JP6584613B1 - Information processing apparatus, information processing method, and information processing program - Google Patents
Information processing apparatus, information processing method, and information processing program Download PDFInfo
- Publication number
- JP6584613B1 JP6584613B1 JP2018174903A JP2018174903A JP6584613B1 JP 6584613 B1 JP6584613 B1 JP 6584613B1 JP 2018174903 A JP2018174903 A JP 2018174903A JP 2018174903 A JP2018174903 A JP 2018174903A JP 6584613 B1 JP6584613 B1 JP 6584613B1
- Authority
- JP
- Japan
- Prior art keywords
- search
- search query
- information processing
- processing apparatus
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 178
- 238000003672 processing method Methods 0.000 title claims description 7
- 230000014509 gene expression Effects 0.000 claims description 107
- 238000000034 method Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 4
- 239000013598 vector Substances 0.000 description 118
- 239000000284 extract Substances 0.000 description 29
- 238000000605 extraction Methods 0.000 description 19
- 101001111655 Homo sapiens Retinol dehydrogenase 11 Proteins 0.000 description 17
- 102100023916 Retinol dehydrogenase 11 Human genes 0.000 description 17
- 238000010586 diagram Methods 0.000 description 16
- 235000015927 pasta Nutrition 0.000 description 16
- 230000006870 function Effects 0.000 description 12
- 238000004891 communication Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- 101710114762 50S ribosomal protein L11, chloroplastic Proteins 0.000 description 5
- 101710156159 50S ribosomal protein L21, chloroplastic Proteins 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 101710082414 50S ribosomal protein L12, chloroplastic Proteins 0.000 description 1
- 101710087140 50S ribosomal protein L22, chloroplastic Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
Images
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
【課題】検索クエリの意味を適切に解釈可能とすること。【解決手段】本願に係る情報処理装置は、取得部と生成部とを備える。取得部は、ユーザによって入力された検索クエリを取得する。生成部は、取得部によって取得された検索クエリのうち、同一のユーザによって所定の時間内に入力された複数の検索クエリが類似する特徴を有するものとして学習することで、所定の検索クエリから所定の検索クエリの特徴情報を予測する学習モデルを生成する。【選択図】図1An object of the present invention is to appropriately interpret the meaning of a search query. An information processing apparatus according to the present application includes an acquisition unit and a generation unit. The acquisition unit acquires a search query input by the user. The generation unit learns that a plurality of search queries input by the same user within a predetermined period of time from among the search queries acquired by the acquisition unit have similar characteristics. A learning model that predicts feature information of the search query is generated. [Selection] Figure 1
Description
本発明は、情報処理装置、情報処理方法及び情報処理プログラムに関する。 The present invention relates to an information processing apparatus, an information processing method, and an information processing program.
従来、検索クエリの意味を解釈する技術が知られている。具体的には、対象ユーザが用いた各検索クエリに関する情報に対応するベクトル間の類似度に基づいて対象ユーザが用いた検索クエリに関する情報を第1クラスタに分類し、他のユーザの各検索クエリに関する情報に対応するベクトル間の類似度に基づいて他のユーザが用いた検索クエリに関する情報を第2クラスタに分類する。そして、第1クラスタと第2クラスタとの差異に基づいて、第1クラスタから対象ユーザに特徴的な行動を示すクラスタである特徴クラスタを抽出する技術が提案されている。 Conventionally, a technique for interpreting the meaning of a search query is known. Specifically, information related to the search query used by the target user is classified into the first cluster based on the similarity between vectors corresponding to the information related to each search query used by the target user, and each search query of other users is classified. Information related to search queries used by other users is classified into the second cluster based on the similarity between vectors corresponding to the information related to. And the technique which extracts the feature cluster which is a cluster which shows the action characteristic to an object user from the 1st cluster based on the difference between the 1st cluster and the 2nd cluster is proposed.
しかしながら、上記の従来技術では、検索クエリの意味を適切に解釈可能とすることができるとは限らない。具体的には、言葉の意味は、その言葉が用いられるコンテクストによって異なる場合がある。そのため、コンテクストの中で用いられた文字列をコンテクストから切り離して抽出したとしても、その文字列の本来の意味(すなわち、その文字列がそのコンテクストで用いられた意味)を解釈することは難しい場合がある。以上を踏まえると、上記の従来技術では、文字列としての検索クエリの類似度を考慮するにすぎないため、検索クエリの本来の意味を解釈することは難しい。そのため、上記の従来技術では、検索クエリを入力したユーザのコンテクストを考慮して、検索クエリの意味を適切に解釈することは難しい。したがって、上記の従来技術では、検索クエリの意味を適切に解釈可能とすることができるとは限らない。 However, in the above-described conventional technology, it is not always possible to appropriately interpret the meaning of the search query. Specifically, the meaning of a word may vary depending on the context in which the word is used. Therefore, even if the character string used in the context is extracted separately from the context, it is difficult to interpret the original meaning of the character string (that is, the meaning of the character string used in the context). There is. In view of the above, the above-described conventional technology only considers the similarity of the search query as a character string, and thus it is difficult to interpret the original meaning of the search query. For this reason, it is difficult to properly interpret the meaning of the search query in the above-described conventional technology in consideration of the context of the user who has input the search query. Therefore, in the above-described conventional technology, it is not always possible to appropriately interpret the meaning of the search query.
また、一般的に、検索サービスにおいては、検索クエリの意味(内容)を理解し、検索クエリの意味(内容)に応じて、検索システムの振る舞いを制御することが重要である。しかしながら、検索クエリが用いられるコンテクストは多岐に渡るため、検索クエリの意味は非常に多岐に渡る。そのため、学習データを人手で作成し、多岐に渡る検索クエリの意味を適切に分析する学習モデルを生成することは難しい。 In general, in a search service, it is important to understand the meaning (content) of a search query and control the behavior of the search system according to the meaning (content) of the search query. However, since the context in which the search query is used varies widely, the meaning of the search query varies greatly. For this reason, it is difficult to generate learning data by manually creating learning data and appropriately analyzing the meaning of a wide variety of search queries.
本願は、上記に鑑みてなされたものであって検索クエリの意味を適切に解釈可能とすることができる情報処理装置、情報処理方法及び情報処理プログラムを提供することを目的とする。 The present application has been made in view of the above, and an object thereof is to provide an information processing apparatus, an information processing method, and an information processing program capable of appropriately interpreting the meaning of a search query.
本願に係る情報処理装置は、ユーザによって入力された検索クエリを取得する取得部と、前記取得部によって取得された検索クエリのうち、同一のユーザによって所定の時間内に入力された複数の検索クエリが類似する特徴を有するものとして学習することで、所定の検索クエリから前記所定の検索クエリの特徴情報を予測する学習モデルを生成する生成部とを備えたことを特徴とする。 An information processing apparatus according to the present application includes: an acquisition unit that acquires a search query input by a user; and a plurality of search queries that are input within a predetermined time by the same user among the search queries acquired by the acquisition unit And a generation unit that generates a learning model that predicts characteristic information of the predetermined search query from a predetermined search query by learning as having similar characteristics.
実施形態の一態様によれば、検索クエリの意味を適切に解釈可能とすることができるといった効果を奏する。 According to one aspect of the embodiment, there is an effect that the meaning of the search query can be appropriately interpreted.
以下に、本願に係る情報処理装置、情報処理方法及び情報処理プログラムを実施するための形態(以下、「実施形態」と呼ぶ)について図面を参照しつつ詳細に説明する。なお、この実施形態により本願に係る情報処理装置、情報処理方法及び情報処理プログラムが限定されるものではない。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略する。 Hereinafter, a mode for carrying out an information processing apparatus, an information processing method, and an information processing program according to the present application (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings. Note that the information processing apparatus, the information processing method, and the information processing program according to the present application are not limited by this embodiment. In the following embodiments, the same parts are denoted by the same reference numerals, and redundant description is omitted.
〔1.情報処理の一例〕
まず、図1と図2を用いて、実施形態に係る情報処理の一例について説明する。図1と図2は、実施形態に係る情報処理の一例を示す図である。図1と図2に示す情報処理は、ユーザ端末10と検索サーバ50と情報処理装置100とによって行われる。
[1. Example of information processing)
First, an example of information processing according to the embodiment will be described with reference to FIGS. 1 and 2. 1 and 2 are diagrams illustrating an example of information processing according to the embodiment. The information processing illustrated in FIGS. 1 and 2 is performed by the user terminal 10, the
〔情報処理システムの構成〕
図1と図2の説明に先立って、図3を用いて情報処理システム1の構成について説明する。図3は、実施形態に係る情報処理システムの構成例を示す図である。図3に示すように、情報処理システム1には、ユーザ端末10と、検索サーバ50と、情報処理装置100とが含まれる。ユーザ端末10と、検索サーバ50と、情報処理装置100とは所定のネットワークNを介して、有線または無線により通信可能に接続される。なお、図3に示す情報処理システム1には、任意の数のユーザ端末10と任意の数の検索サーバ50と任意の数の情報処理装置100とが含まれてもよい。
[Configuration of information processing system]
Prior to the description of FIGS. 1 and 2, the configuration of the information processing system 1 will be described with reference to FIG. FIG. 3 is a diagram illustrating a configuration example of the information processing system according to the embodiment. As illustrated in FIG. 3, the information processing system 1 includes a user terminal 10, a
ユーザ端末10は、検索サービスを利用するユーザによって使用される情報処理装置である。ユーザ端末10は、例えば、スマートフォンや、タブレット型端末や、ノート型PC(Personal Computer)や、携帯電話機や、PDA(Personal Digital Assistant)等により実現される。なお、以下では、ユーザ端末10をユーザと同一視する場合がある。すなわち、以下では、ユーザをユーザ端末10と読み替えることもできる。 The user terminal 10 is an information processing apparatus used by a user who uses a search service. The user terminal 10 is realized by, for example, a smartphone, a tablet terminal, a notebook PC (Personal Computer), a mobile phone, a PDA (Personal Digital Assistant), or the like. Hereinafter, the user terminal 10 may be identified with the user. That is, in the following, the user can be read as the user terminal 10.
また、以下では、ユーザID「U1」により特定されるユーザを「ユーザU1」とする場合がある。このように、以下では、「ユーザU*(*は任意の数値)」と記載した場合、そのユーザはユーザID「U*」により特定されるユーザであることを示す。例えば、「ユーザU2」と記載した場合、そのユーザはユーザID「U2」により特定されるユーザである。 In the following, the user specified by the user ID “U1” may be referred to as “user U1”. Thus, in the following, when “user U * (* is an arbitrary numerical value)” is described, it indicates that the user is a user specified by the user ID “U *”. For example, when “user U2” is described, the user is a user specified by the user ID “U2”.
また、以下では、ユーザ端末10を利用するユーザに応じて、ユーザ端末10をユーザ端末10−1、10−2として説明する。例えば、ユーザ端末10−1は、ユーザU1により使用されるユーザ端末10である。また、例えば、ユーザ端末10−2は、ユーザU2により使用されるユーザ端末10である。また、以下では、ユーザ端末10−1、10−2について、特に区別なく説明する場合には、ユーザ端末10と記載する。 Moreover, below, the user terminal 10 is demonstrated as user terminal 10-1, 10-2 according to the user who uses the user terminal 10. For example, the user terminal 10-1 is the user terminal 10 used by the user U1. For example, the user terminal 10-2 is the user terminal 10 used by the user U2. Hereinafter, the user terminals 10-1 and 10-2 are referred to as user terminals 10 when they are described without particular distinction.
ユーザ端末10は、ユーザによって入力された検索クエリを検索サーバ50に送信する。具体的には、ユーザ端末10は、ユーザによる操作に従って、検索クエリを入力するための検索ボックスを含む検索ページを検索サーバ50から取得する。続いて、ユーザ端末10は、ユーザによって検索ボックスに文字が入力される操作に続いて、検索クエリを送信する操作が行われると、検索ページを介して検索ボックスに入力された文字を検索クエリとして検索サーバ50に送信する。例えば、ユーザ端末10は、ユーザによって検索ボックスに文字が入力される操作に続いて、検索クエリの送信ボタンが押下される操作やエンターキーが押下される操作が行われると、検索ページを介して検索ボックスに入力された文字を検索クエリとして検索サーバ50に送信する。
The user terminal 10 transmits a search query input by the user to the
検索サーバ50は、検索サービスを提供するサーバ装置である。具体的には、検索サーバ50は、ユーザ端末10から検索クエリを受け付けると、受け付けた検索クエリに応じたコンテンツであって、検索結果として出力されるコンテンツを選択する。続いて、検索サーバ50は、選択されたコンテンツを含む検索結果ページをユーザ端末10に配信する。ここで、検索サーバ50によって配信されるコンテンツは、ウェブブラウザによって表示されるウェブページに限られない。例えば、検索サーバ50によって配信されるコンテンツは、ユーザ端末10にインストールされた専用のアプリケーションによって表示されるコンテンツであってもよい。また、検索サーバ50によって配信されるコンテンツは、音楽コンテンツや画像(静止画のみならず動画を含む。)コンテンツ、テキストコンテンツ(ニュース記事やSNS(Social Networking Service)に投稿された記事を含む。)、画像とテキストを組み合わせたコンテンツ、ゲームコンテンツなど、どのようなコンテンツであってもよい。
The
また、検索サーバ50は、ユーザによって入力された検索クエリに関する情報を記憶する。具体的には、検索サーバ50は、ユーザの検索履歴に関する情報を記憶する。例えば、検索サーバ50は、ユーザ端末10から検索クエリを受け付けると、受け付けた検索クエリと検索クエリの送信元であるユーザを識別するユーザIDと検索クエリの送信日時とを対応付けてデータベースに登録する。検索サーバ50は、情報処理装置100の要求に応じて、ユーザによって入力された検索クエリに関する情報を情報処理装置100に送信する。
Further, the
情報処理装置100は、ユーザによって入力された検索クエリのうち、同一のユーザによって所定の時間内に入力された複数の検索クエリが類似する特徴を有するものとして学習することで、所定の検索クエリから所定の検索クエリの特徴情報を予測する学習モデルを生成するサーバ装置である。具体的には、情報処理装置100は、同一のユーザによって所定の時間内に入力された複数の検索クエリの分散表現が類似するように学習モデルを学習させることで、所定の検索クエリから所定の検索クエリの特徴情報を予測する学習モデルを生成する。ここで、情報処理装置100は、ユーザによる1回の検索ごとに検索ボックスに入力された文字列全体をユーザによって入力された検索クエリとして学習する。例えば、情報処理装置100は、ユーザU1による1回の検索で検索ボックスに「六本木 パスタ」のように複数の文字列を含む検索クエリが入力された場合は、「六本木 パスタ」全体で一つの検索クエリとして学習する。また、情報処理装置100は、同一のユーザによって各検索クエリが入力された時間の間隔が所定の時間内(例えば、2分以内)であるような複数の検索クエリを同一のユーザによって所定の時間内に入力された複数の検索クエリとして学習する。すなわち、情報処理装置100は、同一のユーザによって短時間のうちに立て続けに入力された複数の検索クエリは、類似する特徴を有するものとして学習する。なお、情報処理装置100は、所定の検索クエリが入力されて、所定の時間を超えて(例えば、2分以上経って)から、他の検索クエリが入力された場合は、所定の検索クエリと他の検索クエリとは、相違する特徴を有するものとして学習する。
The
一般的に、検索者が検索を行う際、一回の検索で検索者の意図する情報に到達するケースよりも、異なる検索クエリを用いて複数回にわたって検索を行った結果、検索者の意図する情報に到達するケースの方が多いと考えられる。すなわち、ユーザはある意図を持って検索を複数回行うと考えられるため、所定の時間内に連続して入力された検索クエリは、検索意図が近いという推定が成り立つ。そこで、本願発明に係る情報処理装置100は、同一のユーザによって所定の時間内に連続して入力された複数の検索クエリは、類似する特徴を有するものとして学習モデルを学習させる。具体的には、情報処理装置100は、ユーザによって入力された検索クエリに関する情報を検索サーバ50から取得する。続いて、情報処理装置100は、検索サーバ50から取得した検索クエリのうち、同一のユーザによって所定の時間内に入力された複数の検索クエリを抽出する。続いて、情報処理装置100は、抽出した複数の検索クエリが類似する特徴を有するものとして学習することで、所定の検索クエリから所定の検索クエリの特徴情報を予測する学習モデルを生成する。例えば、情報処理装置100は、抽出した複数の検索クエリの分散表現が類似するように学習モデルを学習させることで、所定の検索クエリから所定の検索クエリの特徴情報を含む分散表現(ベクトル)を出力する学習モデルを生成する。
Generally, when a searcher performs a search, the searcher intends as a result of performing a search multiple times using different search queries, rather than reaching the searcher's intent information in a single search. There are more cases where information is reached. That is, since it is considered that the user performs a search a plurality of times with a certain intention, it is assumed that a search query continuously input within a predetermined time has a close search intention. Therefore, the
より具体的には、情報処理装置100は、RNN(Recurrent Neural Network)の一種であるLSTM(Long Short-Term Memory)を分散表現生成に用いたDSSM(Deep Structured Sematic Model)の技術を用いて、検索クエリから分散表現(ベクトル)を出力する学習モデルを生成する。例えば、情報処理装置100は、学習モデルの正解データとして、同一のユーザによって所定の時間内に入力された一対の検索クエリが類似する特徴を有するものとして、所定の検索クエリの分散表現(ベクトル)と、所定の検索クエリと対となる他の検索クエリの分散表現(ベクトル)とが、分散表現空間上で近くに存在するように学習する。なお、2つのベクトルが分散表現空間上で近くに存在するように学習することは、2つのベクトルが分散表現空間上で類似するように学習することと言い換えることができる。このように、情報処理装置100は、LSTMを分散表現生成に用いたDSSMの技術を用いて学習モデルを生成するため、情報処理装置100によって生成された学習モデルは、任意の文字列から分散表現(ベクトル)を生成することができる。つまり、情報処理装置100は、既知の文字列(例えば、学習時に学習した検索クエリ)の分散表現(ベクトル)だけでなく、未知の文字列(例えば、学習時に学習したことがない検索クエリ)についても分散表現(ベクトル)を生成することができる。
More specifically, the
ここから、図1を用いて、情報処理の流れについて説明する。図1は、実施形態に係る情報処理の一例を示す図である。図1に示す例では、情報処理装置100は、同一のユーザU1によって所定の時間内に連続して入力された「六本木 パスタ」という検索クエリQ11と「六本木 イタリアン」という検索クエリQ12とから成る一対の検索クエリを抽出する(ステップS11)。
From here, the flow of information processing will be described with reference to FIG. FIG. 1 is a diagram illustrating an example of information processing according to the embodiment. In the example illustrated in FIG. 1, the
続いて、情報処理装置100は、抽出した検索クエリQ11を学習モデルM1に入力して、検索クエリQ11の分散表現であるベクトルBQV11を出力する。ここで、ベクトルBQV11は、学習モデルM1の出力層から出力されたばかりの検索クエリQ11の分散表現であって、学習モデルM1にフィードバックをかける前(学習前)の分散表現を示す。また、情報処理装置100は、抽出した検索クエリQ12を学習モデルM1に入力して、検索クエリQ12の分散表現であるベクトルBQV12を出力する。ここで、ベクトルBQV12は、学習モデルM1の出力層から出力されたばかりの検索クエリQ12の分散表現であって、学習モデルM1にフィードバックをかける前(学習前)の分散表現を示す。このようにして、情報処理装置100は、検索クエリQ11の分散表現であるベクトルBQV11と、検索クエリQ12の分散表現であるベクトルBQV12とを出力する(ステップS12)。
Subsequently, the
続いて、情報処理装置100は、同一のユーザU1によって所定の時間内に連続して入力された検索クエリQ11(「六本木 パスタ」)と検索クエリQ12(「六本木 イタリアン」)とから成る一対の検索クエリは、所定の検索意図(例えば、「ある場所で飲食店を探す」という検索意図)で入力された検索クエリであると推定されるため、相互に類似する特徴を有するものとして、検索クエリQ11の分散表現(ベクトルQV11)と、検索クエリQ11と対となる検索クエリQ12の分散表現(ベクトルQV12)とが、分散表現空間上で類似するように学習モデルM1を学習させる。例えば、学習モデルM1にフィードバックをかける前(学習前)の検索クエリQ11の分散表現であるベクトルBQV11と検索クエリQ12の分散表現であるベクトルBQV12とのなす角度の大きさをΘとする。また、学習モデルM1にフィードバックをかけた後(学習後)の検索クエリQ11の分散表現であるベクトルQV11と検索クエリQ12の分散表現であるベクトルQV12とのなす角度の大きさをΦとする。この時、情報処理装置100は、ΘよりもΦが小さくなるように、学習モデルM1を学習させる。例えば、情報処理装置100は、ベクトルBQV11とベクトルBQV12のコサイン類似度の値を算出する。また、情報処理装置100は、ベクトルQV11とベクトルQV12のコサイン類似度の値を算出する。続いて、情報処理装置100は、ベクトルBQV11とベクトルBQV12のコサイン類似度の値よりも、ベクトルQV11とベクトルQV12のコサイン類似度の値が大きくなるように(値が1に近づくように)学習モデルM1を学習させる。このように、情報処理装置100は、一対の検索クエリに対応する一対の分散表現である2つのベクトルが分散表現空間上で類似するように学習モデルM1を学習させることで、検索クエリから分散表現(ベクトル)を出力する学習モデルM1を生成する(ステップS13)。なお、情報処理装置100は、コサイン類似度に限らず、ベクトル間の距離尺度として適用可能な指標であれば、どのような指標に基づいて分散表現(ベクトル)の間の類似度を算出してもよい。また、情報処理装置100は、ベクトル間の距離尺度として適用可能な指標であれば、どのような指標に基づいて学習モデルM1を学習させてもよい。例えば、情報処理装置100は、分散表現(ベクトル)同士のユークリッド距離や双曲空間等の非ユークリッド空間中での距離、マンハッタン距離、マハラノビス距離等といった所定の距離関数の値を算出する。続いて、情報処理装置100は、分散表現(ベクトル)同士の所定の距離関数の値(すなわち、分散表現空間における距離)が小さくなるように学習モデルM1を学習させてもよい。
Subsequently, the
次に、図2を用いて、情報処理の流れについてより詳しく説明する。なお、図2の説明では、図1の説明と重複する部分は、適宜省略する。図2は、実施形態に係る情報処理の一例を示す図である。図2に示す例では、情報処理装置100が生成した学習モデルM1によって出力された分散表現(ベクトル)が分散表現空間にマッピングされる様子が示されている。情報処理装置100は、所定の検索クエリの分散表現と所定の検索クエリと対となる他の検索クエリの分散表現とが分散表現空間上で近くにマッピングされるように学習モデルM1のトレーニングを行う。
Next, the flow of information processing will be described in more detail with reference to FIG. In the description of FIG. 2, portions overlapping with those of FIG. 1 are omitted as appropriate. FIG. 2 is a diagram illustrating an example of information processing according to the embodiment. In the example illustrated in FIG. 2, the distributed representation (vector) output by the learning model M1 generated by the
図2の上段に示す例では、情報処理装置100は、同一のユーザU1によって所定の時間内に連続して入力された4個の検索クエリである検索クエリQ11(「六本木 パスタ」)、検索クエリQ12(「六本木 イタリアン」)、検索クエリQ13(「赤坂 パスタ」)、検索クエリQ14(「麻布 パスタ」)を抽出する。情報処理装置100は、同一のユーザU1によって各検索クエリが入力された時間の間隔が所定の時間内である4個の検索クエリを抽出する。情報処理装置100は、同一のユーザU1によって後述する各検索クエリのペアが入力された時間の間隔が所定の時間内である複数の検索クエリを抽出する。情報処理装置100は、検索クエリが入力された順番に並べると、検索クエリQ11、検索クエリQ12、検索クエリQ13、検索クエリQ14の順番で入力された4個の検索クエリを抽出する。情報処理装置100は、4個の検索クエリを抽出すると、時系列的に隣り合う2つの検索クエリを一対の検索クエリとして、3対の検索クエリのペアである(検索クエリQ11、検索クエリQ12)、(検索クエリQ12、検索クエリQ13)、(検索クエリQ13、検索クエリQ14)を抽出する(ステップS21−1)。なお、情報処理装置100は、同一のユーザU1によって全ての検索クエリが所定の時間内に入力された複数の検索クエリを抽出してもよい。そして、情報処理装置100は、時系列的に隣り合うか否かに関わらず、抽出した複数の検索クエリの中から2つの検索クエリを選択して、選択した2つの検索クエリを一対の検索クエリとして抽出してもよい。
In the example illustrated in the upper part of FIG. 2, the
続いて、情報処理装置100は、抽出した検索クエリQ1k(k=1、2、3、4)を学習モデルM1に入力して、検索クエリQ1k(k=1、2、3、4)の分散表現であるベクトルBQV1k(k=1、2、3、4)を出力する。ここで、ベクトルBQV1k(k=1、2、3、4)は、学習モデルM1の出力層から出力されたばかりの検索クエリQ1k(k=1、2、3、4)の分散表現であって、学習モデルM1にフィードバックをかける前(学習前)の分散表現を示す(ステップS22−1)。
Subsequently, the
続いて、情報処理装置100は、同一のユーザU1によって所定の時間内に連続して入力された一対の検索クエリは、所定の検索意図(例えば、「ある場所(東京都港区付近)で飲食店を探す」という検索意図)で入力された検索クエリであると推定されるため、相互に類似する特徴を有するものとして、検索クエリQ11の分散表現(ベクトルQV11)と、検索クエリQ11と対となる検索クエリQ12の分散表現(ベクトルQV12)とが、分散表現空間上で類似するように学習モデルM1を学習させる。また、情報処理装置100は、検索クエリQ12の分散表現(ベクトルQV12)と、検索クエリQ12と対となる検索クエリQ13の分散表現(ベクトルQV13)とが、分散表現空間上で類似するように学習モデルM1を学習させる。また、情報処理装置100は、検索クエリQ13の分散表現(ベクトルQV13)と、検索クエリQ13と対となる検索クエリQ14の分散表現(ベクトルQV14)とが、分散表現空間上で類似するように学習モデルM1を学習させる。このように、情報処理装置100は、一対の検索クエリに対応する一対の分散表現である2つのベクトルが分散表現空間上で類似するように学習モデルM1を学習させることで、検索クエリから分散表現(ベクトル)を出力する学習モデルM1を生成する(ステップS23−1)。
Subsequently, the
図2の上段に示す情報処理の結果として、検索クエリQ1k(k=1、2、3、4)の分散表現であるベクトルQV1k(k=1、2、3、4)が分散表現空間の近い位置にクラスタCL11としてマッピングされる様子が示されている。例えば、検索クエリQ1k(k=1、2、3、4)は、ユーザU1によって「ある場所(東京都港区付近)で飲食店を探す」という検索意図の下で検索された検索クエリの集合であると推定される。すなわち、検索クエリQ1k(k=1、2、3、4)は、「ある場所(東京都港区付近)で飲食店を探す」という検索意図の下で検索された検索クエリであるという点で、相互に類似する特徴を有する検索クエリであると推定される。ここで、情報処理装置100は、「ある場所(東京都港区付近)で飲食店を探す」という検索意図で入力された所定の検索クエリが学習モデルに入力されると、クラスタCL11の位置にマッピングされるような分散表現を出力することができる。これにより、例えば、情報処理装置100は、クラスタCL11の位置にマッピングされる分散表現に対応する検索クエリを抽出することにより、「ある場所(東京都港区付近)で飲食店を探す」という検索意図に応じた検索クエリを抽出することができる。したがって、情報処理装置100は、検索クエリの意味を適切に解釈可能とすることができる。
As a result of the information processing shown in the upper part of FIG. 2, the vector QV1k (k = 1, 2, 3, 4), which is a distributed expression of the search query Q1k (k = 1, 2, 3, 4), is close to the distributed expression space. A state of mapping as a cluster CL11 at the position is shown. For example, the search query Q1k (k = 1, 2, 3, 4) is a set of search queries searched by the user U1 with a search intention of “searching for a restaurant in a certain place (near Minato-ku, Tokyo)”. It is estimated that. That is, the search query Q1k (k = 1, 2, 3, 4) is a search query searched under a search intention of “finding a restaurant in a certain place (near Tokyo Minato-ku)”. , It is presumed that the search queries have characteristics similar to each other. Here, when a predetermined search query input with a search intention of “searching for a restaurant in a certain place (near Minato-ku, Tokyo)” is input to the learning model, the
図2の下段に示す例では、情報処理装置100は、同一のユーザU2によって所定の時間内に連続して入力された3個の検索クエリである検索クエリQ21(「冷蔵庫 400L」)、検索クエリQ22(「冷蔵庫 中型」)、検索クエリQ23(「冷蔵庫 中型 おすすめ」)を抽出する。情報処理装置100は、検索クエリが入力された順番に並べると、検索クエリQ21、検索クエリQ22、検索クエリQ23の順番で入力された3個の検索クエリを抽出する。情報処理装置100は、3個の検索クエリを抽出すると、時系列的に隣り合う2つの検索クエリを一対の検索クエリとして、2対の検索クエリのペアである(検索クエリQ21、検索クエリQ22)、(検索クエリQ22、検索クエリQ23)を抽出する(ステップS21−2)。
In the example illustrated in the lower part of FIG. 2, the
続いて、情報処理装置100は、抽出した検索クエリQ2m(m=1、2、3)を学習モデルM1に入力して、検索クエリQ2m(m=1、2、3)の分散表現であるベクトルBQV2m(m=1、2、3)を出力する。ここで、ベクトルBQV2m(m=1、2、3)は、学習モデルM1の出力層から出力されたばかりの検索クエリQ2m(m=1、2、3)の分散表現であって、学習モデルM1にフィードバックをかける前(学習前)の分散表現を示す(ステップS22−2)。
Subsequently, the
続いて、情報処理装置100は、同一のユーザU2によって所定の時間内に連続して入力された一対の検索クエリは、所定の検索意図(例えば、「中型の冷蔵庫を調べる」という検索意図)で入力された検索クエリであると推定されるため、相互に類似する特徴を有するものとして、検索クエリQ21の分散表現(ベクトルQV21)と、検索クエリQ21と対となる検索クエリQ22の分散表現(ベクトルQV22)とが、分散表現空間上で類似するように学習モデルM1を学習させる。また、情報処理装置100は、検索クエリQ22の分散表現(ベクトルQV22)と、検索クエリQ22と対となる検索クエリQ23の分散表現(ベクトルQV23)とが、分散表現空間上で類似するように学習モデルM1を学習させる。このように、情報処理装置100は、一対の検索クエリに対応する一対の分散表現である2つのベクトルが分散表現空間上で類似するように学習モデルM1を学習させることで、検索クエリから分散表現(ベクトル)を出力する学習モデルM1を生成する(ステップS23−2)。
Subsequently, in the
図2の下段に示す情報処理の結果として、検索クエリQ2m(m=1、2、3)の分散表現であるベクトルQV2m(m=1、2、3)が分散表現空間の近い位置にクラスタCL21としてマッピングされる様子が示されている。例えば、検索クエリQ2m(m=1、2、3)は、ユーザU2によって「中型の冷蔵庫を調べる」という検索意図の下で検索された検索クエリの集合であると推定される。すなわち、Q2m(m=1、2、3)は、「中型の冷蔵庫を調べる」という検索意図の下で検索された検索クエリであるという点で、相互に類似する特徴を有する検索クエリであると推定される。ここで、情報処理装置100は、「中型の冷蔵庫を調べる」という検索意図で入力された所定の検索クエリが学習モデルに入力されると、クラスタCL21の位置にマッピングされるような分散表現を出力することができる。これにより、例えば、情報処理装置100は、クラスタCL21の位置にマッピングされる分散表現に対応する検索クエリを抽出することにより、「中型の冷蔵庫を調べる」という検索意図に応じた検索クエリを抽出することができる。したがって、情報処理装置100は、検索クエリの意味を適切に解釈可能とすることができる。
As a result of the information processing shown in the lower part of FIG. 2, the vector QV2m (m = 1, 2, 3), which is a distributed expression of the search query Q2m (m = 1, 2, 3), is located at a position close to the distributed expression space. As shown in FIG. For example, the search query Q2m (m = 1, 2, 3) is presumed to be a set of search queries searched by the user U2 with the search intention of “examine medium size refrigerator”. That is, Q2m (m = 1, 2, 3) is a search query having characteristics similar to each other in that it is a search query searched under the search intention of “examine medium size refrigerator”. Presumed. Here, the
また、本願発明に係る情報処理装置100は、ランダムに抽出された複数の検索クエリは、異なる検索意図の下で検索された検索クエリであるという点で、相互に相違する特徴を有する検索クエリであるとみなして学習モデルM1を学習させる。具体的には、情報処理装置100は、所定の検索クエリの分散表現と、所定の検索クエリとは無関係にランダムに抽出された検索クエリの分散表現とが分散表現空間上で遠くにマッピングされるように学習モデルM1のトレーニングを行う。図2に示す例では、情報処理装置100は、検索クエリQ11とは無関係にランダムに検索クエリを抽出したところ、検索クエリQ21が抽出されたとする。この場合、情報処理装置100は、検索クエリQ11の分散表現(ベクトルQV11)と、検索クエリQ11とは無関係にランダムに抽出された検索クエリQ21の分散表現(ベクトルQV21)とが分散表現空間上で遠くにマッピングされるように学習モデルM1のトレーニングを行う。その結果として、「ある場所(東京都港区付近)で飲食店を探す」という検索意図の下で検索された検索クエリQ1k(k=1、2、3、4)の分散表現であるベクトルQV1k(k=1、2、3、4)を含むクラスタCL11と、「中型の冷蔵庫を調べる」という検索意図の下で検索された検索クエリQ2m(m=1、2、3)の分散表現であるベクトルQV2m(m=1、2、3)を含むクラスタCL21とは、分散表現空間上で遠くにマッピングされる。すなわち、本願発明に係る情報処理装置100は、ランダムに抽出された複数の検索クエリの分散表現が相違するように学習モデルM1を学習させることにより、検索意図が異なる検索クエリの分散表現を分散表現空間上で遠い位置に出力可能とする。
In addition, the
なお、情報処理装置100が生成した学習モデルM1によって出力された分散表現(ベクトル)が分散表現空間にマッピングされた結果として、上述したクラスタCL11とクラスタCL21の他にも、同一のユーザによって所定の時間内に入力された複数の検索クエリの分散表現(ベクトル)の集合であるクラスタCL12やクラスタCL22が生成される。
Note that, as a result of the distributed representation (vector) output by the learning model M1 generated by the
上述したように、情報処理装置100は、ユーザによって入力された検索クエリを取得する。また、情報処理装置100は、取得した検索クエリのうち、同一のユーザによって所定の時間内に入力された複数の検索クエリが類似する特徴を有するものとして学習することで、所定の検索クエリから所定の検索クエリの特徴情報を予測する学習モデルを生成する。すなわち、本願発明に係る情報処理装置100は、所定の時間内に連続して入力された複数の検索クエリは、所定の検索意図の下で検索された検索クエリであるという点で、相互に類似する特徴を有する検索クエリであるとみなして学習モデルを学習させる。具体的には、情報処理装置100は、同一のユーザによって所定の時間内に入力された複数の検索クエリの分散表現が類似するように学習モデルを学習させることで、所定の検索クエリから所定の検索クエリの特徴情報を含む分散表現を出力する学習モデルを生成する。すなわち、本願発明に係る情報処理装置100は、所定の時間内に連続して入力された複数の検索クエリの分散表現が類似するように学習モデルM1を学習させることにより、所定の検索意図の下で検索された検索クエリの分散表現を分散表現空間上で近い位置に出力可能とする。これにより、情報処理装置100は、検索クエリを入力したユーザのコンテクストに応じて検索クエリの意味(検索意図)を出力(解釈)することを可能にする。したがって、情報処理装置100は、検索クエリの意味を適切に解釈可能とすることができる。さらに、情報処理装置100は、所定の検索クエリの特徴情報を含む分散表現の近傍にマッピングされる分散表現に対応する検索クエリを抽出することにより、所定の検索クエリが検索された検索意図に応じた検索クエリを抽出することができる。すなわち、情報処理装置100は、検索クエリを入力したユーザの検索意図やコンテクストを考慮して、ユーザの検索動向を分析することを可能にする。したがって、情報処理装置100は、ユーザの検索動向の分析精度を高めることができる。また、情報処理装置100が生成した学習モデルM1を検索システムの一部として機能させることもできる。あるいは、情報処理装置100は、学習モデルM1によって予測された検索クエリの特徴情報を利用する他のシステム(例えば、検索エンジン)への入力情報として、学習モデルM1が出力した検索クエリの分散表現を提供することもできる。これにより、検索システムは、学習モデルM1によって予測された検索クエリの特徴情報に基づいて、検索結果として出力されるコンテンツを選択可能になる。すなわち、検索システムは、検索クエリを入力したユーザの検索意図やコンテクストを考慮して、検索結果として出力されるコンテンツを選択可能になる。さらに、検索システムは、学習モデルM1によって予測された検索クエリの特徴情報に基づいて、検索結果として出力されるコンテンツに含まれる文字列の分散表現と検索クエリの分散表現との類似度を算出可能になる。そして、検索システムは、算出した類似度に基づいて、検索結果として出力されるコンテンツの表示順を決定可能になる。すなわち、検索システムは、検索クエリを入力したユーザの検索意図やコンテクストを考慮して、検索結果として出力されるコンテンツの表示順を決定可能になる。したがって、情報処理装置100は、検索サービスにおけるユーザビリティを向上させることができる。
As described above, the
〔2.情報処理装置の構成〕
次に、図4を用いて、実施形態に係る情報処理装置100の構成について説明する。図4は、実施形態に係る情報処理装置100の構成例を示す図である。図4に示すように、情報処理装置100は、通信部110と、記憶部120と、制御部130とを有する。なお、情報処理装置100は、情報処理装置100の管理者等から各種操作を受け付ける入力部(例えば、キーボードやマウス等)や、各種情報を表示するための表示部(例えば、液晶ディスプレイ等)を有してもよい。
[2. Configuration of information processing apparatus]
Next, the configuration of the
(通信部110)
通信部110は、例えば、NIC(Network Interface Card)等によって実現される。そして、通信部110は、ネットワークと有線または無線で接続され、例えば、ユーザ端末10と、検索サーバ50との間で情報の送受信を行う。
(Communication unit 110)
The
(記憶部120)
記憶部120は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。記憶部120は、図4に示すように、クエリ情報記憶部121と、ベクトル情報記憶部122と、モデル情報記憶部123とを有する。
(Storage unit 120)
The
(クエリ情報記憶部121)
クエリ情報記憶部121は、ユーザによって入力された検索クエリに関する各種の情報を記憶する。図5に、実施形態に係るクエリ情報記憶部の一例を示す。図5に示す例では、クエリ情報記憶部121は、「ユーザID」、「日時」、「検索クエリ」、「検索クエリID」といった項目を有する。
(Query information storage unit 121)
The query
「ユーザID」は、検索クエリを入力したユーザを識別するための識別情報を示す。「日時」は、検索サーバがユーザから検索クエリを受け付けた日時を示す。「検索クエリ」は、ユーザによって入力された検索クエリを示す。「検索クエリID」は、ユーザによって入力された検索クエリを識別するための識別情報を示す。 “User ID” indicates identification information for identifying a user who has input a search query. “Date and time” indicates the date and time when the search server received a search query from the user. “Search query” indicates a search query input by the user. “Search query ID” indicates identification information for identifying a search query input by a user.
図5の1レコード目に示す例では、検索クエリID「Q11」で識別される検索クエリ(検索クエリQ11)は、図1に示した検索クエリQ11に対応する。また、ユーザID「U1」は、検索クエリQ11を入力したユーザがユーザID「U1」で識別されるユーザ(ユーザU1)であることを示す。また、日時「2018/9/1 PM17:00」は、検索サーバがユーザU1から検索クエリQ11を受け付けた日時が2018年9月1日の午後17:00であることを示す。また、検索クエリ「六本木 パスタ」は、ユーザU1によって入力された検索クエリQ11を示す。具体的には、検索クエリ「六本木 パスタ」は、地名を示す「六本木」と食品の種類を示す「パスタ」の文字とが区切り文字であるスペースで区切られた文字列であることを示す。 In the example shown in the first record in FIG. 5, the search query (search query Q11) identified by the search query ID “Q11” corresponds to the search query Q11 shown in FIG. The user ID “U1” indicates that the user who has input the search query Q11 is a user (user U1) identified by the user ID “U1”. Also, the date and time “2018/9/1 PM 17:00” indicates that the date and time when the search server received the search query Q11 from the user U1 was 17:00 on September 1, 2018. The search query “Roppongi pasta” indicates the search query Q11 input by the user U1. Specifically, the search query “Roppongi Pasta” indicates that the character string is a character string in which “Roppongi” indicating a place name and “Pasta” indicating a food type are separated by a space as a delimiter.
(ベクトル情報記憶部122)
ベクトル情報記憶部122は、検索クエリの分散表現であるベクトルに関する各種の情報を記憶する。図6に、実施形態に係るベクトル情報記憶部の一例を示す。図6に示す例では、ベクトル情報記憶部122は、「ベクトルID」、「検索クエリID」、「ベクトル情報」といった項目を有する。
(Vector information storage unit 122)
The vector
「ベクトルID」は、検索クエリの分散表現であるベクトルを識別するための識別情報を示す。「検索クエリID」は、ベクトルに対応する検索クエリを識別するための識別情報を示す。「ベクトル情報」は、検索クエリの分散表現であるN次元のベクトルを示す。検索クエリの分散表現であるベクトルは、例えば、128次元のベクトルである。 The “vector ID” indicates identification information for identifying a vector that is a distributed expression of the search query. “Search query ID” indicates identification information for identifying a search query corresponding to a vector. “Vector information” indicates an N-dimensional vector which is a distributed expression of the search query. The vector that is a distributed expression of the search query is, for example, a 128-dimensional vector.
図6の1レコード目に示す例では、ベクトルID「QV11」で識別されるベクトル(ベクトルQV11)は、図1に示した検索クエリQ11の分散表現であるベクトルQV11に対応する。また、検索クエリID「Q11」で識別される検索クエリ(検索クエリQ11)は、ベクトルQV11に対応する検索クエリが検索クエリQ11であることを示す。また、ベクトル情報「QVDT11」は、検索クエリQ11の分散表現であるN次元のベクトルを示す。 In the example shown in the first record of FIG. 6, the vector (vector QV11) identified by the vector ID “QV11” corresponds to the vector QV11 that is a distributed representation of the search query Q11 shown in FIG. The search query (search query Q11) identified by the search query ID “Q11” indicates that the search query corresponding to the vector QV11 is the search query Q11. The vector information “QVDT11” indicates an N-dimensional vector that is a distributed expression of the search query Q11.
(モデル情報記憶部123)
モデル情報記憶部123は、情報処理装置100によって生成された学習モデルに関する各種の情報を記憶する。図7に、実施形態に係るモデル情報記憶部の一例を示す。図7に示す例では、モデル情報記憶部123は、「モデルID」、「モデルデータ」といった項目を有する。
(Model information storage unit 123)
The model
「モデルID」は、情報処理装置100によって生成された学習モデルを識別するための識別情報を示す。「モデルデータ」は、情報処理装置100によって生成された学習モデルのモデルデータを示す。例えば、「モデルデータ」には、検索クエリを分散表現に変換するためのデータが格納される。
“Model ID” indicates identification information for identifying a learning model generated by the
図7の1レコード目に示す例では、モデルID「M1」で識別される学習モデル(学習モデルM1)は、図1に示した学習モデルM1に対応する。また、モデルデータ「MDT1」は、情報処理装置100によって生成された学習モデルM1のモデルデータ(モデルデータMDT1)を示す。
In the example shown in the first record of FIG. 7, the learning model (learning model M1) identified by the model ID “M1” corresponds to the learning model M1 shown in FIG. The model data “MDT1” indicates model data (model data MDT1) of the learning model M1 generated by the
モデルデータMDT1は、検索クエリが入力される入力層と、出力層と、入力層から出力層までのいずれかの層であって出力層以外の層に属する第1要素と、第1要素と第1要素の重みとに基づいて値が算出される第2要素と、を含み、入力層に入力された検索クエリに応じて、入力層に入力された検索クエリの分散表現を出力層から出力するよう、情報処理装置100を機能させてもよい。
The model data MDT1 includes an input layer to which a search query is input, an output layer, a first element belonging to any layer from the input layer to the output layer and other than the output layer, the first element, and the first element A second element whose value is calculated based on the weight of one element, and outputs a distributed representation of the search query input to the input layer from the output layer in response to the search query input to the input layer As such, the
ここで、モデルデータMDT1が「y=a1*x1+a2*x2+・・・+ai*xi」で示す回帰モデルで実現されるとする。この場合、モデルデータMDT1が含む第1要素は、x1やx2等といった入力データ(xi)に対応する。また、第1要素の重みは、xiに対応する係数aiに対応する。ここで、回帰モデルは、入力層と出力層とを有する単純パーセプトロンと見做すことができる。各モデルを単純パーセプトロンと見做した場合、第1要素は、入力層が有するいずれかのノードに対応し、第2要素は、出力層が有するノードと見做すことができる。 Here, it is assumed that the model data MDT1 is realized by a regression model represented by “y = a1 * x1 + a2 * x2 +... + Ai * xi”. In this case, the first element included in the model data MDT1 corresponds to input data (xi) such as x1 or x2. The weight of the first element corresponds to the coefficient ai corresponding to xi. Here, the regression model can be regarded as a simple perceptron having an input layer and an output layer. When each model is regarded as a simple perceptron, the first element can correspond to any node of the input layer, and the second element can be regarded as a node of the output layer.
また、モデルデータMDT1がDNN(Deep Neural Network)等、1つまたは複数の中間層を有するニューラルネットワークで実現されるとする。この場合、モデルデータMDT1が含む第1要素は、入力層または中間層が有するいずれかのノードに対応する。また、第2要素は、第1要素と対応するノードから値が伝達されるノードである次段のノードに対応する。また、第1要素の重みは、第1要素と対応するノードから第2要素と対応するノードに伝達される値に対して考慮される重みである接続係数に対応する。 Further, it is assumed that the model data MDT1 is realized by a neural network having one or a plurality of intermediate layers such as DNN (Deep Neural Network). In this case, the first element included in the model data MDT1 corresponds to any node of the input layer or the intermediate layer. The second element corresponds to the next node, which is a node to which a value is transmitted from the node corresponding to the first element. The weight of the first element corresponds to a connection coefficient that is a weight considered for a value transmitted from a node corresponding to the first element to a node corresponding to the second element.
情報処理装置100は、上述した回帰モデルやニューラルネットワーク等、任意の構造を有するモデルを用いて、分散表現の算出を行う。具体的には、モデルデータMDT1は、検索クエリが入力された場合に、分散表現を出力するように係数が設定される。情報処理装置100は、このようなモデルデータMDT1を用いて、分散表現を算出する。
The
なお、上記例では、モデルデータMDT1が、検索クエリが入力された場合に、検索クエリの分散表現を出力するモデル(以下、モデルXという。)である例を示した。しかし、実施形態に係るモデルデータMDT1は、モデルXにデータの入出力を繰り返すことで得られる結果に基づいて生成されるモデルであってもよい。例えば、モデルデータMDT1は、検索クエリを入力とした際に、モデルXが出力した分散表現を入力して学習されたモデル(以下、モデルYという。)であってもよい。または、モデルデータMDT1は、検索クエリを入力とし、モデルYの出力値を出力とするよう学習されたモデルであってもよい。 In the above example, the model data MDT1 is an example of a model (hereinafter referred to as model X) that outputs a distributed representation of a search query when a search query is input. However, the model data MDT1 according to the embodiment may be a model generated based on a result obtained by repeating input / output of data to / from the model X. For example, model data MDT1 may be a model (hereinafter referred to as model Y) learned by inputting a distributed expression output by model X when a search query is input. Alternatively, the model data MDT1 may be a model learned by using a search query as an input and outputting the output value of the model Y as an output.
また、情報処理装置100がGAN(Generative Adversarial Networks)を用いた推定処理を行う場合、モデルデータMDT1は、GANの一部を構成するモデルであってもよい。
When the
(制御部130)
図4の説明に戻って、制御部130は、コントローラ(controller)であり、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、情報処理装置100内部の記憶装置に記憶されている各種プログラム(生成プログラムの一例に相当)がRAMを作業領域として実行されることにより実現される。また、制御部130は、コントローラであり、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現される。
(Control unit 130)
Returning to the description of FIG. 4, the control unit 130 is a controller, and is stored in a storage device inside the
また、制御部130は、モデル情報記憶部123に記憶されている学習モデルM1(モデルデータMDT1)に従った情報処理により、入力層に入力された検索クエリに対し、出力層以外の各層に属する各要素を第1要素として、第1要素と第1要素の重みとに基づく演算を行うことにより、分散表現を出力層から出力するよう、コンピュータを機能させる。
Further, the control unit 130 belongs to each layer other than the output layer with respect to the search query input to the input layer by information processing according to the learning model M1 (model data MDT1) stored in the model
図4に示すように、制御部130は、取得部131と、抽出部132と、生成部133とを有し、以下に説明する情報処理の作用を実現または実行する。なお、制御部130の内部構成は、図4に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。
As illustrated in FIG. 4, the control unit 130 includes an
(取得部131)
取得部131は、種々の情報を取得する。具体的には、取得部131は、ユーザによって入力された検索クエリを検索サーバ50から取得する。取得部131は、ユーザによって入力された検索クエリを取得すると、取得した検索クエリをクエリ情報記憶部121に格納する。
(Acquisition part 131)
The
(抽出部132)
抽出部132は、種々の情報を抽出する。具体的には、抽出部132は、取得部131によって取得された検索クエリのうち、同一のユーザによって所定の時間内に入力された複数の検索クエリを抽出する。例えば、抽出部132は、同一のユーザによって各検索クエリが入力された時間の間隔が所定の時間内である複数の検索クエリを抽出する。続いて、抽出部132は、同一のユーザによって所定の時間内に入力された複数の検索クエリのうち、同一のユーザによって所定の時間内に連続して入力された一対の検索クエリを抽出する。例えば、抽出部132は、同一のユーザによって各検索クエリのペアが入力された時間の間隔が所定の時間内である複数の検索クエリを抽出する。例えば、抽出部132は、取得部131によって取得された検索クエリのうち、同一のユーザU1によって所定の時間内に連続して入力された4個の検索クエリである検索クエリQ11(「六本木 パスタ」)、検索クエリQ12(「六本木 イタリアン」)、検索クエリQ13(「赤坂 パスタ」)、検索クエリQ14(「麻布 パスタ」)を抽出する。抽出部132は、検索クエリが入力された順番に並べると、検索クエリQ11、検索クエリQ12、検索クエリQ13、検索クエリQ14の順番で入力された4個の検索クエリを抽出する。続いて、抽出部132は、4個の検索クエリを抽出すると、時系列的に隣り合う2つの検索クエリを一対の検索クエリとして、3対の検索クエリのペアである(検索クエリQ11、検索クエリQ12)、(検索クエリQ12、検索クエリQ13)、(検索クエリQ13、検索クエリQ14)を抽出する。なお、抽出部132は、同一のユーザによって全ての検索クエリが所定の時間内に入力された複数の検索クエリを抽出してもよい。そして、抽出部132は、時系列的に隣り合うか否かに関わらず、抽出した複数の検索クエリの中から2つの検索クエリを選択して、選択した2つの検索クエリを一対の検索クエリとして抽出してもよい。
(Extractor 132)
The extraction unit 132 extracts various information. Specifically, the extraction unit 132 extracts a plurality of search queries input by the same user within a predetermined time from the search queries acquired by the
また、抽出部132は、取得部131によって取得された検索クエリのうち、所定の検索クエリと所定の検索クエリに無関係な他の検索クエリとを抽出する。例えば、抽出部132は、取得部131によって取得された検索クエリの中から、所定の検索クエリを抽出する。続いて、抽出部132は、取得部131によって取得された検索クエリの中から、所定の検索クエリとは無関係にランダムに他の検索クエリを抽出する。
The extraction unit 132 also extracts a predetermined search query and other search queries unrelated to the predetermined search query from the search queries acquired by the
(生成部133)
生成部133は、種々の情報を生成する。具体的には、生成部133は、取得部131によって取得された検索クエリのうち、同一のユーザによって所定の時間内に入力された複数の検索クエリが類似する特徴を有するものとして学習することで、所定の検索クエリから所定の検索クエリの特徴情報を予測する学習モデルを生成する。具体的には、生成部133は、同一のユーザによって所定の時間内に入力された複数の検索クエリの分散表現が類似するように学習モデルを学習させることで、所定の検索クエリから所定の検索クエリの特徴情報を予測する学習モデルを生成する。例えば、生成部133は、所定の時間内に続けて入力された一対の検索クエリの分散表現が類似するように学習することで、学習モデルを生成する。例えば、生成部133は、一対の検索クエリの学習前の分散表現(ベクトル)の類似度の値を算出する。また、生成部133は、一対の検索クエリの学習後の分散表現(ベクトル)の類似度の値を算出する。続いて、生成部133は、学習前の分散表現(ベクトル)の類似度の値よりも、学習後の分散表現(ベクトル)の類似度の値が大きくなるように学習モデルを学習させる。このように、生成部133は、一対の検索クエリに対応する一対の分散表現である2つのベクトルが分散表現空間上で類似するように学習モデルを学習させることで、検索クエリから分散表現(ベクトル)を出力する学習モデルを生成する。より具体的には、生成部133は、RNNの一種であるLSTMを分散表現生成に用いたDSSMの技術を用いて、検索クエリから分散表現(ベクトル)を出力する学習モデルを生成する。例えば、生成部133は、学習モデルの正解データとして、同一のユーザによって所定の時間内に入力された一対の検索クエリが類似する特徴を有するものとして、所定の検索クエリの分散表現(ベクトル)と、所定の検索クエリと対となる他の検索クエリの分散表現(ベクトル)とが、分散表現空間上で近くに存在するように学習する。
(Generator 133)
The
〔学習モデルの一例〕
ここで、図8を用いて情報処理装置100が生成する学習モデルの一例について説明する。図8は、実施形態に係る学習モデルの一例を示す図である。図8に示す例では、情報処理装置100が生成する学習モデルM1は、3層のLSTM RNNで構成されている。図8に示す例では、抽出部132は、同一のユーザU1によって所定の時間内に連続して入力された「六本木 パスタ」という検索クエリQ11と「六本木 イタリアン」という検索クエリQ12とから成る一対の検索クエリを抽出する。生成部133は、抽出部132によって抽出されたた検索クエリQ11を学習モデルM1の入力層に入力する(ステップS31)。
[Example of learning model]
Here, an example of a learning model generated by the
続いて、生成部133は、学習モデルM1の出力層から検索クエリQ11の分散表現である256次元のベクトルBQV11を出力する。また、生成部133は、抽出部132によって抽出された検索クエリQ12を学習モデルM1の入力層に入力する。続いて、生成部133は、学習モデルM1の出力層から検索クエリQ12の分散表現である256次元のベクトルBQV12を出力する(ステップS32)。
Subsequently, the
続いて、生成部133は、連続して入力された2つの検索クエリの分散表現(ベクトル)が類似するように学習することで、検索クエリから分散表現(ベクトル)を出力する学習モデルを生成する(ステップS33)。例えば、学習モデルM1にフィードバックをかける前(学習前)の検索クエリQ11の分散表現であるベクトルBQV11と検索クエリQ12の分散表現であるベクトルBQV12とのなす角度の大きさをΘとする。また、学習モデルM1にフィードバックをかけた後(学習後)の検索クエリQ11の分散表現であるベクトルQV11と検索クエリQ12の分散表現であるベクトルQV12とのなす角度の大きさをΦとする。この時、生成部133は、ΘよりもΦが小さくなるように、学習モデルM1を学習させる。例えば、生成部133は、ベクトルBQV11とベクトルBQV12のコサイン類似度の値を算出する。また、生成部133は、ベクトルQV11とベクトルQV12のコサイン類似度の値を算出する。続いて、生成部133は、ベクトルBQV11とベクトルBQV12のコサイン類似度の値よりも、ベクトルQV11とベクトルQV12のコサイン類似度の値が大きくなるように(値が1に近づくように)学習モデルM1を学習させる。このように、生成部133は、一対の検索クエリに対応する一対の分散表現である2つのベクトルが分散表現空間上で類似するように学習モデルM1を学習させることで、検索クエリから分散表現(ベクトル)を出力する学習モデルM1を生成する。なお、生成部133は、コサイン類似度に限らず、ベクトル間の距離尺度として適用可能な指標であれば、どのような指標に基づいて分散表現(ベクトル)の間の類似度を算出してもよい。また、生成部133は、ベクトル間の距離尺度として適用可能な指標であれば、どのような指標に基づいて学習モデルM1を学習させてもよい。例えば、生成部133は、分散表現(ベクトル)同士のユークリッド距離や双曲空間等の非ユークリッド空間中での距離、マンハッタン距離、マハラノビス距離等といった所定の距離関数の値を算出する。続いて、生成部133は、分散表現(ベクトル)同士の所定の距離関数の値(すなわち、分散表現空間における距離)が小さくなるように学習モデルM1を学習させてもよい。
Subsequently, the
また、生成部133は、同一のユーザによって所定の時間内に入力された複数の検索クエリとして、所定の区切り文字で区切られた文字列を含む複数の検索クエリが類似する特徴を有するものとして学習することで、学習モデルを生成する。例えば、生成部133は、地名を示す「六本木」と食品の種類を示す「パスタ」の文字とが区切り文字であるスペースで区切られた検索クエリ「六本木 パスタ」と、地名を示す「六本木」と料理の種類を示す「イタリアン」の文字とが区切り文字であるスペースで区切られた検索クエリ「六本木 イタリアン」とが類似する特徴を有するものとして学習することで、学習モデルを生成する。
Further, the
また、生成部133は、取得部131によって取得された検索クエリのうち、ランダムに抽出された複数の検索クエリが相違する特徴を有するものとして学習することで、学習モデルを生成する。具体的には、生成部133は、取得部131によって取得された検索クエリのうち、ランダムに抽出された一対の検索クエリの分散表現が相違するように学習することで、学習モデルを生成する。例えば、生成部133は、抽出部132によって抽出された所定の検索クエリの分散表現と、所定の検索クエリとは無関係にランダムに抽出された検索クエリの分散表現とが分散表現空間上で遠くにマッピングされるように学習モデルM1のトレーニングを行う。
In addition, the
〔3.情報処理のフロー〕
次に、図9を用いて、実施形態に係る情報処理の手順について説明する。図9は、実施形態に係る情報処理手順を示すフローチャートである。図9に示す例では、情報処理装置100は、ユーザによって入力された検索クエリを取得する(ステップS101)。
[3. Information processing flow)
Next, an information processing procedure according to the embodiment will be described with reference to FIG. FIG. 9 is a flowchart illustrating an information processing procedure according to the embodiment. In the example illustrated in FIG. 9, the
続いて、情報処理装置100は、同一のユーザによって所定の時間内に入力された複数の検索クエリを抽出する(ステップS102)。
Subsequently, the
続いて、情報処理装置100は、抽出した検索クエリが類似する特徴を有するものとして学習することで、所定の検索クエリから分散表現(ベクトル)を出力する学習モデルを生成する(ステップS103)。
Subsequently, the
〔4.効果〕
上述してきたように、実施形態に係る情報処理装置100は、取得部131と生成部133を備える。取得部131は、ユーザによって入力された検索クエリを取得する。生成部133は、取得部131によって取得された検索クエリのうち、同一のユーザによって所定の時間内に入力された複数の検索クエリが類似する特徴を有するものとして学習することで、所定の検索クエリから所定の検索クエリの特徴情報を予測する学習モデルを生成する。
[4. effect〕
As described above, the
一般的に、ユーザはある意図を持って検索を複数回行うと考えられるため、所定の時間内に連続して入力された検索クエリは、検索意図が近いという仮定が成り立つ。そこで、本願発明に係る情報処理装置100は、所定の時間内に連続して入力された複数の検索クエリは、所定の検索意図の下で検索された検索クエリであるという点で、相互に類似する特徴を有する検索クエリであるとみなして学習モデルM1を学習させる。具体的には、本願発明に係る情報処理装置100は、所定の時間内に連続して入力された検索クエリの分散表現が類似するように学習モデルM1を学習させることにより、検索意図が近い検索クエリの分散表現を分散表現空間上で近い位置に出力可能とする。これにより、情報処理装置100は、検索クエリを入力したユーザのコンテクストに応じて検索クエリの意味(検索意図)を出力(解釈)することを可能にする。したがって、情報処理装置100は、検索クエリの意味を適切に解釈可能とすることができる。さらに、情報処理装置100は、所定の検索クエリの特徴情報を含む分散表現の近傍にマッピングされる分散表現に対応する検索クエリを抽出することにより、所定の検索クエリが検索された検索意図に応じた検索クエリを抽出することができる。すなわち、情報処理装置100は、検索クエリを入力したユーザのコンテクストを踏まえて、ユーザの検索動向を分析することを可能にする。したがって、情報処理装置100は、ユーザの検索動向の分析精度を高めることができる。また、情報処理装置100が生成した学習モデルM1を検索システムの一部として機能させることもできる。あるいは、情報処理装置100は、学習モデルM1によって予測された検索クエリの特徴情報を利用する他のシステム(例えば、検索エンジン)への入力情報として、学習モデルM1が出力した検索クエリの分散表現を提供することもできる。これにより、検索システムは、学習モデルM1によって予測された検索クエリの特徴情報に基づいて、検索結果として出力されるコンテンツを選択可能になる。すなわち、検索システムは、検索クエリを入力したユーザの検索意図やコンテクストを考慮して、検索結果として出力されるコンテンツを選択可能になる。さらに、検索システムは、学習モデルM1によって予測された検索クエリの特徴情報に基づいて、検索結果として出力されるコンテンツに含まれる文字列の分散表現と検索クエリの分散表現との類似度を算出可能になる。そして、検索システムは、算出した類似度に基づいて、検索結果として出力されるコンテンツの表示順を決定可能になる。すなわち、検索システムは、検索クエリを入力したユーザの検索意図やコンテクストを考慮して、検索結果として出力されるコンテンツの表示順を決定可能になる。したがって、情報処理装置100は、検索サービスにおけるユーザビリティを向上させることができる。
Generally, since it is considered that a user performs a search a plurality of times with a certain intention, it is assumed that a search query continuously input within a predetermined time has a close search intention. Therefore, the
また、生成部133は、所定の時間内に続けて入力された一対の検索クエリの分散表現が類似するように学習することで、学習モデルを生成する。
In addition, the
一般的に、同一のユーザが短時間に続けて入力した2つの検索クエリは、検索意図が同一であるか、同一でなくとも検索意図が近いと考えられる。すなわち、所定の時間内に続けて入力された一対の検索クエリは、検索意図が同一であるか、同一でなくとも検索意図が近いと考えられる。すなわち、情報処理装置100は、所定の時間内に続けて入力された一対の検索クエリの分散表現が類似するように学習することにより、ユーザの検索意図に応じた検索クエリをより精度よく抽出可能とすることができる。
In general, two search queries input by the same user in a short time are considered to have the same search intention or close search intention even if they are not the same. That is, it is considered that the search intentions of a pair of search queries that are continuously input within a predetermined time period have the same search intention or the search intentions are similar even if they are not the same. That is, the
また、生成部133は、同一のユーザによって所定の時間内に入力された複数の検索クエリとして、所定の区切り文字で区切られた文字列を含む複数の検索クエリが類似する特徴を有するものとして学習することで、学習モデルを生成する。
Further, the
一般的に、単体の文字列からなる検索クエリよりも、複数の文字列を含む検索クエリのほうが、検索意図がより明確であると考えられる。すなわち、情報処理装置100は、所定の区切り文字で区切られた文字列を含む検索クエリを用いて学習することにより、ユーザの検索意図に応じた検索クエリをより精度よく抽出可能とすることができる。
Generally, a search query including a plurality of character strings is considered to have a clearer search intention than a search query including a single character string. In other words, the
また、生成部133は、取得部131によって取得された検索クエリのうち、ランダムに抽出された複数の検索クエリが相違する特徴を有するものとして学習することで、学習モデルを生成する。また、生成部133は、取得部131によって取得された検索クエリのうち、ランダムに抽出された一対の検索クエリの分散表現が相違するように学習することで、学習モデルを生成する。
In addition, the
一般的に、ランダムに抽出された複数の検索クエリは、互いに無関係に入力された検索クエリであるため、検索意図が異なるか、検索意図が遠いと考えられる。そこで、本願発明に係る情報処理装置100は、ランダムに抽出された複数の検索クエリは、異なる検索意図の下で検索された検索クエリであるという点で、相互に相違する特徴を有する検索クエリであるとみなして学習モデルM1を学習させる。具体的には、本願発明に係る情報処理装置100は、ランダムに抽出された複数の検索クエリの分散表現が相違するように学習モデルM1を学習させることにより、検索意図が異なる検索クエリの分散表現を分散表現空間上で遠い位置に出力可能とする。これにより、学習モデルは、検索意図が近い検索クエリのペアである正解データに加えて、検索意図が遠い検索クエリのペアである不正解データを学習することができる。すなわち、情報処理装置100は、学習モデルの精度を向上させることができる。したがって、情報処理装置100は、検索クエリの意味を適切に解釈可能とすることができる。
Generally, a plurality of search queries extracted at random are search queries that are input independently of each other, and therefore, the search intention is different or the search intention is considered to be far away. Therefore, the
〔5.ハードウェア構成〕
また、上述してきた実施形態に係る情報処理装置100は、例えば図9に示すような構成のコンピュータ1000によって実現される。図9は、情報処理装置100の機能を実現するコンピュータの一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM1300、HDD1400、通信インターフェイス(I/F)1500、入出力インターフェイス(I/F)1600、及びメディアインターフェイス(I/F)1700を備える。
[5. Hardware configuration)
Further, the
CPU1100は、ROM1300またはHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
The
HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を格納する。通信インターフェイス1500は、所定の通信網を介して他の機器からデータを受信してCPU1100へ送り、CPU1100が生成したデータを所定の通信網を介して他の機器へ送信する。
The
CPU1100は、入出力インターフェイス1600を介して、ディスプレイやプリンタ等の出力装置、及び、キーボードやマウス等の入力装置を制御する。CPU1100は、入出力インターフェイス1600を介して、入力装置からデータを取得する。また、CPU1100は、生成したデータを入出力インターフェイス1600を介して出力装置へ出力する。
The
メディアインターフェイス1700は、記録媒体1800に格納されたプログラムまたはデータを読み取り、RAM1200を介してCPU1100に提供する。CPU1100は、かかるプログラムを、メディアインターフェイス1700を介して記録媒体1800からRAM1200上にロードし、ロードしたプログラムを実行する。記録媒体1800は、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
The
例えば、コンピュータ1000が実施形態に係る情報処理装置100として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムまたはデータ(例えば、学習モデルM1のモデルデータMDT1)を実行することにより、制御部130の機能を実現する。コンピュータ1000のCPU1100は、これらのプログラムを記録媒体1800から読み取って実行するが、他の例として、他の装置から所定の通信網を介してこれらのプログラムまたはデータ(例えば、学習モデルM1のモデルデータMDT1)を取得してもよい。
For example, when the
以上、本願の実施形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 As described above, some of the embodiments of the present application have been described in detail with reference to the drawings. However, these are merely examples, and various modifications, including the aspects described in the disclosure section of the invention, based on the knowledge of those skilled in the art, It is possible to implement the present invention in other forms with improvements.
〔6.その他〕
また、上記実施形態及び変形例において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
[6. Others]
In addition, among the processes described in the above-described embodiments and modifications, all or a part of the processes described as being automatically performed can be manually performed, or are described as being performed manually. All or part of the processing can be automatically performed by a known method. In addition, the processing procedures, specific names, and information including various data and parameters shown in the document and drawings can be arbitrarily changed unless otherwise specified. For example, the various types of information illustrated in each drawing is not limited to the illustrated information.
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 Further, each component of each illustrated apparatus is functionally conceptual, and does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution / integration of each device is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed or arbitrarily distributed in arbitrary units according to various loads or usage conditions. Can be integrated and configured.
また、上述してきた実施形態及び変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 In addition, the above-described embodiments and modifications can be combined as appropriate within a range that does not contradict processing contents.
また、上述してきた「部(section、module、unit)」は、「手段」や「回路」などに読み替えることができる。例えば、生成部は、生成手段や生成回路に読み替えることができる。 In addition, the “section (module, unit)” described above can be read as “means” or “circuit”. For example, the generation unit can be read as generation means or a generation circuit.
1 情報処理システム
10 ユーザ端末
50 検索サーバ
100 情報処理装置
121 クエリ情報記憶部
122 ベクトル情報記憶部
123 モデル情報記憶部
131 取得部
132 抽出部
133 生成部
DESCRIPTION OF SYMBOLS 1 Information processing system 10
Claims (7)
前記取得部によって取得された検索クエリのうち、同一のユーザによって所定の時間内に入力された検索クエリの分散表現であって、前記ユーザによって行われた各検索に対応する検索クエリの分散表現が互いに類似する特徴を有するものとして前記検索クエリが入力された順序で前記検索クエリを順次処理することにより学習することで、所定の検索クエリから前記所定の検索クエリの分散表現を出力する学習モデルを生成する生成部と
を備えることを特徴とする情報処理装置。 An acquisition unit for acquiring a search query input by a user during a search;
In the search query obtained by the obtaining unit, a distributed representation of the search query entered within a predetermined time by the same user, distributed representation of the search query corresponding to each search performed by the user Learning models that output a distributed representation of the predetermined search query from a predetermined search query by learning by sequentially processing the search queries in the order in which the search queries are input as having similar characteristics to each other An information processing apparatus comprising: a generation unit that generates
前記所定の時間内に続けて入力された一対の検索クエリの分散表現が互いに類似するように学習することで、前記学習モデルを生成する
ことを特徴とする請求項1に記載の情報処理装置。 The generator is
The information processing apparatus according to claim 1, wherein the learning model is generated by learning so that distributed expressions of a pair of search queries input in succession within the predetermined time are similar to each other .
同一のユーザによって所定の時間内に入力された検索クエリの分散表現として、所定の区切り文字で区切られた文字列を含む検索クエリの分散表現が互いに類似する特徴を有するものとして学習することで、前記学習モデルを生成する
ことを特徴とする請求項1または2に記載の情報処理装置。 The generator is
As distributed representation of search query entered within a predetermined time by the same user is learned as having a characteristic that a string delimited by predetermined delimiters distributed representation of including search queries similar to each other The information processing apparatus according to claim 1, wherein the learning model is generated.
前記取得部によって取得された検索クエリのうち、ランダムに抽出された複数の検索クエリの分散表現が互いに相違する特徴を有するものとして学習することで、前記学習モデルを生成する
ことを特徴とする請求項1〜3のいずれか一つに記載の情報処理装置。 The generator is
The learning model is generated by learning the search queries acquired by the acquisition unit as having different characteristics from each other in a distributed expression of a plurality of search queries extracted at random. Item 4. The information processing apparatus according to any one of Items 1 to 3.
前記取得部によって取得された検索クエリのうち、ランダムに抽出された一対の検索クエリの分散表現が互いに相違するように学習することで、前記学習モデルを生成する
ことを特徴とする請求項1〜4のいずれか一つに記載の情報処理装置。 The generator is
The learning model is generated by learning so that distributed expressions of a pair of search queries extracted at random among the search queries acquired by the acquisition unit are different from each other . 5. The information processing apparatus according to any one of 4.
ユーザによって検索時に入力された検索クエリを取得する取得工程と、
前記取得工程によって取得された検索クエリのうち、同一のユーザによって所定の時間内に入力された検索クエリの分散表現であって、前記ユーザによって行われた各検索に対応する検索クエリの分散表現が互いに類似する特徴を有するものとして前記検索クエリが入力された順序で前記検索クエリを順次処理することにより学習することで、所定の検索クエリから前記所定の検索クエリの分散表現を出力する学習モデルを生成する生成工程と
を含むことを特徴とする情報処理方法。 An information processing method executed by a computer,
An acquisition process for acquiring a search query input by a user during a search;
In the search query obtained by the obtaining step, a distributed representation of the search query entered within a predetermined time by the same user, distributed representation of the search query corresponding to each search performed by the user Learning models that output a distributed representation of the predetermined search query from a predetermined search query by learning by sequentially processing the search queries in the order in which the search queries are input as having similar characteristics to each other An information processing method comprising: a generation step of generating
前記取得手順によって取得された検索クエリのうち、同一のユーザによって所定の時間内に入力された検索クエリの分散表現であって、前記ユーザによって行われた各検索に対応する検索クエリの分散表現が互いに類似する特徴を有するものとして前記検索クエリが入力された順序で前記検索クエリを順次処理することにより学習することで、所定の検索クエリから前記所定の検索クエリの分散表現を出力する学習モデルを生成する生成手順と
をコンピュータに実行させることを特徴とする情報処理プログラム。 An acquisition procedure for acquiring a search query entered by a user during a search,
In the search query acquired by the acquisition procedure, a distributed representation of the search query entered within a predetermined time by the same user, distributed representation of the search query corresponding to each search performed by the user Learning models that output a distributed representation of the predetermined search query from a predetermined search query by learning by sequentially processing the search queries in the order in which the search queries are input as having similar characteristics to each other An information processing program for causing a computer to execute a generation procedure for generating a message.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018174903A JP6584613B1 (en) | 2018-09-19 | 2018-09-19 | Information processing apparatus, information processing method, and information processing program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018174903A JP6584613B1 (en) | 2018-09-19 | 2018-09-19 | Information processing apparatus, information processing method, and information processing program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6584613B1 true JP6584613B1 (en) | 2019-10-02 |
JP2020046940A JP2020046940A (en) | 2020-03-26 |
Family
ID=68095328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018174903A Active JP6584613B1 (en) | 2018-09-19 | 2018-09-19 | Information processing apparatus, information processing method, and information processing program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6584613B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020194368A (en) * | 2019-05-28 | 2020-12-03 | ヤフー株式会社 | Extractor, extraction method and extraction program |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7814086B2 (en) * | 2006-11-16 | 2010-10-12 | Yahoo! Inc. | System and method for determining semantically related terms based on sequences of search queries |
US8768861B2 (en) * | 2010-05-31 | 2014-07-01 | Yahoo! Inc. | Research mission identification |
JP5296745B2 (en) * | 2010-06-17 | 2013-09-25 | ヤフー株式会社 | Query suggestion providing apparatus and method |
US20130132433A1 (en) * | 2011-11-22 | 2013-05-23 | Yahoo! Inc. | Method and system for categorizing web-search queries in semantically coherent topics |
US20150379074A1 (en) * | 2014-06-26 | 2015-12-31 | Microsoft Corporation | Identification of intents from query reformulations in search |
US20160125028A1 (en) * | 2014-11-05 | 2016-05-05 | Yahoo! Inc. | Systems and methods for query rewriting |
US10936945B2 (en) * | 2016-06-06 | 2021-03-02 | Microsoft Technology Licensing, Llc | Query classification for appropriateness |
JP6782591B2 (en) * | 2016-09-12 | 2020-11-11 | ヤフー株式会社 | Estimator, estimation method, and estimation program |
JP6780992B2 (en) * | 2016-09-15 | 2020-11-04 | ヤフー株式会社 | Judgment device, judgment method and judgment program |
-
2018
- 2018-09-19 JP JP2018174903A patent/JP6584613B1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020194368A (en) * | 2019-05-28 | 2020-12-03 | ヤフー株式会社 | Extractor, extraction method and extraction program |
Also Published As
Publication number | Publication date |
---|---|
JP2020046940A (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023520483A (en) | SEARCH CONTENT DISPLAY METHOD, DEVICE, ELECTRONIC DEVICE, AND STORAGE MEDIUM | |
WO2020224220A1 (en) | Knowledge graph-based question answering method, electronic device, apparatus, and storage medium | |
US10902209B2 (en) | Method for content search and electronic device therefor | |
US20220114187A1 (en) | Techniques for searching using target applications | |
CN110598084A (en) | Object sorting method, commodity sorting device and electronic equipment | |
KR20190040343A (en) | Verification methods and devices | |
JP7080609B2 (en) | Information processing equipment, information processing methods, and information processing programs | |
JP7071304B2 (en) | Information processing equipment, information processing methods and information processing programs | |
JP5406794B2 (en) | Search query recommendation device and search query recommendation program | |
JP6584613B1 (en) | Information processing apparatus, information processing method, and information processing program | |
JP6679683B2 (en) | Information processing apparatus, information processing method, and information processing program | |
JP6852114B2 (en) | Specific device, specific method and specific program | |
WO2016118156A1 (en) | Visually interactive identification of a cohort of data objects similar to a query object based on domain knowledge | |
JP6982017B2 (en) | Information processing equipment, information processing methods and information processing programs | |
JP7044729B2 (en) | Information processing equipment, information processing methods and information processing programs | |
JP7177013B2 (en) | Information processing device, information processing method and information processing program | |
JP5507620B2 (en) | Synonym estimation device, synonym estimation method, and synonym estimation program | |
JP6979986B2 (en) | Information processing equipment, information processing methods and information processing programs | |
JP6553793B1 (en) | Information processing apparatus, information processing method, and information processing program | |
JP7154253B2 (en) | Information processing device, information processing method and program | |
JP7258988B2 (en) | Information processing device, information processing method and information processing program | |
JP6696018B1 (en) | Information processing apparatus, information processing method, and information processing program | |
JP6938569B2 (en) | Information processing equipment, information processing methods and information processing programs | |
JP6728445B1 (en) | Extraction device, extraction method, and extraction program | |
JP6983672B2 (en) | Information processing equipment, information processing methods, and information processing programs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181213 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20181213 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20181228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6584613 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |