JP6584870B2 - In-vehicle image recognition apparatus and manufacturing method thereof - Google Patents

In-vehicle image recognition apparatus and manufacturing method thereof Download PDF

Info

Publication number
JP6584870B2
JP6584870B2 JP2015170011A JP2015170011A JP6584870B2 JP 6584870 B2 JP6584870 B2 JP 6584870B2 JP 2015170011 A JP2015170011 A JP 2015170011A JP 2015170011 A JP2015170011 A JP 2015170011A JP 6584870 B2 JP6584870 B2 JP 6584870B2
Authority
JP
Japan
Prior art keywords
imaging
optical system
focus
holding member
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015170011A
Other languages
Japanese (ja)
Other versions
JP2017011666A (en
Inventor
優太 中村
優太 中村
洋平 永井
洋平 永井
祐志 竹原
祐志 竹原
直也 武田
直也 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Nidec Elesys Corp
Original Assignee
Nidec Copal Corp
Nidec Elesys Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp, Nidec Elesys Corp filed Critical Nidec Copal Corp
Priority to CN201520757160.0U priority Critical patent/CN205249352U/en
Priority to CN201510626426.2A priority patent/CN105721764B/en
Priority to US14/882,791 priority patent/US9836659B2/en
Priority to DE102015222259.4A priority patent/DE102015222259A1/en
Publication of JP2017011666A publication Critical patent/JP2017011666A/en
Priority to US15/792,798 priority patent/US10318825B2/en
Application granted granted Critical
Publication of JP6584870B2 publication Critical patent/JP6584870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Traffic Control Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Lens Barrels (AREA)

Description

本発明は、車載用画像認識装置、及びその製造方法に関する。   The present invention relates to an in-vehicle image recognition apparatus and a manufacturing method thereof.

近年、車載用カメラを用いた、道路上の走行路を示す線(車線)の検知技術は、車両の走行安全性の向上のための車線維持支援システム等に用いられている。
例えば、車内に備えたカメラによって、道路上の走行路(車線又はレーン)を撮像し、撮像した画像の画像処理結果に基づいて走行路区分線又は道路構造を認識することが可能な認識装置が提案されている(例えば特許文献1参照)。
また、車載カメラによって撮像された画像において自車両の左右の車線位置を検出することが可能な車線認識装置が提供されている(例えば特許文献2参照)。
これらの装置は、何れも、フォーカスが調整された車載用カメラが用いられている。
2. Description of the Related Art In recent years, a technique for detecting a line (lane) indicating a travel route on a road using an in-vehicle camera has been used in a lane maintenance support system for improving the traveling safety of a vehicle.
For example, there is a recognition device capable of capturing a travel route (lane or lane) on a road with a camera provided in the vehicle and recognizing the travel route division line or the road structure based on the image processing result of the captured image. It has been proposed (see, for example, Patent Document 1).
There is also provided a lane recognition device that can detect the left and right lane positions of an own vehicle in an image captured by an in-vehicle camera (see, for example, Patent Document 2).
Each of these devices uses a vehicle-mounted camera with the focus adjusted.

特開平8−315125号公報JP-A-8-315125 特開2007−264714号公報JP 2007-264714 A

しかしながら、フォーカスが調整されていても、必ずしも十分な解像力が得られるわけではない。解像力の不足により、路面に引かれた車線の境界を示す白線などの線の認識に誤りが生ずることがあった。誤りの発生を減らす為には、非球面レンズなど、解像力は高いが高価なレンズを用いる必要があった。   However, even if the focus is adjusted, sufficient resolving power is not always obtained. Due to the lack of resolving power, an error may occur in the recognition of a line such as a white line indicating the boundary of the lane drawn on the road surface. In order to reduce the occurrence of errors, it was necessary to use an expensive lens such as an aspherical lens that has high resolving power.

上記事情に鑑み、本発明は、高価なレンズを用いることなく、走行レーンを示す線の認識精度を向上させることができる車載用画像認識装置、及びその製造方法を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide an in-vehicle image recognition apparatus capable of improving the recognition accuracy of a line indicating a traveling lane without using an expensive lens, and a method for manufacturing the same.

レンズで結像させた画像は、像の中心を除けば、周方向と径方向で画像のシャープさが異なる。また、フォーカス位置を変える事で、周方向に伸びるエッジがシャープな像が得られたり、径方向に伸びるエッジがシャープな像が得られたりする。通常のカメラでは、周方向と径方向の両方のシャープさがバランスするフォーカス位置が選択される。
しかし、本件の発明者は、径方向のエッジがシャープになるフォーカス位置の方が、車載用画像認識装置には向いている事を見出した。車載用画像認識装置では、路面の上のレーンを表す線を認識する機能が搭載される事が多い。径方向のエッジがシャープである事により、車線認識の際の認識精度を向上させられるのである。
本来は、径方向のエッジ及び周方向のエッジの両方がシャープな画像が得られれば、その方がより好ましいのである。しかし、そのようなレンズは非常に高価であり、広く車両に搭載されることが望まれる車載用画像認識装置に用いる事は現実的では無い。本発明の構造であれば、車載用画像認識装置を安価に提供する事ができる。
なお、径方向のエッジがシャープな画像を得るためには、車載用画像認識装置の製造時に、フォーカス位置をそのように選択しても良いが、その様な特性を持つレンズを選択しても良い。何れの場合でも、結果として径方向のエッジがシャープな画像を得ていれば、本発明の効果を得ることが出来る。
The image formed by the lens differs in the sharpness of the image in the circumferential direction and the radial direction except for the center of the image. Further, by changing the focus position, an image with sharp edges extending in the circumferential direction can be obtained, or an image with sharp edges extending in the radial direction can be obtained. In a normal camera, a focus position that balances both the circumferential and radial sharpness is selected.
However, the inventors of the present invention have found that the focus position where the radial edge is sharp is more suitable for the in-vehicle image recognition apparatus. In-vehicle image recognition devices often have a function of recognizing a line representing a lane on a road surface. The sharp edge in the radial direction can improve the recognition accuracy at the time of lane recognition.
Originally, if an image having both sharp edges in the radial direction and edges in the circumferential direction is obtained, it is more preferable. However, such a lens is very expensive and is not practical for use in an in-vehicle image recognition apparatus that is desired to be widely mounted in a vehicle. If it is the structure of this invention, the vehicle-mounted image recognition apparatus can be provided at low cost.
In order to obtain an image with sharp edges in the radial direction, the focus position may be selected as such at the time of manufacturing the on-vehicle image recognition device, but even if a lens having such characteristics is selected. good. In any case, the effect of the present invention can be obtained if an image having sharp edges in the radial direction is obtained as a result.

以下、より正確に説明する。上述した課題を解決するために、本発明の例示的な一実施形態に係る車載用画像認識装置は、光軸方向の前方側の光景を後方側において結像させる固定焦点型の結像光学系と、前記光軸方向の後方側に配置され該結像光学系の光軸が撮像面を通る撮像素子と、前記撮像素子で撮影された前記光景の画像を取り込み画像認識処理を行う集積回路と、を備え、前記結像光学系を通過して収束する光の半径方向における解像力が、投影面を前記光軸方向に移動させる際に極大を示す位置を径方向焦点と呼び、前記収束する光の周方向における解像力が、投影面を前記光軸方向に移動させる際に極大を示す位置を周方向焦点と呼び、前記光景の鉛直方向における下半部が投影される前記撮像面の部位を下半部と呼び、前記撮像面の対角線の長さの半分を像高と呼び、前記光軸と前記撮像面との交点を光軸中心と呼ぶとき、前記結像光学系が前記撮像素子に投影する像の光軸中心からの隔たりが前記像高の70%の位置において、前記撮像面の少なくとも前記下半部は径方向焦点と周方向焦点との中間位置よりも前記周方向焦点に近い場所に位置し、前記周方向焦点と前記撮像面との隔たりは、前記周方向焦点と前記径方向焦点との隔たりよりも小さく、前記集積回路で行われる画像認識処理は、路面上に引かれた走行レーンを表す線を認識する処理を含む。   Hereinafter, it will be described more precisely. In order to solve the above-described problem, an in-vehicle image recognition apparatus according to an exemplary embodiment of the present invention includes a fixed-focus imaging optical system that forms an image of a front scene in the optical axis direction on the rear side. An image sensor that is arranged on the rear side in the optical axis direction and the optical axis of the imaging optical system passes through an imaging surface, and an integrated circuit that captures an image of the scene photographed by the image sensor and performs image recognition processing The position where the resolving power in the radial direction of the light passing through the imaging optical system converges when the projection surface is moved in the optical axis direction is called a radial focus, and the converged light The position at which the resolving power in the circumferential direction shows a maximum when moving the projection plane in the optical axis direction is called a circumferential focus, and the lower half of the scene in the vertical direction is projected below the part of the imaging plane. Half of the diagonal length of the imaging surface When the intersection between the optical axis and the imaging surface is called the optical axis center, which is called the image height, the distance from the optical axis center of the image projected by the imaging optical system onto the imaging element is 70% of the image height. In this position, at least the lower half of the imaging surface is located closer to the circumferential focus than an intermediate position between the radial focus and the circumferential focus, and the distance between the circumferential focus and the imaging surface is The image recognition processing performed by the integrated circuit is smaller than the distance between the circumferential focus and the radial focus, and includes processing for recognizing a line representing a travel lane drawn on the road surface.

本発明により、車載用画像認識装置において、高価なレンズを用いることなく、走行レーンを示す線の認識精度を向上させることができる。   According to the present invention, in an in-vehicle image recognition apparatus, it is possible to improve the recognition accuracy of a line indicating a travel lane without using an expensive lens.

第1実施形態の車載用画像認識装置を備える車両の一例を示す模式図である。It is a schematic diagram which shows an example of a vehicle provided with the vehicle-mounted image recognition apparatus of 1st Embodiment. 第1実施形態の車載用画像認識装置の車室内への取り付け例を示す模式図である。It is a schematic diagram which shows the example of attachment to the vehicle interior of the vehicle-mounted image recognition apparatus of 1st Embodiment. 第1実施形態の車載用画像認識装置の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the vehicle-mounted image recognition apparatus of 1st Embodiment. 車載用画像認識装置が撮像部によって撮像する画像の一例を示す模式図である。It is a schematic diagram which shows an example of the image which a vehicle-mounted image recognition apparatus images with an imaging part. 第1実施形態の車載用画像認識装置の撮像部の構成を示す模式図である。It is a schematic diagram which shows the structure of the imaging part of the vehicle-mounted image recognition apparatus of 1st Embodiment. 第1実施形態の車載用画像認識装置における結像光学系のMTF曲線の一例を示すグラフである。It is a graph which shows an example of the MTF curve of the imaging optical system in the vehicle-mounted image recognition apparatus of 1st Embodiment. 第1実施形態に係る車載用画像認識装置の撮像部の分解斜視図である。It is a disassembled perspective view of the imaging part of the vehicle-mounted image recognition apparatus which concerns on 1st Embodiment. 第1実施形態に係る車載用画像認識装置が備える撮像部の部分断面図である。It is a fragmentary sectional view of the image pick-up part with which the in-vehicle image recognition device concerning a 1st embodiment is provided. 第1実施形態に係る車載用画像認識装置の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the vehicle-mounted image recognition apparatus which concerns on 1st Embodiment. 第1実施形態の変形例の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the modification of 1st Embodiment. 第2実施形態における、結像光学系のMTF曲線の一例を示すグラフである。It is a graph which shows an example of the MTF curve of the imaging optical system in 2nd Embodiment. 第3実施形態に係る車載用画像認識装置が備える撮像部の部分断面図である。It is a fragmentary sectional view of the image pick-up part with which the in-vehicle image recognition device concerning a 3rd embodiment is provided. 第4実施形態に係る車載用画像認識装置が備える撮像部の部分断面図である。It is a fragmentary sectional view of the image pick-up part with which the in-vehicle image recognition device concerning a 4th embodiment is provided. 第4実施形態に係る車載用画像認識装置の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the vehicle-mounted image recognition apparatus which concerns on 4th Embodiment.

以下、実施形態について図面を参照しながら説明する。
なお、以下の説明で用いる図面は、特徴部分を強調する目的で、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、同様の目的で、特徴とならない部分を省略して図示している場合がある。
また、以下の説明においては、必要に応じて、XYZ直交座標系、及びlxlylz直交座標系を用いる。ここで、XYZ直交座標系とは、車両2の進行方向を基準にした直交座標系である。また、lxlylz直交座標系とは、車載用画像認識装置1の光軸方向を基準にした直交座標系である。
Hereinafter, embodiments will be described with reference to the drawings.
In the drawings used in the following description, for the purpose of emphasizing the feature portion, the feature portion may be shown in an enlarged manner for convenience, and the dimensional ratios of the respective constituent elements are not always the same as in practice. Absent. In addition, for the same purpose, portions that are not characteristic may be omitted from illustration.
In the following description, an XYZ orthogonal coordinate system and an lxlylz orthogonal coordinate system are used as necessary. Here, the XYZ orthogonal coordinate system is an orthogonal coordinate system based on the traveling direction of the vehicle 2. The lxllyz orthogonal coordinate system is an orthogonal coordinate system based on the optical axis direction of the vehicle-mounted image recognition apparatus 1.

<第1実施形態>
第1実施形態の車載用画像認識装置1について説明する。図1は、第1実施形態の車載用画像認識装置1を備える車両2の一例を示す模式図である。車両2の前方をZ軸の正の方向とし、当該Z軸方向に垂直な平面上の直交方向をそれぞれX軸方向及びY軸方向とする。ここでX軸方向は、車両2の水平左方向とし、Y軸方向は車両2の鉛直上方向とする。
車載用画像認識装置1は、車両2の前方を撮像し、車両2の周囲(障害物、路面等)に関する情報を検出する。車載用画像認識装置1は、例えば、車線維持支援システムとして、例えば車両前方の光景を撮像し、道路上の走行レーンを示す線を認識する。道路上の走行レーンを示す線とは、例えば、道路上にひかれた白線などの表示物である。
車載用画像認識装置1は、車両2の車室内に配置されていてもよいし、車両2のフロントグリルに配置されていてもよい。ここでは、車載用画像認識装置1が、車両2の車室内に配置されている場合を一例にして説明する。
なお、車載用画像認識装置1は、車両2の後方を撮像し、車両2の周囲(障害物、路面等)に関する情報を検出してもよい。
<First Embodiment>
A vehicle-mounted image recognition device 1 according to the first embodiment will be described. Drawing 1 is a mimetic diagram showing an example of vehicles 2 provided with in-vehicle image recognition device 1 of a 1st embodiment. The forward direction of the vehicle 2 is defined as a positive direction of the Z axis, and orthogonal directions on a plane perpendicular to the Z axis direction are defined as an X axis direction and a Y axis direction, respectively. Here, the X-axis direction is the horizontal left direction of the vehicle 2, and the Y-axis direction is the vertical upward direction of the vehicle 2.
The in-vehicle image recognition apparatus 1 captures an image of the front of the vehicle 2 and detects information related to the surroundings (obstacles, road surface, etc.) of the vehicle 2. For example, the in-vehicle image recognition apparatus 1 captures, for example, a scene in front of the vehicle as a lane keeping support system, and recognizes a line indicating a travel lane on the road. The line indicating the traveling lane on the road is a display object such as a white line drawn on the road.
The in-vehicle image recognition device 1 may be disposed in the passenger compartment of the vehicle 2 or may be disposed on the front grill of the vehicle 2. Here, the case where the vehicle-mounted image recognition device 1 is disposed in the vehicle interior of the vehicle 2 will be described as an example.
Note that the in-vehicle image recognition apparatus 1 may capture information behind the vehicle 2 and detect information about the surroundings of the vehicle 2 (obstacles, road surfaces, etc.).

車載用画像認識装置1は、撮像部10と制御部20とを備える。撮像部10は、車両2の前方の光景を撮像する。制御部20は、撮像部10が撮像した画像の画像取得及び画像処理を行う。   The in-vehicle image recognition apparatus 1 includes an imaging unit 10 and a control unit 20. The imaging unit 10 captures a scene in front of the vehicle 2. The control unit 20 performs image acquisition and image processing of the image captured by the imaging unit 10.

図2は、第1実施形態の車載用画像認識装置1の車室内への取り付け例を示す模式図である。この実施例において、撮像部10の視野が車両の前方を捉えた状態で、車載用画像認識装置1は車両に取り付けられる。本明細書では、車載用画像認識装置1から見て撮像部10の視野が向く方向を、車載用画像認識装置1の前方であるとして記載する。なお、車載用画像認識装置1は、車両の側方や後方を撮像部10の視野に捉えた状態で取り付けて使用する事も出来る。その場合、車載用画像認識装置1の前方は、車両の側方や後方を向く事となる。車載用画像認識装置1の前方をlz軸の正の方向とし、当該lz軸方向に垂直な平面上の直交方向をそれぞれlx軸方向及びly軸方向とする。ここでlx軸方向は、車両2の水平左方向とし、X軸方向と一致している。また、ここに示した車載用画像認識装置1の構成は、一例であって、例えば、ルームミラーRVMは車載用画像認識装置の筐体と一部を共有していてもよい。   FIG. 2 is a schematic diagram illustrating an example of mounting the vehicle-mounted image recognition device 1 according to the first embodiment in a vehicle interior. In this embodiment, the vehicle-mounted image recognition device 1 is attached to the vehicle with the field of view of the imaging unit 10 capturing the front of the vehicle. In this specification, the direction in which the field of view of the imaging unit 10 faces when viewed from the vehicle-mounted image recognition device 1 is described as being in front of the vehicle-mounted image recognition device 1. Note that the in-vehicle image recognition device 1 can be attached and used in a state where the side and rear of the vehicle are captured in the field of view of the imaging unit 10. In that case, the front of the vehicle-mounted image recognition device 1 faces the side or the rear of the vehicle. The front direction of the in-vehicle image recognition apparatus 1 is defined as a positive direction of the lz axis, and orthogonal directions on a plane perpendicular to the lz axis direction are defined as an lx axis direction and a ly axis direction, respectively. Here, the lx-axis direction is the horizontal left direction of the vehicle 2 and coincides with the X-axis direction. The configuration of the in-vehicle image recognition apparatus 1 shown here is an example, and for example, the room mirror RVM may share a part with the casing of the in-vehicle image recognition apparatus.

図3は、第1実施形態の車載用画像認識装置1の機能構成の一例を示す図である。車載用画像認識装置1が備える撮像部10は、結像光学系11、及び撮像素子12を備える。ここでいう「結像光学系」は、光軸に配置されたレンズを含み、光軸の一方側の光景を投影する光学系を意味する。   FIG. 3 is a diagram illustrating an example of a functional configuration of the vehicle-mounted image recognition device 1 according to the first embodiment. The imaging unit 10 included in the in-vehicle image recognition apparatus 1 includes an imaging optical system 11 and an imaging element 12. The “imaging optical system” as used herein means an optical system that includes a lens disposed on the optical axis and projects a scene on one side of the optical axis.

結像光学系11は、光軸AX1方向の一方側の光景を他方側において結像させる固定焦点型の結像光学系である。結像光学系11の光軸AX1は、車載用画像認識装置1の前後方向に伸びる。光軸AX1の一方側は車載用画像認識装置1の前方側に位置し、光軸AX1の他方側は、車載用画像認識装置1の後方側に位置する。本明細書では、光軸AX1方向の前方側を、lz軸の正方向側と表現する場合もある。同様に、光軸AX1方向の後方側を、lz軸の負方向側と表現する場合もある。
撮像素子12は、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の固体撮像素子であり、結像光学系11を通して撮像面に結像された光景の像を撮像する。
The imaging optical system 11 is a fixed focus type imaging optical system that forms an image on one side in the direction of the optical axis AX1. The optical axis AX1 of the imaging optical system 11 extends in the front-rear direction of the in-vehicle image recognition apparatus 1. One side of the optical axis AX1 is located on the front side of the in-vehicle image recognition apparatus 1, and the other side of the optical axis AX1 is located on the rear side of the in-vehicle image recognition apparatus 1. In this specification, the front side in the optical axis AX1 direction may be expressed as the positive direction side of the lz axis. Similarly, the rear side in the direction of the optical axis AX1 may be expressed as the negative direction side of the lz axis.
The imaging device 12 is a solid-state imaging device such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, and captures an image of a scene imaged on an imaging surface through the imaging optical system 11. .

車載用画像認識装置1が備える制御部20は、バスで相互に接続されたCPU(Central Processing Unit)、メモリ、補助記憶装置などの集積回路を備えている。制御部20は、このCPUがプログラムを実行することによって、画像取得部21、及び画像処理部22として機能する。
画像取得部21は、撮像素子12が撮像した画像を撮像素子12から取得する。画像取得部21は、取得した画像を、画像処理部22に出力する。
画像処理部22は、画像取得部21が出力する画像に対して、画像認識処理を行う。画像処理部22は、入力された撮像画像に含まれる、路面上の走行レーンを示す線を抽出し認識する。
The control unit 20 included in the in-vehicle image recognition apparatus 1 includes integrated circuits such as a CPU (Central Processing Unit), a memory, and an auxiliary storage device connected to each other via a bus. The control unit 20 functions as an image acquisition unit 21 and an image processing unit 22 when the CPU executes a program.
The image acquisition unit 21 acquires an image captured by the image sensor 12 from the image sensor 12. The image acquisition unit 21 outputs the acquired image to the image processing unit 22.
The image processing unit 22 performs image recognition processing on the image output from the image acquisition unit 21. The image processing unit 22 extracts and recognizes a line indicating a traveling lane on the road surface included in the input captured image.

図4は、車載用画像認識装置1が撮像部10によって撮像する画像IMGの一例を示す模式図である。図4には、画像上における径方向と周方向を説明するために、放射状の線LR1〜LR8と同心円CC1〜CC8とが描かれているが、実際の画像にはこの様な線は含まれない。同心円CC1〜CC8は、点Pvを中心とする。点Pvは像の中心であり、結像光学系11の光軸AX1が撮像素子12の撮像面と交わる点である。図4の矢印AR1が示すように、本発明では放射線状の線LR1〜LR8に沿った方向を径方向と称する。また、矢印AR2が示すように、同心円CC1〜CC8の接線方向を周方向と称する。なお、図4の同心円CC1〜CC8及び放射状の線LR1〜LR8はこれらの線の例であって、図4の同心円とは半径の異なる同心円及び伸びる方位の異なる放射状の線に対する、接線方向及び伸びる方向も、それぞれ周方向であり、径方向である。
図4に示す画像の具体例において、中央の白線CLと、右側の線WLrと、左側の線WLlとは、道路の路面RD上に引かれた走行レーンを示す線(すなわち、車線)である。これらの車線は、画面の中央の点Pv近傍から径方向に伸びる。図4に示すように、車両前方の光景の像において、道路の走行レーンを示す線は、外側寄りに位置する。
FIG. 4 is a schematic diagram illustrating an example of an image IMG captured by the imaging unit 10 by the in-vehicle image recognition device 1. In FIG. 4, radial lines LR <b> 1 to LR <b> 8 and concentric circles CC <b> 1 to CC <b> 8 are drawn in order to describe the radial direction and the circumferential direction on the image, but such lines are included in the actual image. Absent. The concentric circles CC1 to CC8 are centered on the point Pv. Point Pv is the center of the image, and is the point where the optical axis AX1 of the imaging optical system 11 intersects with the imaging surface of the imaging element 12. As indicated by an arrow AR1 in FIG. 4, in the present invention, a direction along the radial lines LR1 to LR8 is referred to as a radial direction. Further, as indicated by the arrow AR2, the tangential direction of the concentric circles CC1 to CC8 is referred to as a circumferential direction. Note that the concentric circles CC1 to CC8 and the radial lines LR1 to LR8 in FIG. 4 are examples of these lines. The concentric circles in FIG. The directions are also circumferential directions and radial directions.
In the specific example of the image shown in FIG. 4, the center white line CL, the right line WLr, and the left line WLl are lines (that is, lanes) indicating a driving lane drawn on the road surface RD of the road. . These lanes extend in the radial direction from the vicinity of the center point Pv of the screen. As shown in FIG. 4, in the sight image in front of the vehicle, the line indicating the road lane is located on the outer side.

図5は、第1実施形態の車載用画像認識装置1の撮像部10の構成を示す模式図である。
被写体表面上の点Aから出た光は、結像光学系11によって撮像素子12の撮像面Cの上の点A’において集光される。被写体表面上の他の点から出た光も各々結像光学系11によって撮像面上の他の点に集光される。このようにして、被写体から出た光は、撮像面に結像される。撮像素子12の撮像面Cは、結像光学系11から距離fの位置にある。
FIG. 5 is a schematic diagram illustrating a configuration of the imaging unit 10 of the vehicle-mounted image recognition device 1 according to the first embodiment.
The light emitted from the point A on the subject surface is collected by the imaging optical system 11 at a point A ′ on the imaging surface C of the imaging element 12. Light emitted from other points on the surface of the subject is also condensed at other points on the imaging surface by the imaging optical system 11. In this way, the light emitted from the subject is imaged on the imaging surface. The imaging surface C of the imaging device 12 is located at a distance f from the imaging optical system 11.

図6は、第1実施形態の車載用画像認識装置1における結像光学系11のMTF曲線の一例を示すグラフである。ここで、MTFとはModulation Transfer Functionの略である。図6に示すMTF曲線を表すグラフの縦軸は、結像光学系11の解像力を示す。横軸は、光軸方向における投影面の位置を示す。この例では、当該位置は基準位置からの相対位置で表示されている。   FIG. 6 is a graph showing an example of the MTF curve of the imaging optical system 11 in the in-vehicle image recognition device 1 of the first embodiment. Here, MTF is an abbreviation for Modulation Transfer Function. The vertical axis of the graph representing the MTF curve shown in FIG. 6 indicates the resolving power of the imaging optical system 11. The horizontal axis indicates the position of the projection plane in the optical axis direction. In this example, the position is displayed as a relative position from the reference position.

図6において、解像力とは像の質を表す指標であり、この値が大きい程、像のより細部を読み取る事ができる。一般には、白い背景の上に引かれた平行に等間隔で並ぶ黒い線の像が光学系を用いて投影面に投影された際の、投影像における白い部分と黒い部分のコントラスト比で表される。コントラスト比は1(100%)を最大として表す。このような方法で解像力を説明する場合には、一般に前提となる黒い線の間隔を特定する必要がある。図6では、42lp/mmの間隔で並ぶべき黒い線の画像に対する、白い背景部分のコントラストの比が示されている。なお、図6のMTF曲線は、Trioptics社製ImageMaster HRを用いて、可視光の像で測定した。また、lp/mm とは、line pairs per mmを意味する。   In FIG. 6, the resolving power is an index representing the quality of the image. The larger the value, the more details of the image can be read. In general, an image of black lines drawn on a white background and arranged in parallel at equal intervals is represented by the contrast ratio of the white and black portions in the projected image when projected onto the projection surface using an optical system. The The contrast ratio is expressed with 1 (100%) as the maximum. In order to explain the resolving power by such a method, it is necessary to specify the interval between the black lines which is generally assumed. FIG. 6 shows the contrast ratio of the white background portion with respect to the black line image to be arranged at an interval of 42 lp / mm. In addition, the MTF curve of FIG. 6 was measured with the image of visible light using ImageMaster HR by Trioptics. Lp / mm means line pairs per mm.

図6のグラフの曲線37は、像の中心である点Pvから像高の70%だけ離れた位置において測った周方向の解像力を表す。同様に、曲線36は、点Pvから像高の70%だけ離れた位置において測った径方向の解像力を表す。グラフから明らかな様に、周方向と径方向で、解像力が最高になる撮像面の位置は異なる。なお、曲線35は、像の中心、すなわち図4における点PvにおけるMTF曲線を表す。像の中心においては周方向と径方向の区別がなくなるので、解像力を表す曲線は1本のみである。   A curve 37 in the graph of FIG. 6 represents the circumferential resolution measured at a position separated by 70% of the image height from the point Pv which is the center of the image. Similarly, the curve 36 represents the radial resolving power measured at a position separated from the point Pv by 70% of the image height. As is apparent from the graph, the position of the imaging surface where the resolving power is highest differs between the circumferential direction and the radial direction. The curve 35 represents the MTF curve at the center of the image, that is, the point Pv in FIG. Since there is no distinction between the circumferential direction and the radial direction at the center of the image, there is only one curve representing the resolving power.

一般に、結像光学系は収差を伴うため、像の中心以外の場所では、径方向焦点Pmと周方向焦点Psとは一致しない。従来の車載用画像認識装置では、撮像素子の撮像面は、光学系の周方向焦点と径方向焦点との中間付近に位置させ、周方向と径方向双方の解像力をバランスさせていた。これに対して、本実施形態に係る車載用画像認識装置では、撮像面Cは径方向焦点寄りに位置する。なお、像高とは撮像素子12の撮像面Cの対角線の長さの半分である。また、周方向焦点とは、結像光学系が投影する像の周方向における解像力が、投影面を光軸方向に移動させる際に極大を示す位置である。また、径方向焦点とは、結像光学系が投影する像の径方向における解像力が、投影面を光軸方向に移動させる際に極大を示す位置である。   In general, since the imaging optical system is accompanied by aberrations, the radial focus Pm and the circumferential focus Ps do not coincide with each other at a place other than the center of the image. In the conventional on-vehicle image recognition apparatus, the imaging surface of the imaging element is positioned near the middle between the circumferential focal point and the radial focal point of the optical system to balance the resolution in both the circumferential direction and the radial direction. On the other hand, in the on-vehicle image recognition apparatus according to the present embodiment, the imaging surface C is located closer to the radial focus. The image height is half of the length of the diagonal line of the imaging surface C of the image sensor 12. The circumferential focus is a position at which the resolving power in the circumferential direction of the image projected by the imaging optical system shows a maximum when moving the projection surface in the optical axis direction. The radial focus is a position where the resolving power in the radial direction of the image projected by the imaging optical system shows a maximum when moving the projection surface in the optical axis direction.

図4から明らかなように、路面のレーンを表示する線WLr及び線WLlは、画像IMGの中で径方向に伸びる。そして、レーンを表示するこれらの線の認識精度を確保するためには、画像IMG上で線のエッジが明瞭である事が好ましい。径方向に伸びる線のエッジは、周方向解像力が高いほど明瞭になる。他方、径方向解像力は線のエッジの明瞭さにはほとんど影響しない。
撮像面Cが径方向焦点よりに位置するため、本実施形態に係る車載用画像認識装置では、結像光学系を結像性能がより高いものと置き換えること無く、レーンを表示する線の認識精度を高める事ができる。
As is apparent from FIG. 4, the line WLr and the line WLl displaying the road surface lane extend in the radial direction in the image IMG. And in order to ensure the recognition accuracy of these lines which display a lane, it is preferable that the edge of a line is clear on the image IMG. The edge of the line extending in the radial direction becomes clearer as the circumferential resolution is higher. On the other hand, radial resolution has little effect on the clarity of the line edges.
Since the imaging surface C is located closer to the radial focus, the vehicle-mounted image recognition apparatus according to the present embodiment recognizes the line that displays the lane without replacing the imaging optical system with a higher imaging performance. Can be increased.

図6において、撮像面CがPsで表される周方向焦点に位置する場合、周方向の解像力は最も高くなる。しかし、完全に一致させる必要は無い。例えば、図6において点P11で表される相対位置−0.015mmの位置でも、比較的良好な解像力が得られる。MTFの値はこの場合0.55である。この位置は、周方向焦点Psと径方向焦点Pmの中間よりも、周方向焦点Ps寄りの位置である。また、図6において点P12で表される相対位置−0.036mmの位置でも、比較的良好な解像力が得られる。この場合のMTF値は0.55である。撮像面Cが、図6の点P11及び点P12の何れの場所に位置する場合においても、周方向解像力は径方向解像力よりも大きい。点P12で表される相対位置−0.036mmの位置の場合、周方向焦点Psに対して径方向焦点Pmの逆側であるため、先の点P11に比べると径方向解像力は劣る。しかし、周方向解像力を重視する限り、この様な配置でも本発明の効果は得られる。   In FIG. 6, when the imaging surface C is located at the circumferential focus represented by Ps, the resolution in the circumferential direction is the highest. However, it is not necessary to make it completely coincide. For example, a relatively good resolving power can be obtained even at a relative position represented by point P11 in FIG. The value of MTF is 0.55 in this case. This position is closer to the circumferential focus Ps than the middle between the circumferential focus Ps and the radial focus Pm. In addition, a relatively good resolving power can be obtained even at a relative position represented by point P12 in FIG. In this case, the MTF value is 0.55. In the case where the imaging surface C is located at any of the points P11 and P12 in FIG. 6, the circumferential resolution is greater than the radial resolution. In the case of the position of the relative position −0.036 mm represented by the point P12, the radial resolution is inferior to the previous point P11 because it is on the opposite side of the radial focus Pm with respect to the circumferential focus Ps. However, as long as the circumferential direction resolving power is regarded as important, the effect of the present invention can be obtained even with such an arrangement.

撮像面Cの位置が、図6における周方向焦点Psよりも更に左側に位置すると、径方向解像力は更に低下し、周方向解像力も低下する。しかし、周方向解像力が径方向解像力を上回る状態は変化しない。よって、全体に解像力が低下しつつも、レーンの境界は比較的明瞭な状態が維持される。車載用画像認識装置を量産する場合、組み立て精度を完全に維持する事は難しいため、撮像面Cがここで説明した位置になるものが混入する事がある。しかし、そのような事が起こった場合でも、本発明の車載用画像認識装置は元来が周方向解像力を優先した構成としているため、レーンを表示する線の認識精度の著しい低下は避けられる。但し、過度に図6の左側に外れるのは好ましくないため、周方向焦点と径方向焦点の間の隔たりDsmを超えて、撮像面Cが周方向焦点の左側に離れて位置する事は避ける必要がある。隔たりDsmの半分以下とする事がより好ましい。   When the position of the imaging surface C is located further to the left than the circumferential focus Ps in FIG. 6, the radial resolution is further reduced and the circumferential resolution is also reduced. However, the state where the circumferential resolution exceeds the radial resolution does not change. Therefore, the resolution of the entire lane is reduced, but the lane boundary is kept relatively clear. When mass-producing an in-vehicle image recognition apparatus, it is difficult to maintain the assembly accuracy completely, and therefore the image pickup surface C may be mixed at the position described here. However, even when such a situation occurs, the vehicle-mounted image recognition apparatus of the present invention originally has a configuration in which priority is given to the circumferential resolution, so that a significant decrease in the recognition accuracy of the line displaying the lane can be avoided. However, since it is not preferable to deviate excessively to the left side of FIG. 6, it is necessary to avoid that the imaging plane C is located on the left side of the circumferential focus beyond the distance Dsm between the circumferential focus and the radial focus. There is. More preferably, the distance Dsm is less than half of the distance Dsm.

なお、図6のMTF曲線は42lp/mm間隔で並ぶ白い背景上の黒い線の画像に対して測定されたものであるが、本発明においてMTF関数を測定する際に用いる黒い線の間隔は42lp/mmに限定されない。これよりも広い間隔の線に付いて測定しても構わない。しかし、撮像素子の画素間隔に比して余りに広い間隔の線を選択すると、撮像素子における画像の分解能にそぐわないMTF曲線しか得られない。逆に、余りに狭い間隔を選択する事も、結像光学系に対して過剰な品質を要求する事になって好ましくない。   Note that the MTF curve in FIG. 6 is measured for images of black lines on a white background arranged at intervals of 42 lp / mm, but the interval of black lines used when measuring the MTF function in the present invention is 42 lp. It is not limited to / mm. Measurements may be made on lines that are wider than this. However, if a line with an interval that is too wide compared to the pixel interval of the image sensor is selected, only an MTF curve that does not match the resolution of the image on the image sensor can be obtained. On the other hand, selecting an interval that is too narrow is not preferable because it requires excessive quality for the imaging optical system.

撮像素子には通常3画素×3画素を単位とするカラーフィルターアレイが用いられており、このフィルターによってカラー画像を作り出している。このようなカラーフィルターアレイとしては、Bayerフィルターがある。3画素×3画素の領域で移動平均を取りつつ、各画素に割り当て、赤、緑、青の値を決める。このため、画素間隔の2倍で並ぶ線をこの様な撮像素子で撮像しても、得られる画像は殆どコントラストを持たない。よって、本発明の車載用画像認識装置を得る目的でMTF曲線を測定する場合は、画素間隔の2倍よりも大きな間隔で並んだ黒い線の像を用いるべきである。他方で、画素間隔の9倍で並ぶ黒い線の像に対しては、十分なコントラストを示すので、この間隔を上限としてMTF曲線を測定する際の黒い線の像の間隔を選択し、妥当な特性を示す結像光学系を選択すれば良い。   A color filter array having a unit of 3 pixels × 3 pixels is usually used for the image sensor, and a color image is created by this filter. An example of such a color filter array is a Bayer filter. While taking a moving average in an area of 3 pixels × 3 pixels, it is assigned to each pixel, and red, green, and blue values are determined. For this reason, even if a line arranged at twice the pixel interval is imaged by such an image sensor, the obtained image has almost no contrast. Therefore, when measuring the MTF curve for the purpose of obtaining the in-vehicle image recognition device of the present invention, images of black lines arranged at intervals larger than twice the pixel interval should be used. On the other hand, the image of black lines arranged at 9 times the pixel interval shows sufficient contrast. Therefore, the interval of black lines when measuring the MTF curve is selected with this interval as the upper limit. What is necessary is just to select the imaging optical system which shows a characteristic.

第1実施形態で用いられている撮像素子12における受光素子の画素間隔dは、4.2μmである。したがって、1/(9d)の値は26.4lp/mmとなる。図6では、これよりも間隔が狭い42lp/mmにおいて測定している。但し、1/(2d)、即ち画素間隔の2倍に相当する値である119lp/mmよりは小さい。そして、撮像面の位置が図6における点P11、及び点P12である場合、周方向解像力のMTF値は0.55を示す。仮に26.4lp/mmで同じ位置におけるMTF値を測定したならば、この0.55よりも大きな値が得られる。   The pixel interval d of the light receiving elements in the image sensor 12 used in the first embodiment is 4.2 μm. Therefore, the value of 1 / (9d) is 26.4 lp / mm. In FIG. 6, the measurement is performed at 42 lp / mm where the interval is narrower than this. However, it is smaller than 1 / (2d), that is, 119 lp / mm, which is a value corresponding to twice the pixel interval. And when the position of an imaging surface is the point P11 in FIG. 6, and the point P12, the MTF value of circumferential direction resolving power shows 0.55. If the MTF value at the same position is measured at 26.4 lp / mm, a value larger than 0.55 is obtained.

図6において、像高70%の位置におけるMTF曲線は、周方向解像度及び径方向解像度、各1つしか示されて居ない。一般に、像の中心から離れた位置におけるMTF曲線は周方向位置に応じて異なるが、図6はこれを一対のMTF曲線で代表させたものである。本実施形態に係る車載用画像認識装置では、撮像面Cは周方向焦点と径方向焦点の中間位置よりも周方向焦点寄りに位置するが、その様な条件が満足されるのは、撮像面Cのうち、像の中心である点Pvよりも、像内における鉛直方向下側の半分C_lowのみで良い。周方向の解像力が重要な意味を持つのは、路面上に引かれた走行レーンを表す線を認識する処理においてであり、路面は画像の下半分にしか現れないからである。なお、本実施形態における結像光学系11は倒立像を結ぶため、像内における鉛直方向下側半分C_lowは、図7に示す通り、実空間における鉛直方向上側半分に当たる。   In FIG. 6, only one MTF curve at a position where the image height is 70% is shown in the circumferential direction resolution and the radial direction resolution. In general, the MTF curve at a position away from the center of the image varies depending on the position in the circumferential direction, but FIG. 6 represents this by a pair of MTF curves. In the in-vehicle image recognition apparatus according to the present embodiment, the imaging surface C is located closer to the circumferential focus than the intermediate position between the circumferential focus and the radial focus. Of C, only the half C_low on the lower side in the vertical direction in the image than the point Pv which is the center of the image is sufficient. The resolving power in the circumferential direction is important in the process of recognizing a line representing a traveling lane drawn on the road surface, because the road surface appears only in the lower half of the image. Since the imaging optical system 11 in this embodiment forms an inverted image, the lower half C_low in the vertical direction in the image corresponds to the upper half in the vertical direction in real space as shown in FIG.

本発明に係る車載用画像認識装置においては、撮像素子が有する有効受光素子の一部を使用しない構造も採用できる。例えば、1フレームが横1280画素、縦800画素からなる画像を出力可能な撮像素子を採用しつつも、その内の横1200画素、縦720画素の範囲の画像しか使わない構成である。この様な場合において、本発明における撮像面Cとは、この横1200画素、縦720画素からなる領域を指す。そして、この場合の像高も、画像の撮像に使用する撮像素子の領域の対角線の半分の長さに相当する。   In the in-vehicle image recognition apparatus according to the present invention, a structure that does not use a part of the effective light receiving element of the imaging element can be employed. For example, an image sensor that can output an image in which one frame is composed of 1280 pixels horizontally and 800 pixels vertically is employed, but only an image in the range of 1200 pixels horizontally and 720 pixels vertically is used. In such a case, the imaging surface C in the present invention indicates an area composed of the horizontal 1200 pixels and the vertical 720 pixels. In this case, the image height also corresponds to half the length of the diagonal line of the area of the image sensor used to capture the image.

次に、図7及び図8を参照しながら、第1実施形態に係る車載用画像認識装置1の撮像部10の構造について説明する。図7は、第1実施形態に係る車載用画像認識装置1の撮像部10の分解斜視図である。図8は、第1実施形態に係る車載用画像認識装置1が備える撮像部10の部分断面図である。
撮像部10は、結像光学系11と、撮像素子12と、光学系保持部材41と、素子保持部材42と、3つの可撓性部材43と、3つの頭部付きネジ44とを備える。なお、図8においては、3つの可撓性部材43と、3つの頭部付きネジ44とのうち、それぞれ1つの図示を省略している。
Next, the structure of the imaging unit 10 of the vehicle-mounted image recognition device 1 according to the first embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is an exploded perspective view of the imaging unit 10 of the in-vehicle image recognition device 1 according to the first embodiment. FIG. 8 is a partial cross-sectional view of the imaging unit 10 included in the in-vehicle image recognition device 1 according to the first embodiment.
The imaging unit 10 includes an imaging optical system 11, an imaging element 12, an optical system holding member 41, an element holding member 42, three flexible members 43, and three head-attached screws 44. In FIG. 8, one of the three flexible members 43 and the three head-attached screws 44 is not shown.

結像光学系11は、光軸AX1方向の前方側の光景を後方側において結像させる固定焦点型の光学系である。図7に示す具体例では、結像光学系11は、レンズが内部に固定された鏡筒である。結像光学系11は複数枚のレンズを含む。結像光学系11のF値は2であるが、これ以下であってもよい。   The imaging optical system 11 is a fixed-focus optical system that forms an image of the front side scene in the direction of the optical axis AX1 on the rear side. In the specific example shown in FIG. 7, the imaging optical system 11 is a lens barrel having a lens fixed inside. The imaging optical system 11 includes a plurality of lenses. The F value of the imaging optical system 11 is 2, but it may be less than this.

撮像素子12は、結像光学系11の光軸AX1方向の後方側に配置される。結像光学系11の光軸AX1は、撮像素子12の撮像面Cを通る。撮像素子12は、結像光学系11のレンズを通して結像された被写体像を電子信号に変換して撮像する。   The imaging element 12 is disposed on the rear side of the imaging optical system 11 in the direction of the optical axis AX1. The optical axis AX1 of the imaging optical system 11 passes through the imaging surface C of the imaging element 12. The imaging device 12 converts the subject image formed through the lens of the imaging optical system 11 into an electronic signal and images it.

光学系保持部材41は、図7及び図8に示すように、光軸AX1に沿って見通した場合に矩形状であるブロックである。光学系保持部材41はアルミニウム合金製であるが、材質はアルミニウム合金に限定されない。フェライト系若しくはオーステナイト系のステンレススチール、或いは、銅合金を素材としても良い。光学系保持部材41の本体部411の中央付近に形成された開口部には、結像光学系11が嵌め込まれ、光学系保持部材41に固定されている。
光学系保持部材41の本体部411の、撮像素子12側(lz軸の負方向側)に対向する面には、ネジ穴51が切られている。ネジ穴51は、頭部付きネジ44を光学系保持部材41に締結する締結部の具体例の一つである。
As shown in FIGS. 7 and 8, the optical system holding member 41 is a block having a rectangular shape when viewed along the optical axis AX1. The optical system holding member 41 is made of an aluminum alloy, but the material is not limited to the aluminum alloy. Ferritic or austenitic stainless steel or copper alloy may be used as the material. The imaging optical system 11 is fitted into an opening formed near the center of the main body 411 of the optical system holding member 41 and fixed to the optical system holding member 41.
A screw hole 51 is cut in the surface of the main body 411 of the optical system holding member 41 that faces the imaging element 12 side (the negative direction side of the lz axis). The screw hole 51 is one specific example of a fastening portion that fastens the head-attached screw 44 to the optical system holding member 41.

素子保持部材42は、撮像素子12を保持する。素子保持部材42に固定(保持)された撮像素子12の撮像面Cは、lz軸の正方向を向く。
素子保持部材42は、アルミニウム合金製の板である本体部421を備える。素子保持部材42は、lz軸方向に貫通する貫通孔52を本体部421に備える。貫通孔52には、頭部付きネジ44の軸部が通される。素子保持部材42は、撮像素子12を実装するフレキシブルプリント基板PFを備え、撮像素子12はフレキシブルプリント基板PFを介して、素子保持部材42に固定されている。
なお、図7においては、可撓性部材43、頭部付きネジ44、ネジ穴51、貫通孔52の数を、一例として、それぞれ3つにして図示しているが、これに限られない。また、図8においては、可撓性部材43、頭部付きネジ44、ネジ穴51、貫通孔52の数を、一例として、それぞれ2つ図示し、それぞれ1つの図示を省略している。
The element holding member 42 holds the image sensor 12. The imaging surface C of the imaging element 12 fixed (held) to the element holding member 42 faces the positive direction of the lz axis.
The element holding member 42 includes a main body 421 that is a plate made of an aluminum alloy. The element holding member 42 includes a through hole 52 penetrating in the lz-axis direction in the main body 421. The shaft portion of the head-attached screw 44 is passed through the through hole 52. The element holding member 42 includes a flexible printed circuit board PF on which the image pickup element 12 is mounted. The image pickup element 12 is fixed to the element holding member 42 through the flexible print board PF.
In FIG. 7, the number of the flexible member 43, the head-attached screw 44, the screw hole 51, and the through hole 52 is illustrated as three as an example, but is not limited thereto. Moreover, in FIG. 8, the number of the flexible member 43, the screw 44 with a head, the screw hole 51, and the through-hole 52 is shown as an example, respectively, and one illustration is abbreviate | omitted, respectively.

次に、可撓性部材43及び頭部付きネジ44の具体的な構成について、説明する。
頭部付きネジ44は、素子保持部材42の貫通孔52を貫通して、光学系保持部材41のネジ穴51にねじ込まれる。
可撓性部材43とは、例えば、アルミやリン青銅などの材質で形成されたバネ、ゴムなどの弾性部材である。図7には、一例として、可撓性部材43がコイルバネである場合を示す。可撓性部材43は、光学系保持部材41と素子保持部材42との間に、頭部付きネジ44と同軸に配置される。可撓性部材43は、頭部付きネジ44がネジ穴51にねじ込まれることにより、光学系保持部材41の面fc3と、素子保持部材42の面fc1とにそれぞれ接する。可撓性部材43は、光学系保持部材41と素子保持部材42に対して、これらを互いに引き離す方向の力を加える。面fc3は、lz軸の負方向を向く面であり、面fc1は、lz軸の正方向を向く面である。
Next, specific configurations of the flexible member 43 and the head-attached screw 44 will be described.
The head-attached screw 44 passes through the through hole 52 of the element holding member 42 and is screwed into the screw hole 51 of the optical system holding member 41.
The flexible member 43 is an elastic member such as a spring or rubber formed of a material such as aluminum or phosphor bronze. FIG. 7 shows a case where the flexible member 43 is a coil spring as an example. The flexible member 43 is disposed coaxially with the head-attached screw 44 between the optical system holding member 41 and the element holding member 42. The flexible member 43 comes into contact with the surface fc3 of the optical system holding member 41 and the surface fc1 of the element holding member 42 by screwing the head-attached screw 44 into the screw hole 51, respectively. The flexible member 43 applies a force in a direction in which the optical system holding member 41 and the element holding member 42 are separated from each other. The surface fc3 is a surface facing the negative direction of the lz axis, and the surface fc1 is a surface facing the positive direction of the lz axis.

具体的には、可撓性部材43は、素子保持部材42の面fc1を力F2によって押す。また、頭部付きネジ44は、素子保持部材42のlz軸の負方向を向く面fc2を力F1によって押す。頭部付きネジ44は、その頭部が、可撓性部材43によって素子保持部材42の面fc2に押し付けられつつ、ネジ穴51にねじ込まれる。頭部付きネジ44の先端部をネジ穴51にねじ込む量を調整することにより、結像光学系11内部のレンズと撮像素子12の撮像面Cとの距離Dが調整される。すなわち、可撓性部材43及び頭部付きネジ44は、光学系保持部材41と素子保持部材42との相対的位置を固定する。
なお、可撓性部材43は、力を加えると塑性変形するものでもよい。塑性変形を起こした部材は同時に弾性変形をも伴っており、弾性部材と類似の作用を生じさせられるからである
Specifically, the flexible member 43 presses the surface fc1 of the element holding member 42 with the force F2. The head-attached screw 44 presses the surface fc2 of the element holding member 42 facing the negative direction of the lz axis with the force F1. The head-attached screw 44 is screwed into the screw hole 51 while the head is pressed against the surface fc2 of the element holding member 42 by the flexible member 43. The distance D between the lens in the imaging optical system 11 and the imaging surface C of the imaging element 12 is adjusted by adjusting the amount of screwing the tip of the head-attached screw 44 into the screw hole 51. That is, the flexible member 43 and the head-attached screw 44 fix the relative positions of the optical system holding member 41 and the element holding member 42.
The flexible member 43 may be plastically deformed when a force is applied. This is because a member that has undergone plastic deformation also has elastic deformation at the same time, and can produce an action similar to that of an elastic member.

[車載用画像認識装置の製造方法]
次に、第1実施形態に係る車載用画像認識装置1の製造方法について説明する。
図9は、第1実施形態に係る車載用画像認識装置1の製造方法のフローチャートである。
図9に示すように、第1実施形態に係る車載用画像認識装置1は、光軸合わせ工程(ステップS101)、焦点測定工程(ステップS102)、撮像面位置調整工程(ステップS103)、及び固定工程(ステップS104)を経て製造される。以下、各工程について具体的に説明する。
[Manufacturing method of in-vehicle image recognition device]
Next, the manufacturing method of the vehicle-mounted image recognition device 1 according to the first embodiment will be described.
FIG. 9 is a flowchart of the manufacturing method of the vehicle-mounted image recognition device 1 according to the first embodiment.
As shown in FIG. 9, the on-vehicle image recognition apparatus 1 according to the first embodiment includes an optical axis alignment step (step S101), a focus measurement step (step S102), an imaging surface position adjustment step (step S103), and a fixing. It is manufactured through the process (step S104). Hereinafter, each step will be specifically described.

まず、光軸合わせ工程において、光学系保持部材41に固定された結像光学系11の光軸AX1の方位が計測され、望ましい方位に合わせられる(ステップS101)。この、望ましい方位とは、光軸AX1が、撮像面Cに対して垂直に交わる状態である。頭部付きネジ44の先端部を光学系保持部材41のネジ穴51にねじ込む量を調整することで、撮像素子12の位置を、結像光学系11に対して相対的に移動させることで、方位を合わせる。
なお、上記の光軸合わせ工程(ステップS101)は、省略されてもよい。
First, in the optical axis alignment step, the azimuth of the optical axis AX1 of the imaging optical system 11 fixed to the optical system holding member 41 is measured and adjusted to a desired azimuth (step S101). This desirable azimuth is a state in which the optical axis AX1 intersects the imaging plane C perpendicularly. By adjusting the amount of screwing the tip of the head-attached screw 44 into the screw hole 51 of the optical system holding member 41, the position of the image sensor 12 is moved relative to the imaging optical system 11. Adjust the direction.
In addition, said optical axis alignment process (step S101) may be abbreviate | omitted.

次に、焦点測定工程において、結像光学系11の焦点が測定される(ステップS102)。より具体的には、投影面に投影された像における光軸中心からの隔たりが像高の70%位置の像の周方向焦点、及び投影面に投影された像における光軸中心からの隔たりが像高の70%の場所を焦点測定位置として選択し、その位置における径方向焦点を測定する。光軸AX1が撮像面Cの中心である点Pvを通る場合、これらの焦点は周方向位置によらずほぼ一定である。光軸AX1が撮像面Cの中心である点Pvとは異なる位置を通る場合、周方向位置によって焦点には差が生ずる。この場合は、少なくとも撮像面Cの下半側の二ヶ所を焦点測定位置として選択してそれぞれ焦点を測定し、それらの測定結果を参照して撮像面Cの位置を決定する必要がある。
なお、以下の説明において、「投影面に投影された像における光軸中心からの隔たりが像高の70%位置の像の周方向焦点」を、「像高70%周方向焦点」とも称する。また、「投影面に投影された像における光軸中心からの隔たりが像高の70%位置における径方向焦点」を、「像高70%径方向焦点」とも称する。
Next, in the focus measurement step, the focus of the imaging optical system 11 is measured (step S102). More specifically, the distance from the optical axis center in the image projected on the projection plane is the circumferential focus of the image at a position 70% of the image height, and the distance from the optical axis center in the image projected on the projection plane. A location at 70% of the image height is selected as the focus measurement position, and the radial focus at that position is measured. When the optical axis AX1 passes through the point Pv which is the center of the imaging surface C, these focal points are almost constant regardless of the circumferential position. When the optical axis AX1 passes through a position different from the point Pv that is the center of the imaging surface C, the focal point differs depending on the circumferential position. In this case, it is necessary to select at least two positions on the lower half side of the imaging surface C as the focus measurement positions, measure the focal points, and determine the position of the imaging surface C with reference to the measurement results.
In the following description, the “circumferential focal point of an image at which the distance from the optical axis center in the image projected onto the projection plane is 70% of the image height” is also referred to as “70% circumferential focal point of the image height”. The “radial focus at a position where the distance from the optical axis center in the image projected onto the projection plane is 70% of the image height” is also referred to as “70% radial focus at the image height”.

次に、撮像面位置調整工程において、撮像素子12の撮像面Cを、結像光学系11に対して相対的に移動させられ、撮像面Cの位置が調整される(ステップS103)。より具体的には、頭部付きネジ44の先端部を光学系保持部材41のネジ穴51にねじ込む量を調整することで、撮像素子12の位置を、結像光学系11に対して相対的に移動させる。
ここで、撮像素子12の撮像面Cの光軸AX1方向における位置は、像高70%周方向焦点と像高70%径方向焦点との中間位置よりも像高70%周方向焦点に近い位置に調整される。この位置は、図6においては、像高70%径方向焦点Pmと像高70%周方向焦点Psの中間位置よりも、Psに近い側に当たる。また、撮像素子12の撮像面Cは、図6において点Psの右側に位置させても良い。ただし、像高70%周方向焦点Psと撮像面Cとの隔たりが、像高70%周方向焦点Psと像高70%径方向焦点Pmとの隔たりよりも小さい位置に調整されなければならない。
なお、上記の光軸合わせ工程においては、光軸AX1が撮像面Cの中心である点Pvで撮像面Cと交わる位置に合わせることがより好ましい。その様な調節を可能にするためには、撮像素子を光軸方向とは垂直の方向に移動させるための調節機構を、撮像部10に追加する必要がある。
また、上記の焦点測定工程において焦点測定位置は、光軸中心からの隔たりが像高の70%である場所に限られるものではない。例えば、光軸中心と撮像面Cの縁との間の距離の半分、或いはそれよりも大きな距離だけ光軸中心から隔たった場所でも良い。結果として、像高の70%だけ光軸中心から離れた位置における撮像面Cの位置が、本発明で要請される範囲に収まるのならば、そのような製品を生ずる製造方法は、本願の請求項に関わる製造方法である。なお、焦点測定位置は像高の70%以上離れていても良いが、100%を越えた位置を選択する事は好ましくない。
Next, in the imaging surface position adjustment step, the imaging surface C of the imaging element 12 is moved relative to the imaging optical system 11 to adjust the position of the imaging surface C (step S103). More specifically, the position of the image pickup device 12 is set relative to the imaging optical system 11 by adjusting the amount by which the tip of the head-attached screw 44 is screwed into the screw hole 51 of the optical system holding member 41. Move to.
Here, the position of the image pickup surface 12 of the image pickup element 12 in the optical axis AX1 direction is closer to the image height 70% circumferential focus than the intermediate position between the image height 70% circumferential focus and the image height 70% radial focus. Adjusted to In FIG. 6, this position is closer to Ps than an intermediate position between the image height 70% radial direction focal point Pm and the image height 70% circumferential direction focal point Ps. Further, the imaging surface C of the imaging device 12 may be positioned on the right side of the point Ps in FIG. However, the distance between the image height 70% circumferential focus Ps and the imaging surface C must be adjusted to a position smaller than the distance between the image height 70% circumferential focus Ps and the image height 70% radial focus Pm.
In the optical axis alignment step described above, it is more preferable to align the optical axis AX1 with the position where the optical axis AX1 intersects the imaging surface C at the point Pv that is the center of the imaging surface C. In order to enable such adjustment, an adjustment mechanism for moving the image sensor in a direction perpendicular to the optical axis direction needs to be added to the imaging unit 10.
In the focus measurement step, the focus measurement position is not limited to a place where the distance from the optical axis center is 70% of the image height. For example, it may be a place separated from the center of the optical axis by a half distance between the center of the optical axis and the edge of the imaging surface C or a distance larger than that. As a result, if the position of the imaging surface C at a position away from the optical axis center by 70% of the image height is within the range required by the present invention, a manufacturing method for producing such a product is claimed in this application. This is a manufacturing method related to the item. The focus measurement position may be 70% or more away from the image height, but it is not preferable to select a position exceeding 100%.

次に、固定工程において、撮像素子12が結像光学系11に相対的に固定される(ステップS104)。具体的には、頭部付きネジ44を調整していた治具を頭部付きネジ44から取り外す。可撓性部材43の弾性変形に伴う反発力、又は前記塑性変形に伴う残留応力に起因する反発力によって、光学系保持部材41と素子保持部材42との相対的位置が固定される。   Next, in the fixing step, the image sensor 12 is relatively fixed to the imaging optical system 11 (step S104). Specifically, the jig that has adjusted the head screw 44 is removed from the head screw 44. The relative positions of the optical system holding member 41 and the element holding member 42 are fixed by the repulsive force accompanying the elastic deformation of the flexible member 43 or the repulsive force resulting from the residual stress accompanying the plastic deformation.

<変形例>
次に、第1実施形態の製造方法の変形例について説明する。図10は、第1実施形態の変形例の製造方法のフローチャートである。
図10に示すように、第1実施形態の変形例の製造方法は、焦点測定工程(ステップS102)の後に、測定した焦点に基づいて判定を行う(ステップS301)点が、上記図9に示した第1実施形態に係る車載用画像認識装置1の製造方法と異なる。第1実施形態の変形例の製造方法において、第1実施形態に係る車載用画像認識装置1の製造方法と同一の手順については、その説明を省略する。
<Modification>
Next, a modified example of the manufacturing method of the first embodiment will be described. FIG. 10 is a flowchart of a manufacturing method according to a modification of the first embodiment.
As shown in FIG. 10, in the manufacturing method of the modification of the first embodiment, after the focus measurement step (step S102), the determination is made based on the measured focus (step S301) as shown in FIG. It differs from the manufacturing method of the vehicle-mounted image recognition apparatus 1 which concerns on 1st Embodiment. In the manufacturing method of the modified example of the first embodiment, the description of the same procedure as the manufacturing method of the in-vehicle image recognition device 1 according to the first embodiment is omitted.

焦点測定工程(ステップS102)の後、ステップS102において測定された像高70%周方向焦点と像高70%径方向焦点との差と、所定値とを比較する(ステップS301)。以下の説明において、「ステップS102において測定された像高70%周方向焦点と像高70%径方向焦点との差」を、「周方向焦点と径方向焦点の差」又は単に「焦点の差」とも称する。
この一例では、ステップS301において、焦点の差が所定値以上であるか否かを判定する。焦点の差が所定値以上である場合(ステップS301−YES)、ステップS103に進む。焦点の差が所定値以上ではない場合(ステップS301−NO)、ステップS104に進む。
After the focus measurement step (step S102), the difference between the 70% circumferential focus and the 70% radial focus measured in step S102 is compared with a predetermined value (step S301). In the following description, “difference between 70% circumferential focus and 70% radial focus measured in step S102” is referred to as “difference between circumferential focus and radial focus” or simply “difference in focus”. Is also referred to.
In this example, in step S301, it is determined whether or not the focus difference is greater than or equal to a predetermined value. If the difference in focus is greater than or equal to the predetermined value (step S301—YES), the process proceeds to step S103. If the difference in focus is not greater than or equal to the predetermined value (step S301—NO), the process proceeds to step S104.

以上説明したように、第1実施形態の変形例の製造方法では、結像光学系11の周方向焦点と径方向焦点の差が、所定値以上である場合に撮像面位置調整工程を実行する。また、この変形例の製造方法では、結像光学系11の周方向焦点と径方向焦点の差が、所定値未満である場合に撮像面位置調整工程を実行しない。   As described above, in the manufacturing method according to the modified example of the first embodiment, the imaging surface position adjustment step is executed when the difference between the circumferential focus and the radial focus of the imaging optical system 11 is equal to or greater than a predetermined value. . Further, in the manufacturing method of this modification, the imaging surface position adjustment step is not executed when the difference between the circumferential focus and the radial focus of the imaging optical system 11 is less than a predetermined value.

このように、第1実施形態の変形例の製造方法においては、製造対象の製品のうち、結像光学系11の周方向焦点と径方向焦点の差が所定値以上の製品について、撮像面位置調整工程を実行する。したがって、第1実施形態の変形例の製造方法によれば、焦点の差が所定値未満の製品については、撮像面位置調整工程を省略することができる。
また、第1実施形態の変形例の製造方法においては、製造対象の製品のうち、焦点の差が大きい方から数えて所定割合の範囲に属する製品について、撮像面位置調整工程を実行してもよい。
As described above, in the manufacturing method according to the modification of the first embodiment, among the products to be manufactured, the imaging surface position is determined for a product in which the difference between the circumferential focus and the radial focus of the imaging optical system 11 is a predetermined value or more. The adjustment process is executed. Therefore, according to the manufacturing method of the modified example of the first embodiment, the imaging surface position adjustment step can be omitted for products whose focus difference is less than a predetermined value.
Further, in the manufacturing method according to the modified example of the first embodiment, the imaging surface position adjustment process is executed for products that belong to a range of a predetermined ratio counted from the one with the larger focus difference among the products to be manufactured. Good.

<第2実施形態>
図11は、本開示における第2実施形態における、結像光学系11−2のMTF曲線の一例を示すグラフである。測定条件は図6と同一である。図11のMTF曲線と図6のMTF曲線との差は、径方向焦点Pm2においても、径方向解像力よりも周方向解像力の方が高いことである。このようなMTF曲線を示す結像光学系は、周方向と径方向でMTF曲線が大きく異なり、焦点位置も異なるという点で、通常は高品質な結像光学系とは扱われない。しかし、本開示に係る車載用画像認識装置に適用する場合、走行レーンを表す線の輪郭を明瞭に表示できるため、この様な結像光学系は有効である。
Second Embodiment
FIG. 11 is a graph illustrating an example of the MTF curve of the imaging optical system 11-2 according to the second embodiment of the present disclosure. The measurement conditions are the same as in FIG. The difference between the MTF curve of FIG. 11 and the MTF curve of FIG. 6 is that the circumferential resolution is higher than the radial resolution at the radial focal point Pm2. Such an imaging optical system showing an MTF curve is not usually treated as a high-quality imaging optical system in that the MTF curve is greatly different in the circumferential direction and the radial direction, and the focal position is also different. However, when applied to the in-vehicle image recognition apparatus according to the present disclosure, such an imaging optical system is effective because the outline of a line representing a traveling lane can be clearly displayed.

本実施形態における結像光学系11−2を用いる場合、撮像面Cが径方向焦点上に位置していても、周方向解像力の方が径方向解像力よりも高くなる。この状態で車載用画像認識装置を使用することも可能である。しかし、第1実施形態の場合と同じく、撮像面Cは周方向焦点近傍に位置する構成がより好ましい。周方向解像力がより高まるからである。撮像面Cの位置のより好ましい範囲は、第1実施形態の場合と同様で、周方向焦点Ps2と径方向焦点Pm2との中間である点P1よりも、周方向焦点Ps2寄りの位置である。例えば好ましい位置は点P2である。その他の好ましい位置として、周方向焦点Ps2に対して径方向焦点Pm2の逆側の位置である、点P3であってもよい。   When the imaging optical system 11-2 in the present embodiment is used, the circumferential resolution is higher than the radial resolution even if the imaging surface C is positioned on the radial focus. It is also possible to use the in-vehicle image recognition device in this state. However, as in the case of the first embodiment, it is more preferable that the imaging surface C is located in the vicinity of the focal point in the circumferential direction. This is because the circumferential resolution is further increased. A more preferable range of the position of the imaging surface C is the position closer to the circumferential focus Ps2 than the point P1 that is intermediate between the circumferential focus Ps2 and the radial focus Pm2, as in the case of the first embodiment. For example, a preferable position is the point P2. Another preferable position may be a point P3 which is a position on the opposite side of the radial focus Pm2 with respect to the circumferential focus Ps2.

なお、以下の説明において、結像光学系11と結像光学系11−2とを区別しない場合には、結像光学系11と結像光学系11−2とを総称して、単に結像光学系11と記載する。   In the following description, when the imaging optical system 11 and the imaging optical system 11-2 are not distinguished from each other, the imaging optical system 11 and the imaging optical system 11-2 are collectively referred to simply as imaging. It is described as an optical system 11.

<第3実施形態>
次に、図12を参照して、第3実施形態について説明する。
図12は、第3実施形態に係る車載用画像認識装置が備える撮像部10aの部分断面図である。
<Third Embodiment>
Next, a third embodiment will be described with reference to FIG.
FIG. 12 is a partial cross-sectional view of the imaging unit 10a included in the in-vehicle image recognition device according to the third embodiment.

第3実施形態に係る車載用画像認識装置は、可撓性部材43aの端部が、それぞれ光学系保持部材41aと素子保持部材42aに固定されており、引き伸ばされた状態にある点で、第1実施形態に係る車載用画像認識装置1と異なる。図12に示す撮像部10aの構成要素のうち、図8に示す撮像部10の構成要素と同一の部分については、図8と同一の符号を付すると共にその説明を省略する。   The in-vehicle image recognition device according to the third embodiment is the first in that the ends of the flexible member 43a are fixed to the optical system holding member 41a and the element holding member 42a, respectively, and are in an extended state. It is different from the vehicle-mounted image recognition device 1 according to the embodiment. Of the components of the imaging unit 10a shown in FIG. 12, the same components as those of the imaging unit 10 shown in FIG. 8 are denoted by the same reference numerals as those in FIG.

光学系保持部材41aは、lz軸方向に貫通するネジ孔51aを備える。素子保持部材42aは、貫通孔を持たず、ネジ孔51aの下側からねじ込まれた頭部付きネジ44aの先端によって、上方向に押される。
可撓性部材43aは、この例ではコイルバネである。可撓性部材43aは、光学系保持部材41a及び素子保持部材42aの間に配置され、両端がそれぞれ光学系保持部材41aと素子保持部材42aに固定される。頭部付きネジ44aが光学系保持部材41aと素子保持部材42aとを引き離す方向の力をこれら部材に加えるのに対して、可撓性部材43aはこれら部材を近づける方向に力を加える。頭部付きネジ44aのネジ孔51aにねじ込む量を調整することにより、上述した結像光学系11の内部のレンズと撮像素子12の撮像面Cとの距離Dと方位が調整される。すなわち、可撓性部材43a及び頭部付きネジ44aは、光学系保持部材41aと素子保持部材42aとの相対的位置を固定する。
The optical system holding member 41a includes a screw hole 51a penetrating in the lz-axis direction. The element holding member 42a does not have a through hole, and is pushed upward by the tip of the head-attached screw 44a screwed from below the screw hole 51a.
In this example, the flexible member 43a is a coil spring. The flexible member 43a is disposed between the optical system holding member 41a and the element holding member 42a, and both ends thereof are fixed to the optical system holding member 41a and the element holding member 42a, respectively. The head-attached screw 44a applies a force in a direction to separate the optical system holding member 41a and the element holding member 42a to these members, whereas the flexible member 43a applies a force in a direction to bring these members closer. By adjusting the amount screwed into the screw hole 51a of the head-attached screw 44a, the distance D and direction between the lens inside the imaging optical system 11 and the imaging surface C of the imaging element 12 are adjusted. That is, the flexible member 43a and the head-attached screw 44a fix the relative positions of the optical system holding member 41a and the element holding member 42a.

なお、図12においては、可撓性部材43a、頭部付きネジ44a、ネジ孔51a、の数を、一例として、それぞれ2つ図示し、それぞれ1つの図示を省略している。   In FIG. 12, the number of the flexible member 43a, the head-attached screw 44a, and the screw hole 51a is two as an example, and one illustration is omitted.

<第4実施形態>
次に、第4実施形態について説明する。第4実施形態に係る車載用画像認識装置は、ネジではなく接着剤によって撮像素子12の撮像面Cと結像光学系11との位置関係を固定する点で、第1実施形態に係る車載用画像認識装置1とは異なる。
図13は、第4実施形態に係る車載用画像認識装置が備える撮像部10bの部分断面図である。図13に示す撮像部10bの構成要素のうち、図8に示す撮像部10の構成要素と同一の部分については、図8と同一の符号を付して、その説明を省略する。
<Fourth embodiment>
Next, a fourth embodiment will be described. The in-vehicle image recognition apparatus according to the fourth embodiment is for in-vehicle use according to the first embodiment in that the positional relationship between the imaging surface C of the imaging element 12 and the imaging optical system 11 is fixed by an adhesive instead of a screw. Different from the image recognition apparatus 1.
FIG. 13 is a partial cross-sectional view of the imaging unit 10b included in the in-vehicle image recognition device according to the fourth embodiment. Of the components of the imaging unit 10b shown in FIG. 13, the same components as those of the imaging unit 10 shown in FIG. 8 are denoted by the same reference numerals as those in FIG.

撮像部10bは、光学系保持部材41bと、素子保持部材42bとを備える。この光学系保持部材41bと素子保持部材42bとは、接着剤60によって接着される。   The imaging unit 10b includes an optical system holding member 41b and an element holding member 42b. The optical system holding member 41 b and the element holding member 42 b are bonded by an adhesive 60.

素子保持部材42bは、撮像素子12を保持する。素子保持部材42bは、板形状を有する本体部421bと、光軸方向に伸びる一対のアーム部422bを備える。本体部421bは光軸AX1と交差して拡がり、その両端にアーム部422bが接続する。アーム部422bは、先端部に光学系保持部材41bに向けて開口する溝52bを有する。   The element holding member 42b holds the imaging element 12. The element holding member 42b includes a main body portion 421b having a plate shape and a pair of arm portions 422b extending in the optical axis direction. The main body portion 421b extends across the optical axis AX1, and the arm portions 422b are connected to both ends thereof. The arm portion 422b has a groove 52b that opens toward the optical system holding member 41b at the tip.

接着剤60は、図13に示すように、溝52bの中に塗布される。この溝52bのlz軸方向の幅は、光学系保持部材41bのlz軸方向の幅よりも広い。また、光学系保持部材41bの縁部412bと溝52bの底の間には隙間がある。このため、光学系保持部材41bは、接着剤60が塗布される前及び硬化する前は、縁部412bが溝52b内に収容された状態でlx、ly、lz方向に移動可能であり、lx、ly、lz軸周りに回転可能である。   The adhesive 60 is applied in the groove 52b as shown in FIG. The width of the groove 52b in the lz-axis direction is wider than the width of the optical system holding member 41b in the lz-axis direction. Further, there is a gap between the edge 412b of the optical system holding member 41b and the bottom of the groove 52b. Therefore, the optical system holding member 41b can move in the lx, ly, and lz directions with the edge portion 412b accommodated in the groove 52b before the adhesive 60 is applied and before it is cured. , Ly, and lz axes.

接着剤60とは、例えば、紫外線の照射により硬化する紫外線硬化樹脂である。接着剤60は、溝52bに塗布後、紫外線を照射する前においては、硬化しない。結像光学系11と撮像素子12の撮像面Cとの距離D及び方位関係が調整された状態で、溝52bに塗布されている接着剤60に紫外線が照射される。紫外線の照射により接着剤60は硬化し、距離Dと方位が調整された状態のまま、光学系保持部材41bと、素子保持部材42bとの相対的な位置関係が固定される。   The adhesive 60 is, for example, an ultraviolet curable resin that is cured by irradiation with ultraviolet rays. The adhesive 60 is not cured after being applied to the grooves 52b and before being irradiated with ultraviolet rays. With the distance D and orientation relationship between the imaging optical system 11 and the imaging surface C of the imaging element 12 adjusted, the adhesive 60 applied to the groove 52b is irradiated with ultraviolet rays. The adhesive 60 is cured by the ultraviolet irradiation, and the relative positional relationship between the optical system holding member 41b and the element holding member 42b is fixed while the distance D and the orientation are adjusted.

次に、第4実施形態に係る車載用画像認識装置1bの製造方法について説明する。
図14は、第4実施形態に係る車載用画像認識装置1bの製造方法のフローチャートである。
第4実施形態に係る車載用画像認識装置1bの製造方法は、光軸合わせ工程(ステップS101)、撮像面位置調整工程(ステップS103)と、固定工程(ステップS104)とにかえて、光軸合わせ工程(ステップS101a)、撮像面位置調整工程(ステップS103a)と、接着剤60を充填する充填工程(ステップS201)と、接着剤60を硬化する硬化工程(ステップS202)を備える点において、第1実施形態に係る車載用画像認識装置1の製造方法と異なる。したがって、車載用画像認識装置1bの製造方法について、第1実施形態に係る車載用画像認識装置1bの製造方法と同一の構成部分についてはその説明を省略する。
Next, the manufacturing method of the vehicle-mounted image recognition device 1b according to the fourth embodiment will be described.
FIG. 14 is a flowchart of the manufacturing method of the vehicle-mounted image recognition device 1b according to the fourth embodiment.
The manufacturing method of the on-vehicle image recognition device 1b according to the fourth embodiment is different from the optical axis alignment step (step S101), the imaging surface position adjustment step (step S103), and the fixing step (step S104). In the point provided with an alignment process (step S101a), an imaging surface position adjustment process (step S103a), a filling process for filling the adhesive 60 (step S201), and a curing process for curing the adhesive 60 (step S202). It differs from the manufacturing method of the vehicle-mounted image recognition apparatus 1 which concerns on 1 embodiment. Therefore, about the manufacturing method of the vehicle-mounted image recognition apparatus 1b, the description is abbreviate | omitted about the component same as the manufacturing method of the vehicle-mounted image recognition apparatus 1b which concerns on 1st Embodiment.

まず、光学系保持部材41bの縁部412bが、素子保持部材42bの溝52bに差し込まれる。この際、素子保持部材42b及び光学系保持部材41bは、それぞれ図示されて居ない治具で保持される。これら治具は、素子保持部材42b及び光学系保持部材41bの相対的な方位、位置関係を変更することが出来る。また、縁部412bは、溝52bの内側の面には接触しない状態にされる。
次に、光軸合わせ工程において、光学系保持部材41bに固定された結像光学系11の光軸AX1の方位が計測され、望ましい方位に合わせられる(ステップS101a)。この、望ましい方位とは、光軸AX1が、撮像面Cに対して垂直に交わり、かつ撮像面Cの中心を通る状態である。光学系保持部材41bの縁部412bは、素子保持部材42bの溝52bの内側に接触して居ないため、前記の治具により、光学系保持部材41bを素子保持部材42bに対して、lx、ly、lz方向に移動させる事が可能であり、lx、ly、lz軸周りに回転させる事が可能である。
First, the edge 412b of the optical system holding member 41b is inserted into the groove 52b of the element holding member 42b. At this time, the element holding member 42b and the optical system holding member 41b are each held by a jig not shown. These jigs can change the relative orientation and positional relationship between the element holding member 42b and the optical system holding member 41b. The edge 412b is not in contact with the inner surface of the groove 52b.
Next, in the optical axis alignment step, the azimuth of the optical axis AX1 of the imaging optical system 11 fixed to the optical system holding member 41b is measured and adjusted to a desired azimuth (step S101a). This desirable azimuth is a state in which the optical axis AX1 intersects the imaging surface C perpendicularly and passes through the center of the imaging surface C. Since the edge 412b of the optical system holding member 41b is not in contact with the inside of the groove 52b of the element holding member 42b, the optical system holding member 41b is moved from the element holding member 42b to lx, It can be moved in the ly and lz directions, and can be rotated around the lx, ly, and lz axes.

焦点測定工程(ステップS102)の後、撮像面位置調整工程において、撮像素子12の撮像面Cの位置が調節される(ステップS103a)。より具体的には、前記の治具を操作して、光学系保持部材41bを素子保持部材42bに対して光軸AX1方向に移動させる。
このようにして、撮像素子12の撮像面Cの光軸AX1方向における位置は、像高70%周方向焦点と像高70%径方向焦点との中間位置よりも像高70%周方向焦点に近い位置に調整される。
After the focus measurement step (step S102), the position of the image pickup surface C of the image pickup device 12 is adjusted in the image pickup surface position adjustment step (step S103a). More specifically, the jig is operated to move the optical system holding member 41b in the direction of the optical axis AX1 with respect to the element holding member 42b.
In this manner, the position of the image pickup surface 12 of the image pickup element 12 in the direction of the optical axis AX1 is closer to the image height 70% circumferential focus than the intermediate position between the image height 70% circumferential focus and the image height 70% radial focus. It is adjusted to a close position.

次に、充填工程において、接着剤60が光学系保持部材41bの側面と素子保持部材42bの溝52bとの間に設けられる(ステップS201)。より具体的には、光学系保持部材41bの側面と素子保持部材42bのアーム部の溝52bとが互いに非接触にて(所定の間隙をおいて)対向した状態において、光学系保持部材41bの側面と溝52bとの間の間隙の少なくとも一部が接着剤60で満たされる。   Next, in the filling step, the adhesive 60 is provided between the side surface of the optical system holding member 41b and the groove 52b of the element holding member 42b (step S201). More specifically, in a state where the side surface of the optical system holding member 41b and the groove 52b of the arm portion of the element holding member 42b face each other without contact (with a predetermined gap), the optical system holding member 41b At least part of the gap between the side surface and the groove 52 b is filled with the adhesive 60.

接着剤60の充填工程は、撮像面位置調整工程(ステップS103a)の前、後或いは同時の、何れにおいて実施しても良い。撮像面位置調整工程(ステップS103a)の前に接着剤60を設ける場合、光学系保持部材41bの側面又は素子保持部材42bの溝52bに予め接着剤60を塗布しておいてもよい。   The filling process of the adhesive 60 may be performed either before, after, or at the same time as the imaging surface position adjustment process (step S103a). When the adhesive 60 is provided before the imaging surface position adjustment step (step S103a), the adhesive 60 may be applied in advance to the side surface of the optical system holding member 41b or the groove 52b of the element holding member 42b.

次に、硬化工程において、接着剤60を硬化させる(ステップS202)。接着剤60は、例えば紫外線を照射されることによって硬化する。接着剤60が硬化することによって、光学系保持部材41bと素子保持部材42bとの相対位置及び方位が固定される。したがって、撮像素子12と結像光学系11との相対位置及び方位が固定される。   Next, in the curing process, the adhesive 60 is cured (step S202). For example, the adhesive 60 is cured by being irradiated with ultraviolet rays. As the adhesive 60 is cured, the relative position and orientation of the optical system holding member 41b and the element holding member 42b are fixed. Accordingly, the relative position and orientation between the image sensor 12 and the imaging optical system 11 are fixed.

接着剤60の硬化は、一部であっても良い。言い替えれば、撮像素子12と結像光学系11との相対位置及び方位は、二段階以上に分けて固定されても良い。例えば、接着剤60の硬化を二段階以上に分けて行う場合、最初の硬化においては、結像光学系11の方位の調整を行った状態が崩れない程度の強度が得られれば、結像光学系11と撮像素子12との相対的な方位関係は以後容易に維持できる。   The adhesive 60 may be partially cured. In other words, the relative position and orientation between the image sensor 12 and the imaging optical system 11 may be fixed in two or more stages. For example, in the case where the curing of the adhesive 60 is performed in two or more stages, if the strength that does not break the state in which the orientation of the imaging optical system 11 is adjusted is obtained in the first curing, the imaging optical The relative orientation relationship between the system 11 and the image sensor 12 can be easily maintained thereafter.

このようにすることで、結像光学系11及び撮像素子12の相対位置及び方位について、微妙な調整を行った状態で、その状態を崩すこと無く固定する事ができる。   By doing in this way, it is possible to fix the relative positions and orientations of the imaging optical system 11 and the image pickup device 12 without losing the state after fine adjustment.

1…車載用画像認識装置, 2…車両, 10…撮像部, 11…結像光学系, 12…撮像素子, 20…制御部, 21…画像取得部, 22…画像処理部, 30…主光線, 41、41a、41b…光学系保持部材, 42,42a42b…素子保持部材, 43、43a…可撓性部材, 44、44a…頭部付きネジ, 50…フレキシブルプリント配線板 DESCRIPTION OF SYMBOLS 1 ... Vehicle-mounted image recognition apparatus, 2 ... Vehicle, 10 ... Imaging part, 11 ... Imaging optical system, 12 ... Imaging element, 20 ... Control part, 21 ... Image acquisition part, 22 ... Image processing part, 30 ... Main ray , 41, 41a, 41b ... optical system holding member, 42, 42a42b ... element holding member, 43, 43a ... flexible member, 44, 44a ... screw with head, 50 ... flexible printed wiring board

Claims (16)

光軸方向の前方側の光景を後方側において結像させる固定焦点型の結像光学系と、
前記光軸方向の後方側に配置され前記結像光学系の光軸が撮像面を通る撮像素子と、
前記撮像素子で撮影された前記光景の画像を取り込み画像認識処理を行う集積回路と、を備え、
前記結像光学系を通過して収束する光の半径方向における解像力が、投影面を前記光軸方向に移動させる際に極大を示す位置を径方向焦点と呼び、前記収束する光の周方向における解像力が、投影面を前記光軸方向に移動させる際に極大を示す位置を周方向焦点と呼び、前記光景の鉛直方向における下半部が投影される前記撮像面の部位を下半部と呼び、前記撮像面の対角線の長さの半分を像高と呼び、前記光軸と前記撮像面との交点を光軸中心と呼ぶとき、
前記結像光学系が前記撮像素子に投影する像の光軸中心からの隔たりが前記像高の70%の位置において、前記撮像面の少なくとも前記下半部は径方向焦点と周方向焦点との中間位置よりも前記周方向焦点に近い場所に位置し、
前記周方向焦点と前記撮像面との隔たりは、前記周方向焦点と前記径方向焦点との隔たりよりも小さく、
前記集積回路で行われる画像認識処理は、路面上に引かれた走行レーンを表す線を認識する処理を含む、車載用画像認識装置。
A fixed focus type imaging optical system that forms an image of the front side in the optical axis direction on the rear side; and
An imaging element disposed on the rear side in the optical axis direction and having an optical axis of the imaging optical system passing through an imaging surface;
An integrated circuit that captures an image of the scene photographed by the image sensor and performs image recognition processing,
The position where the resolving power in the radial direction of the light that passes through the imaging optical system is maximum when moving the projection plane in the optical axis direction is called a radial focal point, and in the circumferential direction of the converged light. The position where the resolving power shows a maximum when moving the projection surface in the optical axis direction is called a circumferential focus, and the part of the imaging surface where the lower half of the scene in the vertical direction is projected is called the lower half. When the half of the diagonal length of the imaging surface is called an image height and the intersection of the optical axis and the imaging surface is called an optical axis center,
At a position where the distance from the optical axis center of the image projected by the imaging optical system onto the image sensor is 70% of the image height, at least the lower half of the imaging surface has a radial focus and a circumferential focus. Located closer to the circumferential focus than the middle position,
The distance between the circumferential focus and the imaging surface is smaller than the distance between the circumferential focus and the radial focus.
The on-vehicle image recognition apparatus, wherein the image recognition processing performed in the integrated circuit includes processing for recognizing a line representing a traveling lane drawn on a road surface.
前記光軸中心からの隔たりが前記像高の70%の位置における、前記撮像面と前記周方向焦点との隔たりは、前記撮像面と前記径方向焦点との隔たりの半分未満である、請求項1の車載用画像認識装置。   The distance between the imaging surface and the circumferential focal point when the distance from the optical axis center is 70% of the image height is less than half of the distance between the imaging surface and the radial focal point. A vehicle-mounted image recognition apparatus. 前記撮像素子の撮像面上における前記光軸中心からの隔たりが像高の70%の位置において、前記結像光学系を通過して前記撮像面上に投影される像の周方向解像力は径方向解像力よりも高く、
前記撮像素子の画素間隔をd(mm)とし、
前記周方向解像力を、前記撮像面において1/(9d)lp/mm間隔で周方向に並び径方向に伸びる黒色の複数の直線の像に対するMTF値と定義される、請求項1又は請求項2の車載用画像認識装置。
At a position where the distance from the optical axis center on the imaging surface of the imaging element is 70% of the image height, the circumferential resolution of an image projected on the imaging surface through the imaging optical system is radial. Higher than resolving power,
The pixel interval of the image sensor is d (mm),
3. The circumferential resolving power is defined as an MTF value for a plurality of black straight line images arranged in the circumferential direction and extending in the radial direction at 1 / (9d) lp / mm intervals on the imaging surface. Vehicle-mounted image recognition device.
前記撮像素子は前記撮像面の表面にカラーフィルターアレイを有し、

前記周方向解像力は50%以上の値を有する、請求項3の車載用画像認識装置。
The imaging device has a color filter array on the surface of the imaging surface,

The in-vehicle image recognition apparatus according to claim 3, wherein the circumferential resolution has a value of 50% or more.
前記結像光学系のF値は2以下である、請求項1から請求項4のうち何れか1項の車載用画像認識装置。   The in-vehicle image recognition apparatus according to claim 1, wherein an F value of the imaging optical system is 2 or less. 前記撮像素子は、1フレーム当たり横1280画素、縦720画素以上の大きさの画像を出力可能である、請求項1から請求項5のうち何れか1項の車載用画像認識装置。   The in-vehicle image recognition apparatus according to any one of claims 1 to 5, wherein the image sensor is capable of outputting an image having a size of 1280 pixels horizontally and 720 pixels vertically per frame. 前記結像光学系を保持する光学系保持部材と、
前記撮像素子を保持する素子保持部材と、
前記光学系保持部材と前記素子保持部材の間に介在する可撓性部材と、
接触面において前記素子保持部材及び前記可撓性部材の何れか一方或いは双方に接触し締結部にて前記光学系保持部材に締結される、調節部材と、を更に備え、
前記可撓性部材は少なくとも一部が弾性変形又は塑性変形を生じており、
前記弾性変形に伴う反発力、又は前記塑性変形に伴う残留応力に起因する反発力は、前記素子保持部材を前記接触面に向けて押す方向に作用する、請求項1から請求項6のうち何れか1項の車載用画像認識装置。
An optical system holding member for holding the imaging optical system;
An element holding member for holding the imaging element;
A flexible member interposed between the optical system holding member and the element holding member;
An adjustment member that contacts one or both of the element holding member and the flexible member on the contact surface and is fastened to the optical system holding member at a fastening portion;
At least a part of the flexible member has undergone elastic deformation or plastic deformation,
The repulsive force resulting from the elastic deformation or the repulsive force resulting from the residual stress accompanying the plastic deformation acts in a direction in which the element holding member is pushed toward the contact surface. The on-vehicle image recognition device according to claim 1.
前記結像光学系を保持する光学系保持部材と、
前記撮像素子を保持する素子保持部材と、を更に備え、
前記素子保持部材の表面及び前記光学系保持部材の表面は間隙を介して互いに非接触の状態にあり、
硬化した接着剤が前記素子保持部材及び前記光学系保持部材の間の前記間隙の少なくとも一部を満たす、請求項1から請求項6のうち何れか1項の車載用画像認識装置。
An optical system holding member for holding the imaging optical system;
An element holding member for holding the imaging element,
The surface of the element holding member and the surface of the optical system holding member are not in contact with each other through a gap,
The in-vehicle image recognition device according to any one of claims 1 to 6, wherein the cured adhesive fills at least a part of the gap between the element holding member and the optical system holding member.
請求項1から請求項8のうち何れか1項の車載用画像認識装置を製造する方法であって、
焦点測定位置において周方向焦点及び径方向焦点を測定する、焦点測定工程と、
前記撮像素子を前記結像光学系に対して相対的に移動させて、前記周方向焦点と前記径方向焦点との中間位置よりも前記周方向焦点に近く、かつ、前記周方向焦点と前記撮像面との隔たりが、前記周方向焦点と前記径方向焦点との隔たりよりも小さい位置に、前記撮像面を位置させる、撮像面位置調整工程と、
前記撮像素子と前記結像光学系を相対的に固定する、固定工程と、を備え、
前記焦点測定位置は、前記光軸中心と前記撮像面の縁との距離の半分或いは、それよりも大きな距離だけ前記光軸中心から隔たった場所にある、車載用画像認識装置の製造方法。
A method for manufacturing an in-vehicle image recognition device according to any one of claims 1 to 8,
A focus measurement step of measuring a circumferential focus and a radial focus at a focus measurement position;
The imaging element is moved relative to the imaging optical system, and is closer to the circumferential focus than an intermediate position between the circumferential focus and the radial focus, and the circumferential focus and the imaging. An imaging surface position adjustment step of positioning the imaging surface at a position where the distance from the surface is smaller than the distance between the circumferential focus and the radial focus;
A fixing step of relatively fixing the imaging device and the imaging optical system,
The method of manufacturing an in-vehicle image recognition apparatus, wherein the focus measurement position is located at a position separated from the optical axis center by a distance that is half or greater than the distance between the optical axis center and the edge of the imaging surface.
前記車載用画像認識装置が製造される製造ラインに部品として供給される前記結像光学系の内、前記周方向焦点と前記径方向焦点との差が大きい方から並べて所定割合の範囲に属する前記結像光学系に対して、前記撮像面位置調整工程を実行する、請求項9の車載用画像認識装置の製造方法。   Among the imaging optical systems supplied as parts to the production line on which the in-vehicle image recognition device is manufactured, the difference between the circumferential focal point and the radial focal point is arranged from the larger one and belongs to a predetermined ratio range. The method for manufacturing an in-vehicle image recognition apparatus according to claim 9, wherein the imaging surface position adjustment step is executed for an imaging optical system. 製造ラインで製造される製品の内、前記焦点測定工程において、前記周方向焦点と前記径方向焦点との差が所定値を超える結像光学系を用いて製造する場合に、前記撮像面位置調整工程を実行する、請求項9の車載用画像認識装置の製造方法。   Among the products manufactured on the manufacturing line, in the focus measurement step, when the imaging surface position adjustment is performed using an imaging optical system in which the difference between the circumferential focus and the radial focus exceeds a predetermined value The manufacturing method of the vehicle-mounted image recognition apparatus of Claim 9 which performs a process. 光軸方向の前方側の光景を後方側において結像させる固定焦点型の結像光学系と、
前記光軸方向の後方側に配置され前記結像光学系の光軸が撮像面を通る撮像素子と、
前記撮像素子で撮影された映像情報を取り込み画像認識処理を行う集積回路と、を備え、
前記結像光学系を通過して収束する光の半径方向における解像力が、投影面を前記光軸方向に移動させる際に極大を示す位置を径方向焦点と呼び、前記収束する光の周方向における解像力が、投影面を前記光軸方向に移動させる際に極大を示す位置を周方向焦点と呼び、前記光景の鉛直方向における下半部が投影される前記撮像面の部位を下半部と呼び、前記撮像面の対角線の長さの半分を像高と呼び、前記光軸と前記撮像面との交点を光軸中心と呼ぶとき、
前記光軸中心からの前記像高の70%の位置における前記撮像面の少なくとも前記下半部において、前記結像光学系が前記撮像素子に投影する像の周方向解像力は径方向解像力よりも高く、
前記集積回路で行われる画像認識処理は、路面上引かれた走行レーンを表す線を認識する処理を含む、車載用画像認識装置。
A fixed focus type imaging optical system that forms an image of the front side in the optical axis direction on the rear side; and
An imaging element disposed on the rear side in the optical axis direction and having an optical axis of the imaging optical system passing through an imaging surface;
An integrated circuit that captures video information captured by the image sensor and performs image recognition processing,
The position where the resolving power in the radial direction of the light that passes through the imaging optical system is maximum when moving the projection plane in the optical axis direction is called a radial focal point, and in the circumferential direction of the converged light. The position where the resolving power shows a maximum when moving the projection surface in the optical axis direction is called a circumferential focus, and the part of the imaging surface where the lower half of the scene in the vertical direction is projected is called the lower half. When the half of the diagonal length of the imaging surface is called an image height and the intersection of the optical axis and the imaging surface is called an optical axis center,
In at least the lower half of the imaging surface at a position 70% of the image height from the optical axis center, the circumferential resolution of the image projected by the imaging optical system onto the imaging device is higher than the radial resolution. ,
The image recognition process performed by the integrated circuit is an in-vehicle image recognition apparatus including a process of recognizing a line representing a traveling lane drawn on a road surface.
前記撮像素子は前記撮像面の表面にカラーフィルターアレイを有し、
前記撮像素子の画素間隔をd(mm)とし、
前記周方向解像力を、前記撮像面において1/(9d)lp/mm間隔で周方向に並び径方向に伸びる黒色の複数の直線の像に対するMTF値と定義する場合、前記周方向解像力は50%以上の値を有する、請求項12の車載用画像認識装置。
The imaging device has a color filter array on the surface of the imaging surface,
The pixel interval of the image sensor is d (mm),
When the circumferential resolution is defined as an MTF value for a plurality of black straight images aligned in the circumferential direction and extending in the radial direction at 1 / (9d) lp / mm intervals on the imaging surface, the circumferential resolution is 50%. The in-vehicle image recognition apparatus according to claim 12, having the above values.
前記結像光学系を保持する光学系保持部材と、
前記撮像素子を保持する素子保持部材と、
前記光学系保持部材と前記素子保持部材の間に介在する可撓性部材と、
接触面において前記素子保持部材及び前記可撓性部材の何れか一方或いは双方に接触し、締結部にて前記光学系保持部材に締結される、調節部材と、を更に備え、
前記可撓性部材は少なくとも一部が弾性変形又は塑性変形を生じており、
前記弾性変形に伴う反発力、又は前記塑性変形に伴う残留応力に起因する反発力は、前記素子保持部材を前記接触面に向けて押す方向に作用する、請求項12又は請求項13の車載用画像認識装置。
An optical system holding member for holding the imaging optical system;
An element holding member for holding the imaging element;
A flexible member interposed between the optical system holding member and the element holding member;
An adjustment member that contacts one or both of the element holding member and the flexible member on a contact surface and is fastened to the optical system holding member at a fastening portion;
At least a part of the flexible member has undergone elastic deformation or plastic deformation,
14. The vehicle-mounted device according to claim 12, wherein the repulsive force accompanying the elastic deformation or the repulsive force resulting from the residual stress accompanying the plastic deformation acts in a direction of pushing the element holding member toward the contact surface. Image recognition device.
前記結像光学系を保持する光学系保持部材と、
前記撮像素子を保持する素子保持部材と、を更に備え、
前記素子保持部材の表面及び前記光学系保持部材の表面は間隙を介して互いに非接触の状態にあり、
硬化した接着剤が前記素子保持部材及び前記光学系保持部材の間の前記間隙の少なくとも一部を満たす、請求項12又は請求項13の車載用画像認識装置。
An optical system holding member for holding the imaging optical system;
An element holding member for holding the imaging element,
The surface of the element holding member and the surface of the optical system holding member are not in contact with each other through a gap,
The in-vehicle image recognition apparatus according to claim 12 or 13, wherein the cured adhesive fills at least a part of the gap between the element holding member and the optical system holding member.
請求項12から請求項15のうち何れか1項の車載用画像認識装置を製造する方法であって、
焦点測定位置において周方向焦点及び径方向焦点を測定する、焦点測定工程と、
前記撮像素子を前記結像光学系に対して相対的に移動させて、前記撮像面の光軸中心からの隔たりが前記像高70%の位置における周方向解像力が径方向解像力よりも高い状態とする、解像力調整工程と、
前記撮像素子と前記結像光学系を相対的に固定する、固定工程と、を備え、
前記焦点測定位置は、前記光軸中心と前記撮像面の縁との距離の半分或いは、それよりも大きな距離だけ前記光軸中心から隔たった場所にある、車載用画像認識装置の製造方法。
A method for manufacturing the in-vehicle image recognition device according to any one of claims 12 to 15,
A focus measurement step of measuring a circumferential focus and a radial focus at a focus measurement position;
The imaging element is moved relative to the imaging optical system, and the circumferential resolution at a position where the distance from the optical axis center of the imaging surface is 70% of the image height is higher than the radial resolution. Resolving power adjustment process;
A fixing step of relatively fixing the imaging device and the imaging optical system,
The method of manufacturing an in-vehicle image recognition apparatus, wherein the focus measurement position is located at a position separated from the optical axis center by a distance that is half or greater than the distance between the optical axis center and the edge of the imaging surface.
JP2015170011A 2014-12-17 2015-08-31 In-vehicle image recognition apparatus and manufacturing method thereof Active JP6584870B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201520757160.0U CN205249352U (en) 2014-12-17 2015-09-28 Vehicle -mounted image recognition device
CN201510626426.2A CN105721764B (en) 2014-12-17 2015-09-28 Vehicle-mounted pattern recognition device and its manufacturing method
US14/882,791 US9836659B2 (en) 2014-12-17 2015-10-14 Vehicle-mounted image recognition apparatus and method of manufacturing the same
DE102015222259.4A DE102015222259A1 (en) 2014-12-17 2015-11-11 A vehicle-mounted image recognition device and method of making the same
US15/792,798 US10318825B2 (en) 2014-12-17 2017-10-25 Vehicle-mounted image recognition apparatus and method of manufacturing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014255485 2014-12-17
JP2014255485 2014-12-17
JP2015014195 2015-01-28
JP2015014195 2015-01-28
JP2015131127 2015-06-30
JP2015131127 2015-06-30

Publications (2)

Publication Number Publication Date
JP2017011666A JP2017011666A (en) 2017-01-12
JP6584870B2 true JP6584870B2 (en) 2019-10-02

Family

ID=57764453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015170011A Active JP6584870B2 (en) 2014-12-17 2015-08-31 In-vehicle image recognition apparatus and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6584870B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210117763A (en) * 2020-03-20 2021-09-29 김진형 Optical Sensor for Long-Distance Measuring Instrument Focus-Aligned by Zig, Long-Distance Measuring Instrument having the Same and Method of Fabricating the Same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623010B2 (en) * 2015-09-17 2019-12-18 日本電産コパル株式会社 IMAGING DEVICE, OPTICAL DEVICE, ELECTRONIC DEVICE, AND IMAGING DEVICE MANUFACTURING METHOD
KR101800727B1 (en) * 2017-05-31 2017-11-24 (주)가민정보시스템 Vehicle control system using black box
CN109922248B (en) * 2019-04-17 2023-10-24 石家庄天演科技有限公司 Real-time image recognition device based on artificial intelligence
WO2021060065A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Mounting system, head unit, and imaging method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210117763A (en) * 2020-03-20 2021-09-29 김진형 Optical Sensor for Long-Distance Measuring Instrument Focus-Aligned by Zig, Long-Distance Measuring Instrument having the Same and Method of Fabricating the Same
KR102362936B1 (en) * 2020-03-20 2022-02-14 김진형 Optical Sensor for Long-Distance Measuring Instrument Focus-Aligned by Zig, Long-Distance Measuring Instrument having the Same and Method of Fabricating the Same

Also Published As

Publication number Publication date
JP2017011666A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
US10318825B2 (en) Vehicle-mounted image recognition apparatus and method of manufacturing the same
JP6584870B2 (en) In-vehicle image recognition apparatus and manufacturing method thereof
US11726292B2 (en) Optical system
JP6522076B2 (en) Method, apparatus, storage medium and program product for lateral vehicle positioning
JP6545997B2 (en) Image processing device
JP6427900B2 (en) Calibration method, calibration system, program, and moving object
JP6510551B2 (en) Image pickup optical system, image pickup apparatus and distance measurement system
WO2019123840A1 (en) Imaging device, imaging system, and display system
US8094207B2 (en) Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, and medical apparatus, and method of manufacturing the imaging system
CN111586263B (en) Imaging quality detection method for HUD virtual image of automobile
US20090128686A1 (en) Imaging apparatus
CN110211051B (en) Imaging system, object recognition apparatus, and object recognition method
EP3252514A1 (en) Imaging lens, imaging device using same, and distance measuring system
US20080159594A1 (en) Bird view visual system with fisheye distortion calibration and method thereof
US20200213574A1 (en) Stereo Image Processing Device
KR20130111789A (en) A vehicular blackbox using two cameras and a valid pixel detecting method for providing distortionless images
JP2021025868A (en) Stereo camera
WO2020184286A1 (en) Imaging device, image capturing optical system, and movable apparatus
US8149287B2 (en) Imaging system using restoration processing, imaging apparatus, portable terminal apparatus, onboard apparatus and medical apparatus having the imaging system
US20230244057A1 (en) Imaging camera driving module and electronic device
CN113519150A (en) Camera assembly and method
CN108508572A (en) Optical lens
US20220353419A1 (en) Imaging apparatus mounted on moving object and moving object including imaging apparatus
JP6996582B2 (en) Calibration method, calibration equipment and program
JP2006276129A (en) Optical apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20150929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190904

R150 Certificate of patent or registration of utility model

Ref document number: 6584870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350