cover at least part of the side surface of the first member 120, but it is preferable to cover the entire first member 120 from the viewpoint of improving reproducibility. Further, not only the side surface but also the bottom surface portion of the cylindrical first member 120 may be further covered.
Note that the first member 120 and the second member 140 may be in direct contact with each other, or an intervening layer may be provided therebetween.

第2部材140の放射性物質の濃度は、第1部材120の放射性物質の濃度よりも高く、第2部材140が放射性物質含有領域220を構成する一方、第1部材120が内部領域210を構成する。そのため、本実施形態に係る標準試料10では、コア材20における内部領域210と放射性物質含有領域220との境界は明確である。   The concentration of the radioactive substance in the second member 140 is higher than the concentration of the radioactive substance in the first member 120. The second member 140 constitutes the radioactive substance-containing region 220, while the first member 120 constitutes the inner region 210. . Therefore, in the standard sample 10 according to the present embodiment, the boundary between the inner region 210 and the radioactive substance-containing region 220 in the core material 20 is clear.

図4(b)は、本実施形態の変形例に係る標準試料10の長さ方向に垂直な断面を示す断面図である。本変形例のコア材20では、第1部材120と第2部材140との間に、拡散防止部材160が介在している。拡散防止部材160としては、例えば塩化ビニル樹脂、アクリル樹脂、ポリテトラフルオロエチレン等のフッ素樹脂、シリコン樹脂、ウレタン樹脂、エポキシ樹脂等のフィルムが挙げられる。信頼性、安定性向上の観点から、拡散防止部材160の厚みは5μm以上15μm以下が好ましい。拡散防止部材160は、第2部材140が第1部材120を覆う全ての領域に設けられていることが好ましい。   FIG. 4B is a cross-sectional view showing a cross section perpendicular to the length direction of the standard sample 10 according to a modification of the present embodiment. In the core material 20 of this modification, a diffusion preventing member 160 is interposed between the first member 120 and the second member 140. Examples of the diffusion preventing member 160 include films of fluorine resin such as vinyl chloride resin, acrylic resin, polytetrafluoroethylene, silicon resin, urethane resin, and epoxy resin. From the viewpoint of improving reliability and stability, the thickness of the diffusion preventing member 160 is preferably 5 μm or more and 15 μm or less. The diffusion preventing member 160 is preferably provided in all regions where the second member 140 covers the first member 120.

第1部材120と第2部材140との間に拡散防止部材160が設けられていることにより、放射性物質含有領域220中の放射性物質が、第2部材140中に拡散することを防ぐことができる。そのため、長期にわたって放射性物質や水分の分布等の変化が抑制され、標準試料10の安定性が向上する。なお、拡散防止部材160の効果は、第1部材120が円柱状木材である場合に、特に顕著に得られる。   By providing the diffusion preventing member 160 between the first member 120 and the second member 140, it is possible to prevent the radioactive substance in the radioactive substance-containing region 220 from diffusing into the second member 140. . Therefore, changes in the radioactive material and moisture distribution are suppressed over a long period of time, and the stability of the standard sample 10 is improved. The effect of the diffusion preventing member 160 is particularly noticeable when the first member 120 is columnar wood.

次に、本実施形態に係る標準試料10の製造方法を説明する。
図5は、本実施形態に係る標準試料10の製造方法を説明するための図である。コア材20を準備する工程では、図5(a)の様に、第1部材120と第2部材140とを準備する。次いで、第1部材120を第2部材140で覆う。コア材20を被覆部材40で覆う工程は、第1の実施形態と同様に行うことができる。
Next, a method for manufacturing the standard sample 10 according to this embodiment will be described.
FIG. 5 is a diagram for explaining a method of manufacturing the standard sample 10 according to the present embodiment. In the step of preparing the core material 20, the first member 120 and the second member 140 are prepared as shown in FIG. Next, the first member 120 is covered with the second member 140. The process of covering the core material 20 with the covering member 40 can be performed similarly to the first embodiment.

第1部材120が円柱状木材である場合、第1の実施形態の円柱状木材100と同様にして第1部材120を準備する。一方、第1部材120が木材粉を充填した樹脂製の円筒である場合、樹脂製の円筒に木材粉を充填して密封することにより第1部材120を準備する。なお、木材粉の含水率は必要に応じて調整しておく。第2部材140は、たとえば紙またはコルクに放射性物質の溶液を塗布して準備する。   When the first member 120 is a columnar wood, the first member 120 is prepared in the same manner as the columnar wood 100 of the first embodiment. On the other hand, when the first member 120 is a resin cylinder filled with wood powder, the first member 120 is prepared by filling the resin cylinder with wood powder and sealing. The moisture content of the wood powder is adjusted as necessary. The second member 140 is prepared by applying a radioactive substance solution to, for example, paper or cork.

次いで、たとえば図5(b)の様に第1部材120の側面に第2部材140を巻き付けることによって、第1部材120を第2部材140で覆い、図5(c)の様なコア材20を得る。第1部材120と第2部材140との間は接着剤で接着してもよいし、単に密着させてもよい。拡散防止部材160を設ける場合、図5(b)の様に、第1部材120を第2部材140で覆う際に、間に拡散防止部材160を介在させる様にする。具体的な例としては、標準試料10をまず拡散防止部材160で覆った後に更に第2部材140で覆う。もしくは、シート状の第2部材140の第1部材120と接する面に、拡散防止部材160を貼り付けた後に、第1部材120を覆ってもよい。   Next, the first member 120 is covered with the second member 140 by winding the second member 140 around the side surface of the first member 120 as shown in FIG. 5B, for example, and the core material 20 as shown in FIG. Get. The first member 120 and the second member 140 may be adhered with an adhesive or may be simply brought into close contact with each other. When the diffusion preventing member 160 is provided, the diffusion preventing member 160 is interposed between the first member 120 and the second member 140 as shown in FIG. As a specific example, the standard sample 10 is first covered with the diffusion preventing member 160 and then covered with the second member 140. Alternatively, the first member 120 may be covered after the diffusion preventing member 160 is attached to the surface of the sheet-like second member 140 that contacts the first member 120.

次いで、コア材20を被覆部材40で覆う工程を、第1の実施形態に係る標準試料10の製造方法と同様に行うことで、図5(d)の様に標準試料10が得られる。   Next, the standard sample 10 is obtained as shown in FIG. 5D by performing the process of covering the core material 20 with the covering member 40 in the same manner as the method for manufacturing the standard sample 10 according to the first embodiment.

次に、本実施形態の作用および効果について説明する。本実施形態においては第1の実施形態と同様の作用および効果が得られる。
加えて、コア材20が第1部材120と第2部材140を備えることにより、構成材料の選択自由度が向上し、標準試料10の信頼性をより向上させることができる。
Next, the operation and effect of this embodiment will be described. In this embodiment, the same operation and effect as in the first embodiment can be obtained.
In addition, when the core material 20 includes the first member 120 and the second member 140, the degree of freedom in selecting the constituent material is improved, and the reliability of the standard sample 10 can be further improved.

(第3の実施形態)
第3の実施形態に係る標準試料10について、以下に説明する。
図6は本実施形態に係る標準試料10の長さ方向に垂直な断面を示す断面図である。本実施形態に係る標準試料10は、第1部材122が側面に複数の凹部が設けられた円柱状木材であり、凹部には第2部材142が埋め込まれている点を除いて、第2の実施形態に係る標準試料10と同様である。以下に詳細に説明する。
(Third embodiment)
The standard sample 10 according to the third embodiment will be described below.
FIG. 6 is a cross-sectional view showing a cross section perpendicular to the length direction of the standard sample 10 according to the present embodiment. In the standard sample 10 according to the present embodiment, the first member 122 is a columnar timber having a plurality of recesses on the side surface, and the second member 142 is embedded in the recesses, except that the second member 142 is embedded. This is the same as the standard sample 10 according to the embodiment. This will be described in detail below.

本実施形態に係るコア材20は、第1部材122および第2部材142を含み、第1部材122は側面に複数の凹部が設けられた円柱状木材である。   The core material 20 according to the present embodiment includes a first member 122 and a second member 142, and the first member 122 is a columnar wood provided with a plurality of concave portions on the side surface.

第1部材122としては、第1の実施形態に係る円柱状木材100と同様の円柱状木材の、側面に複数の凹部が設けられたものを用いることができる。そうすることにより、測定対象とする原木の含水率および密度等に近い含水率および密度等を有する標準試料10を、容易に得ることができる。凹部の形状や配置は特に限定されないが、凹部は、第1部材122の側面全体にわたって、およそ一定の密度で配置されていることが好ましい。   As the 1st member 122, what provided the some recessed part in the side surface of the columnar timber similar to the columnar timber 100 which concerns on 1st Embodiment can be used. By doing so, the standard sample 10 which has a moisture content, a density, etc. close | similar to the moisture content, the density, etc. of the raw wood used as a measuring object can be obtained easily. The shape and arrangement of the recesses are not particularly limited, but the recesses are preferably arranged at a substantially constant density over the entire side surface of the first member 122.

第2部材142は、たとえば木片、コルク、紙等からなる。第2部材142には放射性物質が含まれており、放射性物質含有領域220を構成する。第2部材142は第1部材122の凹部に埋め込まれており、本実施形態では、第2部材142は第1部材122の一部を覆っている。   The second member 142 is made of, for example, a piece of wood, cork, paper, or the like. The second member 142 contains a radioactive substance and constitutes a radioactive substance-containing region 220. The second member 142 is embedded in the recess of the first member 122, and the second member 142 covers a part of the first member 122 in this embodiment.

なお、第1部材122と第2部材142の間には、拡散防止部材が介在していても良い。拡散防止部材は、第2の実施形態の拡散防止部材160と同様の材質によって構成されうる。   A diffusion preventing member may be interposed between the first member 122 and the second member 142. The diffusion preventing member can be made of the same material as that of the diffusion preventing member 160 of the second embodiment.

次に、本実施形態に係る標準試料10の製造方法を説明する。
図7は、本実施形態に係る標準試料10の製造方法を説明するための図である。コア材20を準備する工程では、図7(a)の様に、第1部材122と第2部材142とを準備する。次いで、第1部材122の凹部124に第2部材142を嵌め込む。コア材20を被覆部材40で覆う工程は、第1の実施形態と同様に行うことができる。
Next, a method for manufacturing the standard sample 10 according to this embodiment will be described.
FIG. 7 is a diagram for explaining a method of manufacturing the standard sample 10 according to this embodiment. In the step of preparing the core material 20, the first member 122 and the second member 142 are prepared as shown in FIG. Next, the second member 142 is fitted into the recess 124 of the first member 122. The process of covering the core material 20 with the covering member 40 can be performed similarly to the first embodiment.

コア材20を準備する工程では、第1の実施形態の円柱状木材100と同様に準備した円柱状木材の側面に、ドリル等を用いて凹部124を複数設け、第1部材122を得る。一方、たとえば凹部124に嵌る形状の複数の木片に放射性物質の溶液を塗布して第2部材142を得る。   In the step of preparing the core material 20, the first member 122 is obtained by providing a plurality of recesses 124 using a drill or the like on the side surface of the columnar wood prepared in the same manner as the columnar wood 100 of the first embodiment. On the other hand, for example, a radioactive substance solution is applied to a plurality of pieces of wood shaped to fit into the recesses 124 to obtain the second member 142.

次いで、たとえば図7(b)の様に第1部材122の凹部124に第2部材142を埋め込むことによって、第1部材122の一部を第2部材142で覆い、コア材20を得る。拡散防止部材を設ける場合は、たとえば第2部材142を樹脂等でコートした後に凹部124に埋め込む。   Next, for example, as shown in FIG. 7B, the second member 142 is embedded in the concave portion 124 of the first member 122, so that a part of the first member 122 is covered with the second member 142 to obtain the core material 20. When providing the diffusion preventing member, for example, the second member 142 is coated with resin or the like and then embedded in the recess 124.

次いで、コア材20を被覆部材40で覆う工程を、第1の実施形態に係る標準試料10の製造方法と同様に行うことで、図7(c)の様に標準試料10が得られる。   Next, the standard sample 10 is obtained as shown in FIG. 7C by performing the step of covering the core material 20 with the covering member 40 in the same manner as the method for manufacturing the standard sample 10 according to the first embodiment.

本実施形態においては第1の実施形態および第2の実施形態と同様の作用および効果が得られる。   In this embodiment, the same operations and effects as those in the first embodiment and the second embodiment can be obtained.

また、本実施形態に係る標準試料10は、測定対象とする原木表面の汚染分布がスポット状である場合に、特に高い信頼性を得られる。   In addition, the standard sample 10 according to the present embodiment can obtain particularly high reliability when the contamination distribution on the surface of the raw wood to be measured is spot-like.

また、第2部材142の配置や放射性物質の含有量を調整することにより、放射性物質の分布を自由に調整することができる。   Further, the distribution of the radioactive substance can be freely adjusted by adjusting the arrangement of the second member 142 and the content of the radioactive substance.

次に、本発明の実施例について説明する。   Next, examples of the present invention will be described.

(実施例1)
伐採直後の木材を、直径120mm、長さ900mmの円柱状に加工して、円柱状木材を得た。次いで、放射能濃度が標準試料全体として15Bq/kgになるように、134Csおよび137Csの水溶液を円柱状木材の表面に塗布した。その後、液状のFRPを塗布して硬化させることにより、円柱状木材の全体を厚さ0.2mmのFRP膜で覆って標準試料1を得た。得られた標準試料1の重量は11.06kgであり、密度は1.1g/cmと求められた。また、FRP膜で覆う前に木材用の電気抵抗式水分計を用いて円柱状木材の含水率を測定したところ、40.9%であった。
Example 1
The wood just after felling was processed into a cylindrical shape having a diameter of 120 mm and a length of 900 mm to obtain a cylindrical wood. Next, an aqueous solution of 134 Cs and 137 Cs was applied to the surface of the columnar wood so that the radioactivity concentration was 15 Bq / kg as the whole standard sample. Thereafter, liquid FRP was applied and cured, so that the entire cylindrical wood was covered with an FRP film having a thickness of 0.2 mm to obtain a standard sample 1. The weight of the obtained standard sample 1 was 11.06 kg, and the density was determined to be 1.1 g / cm 3 . Moreover, when the moisture content of the columnar wood was measured using an electric resistance moisture meter for wood before being covered with the FRP film, it was 40.9%.

一方、134Csおよび137Csの水溶液を、塗布しなかった点以外は標準試料1と同様にして、バックグラウンド測定用試料1を作製した。バックグラウンド測定用試料1の重量は11kgであり、含水率は41.5%であった。 On the other hand, a sample 1 for background measurement was prepared in the same manner as the standard sample 1 except that the aqueous solution of 134 Cs and 137 Cs was not applied. The weight of the background measurement sample 1 was 11 kg, and the water content was 41.5%.

標準試料1と、バックグラウンド測定用試料1をそれぞれ放射線測定器で測定し、標準試料1について得られた測定値から、バックグラウンド測定用試料1について得られた測定値を引いた値を真のカウント値として算出した。その結果、真のカウント値は1.000cpsであり、作製した標準試料1の放射能濃度および重量との関係から、機器換算係数は166Bq/cpsと求められた。   The standard sample 1 and the background measurement sample 1 are each measured with a radiation measuring instrument, and the value obtained by subtracting the measurement value obtained for the background measurement sample 1 from the measurement value obtained for the standard sample 1 is true. Calculated as a count value. As a result, the true count value was 1.000 cps, and the equipment conversion factor was determined to be 166 Bq / cps from the relationship between the radioactivity concentration and weight of the prepared standard sample 1.

(実施例2)
伐採直後の木材を、直径120mm、長さ900mmの円柱状に加工して、円柱状木材を得た。次いで、樹脂フィルムで円柱状木材全体を覆った。その後、放射能濃度が標準試料全体として30Bq/kgになるように、134Csおよび137Csの水溶液を塗布した紙ウエスを円柱状木材の側面に巻き付け、さらにその上から樹脂フィルムを被せて全体を覆った。次いで、液状のFRPを塗布して硬化させることにより、円柱状木材の全体を厚さ0.2mmのFRP膜で覆って標準試料2を得た。得られた標準試料2の重量は11.03kgであり、密度は1.1g/cmと求められた。また、樹脂フィルムで覆う前に木材用の電気抵抗式水分計を用いて円柱状木材の含水率を測定したところ、40.8%であった。
(Example 2)
The wood just after felling was processed into a cylindrical shape having a diameter of 120 mm and a length of 900 mm to obtain a cylindrical wood. Next, the entire columnar wood was covered with a resin film. Thereafter, a paper waste coated with an aqueous solution of 134 Cs and 137 Cs is wound around the side surface of the cylindrical wood so that the radioactivity concentration becomes 30 Bq / kg as a whole standard sample, and further, a resin film is placed thereon to cover the whole. Covered. Next, liquid FRP was applied and cured, so that the entire cylindrical wood was covered with an FRP film having a thickness of 0.2 mm to obtain a standard sample 2. The weight of the obtained standard sample 2 was 11.03 kg, and the density was determined to be 1.1 g / cm 3 . Moreover, when the moisture content of the columnar wood was measured using an electric resistance moisture meter for wood before being covered with the resin film, it was 40.8%.

一方、実施例1のバックグラウンド測定用試料1と同様にして、バックグラウンド測定用試料2を作製した。バックグラウンド測定用試料2の重量は11kgであり、含水率は39.8%であった。   On the other hand, a background measurement sample 2 was prepared in the same manner as the background measurement sample 1 of Example 1. The weight of the background measurement sample 2 was 11 kg, and the water content was 39.8%.

標準試料2と、バックグラウンド測定用試料2をそれぞれ放射線測定器で測定し、標準試料2について得られた測定値から、バックグラウンド測定用試料2について得られた測定値を引いた値を真のカウント値として算出した。その結果、真のカウント値は1.946cpsであり、作製した標準試料2の放射能濃度および重量との関係から、機器換算係数は170Bq/cpsと求められた。   The standard sample 2 and the background measurement sample 2 are each measured with a radiation measuring instrument, and the value obtained by subtracting the measurement value obtained for the background measurement sample 2 from the measurement value obtained for the standard sample 2 is true. Calculated as a count value. As a result, the true count value was 1.946 cps, and the equipment conversion factor was determined to be 170 Bq / cps from the relationship between the radioactivity concentration and the weight of the produced standard sample 2.

(実施例3)
伐採直後の木材を、直径100mm、長さ900mmの円柱状に加工した以外は実施例2と同様にして、標準試料3を得た。得られた標準試料3の重量は7.92kgであり、密度は1.1g/cmと求められた。また、含水率は41.6%であった。
(Example 3)
A standard sample 3 was obtained in the same manner as in Example 2 except that the wood immediately after felling was processed into a cylindrical shape having a diameter of 100 mm and a length of 900 mm. The weight of the obtained standard sample 3 was 7.92 kg, and the density was determined to be 1.1 g / cm 3 . The water content was 41.6%.

一方、伐採直後の木材を、直径100mm、長さ900mmの円柱状に加工した以外は実施例1のバックグラウンド測定用試料1と同様にして、バックグラウンド測定用試料3を作製した。バックグラウンド測定用試料3の重量は7.9kgであり、含水率は42.0%であった。   On the other hand, a sample 3 for background measurement was produced in the same manner as the sample 1 for background measurement of Example 1 except that the wood immediately after felling was processed into a cylindrical shape having a diameter of 100 mm and a length of 900 mm. The weight of the background measurement sample 3 was 7.9 kg, and the water content was 42.0%.

標準試料3と、バックグラウンド測定用試料3をそれぞれ放射線測定器で測定し、標準試料3について得られた測定値から、バックグラウンド測定用試料3について得られた測定値を引いた値を真のカウント値として算出した。その結果、真のカウント値は1.650cpsであり、作製した標準試料3の放射能濃度および重量との関係から、機器換算係数は144Bq/cpsと求められた。   Each of the standard sample 3 and the background measurement sample 3 is measured with a radiation measuring instrument, and a value obtained by subtracting the measurement value obtained for the background measurement sample 3 from the measurement value obtained for the standard sample 3 is true. Calculated as a count value. As a result, the true count value was 1.650 cps, and the device conversion factor was determined to be 144 Bq / cps from the relationship between the radioactivity concentration and weight of the prepared standard sample 3.

(比較例1)
内径130mm、長さ900mm、管肉厚5mmの透明塩化ビニル管に、含水率が40%になるように活性炭素と、134Csおよび137Csの水溶液と、蒸留水とを入れて密閉し、標準試料4を得た。このとき、放射能濃度は標準試料全体として50Bq/kgになるようにした。得られた標準試料4の重量は12.0kgであった。
(Comparative Example 1)
A transparent vinyl chloride tube having an inner diameter of 130 mm, a length of 900 mm, and a tube wall thickness of 5 mm is sealed with activated carbon, an aqueous solution of 134 Cs and 137 Cs, and distilled water so that the water content is 40%. Sample 4 was obtained. At this time, the radioactivity concentration was set to 50 Bq / kg for the entire standard sample. The weight of the obtained standard sample 4 was 12.0 kg.

一方、内径130mm、長さ900mm、管肉厚5mmの透明塩化ビニル管に、含水率が40%になるように活性炭素および蒸留水を入れて密閉し、バックグラウンド測定用試料4を得た。バックグラウンド測定用試料4の重量は12.0kgであった。   On the other hand, in a transparent vinyl chloride tube having an inner diameter of 130 mm, a length of 900 mm, and a tube wall thickness of 5 mm, activated carbon and distilled water were added and sealed so that the water content was 40%, whereby a sample 4 for background measurement was obtained. The weight of the sample 4 for background measurement was 12.0 kg.

標準試料4と、バックグラウンド測定用試料4をそれぞれ放射線測定器で測定し、標準試料4について得られた測定値から、バックグラウンド測定用試料4について得られた測定値を引いた値を真のカウント値として算出した。その結果、真のカウント値は4.225cpsであり、作製した標準試料4の放射能濃度および重量との関係から、機器換算係数は115Bq/cpsと求められた。   Each of the standard sample 4 and the background measurement sample 4 is measured with a radiation measuring device, and the value obtained by subtracting the measurement value obtained for the background measurement sample 4 from the measurement value obtained for the standard sample 4 is true. Calculated as a count value. As a result, the true count value was 4.225 cps, and the equipment conversion factor was determined to be 115 Bq / cps from the relationship between the radioactivity concentration and the weight of the prepared standard sample 4.

(比較例2)
重量を8.6kgとした以外は比較例1と同様にして標準試料5を得た。得られた標準試料5の密度は0.85g/cmと求められた。
(Comparative Example 2)
A standard sample 5 was obtained in the same manner as in Comparative Example 1 except that the weight was 8.6 kg. The density of the obtained standard sample 5 was determined to be 0.85 g / cm 3 .

一方、重量を8.6kgとした以外は比較例1と同様にして、バックグラウンド測定用試料5を作製した。   On the other hand, Sample 5 for background measurement was produced in the same manner as Comparative Example 1 except that the weight was 8.6 kg.

標準試料5と、バックグラウンド測定用試料5をそれぞれ放射線測定器で測定し、標準試料5について得られた測定値から、バックグラウンド測定用試料5について得られた測定値を引いた値を真のカウント値として算出した。その結果、真のカウント値は3.458cpsであり、作製した標準試料5の放射能濃度および重量との関係から、機器換算係数は124Bq/cpsと求められた。   Each of the standard sample 5 and the background measurement sample 5 is measured with a radiation measuring instrument, and a value obtained by subtracting the measurement value obtained for the background measurement sample 5 from the measurement value obtained for the standard sample 5 is true. Calculated as a count value. As a result, the true count value was 3.458 cps, and the device conversion factor was determined to be 124 Bq / cps from the relationship between the radioactivity concentration and weight of the prepared standard sample 5.

(比較例3)
内径100mm、長さ900mm、管肉厚5mmの透明アクリル管に、含水率が40%になるようにオガ屑と、134Csおよび137Csの水溶液とを入れて密閉し、標準試料6を得た。このとき、放射能濃度は標準試料全体として50Bq/kgになるようにした。得られた標準試料6の重量は4.1kgであり、密度は0.6g/cmであった。
(Comparative Example 3)
A standard sample 6 was obtained by placing sawdust and an aqueous solution of 134 Cs and 137 Cs in a transparent acrylic tube having an inner diameter of 100 mm, a length of 900 mm, and a tube thickness of 5 mm so that the water content was 40%. . At this time, the radioactivity concentration was set to 50 Bq / kg for the entire standard sample. The weight of the obtained standard sample 6 was 4.1 kg, and the density was 0.6 g / cm 3 .

一方、134Csおよび137Csの水溶液の代わりに蒸留水を用いた以外は標準試料6と同様にして、バックグラウンド測定用試料6を得た。バックグラウンド測定用試料6の重量は4.1kgであった。 On the other hand, a sample 6 for background measurement was obtained in the same manner as the standard sample 6 except that distilled water was used instead of the aqueous solution of 134 Cs and 137 Cs. The weight of the background measurement sample 6 was 4.1 kg.

標準試料6と、バックグラウンド測定用試料6をそれぞれ放射線測定器で測定し、標準試料6について得られた測定値から、バックグラウンド測定用試料6について得られた測定値を引いた値を真のカウント値として算出した。その結果、真のカウント値は1.344cpsであり、作製した標準試料6の放射能濃度および重量との関係から、機器換算係数は152Bq/cpsと求められた。   Each of the standard sample 6 and the background measurement sample 6 is measured with a radiation measuring device, and a value obtained by subtracting the measurement value obtained for the background measurement sample 6 from the measurement value obtained for the standard sample 6 is true. Calculated as a count value. As a result, the true count value was 1.344 cps, and the device conversion factor was determined to be 152 Bq / cps from the relationship between the radioactivity concentration and the weight of the produced standard sample 6.

(椎茸栽培用原木および玄米の測定)
134Csおよび137Csを含んだ椎茸栽培用原木の重量と機器換算係数との関係を測定した。具体的には、各椎茸栽培用原木を非破壊測定してカウント数C(cps)を得た後、同一の椎茸栽培用原木をそれぞれオガ粉に加工して放射能量B(Bq)を測定した。そして、機器換算係数K(Bq/cps)を、K=B/Cの関係から求めた。測定は含水率40%および34%の各原木について行った。なお、含水率は、電気抵抗式水分計を用いて測定した。
(Measurement of logs and brown rice for shiitake cultivation)
The relationship between the weight of the logs for shiitake cultivation containing 134 Cs and 137 Cs and the device conversion factor was measured. Specifically, after each non-destructive measurement of each log for shiitake cultivation and obtaining a count number C (cps), the same log for shiitake cultivation was processed into sawdust and the amount of radioactivity B (Bq) was measured. . The device conversion coefficient K (Bq / cps) was obtained from the relationship of K = B / C. The measurement was performed for each log with a moisture content of 40% and 34%. The moisture content was measured using an electric resistance moisture meter.

また、含水率12%の玄米について、重量と機器換算係数との関係を測定した。具体的には、玄米を非破壊測定してカウント数を得、原木の測定と同様にして機器換算係数を求めた。   Further, the relationship between the weight and the equipment conversion factor was measured for brown rice having a moisture content of 12%. Specifically, brown rice was non-destructively measured to obtain a count, and the device conversion coefficient was obtained in the same manner as the raw wood measurement.

「原木 含水率40%」、「原木 含水率34%」、および「玄米 含水率12%」の測定結果を表1にまとめて示す。   Table 1 summarizes the measurement results of “Raw wood moisture content 40%”, “Raw wood moisture content 34%”, and “Brown rice moisture content 12%”.

Figure 0006586616
Figure 0006586616

実施例1〜3において得た機器換算係数と、標準試料の重さとの関係を図8に、比較例1〜3において得た機器換算係数と、標準試料の重さとの関係を図9に示した。図8および図9では、134Csおよび137Csを含んだ椎茸栽培用原木を測定した結果と、玄米を測定した結果とを合わせて示している。両図中、「原木 含水率40%」および「原木 含水率34%」は、それぞれ上述した含水率40%および含水率34%の椎茸栽培用原木の測定結果であり、「玄米 含水率12%」、上述した含水率12%の玄米の測定結果である。 FIG. 8 shows the relationship between the equipment conversion coefficient obtained in Examples 1 to 3 and the weight of the standard sample, and FIG. 9 shows the relationship between the equipment conversion coefficient obtained in Comparative Examples 1 to 3 and the weight of the standard sample. It was. In FIG. 8 and FIG. 9, the result of having measured the log for shiitake cultivation containing 134 Cs and 137 Cs and the result of measuring brown rice are shown together. In both figures, “Raw wood moisture content 40%” and “Raw wood moisture content 34%” are the measurement results of the above-mentioned raw logs for shiitake cultivation with a moisture content of 40% and a moisture content of 34%, respectively. "It is a measurement result of the brown rice having a moisture content of 12%.

測定結果から、「原木 含水率40%」および「原木 含水率34%」とは、機器換算係数が大きく異なっており、含水率の違いが機器換算係数に影響することが分かった。よって、標準試料の精度を向上させるためには、標準試料の含水率を測定対象の原木に近づけることが重要であることが分かった。   From the measurement results, it was found that the equipment conversion coefficient was significantly different from “Raw wood moisture content 40%” and “Raw wood moisture content 34%”, and the difference in moisture content affected the equipment conversion coefficient. Therefore, in order to improve the accuracy of the standard sample, it has been found that it is important to bring the moisture content of the standard sample closer to the measurement target log.

一方、「原木 含水率34%」と「玄米 12%」とは、含水率が大きく異なるにもかかわらず、比較的近い機器換算係数を示した。よって、機器換算係数には含水率のみならず、試料の形状、材質その他の要素も大きく影響することが分かった。   On the other hand, “Rawwood moisture content 34%” and “Brown rice 12%” showed relatively close equipment conversion coefficients, although the moisture content was greatly different. Therefore, it was found that not only the moisture content but also the sample shape, material, and other factors greatly affect the equipment conversion factor.

実施例1〜3の標準試料は、含水率40%の原木の測定特性に精度よく一致しており、標準試料としての信頼性が高いことが確かめられた。また、実施例1〜3の標準試料は、6ヶ月後に上記と同様の方法で測定しても、同様の精度を維持しており、安定性に優れることを確認した。   The standard samples of Examples 1 to 3 were in good agreement with the measurement characteristics of the raw wood having a moisture content of 40%, and it was confirmed that the reliability as the standard sample was high. Moreover, even if it measured by the method similar to the above after 6 months, the standard sample of Examples 1-3 was maintaining the same precision, and it confirmed that it was excellent in stability.

一方、比較例1〜3では、含水率を40%としたにも関わらず、含水率40%の原木とは異なる特性を示した。よって、比較例1〜3は、きのこ栽培用原木の標準試料としては信頼性がないことが分かった。   On the other hand, in Comparative Examples 1-3, although the moisture content was set to 40%, a characteristic different from that of the raw wood having a moisture content of 40% was shown. Therefore, it turned out that Comparative Examples 1-3 is not reliable as a standard sample of the raw wood for mushroom cultivation.

また、バックグラウンド測定についても、比較例のバックグラウンド測定用試料ではカウント数が放射性物質を含まない原木とは大きく異なっているため、きのこ栽培用原木に対するバックグラウンド測定には利用できないことが分かった。   Also, for background measurement, the sample for measuring background of the comparative example has a count number that is significantly different from that of the raw wood that does not contain radioactive material, so it was found that it cannot be used for background measurement on the raw wood for mushroom cultivation. .

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

10 標準試料
100 円柱状木材
120,122 第1部材
124 凹部
140,142 第2部材
160 拡散防止部材
20 コア材
210 内部領域
220 放射性物質含有領域
40 被覆部材
10 Standard Sample 100 Cylindrical Wood 120, 122 First Member 124 Recess 140, 142 Second Member 160 Diffusion Prevention Member 20 Core Material 210 Internal Region 220 Radioactive Substance Containing Region 40 Covering Member

Claims (13)

きのこ栽培に使用する原木の放射能測定に用いる標準試料であって、
木材を含む円柱形のコア材と、
前記コア材を覆う被覆部材とを備え、
前記コア材は側面部に放射性物質含有領域を有する、
放射能測定用標準試料。
It is a standard sample used for radioactivity measurement of raw wood used for mushroom cultivation,
A cylindrical core material containing wood,
A covering member covering the core material,
The core material has a radioactive substance-containing region on the side surface part,
Standard sample for radioactivity measurement.
請求項1に記載の放射能測定用標準試料において、
前記コア材は、木材を含む第1部材と、前記第1部材を覆い前記放射性物質含有領域を構成する第2部材とからなる、
放射能測定用標準試料。
In the standard sample for radioactivity measurement according to claim 1,
The core material includes a first member containing wood and a second member that covers the first member and constitutes the radioactive substance-containing region.
Standard sample for radioactivity measurement.
請求項2に記載の放射能測定用標準試料において、
前記第1部材と、前記第2部材との間には、拡散防止部材が介在している、
放射能測定用標準試料。
In the standard sample for radioactivity measurement according to claim 2,
A diffusion preventing member is interposed between the first member and the second member.
Standard sample for radioactivity measurement.
請求項2または3に記載の放射能測定用標準試料において、
前記第1部材は円柱状木材である、
放射能測定用標準試料。
In the standard sample for radioactivity measurement according to claim 2 or 3,
The first member is cylindrical wood;
Standard sample for radioactivity measurement.
請求項2または3に記載の放射能測定用標準試料において、
前記第1部材は樹脂製の円筒に少なくとも木材粉を充填してなる、
放射能測定用標準試料。
In the standard sample for radioactivity measurement according to claim 2 or 3,
The first member is formed by filling at least wood powder into a resin cylinder,
Standard sample for radioactivity measurement.
請求項2から5のいずれか一項に記載の放射能測定用標準試料において、
前記第2部材はシート状であり、紙、コルク、および木材から選択される1種以上からなる、
放射能測定用標準試料。
In the standard sample for radioactivity measurement according to any one of claims 2 to 5,
The second member has a sheet shape, and is composed of one or more selected from paper, cork, and wood.
Standard sample for radioactivity measurement.
請求項2に記載の放射能測定用標準試料において、
前記第1部材は側面に複数の凹部が設けられた円柱状木材であり、
前記凹部には前記第2部材が埋め込まれている、
放射能測定用標準試料。
In the standard sample for radioactivity measurement according to claim 2,
The first member is a columnar wood provided with a plurality of recesses on a side surface,
The second member is embedded in the recess.
Standard sample for radioactivity measurement.
請求項1に記載の放射能測定用標準試料において、
前記放射性物質含有領域には、放射性物質の溶液が染み込んでいる
放射能測定用標準試料。
In the standard sample for radioactivity measurement according to claim 1,
The radioactive substance-containing region is soaked with a radioactive substance solution,
Standard sample for radioactivity measurement.
請求項1から8の何れか一項に記載の放射能測定用標準試料において、
湿潤基準の含水率が35%以上45%以下である、
放射能測定用標準試料。
In the standard sample for radioactivity measurement according to any one of claims 1 to 8,
The moisture content on a wet basis is 35% or more and 45% or less,
Standard sample for radioactivity measurement.
請求項1から9のいずれか一項に記載の放射能測定用標準試料において、
密度が0.5g/cm以上1.5g/cm以下である、
放射能測定用標準試料。
In the standard sample for radioactivity measurement according to any one of claims 1 to 9,
The density is 0.5 g / cm 3 or more and 1.5 g / cm 3 or less,
Standard sample for radioactivity measurement.
きのこ栽培に使用する原木の放射能測定に用いる標準試料の製造方法であって、
側面部に放射性物質含有領域を有し、木材を含むコア材を準備する工程と、
前記コア材を被覆部材で覆う工程とを備える、
放射能測定用標準試料の製造方法。
A method for producing a standard sample used for measuring radioactivity of raw wood used for mushroom cultivation,
A step of preparing a core material including a wood having a radioactive substance-containing region on a side surface;
Covering the core material with a covering member,
A method for producing a standard sample for radioactivity measurement.
請求項11に記載の放射能測定用標準試料の製造方法において、
前記コア材を準備する工程では、木材を含む第1部材を、前記放射性物質含有領域を構成する第2部材で覆う、
放射能測定用標準試料の製造方法。
In the manufacturing method of the standard sample for radioactivity measurement of Claim 11,
In the step of preparing the core material, a first member containing wood is covered with a second member that constitutes the radioactive substance-containing region.
A method for producing a standard sample for radioactivity measurement.
請求項12に記載の放射能測定用標準試料の製造方法において、
前記第1部材と、前記第2部材との間には、拡散防止部材が介在している、
放射能測定用標準試料の製造方法。
In the manufacturing method of the standard sample for radioactivity measurement of Claim 12,
A diffusion preventing member is interposed between the first member and the second member.
A method for producing a standard sample for radioactivity measurement.
JP2015034538A 2015-02-24 2015-02-24 Standard sample for radioactivity measurement, and method for producing standard sample for radioactivity measurement Active JP6586616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034538A JP6586616B2 (en) 2015-02-24 2015-02-24 Standard sample for radioactivity measurement, and method for producing standard sample for radioactivity measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034538A JP6586616B2 (en) 2015-02-24 2015-02-24 Standard sample for radioactivity measurement, and method for producing standard sample for radioactivity measurement

Publications (2)

Publication Number Publication Date
JP2016156698A JP2016156698A (en) 2016-09-01
JP6586616B2 true JP6586616B2 (en) 2019-10-09

Family

ID=56825731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034538A Active JP6586616B2 (en) 2015-02-24 2015-02-24 Standard sample for radioactivity measurement, and method for producing standard sample for radioactivity measurement

Country Status (1)

Country Link
JP (1) JP6586616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6846800B2 (en) * 2017-03-13 2021-03-24 国立大学法人茨城大学 Radioactivity measurement system and radioactivity measurement method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027553B1 (en) * 1970-11-12 1975-09-08
JPS55104823A (en) * 1979-02-05 1980-08-11 Nippon Catalytic Chem Ind Cultivation of edible mashroom
JPH05316874A (en) * 1992-05-21 1993-12-03 ▲国▼和産業株式会社 Artificial bed log for mushroom culture
US6086942A (en) * 1998-05-27 2000-07-11 International Brachytherapy S.A. Fluid-jet deposition of radioactive material for brachytherapy devices
EP1489627A3 (en) * 2003-06-18 2009-11-11 Iso-Science Laboratories, Inc. Flexible radiation source and compact storage and shielding container
US7410458B2 (en) * 2003-11-12 2008-08-12 Isoray Medical, Inc. Brachytherapy implant seeds
US8804898B2 (en) * 2009-07-14 2014-08-12 Babcock & Wilcox Technical Services Y-12, Llc Special nuclear material simulation device
JP3185926U (en) * 2013-06-05 2013-09-12 有限会社品川通信計装サービス Simulated food radiation source

Also Published As

Publication number Publication date
JP2016156698A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
Glass et al. Moisture relations and physical properties of wood
Bucur Nondestructive characterization and imaging of wood
Korkut et al. The effects of heat treatment on the physical properties and surface roughness of Turkish hazel (Corylus colurna L.) wood
De Ridder et al. High-resolution proxies for wood density variations in Terminalia superba
Taghiyari et al. Effect of heat treatment on longitudinal gas and liquid permeability of circular and square-shaped native hardwood specimens
JP6586616B2 (en) Standard sample for radioactivity measurement, and method for producing standard sample for radioactivity measurement
Krügener et al. THz properties of typical woods important for European forestry
Simo-Tagne et al. Characterization of sorption behavior and mass transfer properties of four central africa tropical woods: Ayous, Sapele, Frake, Lotofa
Wu et al. Predicting the pore-filling ratio in lumen-impregnated wood
Alfredsen et al. Modelling the material resistance of wood—Part 1: Utilizing durability test data based on different reference wood species
Barański et al. Wood moisture-content measurement accuracy of impregnated and nonimpregnated wood
Kymäläinen et al. Moisture sorption of wood surfaces modified by one-sided carbonization as an alternative to traditional façade coatings
Desmarais et al. Transport of polar and nonpolar liquids in softwood imaged by neutron radiography
Martin et al. Monitoring imbibition dynamics at tissue level in Norway spruce using X-ray imaging
Henriques et al. Consolidating preservative-treated wood: Combined mechanical performance of boron and polymeric products in wood degraded by Coniophora puteana
Osawa et al. Influence of surface checks on wood moisture content during wetting and re-drying
JP6915885B2 (en) Semi-incombustible or flame-retardant wood and its production method
He et al. Density and moisture content forecasting based on X-ray computed tomography
Macchioni et al. Measurements of fungal wood decay on Scots pine and beech by means of X-ray microdensitometry
Matthews et al. Wetting of agricultural soil measured by a simplified capillary rise technique
Gereke et al. The hygroscopic warping of cross-laminated timber
Kang et al. Polyethylene glycol treatment of Han-ok round wood components to prevent surface checking
TWI317023B (en) Measurement and calibration method of volume source calibration phantom
Lebow et al. Boron diffusion in surface-treated framing lumber
Safin et al. Increasing the Strength of the Glue Line in the Production of Thermally Modified Wood Paneling

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190801

R150 Certificate of patent or registration of utility model

Ref document number: 6586616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250