JP6578211B2 - Method for producing solid catalyst by adding metal oxide to metal complex - Google Patents

Method for producing solid catalyst by adding metal oxide to metal complex Download PDF

Info

Publication number
JP6578211B2
JP6578211B2 JP2015561055A JP2015561055A JP6578211B2 JP 6578211 B2 JP6578211 B2 JP 6578211B2 JP 2015561055 A JP2015561055 A JP 2015561055A JP 2015561055 A JP2015561055 A JP 2015561055A JP 6578211 B2 JP6578211 B2 JP 6578211B2
Authority
JP
Japan
Prior art keywords
iridium
catalyst
compound
producing
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015561055A
Other languages
Japanese (ja)
Other versions
JPWO2015119244A1 (en
Inventor
健司 和田
健司 和田
深志 束田
深志 束田
三郎 細川
三郎 細川
竜 阿部
竜 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Publication of JPWO2015119244A1 publication Critical patent/JPWO2015119244A1/en
Application granted granted Critical
Publication of JP6578211B2 publication Critical patent/JP6578211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/323Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/76Dehydrogenation
    • B01J2231/763Dehydrogenation of -CH-XH (X= O, NH/N, S) to -C=X or -CX triple bond species
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、固体触媒及び固体触媒から溶液に溶出するイリジウム触媒の製造方法、触媒によるシリル基置換不飽和化合物の製造方法に関し、詳しくはイリジウム触媒によるシリル基置換不飽和化合物の製造方法に関するものである。
また、本発明は、イリジウム触媒の回収及び再利用方法に関する。
The present invention relates to a solid catalyst and a method for producing an iridium catalyst eluting from a solid catalyst into a solution, a method for producing a silyl group-substituted unsaturated compound using a catalyst, and more particularly to a method for producing a silyl group-substituted unsaturated compound using an iridium catalyst. is there.
The present invention also relates to a method for recovering and reusing an iridium catalyst.

種々の有機ケイ素ポリマー原料として、及び不飽和化合物合成原料として工業的に重要な基幹化合物であるシリルアルケン類を、ヒドロシラン類とアルケンを原料として脱水素シリル化反応によって製造する方法は、ヒドロシラン類及びアルケン類の事前の活性化を必要としない原子効率が高い優れた手法である。A method for producing silylalkenes, which are industrially important basic compounds as raw materials for various organosilicon polymers and as raw materials for synthesis of unsaturated compounds, by dehydrogenation silylation reaction using hydrosilanes and alkenes as raw materials, hydrosilanes and It is an excellent technique with high atomic efficiency that does not require prior activation of alkenes.

有機合成反応における触媒は、均一系触媒と不均一系触媒に大きく二分される。代表的な均一系触媒である錯体触媒は、高効率、高選択的な反応の実現が容易であるといった利点を有しているため、精密な制御が必要な有機合成にしばしば用いられる。均一系ロジウム錯体触媒(非特許文献1、2)あるいはパラジウム錯体触媒(非特許文献3)等を活用したシリルアルケン類の製造方法が既に見出され、報告されているが、均一系錯体触媒には、1)触媒製造プロセスが複雑で、高環境負荷・高コスト、2)触媒の分離回収・再利用が困難で、生成物への金属の混入が問題となる、3)一般に化学的・熱的に不安定であり取り扱いが困難、などの工業化の上で重大かつ本質的な問題点がある。さらに、本反応はヒドロシリル化反応によるシリルアルカンの副生を本質的に伴い、目的とするシリルアルケンを選択的に得るためにはシリルアルカンの副生を抑制する必要がある。そのため、反応後の分離回収が困難な配位子あるいは添加剤として有害なホスフィンや高価な1,10−フェナントロリン誘導体の使用が不可欠であるが、それでも特にジメチルフェニルシランを原料として用いた場合にはシリルアルカンの副生が著しく、選択的にシリルアルケンを得ることは極めて困難である。  The catalyst in the organic synthesis reaction is largely divided into a homogeneous catalyst and a heterogeneous catalyst. A complex catalyst, which is a typical homogeneous catalyst, has an advantage that it is easy to realize a highly efficient and highly selective reaction, and is therefore often used for organic synthesis that requires precise control. A method for producing silylalkenes utilizing a homogeneous rhodium complex catalyst (Non-patent Documents 1 and 2) or a palladium complex catalyst (Non-patent Document 3) has already been found and reported. 1) The catalyst manufacturing process is complicated, high environmental impact and high cost, 2) separation and recovery and reuse of the catalyst are difficult, and metal contamination into the product becomes a problem 3) Generally chemical and heat There are serious and essential problems in industrialization such as being unstable and difficult to handle. Furthermore, this reaction is essentially accompanied by a by-product of silylalkane by a hydrosilylation reaction, and it is necessary to suppress the by-product of silylalkane in order to selectively obtain the desired silylalkene. Therefore, it is indispensable to use harmful phosphine or expensive 1,10-phenanthroline derivative as a ligand or additive that is difficult to separate and recover after the reaction. However, especially when dimethylphenylsilane is used as a raw material. Byproduct of silylalkane is remarkable, and it is extremely difficult to selectively obtain silylalkene.

一方、不均一系触媒の中でも酸化物担持触媒は、活性や選択性では劣る場合が多いものの、均一系触媒と比較して、1)触媒の分離回収・再利用が容易である、2)生成物への金属種の混入リスクが小さい、3)熱や空気に対する安定性が高く取り扱いが容易、などのメリットが挙げられ、錯体触媒に匹敵する活性及び選択性を有する固体触媒の開発は、グリーンケミストリーの観点から必要不可欠である。  On the other hand, among the heterogeneous catalysts, oxide-supported catalysts are often inferior in activity and selectivity, but compared with homogeneous catalysts, 1) the catalyst can be easily separated and recovered and reused. The development of solid catalysts with low activity and selectivity comparable to complex catalysts has been proposed, including the low risk of contamination of metal species into materials, 3) high stability to heat and air, and easy handling. Essential from a chemistry perspective.

こうした観点から和田らは、酸化セリウム担持ルテニウム (Ru/CeO) 触媒やイリジウム (Ir/CeO) 触媒を開発し、これらが多種多様な有機合成反応に有効であることを見出し、特許文献1〜3、非特許文献4〜10によって報告している。これらはいずれも「金属酸化物担持触媒」の範疇にはいる触媒群であり、触媒を焼成して金属酸化物に変換し、その形態で用いられる。From this viewpoint, Wada et al. Developed a cerium oxide-supported ruthenium (Ru / CeO 2 ) catalyst and an iridium (Ir / CeO 2 ) catalyst, and found that these are effective for various organic synthesis reactions. -3 and Non-Patent Documents 4-10. These are all a group of catalysts that fall under the category of “metal oxide-supported catalyst”, and the catalyst is calcined to be converted into a metal oxide and used in that form.

WO2014/133031WO2014 / 133031 特開2010-189313JP2010-189313 特開2010-184881JP2010-184881

Activation of the Vinylic d C - H Bond of Styrene by a Rhodium - Siloxide Complex: The Key Step in the Silylative Coupling of Styrene with Vinylsilanes, Marciniec, B.; Walczuk-Gusciora, E.; Pietraszuk, C. Organometallics 2001, 20, 3423-3428.Activation of the Vinylic d C-H Bond of Styrene by a Rhodium-Siloxide Complex: The Key Step in the Silylative Coupling of Styrene with Vinylsilanes, Marciniec, B .; Walczuk-Gusciora, E .; Pietraszuk, C. Organometallics 2001, 20 , 3423-3428. Cationic Rhodium Complex-Catalyzed Highly Selective Dehydrogenative Silylation of Styrene, Takeuchi, R.; Yasue, H. Organometallics 1996, 15, 2098-2102.Cationic Rhodium Complex-Catalyzed Highly Selective Dehydrogenative Silylation of Styrene, Takeuchi, R .; Yasue, H. Organometallics 1996, 15, 2098-2102. Mechanistic Studies of Palladium(II)-Catalyzed Hydrosilationand Dehydrogenative Silation Reactions, LaPointe, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906-917.Mechanistic Studies of Palladium (II) -Catalyzed Hydrosilation and Dehydrogenative Silation Reactions, LaPointe, A. M .; Rix, F. C .; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906-917. Ruthenium-catalyzed Intermolecular Hydroacylation of Internal Alkynes: The Use of Ceria-supported Catalyst facilitates the Catalyst RecyclingMiura, H.; Wada, K.; Hosokawa, S.; Inoue, M.Chem. Eur. J. 2013, 19, 861-864..Ruthenium-catalyzed Intermolecular Hydroacylation of Internal Alkynes: The Use of Ceria-supported Catalyst facilitates the Catalyst RecyclingMiura, H .; Wada, K .; Hosokawa, S .; Inoue, M. Chem. Eur. J. 2013, 19, 861- 864 .. Highly Selective Linear Dimerization of Styrenes by Ceria-Supported Ruthenium CatalystsShimura, S.; Miura, H.; Tsukada, S.; Wada, K.; Hosokawa, S.; Inoue, M.ChemCatChem 2012, 4, 2062-2067.Highly Selective Linear Dimerization of Styrenes by Ceria-Supported Ruthenium CatalystsShimura, S .; Miura, H .; Tsukada, S .; Wada, K .; Hosokawa, S .; Inoue, M. ChemCatChem 2012, 4, 2062-2067. Active Ruthenium Catalysts Based on Phosphine-modified Ru/CeO2 for the Selective Addition of Carboxylic Acids to Terminal AlkynesNishiumi, M.; Miura, H.; Wada, K.; Hosokawa, S.; Inoue, M.ACS Catalysis 2012, 2, 1753-1759.Active Ruthenium Catalysts Based on Phosphine-modified Ru / CeO2 for the Selective Addition of Carboxylic Acids to Terminal AlkynesNishiumi, M .; Miura, H .; Wada, K .; Hosokawa, S .; Inoue, M.ACS Catalysis 2012, 2, 1753-1759. Development of Ceria-supported Ruthenium Catalysts for Green Organic Transformation ProcessesWada, K.; Miura, H.; Hosokawa, S.; Inoue, M.J. Jpn. Petro. Inst.2013, 56, 69-79..Development of Ceria-supported Ruthenium Catalysts for Green Organic Transformation Processes Wada, K .; Miura, H .; Hosokawa, S .; Inoue, M.J. Jpn. Petro. Inst. 2013, 56, 69-79 .. 「グリーン分子変換プロセスのための担持ルテニウム触媒の開発」 和田健司; 三浦大樹、ケミカルエンジニヤリング 2012, 57, 679-684."Development of supported ruthenium catalyst for green molecular conversion process" Kenji Wada; Taiki Miura, Chemical Engineering 2012, 57, 679-684. 「アルケンへの選択的脱水素シリル化反応に有効な担持イリジウム触媒の開発」 束田深志・和田健司・細川三郎・阿部竜、第112回触媒討論会、1I30、平成25年9月18日〜20日(9月18日)、秋田大学手形キャンパス、秋田市(Oral)“Development of effective supported iridium catalyst for selective dehydrogenation silylation reaction to alkene” Fuka Tsukada, Kenji Wada, Saburo Hosokawa, Ryu Abe, 112th Catalysis Conference, 1I30, September 18-20, 2013 Sun (September 18), Akita University Handprint Campus, Akita City (Oral) 束田深志 京都大学工学部工業化学科 平成23年度卒業論文Fukashi Tsudada Department of Industrial Chemistry, Faculty of Engineering, Kyoto University 2011 Graduation Thesis

本発明は、回収再利用が困難なホスフィン等の有害物質や1,10−フェナントロリン等の高価な配位子を使用する必要がなく、調製が極めて簡便で再生が容易な固体触媒及び固体複合体から溶液に溶出する触媒による、シリル基置換不飽和化合物の製造方法を提供することを目的とする。  The present invention does not require the use of harmful substances such as phosphine, which are difficult to recover and reuse, and expensive ligands such as 1,10-phenanthroline, and is a solid catalyst and solid composite that are extremely simple to prepare and easy to regenerate It is an object of the present invention to provide a method for producing a silyl group-substituted unsaturated compound using a catalyst that elutes into a solution.

本発明者らは、広範囲なイリジウム錯体あるいはイリジウム塩と、酸化セリウム等の希土類金属酸化物を用いることで、飛躍的に効率が高く、環境等への負荷が小さなシリルアルケン類の製造方法を見出した。
本発明は、以下のイリジウム触媒の製造方法、イリジウム触媒及び当該イリジウム触媒を用いたシリル基置換不飽和化合物の製造方法及びイリジウム触媒の回収及び再利用方法を提供するものである。
項1. 希土類金属を含む酸化物とイリジウム化合物を溶媒中で処理することを特徴とする、イリジウム触媒の製造方法。
項2. 溶媒中にイリジウム化合物とヒドロシラン類を添加して加熱し、次いで希土類金属を含む酸化物を加えてイリジウム化合物とヒドロシラン類を溶媒中で処理することを特徴とする、項1に記載のイリジウム触媒の製造方法。
項3. 前記処理が希土類金属を含む酸化物とイリジウム化合物を溶媒中で混合することである、項1又は2に記載のイリジウム触媒の製造方法。
項4. 前記処理が希土類金属を含む酸化物をイリジウム化合物の溶媒溶液に含浸もしくは浸漬することである、項1又は2に記載のイリジウム触媒の製造方法。
項5. 希土類金属を含む酸化物とイリジウム化合物を溶媒中で処理し、加熱することを特徴とする項1又は2に記載のイリジウム触媒の製造方法。
項6. 希土類金属を含む酸化物が希土類金属酸化物又は希土類金属を含む複合酸化物である、項1〜5のいずれか1項に記載のイリジウム触媒の製造方法。
項7. 前記酸化物が酸化セリウムである、項1〜6のいずれか1項に記載のイリジウム触媒の製造方法。
項8. イリジウム化合物がイリジウム錯体またはイリジウム塩である、項1〜7のいずれか1項に記載のイリジウム触媒の製造方法。
項9. イリジウム化合物がIrCl3・xH2O(x=0〜3)、トリアセチルアセトナトイリジウム、Ir(CO)12、ビス(シクロペンタジエニルイリジウムジクロリド)である、項1〜8のいずれかに記載のイリジウム触媒の製造方法。
項10. 項1〜9のいずれかに記載の製造方法によって得られるシリル基置換不飽和化合物製造用イリジウム触媒。
項11. 項10に記載のイリジウム触媒の存在下で、シラン化合物(1)と不飽和化合物(2)を反応させることを特徴とする、一般式(I)で表されるシラン化合物の製造方法:
The present inventors have found a method for producing silylalkenes that are remarkably highly efficient and have a low environmental impact by using a wide range of iridium complexes or iridium salts and rare earth metal oxides such as cerium oxide. It was.
The present invention provides the following iridium catalyst production method, iridium catalyst, silyl group-substituted unsaturated compound production method using the iridium catalyst, and iridium catalyst recovery and reuse method.
Item 1. A method for producing an iridium catalyst, comprising treating an oxide containing a rare earth metal and an iridium compound in a solvent.
Item 2. Item 2. The iridium catalyst according to Item 1, wherein the iridium compound and the hydrosilane are added to the solvent and heated, and then the oxide containing the rare earth metal is added to treat the iridium compound and the hydrosilane in the solvent. Production method.
Item 3. Item 3. The method for producing an iridium catalyst according to Item 1 or 2, wherein the treatment is mixing an oxide containing a rare earth metal and an iridium compound in a solvent.
Item 4. Item 3. The method for producing an iridium catalyst according to Item 1 or 2, wherein the treatment is impregnating or immersing an oxide containing a rare earth metal in a solvent solution of an iridium compound.
Item 5. Item 3. The method for producing an iridium catalyst according to Item 1 or 2, wherein the oxide containing the rare earth metal and the iridium compound are treated in a solvent and heated.
Item 6. Item 6. The method for producing an iridium catalyst according to any one of Items 1 to 5, wherein the oxide containing a rare earth metal is a rare earth metal oxide or a complex oxide containing a rare earth metal.
Item 7. Item 7. The method for producing an iridium catalyst according to any one of Items 1 to 6, wherein the oxide is cerium oxide.
Item 8. Item 8. The method for producing an iridium catalyst according to any one of Items 1 to 7, wherein the iridium compound is an iridium complex or an iridium salt.
Item 9. Item 8. The iridium compound is IrCl 3 .xH 2 O (x = 0 to 3), triacetylacetonatoiridium, Ir 4 (CO) 12 , bis (cyclopentadienyliridium dichloride) The manufacturing method of iridium catalyst of description.
Item 10. Item 10. An iridium catalyst for producing a silyl group-substituted unsaturated compound obtained by the production method according to any one of items 1 to 9.
Item 11. Item 11. A process for producing a silane compound represented by the general formula (I), comprising reacting the silane compound (1) and the unsaturated compound (2) in the presence of the iridium catalyst according to item 10:

Figure 0006578211
Figure 0006578211

(式中、RはR1a1b1cSi基を示し、Rはアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいヘテロアリールアルキル基、置換基を有していてもよいアラルキル基を示す。
1a、R1b、R1cは、各々独立してアルキル基、アルコキシ基、置換基を有していてもよいアリール基、ハロゲン原子を示す。)
項12. 溶媒中に希土類金属を含む酸化物とイリジウム化合物を添加し、必要に応じて加熱してイリジウム触媒を調製し、得られたイリジウム触媒をヒドロシラン類とアルケンを原料とした脱水素シリル化反応に使用して反応液からイリジウム触媒を濾過により回収し、回収したイリジウム触媒をさらに次の脱水素シリル化反応に使用する工程を少なくとも1回行うことを特徴とするイリジウム触媒の回収及び再利用方法。
項13. 溶媒中にイリジウム化合物とヒドロシラン類と希土類金属を含む酸化物を添加して加熱することにより最初のイリジウム触媒の調製を行い、以下、イリジウム触媒の回収と脱水素シリル化反応への再利用を少なくとも1回行うことを特徴とする、項12に記載の脱水素シリル化反応におけるイリジウム触媒の回収及び再利用方法。
項14. 溶媒中にイリジウム化合物とヒドロシラン類とアルケンと希土類金属を含む酸化物を添加して加熱し、最初のイリジウム触媒の調製と脱水素シリル化反応を同時に行い、以下、イリジウム触媒の回収と脱水素シリル化反応への再利用を少なくとも1回行うことを特徴とする、項12に記載の脱水素シリル化反応におけるイリジウム触媒の回収及び再利用方法。
項15. 溶媒中にイリジウム化合物とヒドロシラン類を添加して加熱し、さらに希土類金属を含む酸化物を添加して加熱することにより最初のイリジウム触媒の調製を行い、得られたイリジウム触媒とアルケンの存在下に脱水素シリル化反応を行い、以下、イリジウム触媒の回収と脱水素シリル化反応への再利用を少なくとも1回行うことを特徴とする、項12〜14のいずれか1項に記載の脱水素シリル化反応におけるイリジウム触媒の回収及び再利用方法。
(In the formula, R 1 represents an R 1a R 1b R 1c Si group, and R 2 represents an alkyl group, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, a substituted group. A heteroarylalkyl group which may have a group and an aralkyl group which may have a substituent are shown.
R 1a , R 1b and R 1c each independently represent an alkyl group, an alkoxy group, an aryl group which may have a substituent, or a halogen atom. )
Item 12. Add oxide and iridium compound containing rare earth metal in solvent and prepare iridium catalyst by heating if necessary, and use the obtained iridium catalyst for dehydrogenation silylation reaction using hydrosilanes and alkenes as raw materials And collecting the iridium catalyst from the reaction solution by filtration, and further using the collected iridium catalyst for the next dehydrogenation silylation reaction at least once.
Item 13. The first iridium catalyst was prepared by adding an iridium compound, hydrosilanes, and an oxide containing a rare earth metal to the solvent and heating. Hereinafter, at least the recovery of the iridium catalyst and its reuse in the dehydrogenation silylation reaction were performed. Item 13. The method for recovering and reusing an iridium catalyst in the dehydrogenation silylation reaction according to Item 12, which is performed once.
Item 14. An iridium compound, hydrosilanes, alkene and oxide containing rare earth metal are added to the solvent and heated, and the initial iridium catalyst preparation and dehydrogenation silylation reaction are performed simultaneously. Item 13. A method for recovering and reusing an iridium catalyst in a dehydrogenation silylation reaction according to Item 12, wherein the iridium catalyst is reused at least once.
Item 15. The first iridium catalyst was prepared by adding an iridium compound and hydrosilane to the solvent and heating, and further adding an oxide containing a rare earth metal and heating, and in the presence of the obtained iridium catalyst and alkene. Item 15. The dehydrogenated silyl according to any one of Items 12 to 14, wherein a dehydrogenated silylation reaction is performed, and thereafter, the recovery of the iridium catalyst and the reuse for the dehydrogenated silylation reaction are performed at least once. For recovering and reusing an iridium catalyst in an oxidation reaction.

本発明は、種々の有機ケイ素ポリマー原料として、および不飽和化合物合成原料として工業的に重要な基幹化合物であるシリルアルケン類を、ヒドロシラン類とアルケンを原料として脱水素シリル化反応によって製造する方法を提供するものである。本発明の方法は、ヒドロシラン類およびアルケン類の事前の活性化を必要としない原子効率が高い優れた手法である。The present invention provides a method for producing silylalkenes, which are industrially important basic compounds as raw materials for various organosilicon polymers and as raw materials for unsaturated compound synthesis, by a dehydrogenation silylation reaction using hydrosilanes and alkenes as raw materials. It is to provide. The method of the present invention is an excellent technique with high atomic efficiency that does not require prior activation of hydrosilanes and alkenes.

本発明の触媒は、金属酸化物中にナトリウム、カリウム等のアルカリ金属が含まれていないことが望ましく(アルカリ金属フリーの触媒)、アルカリ土類金属が含まれていないことが好ましい。The catalyst of the present invention desirably contains no alkali metal such as sodium or potassium in the metal oxide (an alkali metal-free catalyst), and preferably contains no alkaline earth metal.

本発明では、シリルカップリング反応に対して、比較的安価で入手が容易な種々のイリジウム錯体あるいはイリジウム塩から反応系中で調製される固体触媒及び固体複合体から溶液に溶出する触媒を用いることができる。In the present invention, various iridium complexes or iridium salts that are relatively inexpensive and easily available for the silyl coupling reaction, and a catalyst that elutes into the solution from the solid complex is used in the reaction system. Can do.

本発明の製造方法によれば、有害なホスフィンを使用する必要がないので、生成物にホスフィンが混入することはない。  According to the production method of the present invention, it is not necessary to use harmful phosphine, so that phosphine is not mixed into the product.

また、本発明の触媒は、再生処理が不要であり、バッチ式、セミバッチ式あるいは連続式の反応で繰り返し使用できる。  Further, the catalyst of the present invention does not require regeneration treatment and can be used repeatedly in batch, semi-batch or continuous reactions.

さらに、本発明の触媒を用いることによって、生成するシリルアルケンへのイリジウム種の混入を防ぐことで、生成物の生成過程を簡略化あるいは省略することができる。
本発明の触媒は、脱水素シリル化反応に対して飛躍的に高い活性を示し、触媒活性の低下を伴うことなく触媒の再利用が可能で、さらに均一系錯体触媒の使用に伴って発生する問題点を解決することができる。
Furthermore, by using the catalyst of the present invention, the production process of the product can be simplified or omitted by preventing iridium species from being mixed into the produced silylalkene.
The catalyst of the present invention has a remarkably high activity for the dehydrogenation silylation reaction, can be reused without deteriorating the catalytic activity, and is generated with the use of a homogeneous complex catalyst. The problem can be solved.

(a)Ir(acac)への金属酸化物の添加効果。(b)Ir(acac)への金属酸化物の添加効果。(A) Effect of addition of metal oxide to Ir (acac) 3 (B) Effect of addition of metal oxide to Ir (acac) 3 . (a)Ir(CO)12に対する酸化セリウムの添加効果。(b)IrCl・xHOに対する酸化セリウムの添加効果(A) Effect of addition of cerium oxide on Ir 4 (CO) 12 . (B) Effect of addition of cerium oxide on IrCl 3 xH 2 O 高基質/触媒比に於けるIr(acac)への酸化セリウムの添加効果Effect of cerium oxide addition to Ir (acac) 3 at high substrate / catalyst ratio 本発明触媒の再利用性の検討Examination of reusability of the catalyst of the present invention

本発明のイリジウム触媒は、希土類金属を含む酸化物(以下、「希土類金属酸化物」と記載する場合がある)とイリジウム化合物を溶媒中で処理することにより製造でき、溶媒中での処理としては、希土類金属を含む酸化物とイリジウム化合物を混合すること、希土類金属酸化物をイリジウム化合物の溶媒溶液に含浸もしくは浸漬することのいずれでもよい。前記処理は加熱下に行ってもよく、前記処理後に加熱してもよい。The iridium catalyst of the present invention can be produced by treating an oxide containing a rare earth metal (hereinafter sometimes referred to as “rare earth metal oxide”) and an iridium compound in a solvent. The oxide containing the rare earth metal and the iridium compound may be mixed, or the rare earth metal oxide may be impregnated or immersed in the solvent solution of the iridium compound. The treatment may be performed under heating, or may be performed after the treatment.

本発明のイリジウム触媒は、希土類金属酸化物とイリジウム化合物を溶媒中で処理することにより製造できるが、アルケンを加えず、ヒドロシラン類とイリジウム化合物と希土類金属酸化物の混合物を溶媒中で加熱することでも高活性のイリジウム固体触媒を得ることができる。例えば、ヒドロシラン類を溶媒中に希土類金属を含む酸化物とイリジウム化合物を添加して加熱を行うことで、溶媒中でイリジウム触媒を得ることができる。ヒドロシラン類とイリジウム化合物と希土類金属酸化物の混合物を溶媒中で加熱してイリジウム触媒を調製し、さらにアルケンを加えることで脱水素シリル化反応を行うこともできる。本発明の好ましい実施形態では、ヒドロシラン類とイリジウム化合物を溶媒に加えて加熱しながら前処理し、そこに希土類金属酸化物を加えて加熱することで、高活性のイリジウム触媒を得ることができる。このように、本発明のイリジウム触媒は、イリジウム化合物と希土類金属酸化物の2成分を用いて調製することもでき、イリジウム化合物と希土類金属酸化物とヒドロシラン類の3成分を用いて調製することもできる。3成分を用いる場合、溶媒中に添加する順序は問わず、いずれかの2成分(例えばイリジウム化合物とヒドロシラン類)を先に添加し、次いで残りの1成分(例えば希土類金属酸化物)を添加してもよいが、特に、ヒドロシラン類とイリジウム化合物で前処理し、その後希土類金属酸化物を作用させるのが好ましい。The iridium catalyst of the present invention can be produced by treating a rare earth metal oxide and an iridium compound in a solvent, but without adding an alkene, heating a mixture of hydrosilanes, iridium compound and rare earth metal oxide in a solvent. However, a highly active iridium solid catalyst can be obtained. For example, an iridium catalyst can be obtained in a solvent by adding hydrosilanes to an oxide containing a rare earth metal and an iridium compound in a solvent and heating. A mixture of hydrosilanes, an iridium compound and a rare earth metal oxide is heated in a solvent to prepare an iridium catalyst, and a dehydrogenation silylation reaction can also be performed by adding an alkene. In a preferred embodiment of the present invention, a highly active iridium catalyst can be obtained by adding hydrosilanes and an iridium compound to a solvent and pretreating with heating, adding a rare earth metal oxide thereto and heating. Thus, the iridium catalyst of the present invention can be prepared using two components of an iridium compound and a rare earth metal oxide, or can be prepared using three components of an iridium compound, a rare earth metal oxide, and hydrosilanes. it can. When three components are used, any two components (for example, iridium compound and hydrosilane) are added first, and then the remaining one component (for example, rare earth metal oxide) is added regardless of the order of addition to the solvent. In particular, it is preferable to pre-treat with hydrosilanes and an iridium compound, and then to allow the rare earth metal oxide to act.

本明細書において、「希土類金属を含む酸化物」としては、酸化セリウムなどの希土類金属酸化物又は希土類金属と非希土類金属を含む複合酸化物が挙げられる。本明細書では、これらの酸化物と複合酸化物を含めて「希土類金属含有酸化物」と記載することがある。好ましい希土類金属を含む酸化物は、酸化セリウム、酸化プラセオジウム、酸化テルビウム、酸化イッテルビウム、酸化イットリウム、セリウムとプラセオジウムの複合酸化物、セリウムとテルビウムの複合酸化物、セリウムとイッテルビウムの複合酸化物、セリウムとイットリウムの複合酸化物である。In this specification, examples of the “oxide containing a rare earth metal” include a rare earth metal oxide such as cerium oxide or a composite oxide containing a rare earth metal and a non-rare earth metal. In this specification, these oxides and composite oxides may be referred to as “rare earth metal-containing oxides”. Preferred oxides containing rare earth metals are cerium oxide, praseodymium oxide, terbium oxide, ytterbium oxide, yttrium oxide, cerium and praseodymium composite oxide, cerium and terbium composite oxide, cerium and ytterbium composite oxide, cerium and It is a complex oxide of yttrium.

本明細書において、「イリジウム化合物」は、希土類金属を含む酸化物と反応させることで、ヒドロシラン類とアルケンを原料とした脱水素シリル化反応によりシリルアルケン類を製造するための優れたイリジウム触媒になり得るものであり、溶媒中で少なくとも一部は溶解し、希土類金属を含む酸化物と接触し、最終的に本発明のイリジウム触媒になるものである。イリジウム化合物は、イリジウム塩とイリジウム錯体を包含する。In this specification, the “iridium compound” is an excellent iridium catalyst for producing silylalkenes by dehydrogenation silylation reaction using hydrosilanes and alkenes as raw materials by reacting with oxides containing rare earth metals. Which can be at least partially dissolved in a solvent and brought into contact with an oxide containing a rare earth metal to ultimately become the iridium catalyst of the present invention. The iridium compound includes an iridium salt and an iridium complex.

本発明では、希土類金属を含む酸化物とイリジウム化合物を混合することで、従来のイリジウム錯体、イリジウム塩等のイリジウム化合物、あるいは希土類金属酸化物担持イリジウムを大きく上回る触媒活性及び選択性を示す触媒が製造できる。In the present invention, by mixing an oxide containing a rare earth metal and an iridium compound, a catalyst exhibiting catalytic activity and selectivity far exceeding those of a conventional iridium complex, an iridium compound such as an iridium salt, or a rare earth metal oxide-supported iridium. Can be manufactured.

本発明のイリジウム錯体は、ヒドロシラン類とアルケンを原料とした脱水素シリル化反応によりシリルアルケン類を製造する反応系で調製されてもよく、予めこのような錯体を調製しておき、前記反応系に添加することもできる。また、前記反応系から回収したイリジウム触媒は、繰り返し使用することができる。The iridium complex of the present invention may be prepared in a reaction system for producing a silylalkene by a dehydrogenation silylation reaction using hydrosilanes and an alkene as raw materials. It can also be added. The iridium catalyst recovered from the reaction system can be used repeatedly.

イリジウム触媒の製造方法
イリジウム錯体、イリジウム塩等のイリジウム化合物とともに添加する希土類金属を含む酸化物/複合酸化物としては、一般的に機械的強度が高く、触媒として利用した際の触媒の摩耗や粉化等によるロス及び製品への混入等の不利を避けることができるという点、高活性を有する触媒調製が容易であるという点、高い熱的、化学的安定性を有する点、及び他の副生成物を産しない点等から、希土類金属酸化物あるいはこれらを含む複合酸化物が挙げられる。
Iridium catalyst production method Oxides / complex oxides containing rare earth metals added together with iridium compounds such as iridium complexes and iridium salts generally have high mechanical strength, and wear and powder of the catalyst when used as a catalyst. It is possible to avoid disadvantages such as loss due to chemicalization and product contamination, easy preparation of a catalyst having high activity, high thermal and chemical stability, and other by-products From the point of not producing a product, a rare earth metal oxide or a composite oxide containing these is given.

希土類金属としては、例えば、セリウム、プラセオジウム、テルビウム、イッテルビウム、イットリウム等が挙げられる。これらの希土類金属の酸化物は、1種の希土類金属を単独で用いてもよく、また、2種以上を希土類金属を混合して用いてもよい。これらの金属酸化物の中で、入手可能性、価格、触媒活性等の観点から、酸化セリウムあるいはこれを含む複合酸化物が好ましい。Examples of rare earth metals include cerium, praseodymium, terbium, ytterbium, yttrium, and the like. These rare earth metal oxides may be used alone or in combination of two or more rare earth metals. Among these metal oxides, cerium oxide or a composite oxide containing the same is preferable from the viewpoints of availability, cost, catalytic activity, and the like.

また、希土類金属含有酸化物は、さらにその他の金属酸化物との複合酸化物であってもよい。ここで、「複合酸化物」とは、希土類金属酸化物と他の金属(特に遷移金属)酸化物との複合体を意味する。他の金属は、アルカリ金属を含まないのが好ましく、アルカリ金属とアルカリ土類金属をともに含まないことがより好ましい。希土類金属以外の他の金属酸化物としては、例えば、酸化チタン、酸化バナジウム、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッケル、酸化銅等が挙げられる。  Further, the rare earth metal-containing oxide may be a composite oxide with other metal oxides. Here, the “composite oxide” means a composite of a rare earth metal oxide and another metal (especially a transition metal) oxide. The other metal preferably does not contain an alkali metal, and more preferably contains neither an alkali metal nor an alkaline earth metal. Examples of the metal oxide other than the rare earth metal include titanium oxide, vanadium oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, and copper oxide.

前記複合酸化物を用いる場合における、希土類金属酸化物以外の金属酸化物の含有割合は触媒としての機能を発現できれば特に制限されるものではないが、例えば、複合酸化物中、50質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましく、特に5質量%以下である。  In the case of using the composite oxide, the content ratio of the metal oxide other than the rare earth metal oxide is not particularly limited as long as the function as a catalyst can be expressed. For example, in the composite oxide, the content is 50% by mass or less. It is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.

希土類金属含有酸化物は、その前駆体として、硝酸塩、オキシ硝酸塩、炭酸塩、シュウ酸塩、酢酸塩等の金属塩を用い、加水分解後に空気中で焼成させること、あるいは直接熱分解させることによって得られる。好ましくは、希土類金属含有酸化物は、希土類金属の硝酸塩、オキシ硝酸塩、炭酸塩、シュウ酸塩、酢酸塩等の金属塩の溶液に沈殿剤を添加し、生じた沈殿を焼成することで得ることができる。沈殿剤としてはアンモニア、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属炭酸水素塩、エチルアミン、ジエチルアミン、トリエチルアミノ、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類などが挙げられる。希土類金属含有酸化物を得るための焼成温度としては、200〜700℃が好ましく、より好ましくは300〜500℃程度である。  Rare earth metal-containing oxides use as their precursors metal salts such as nitrates, oxynitrates, carbonates, oxalates, acetates, etc., and are calcined in the air after hydrolysis or directly pyrolyzed. can get. Preferably, the rare earth metal-containing oxide is obtained by adding a precipitating agent to a solution of a rare earth metal nitrate, oxynitrate, carbonate, oxalate, acetate or the like and firing the resulting precipitate. Can do. Precipitating agents include alkali metal hydroxides such as ammonia, sodium hydroxide, potassium hydroxide, and lithium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, and alkali metal hydrogen carbonates such as sodium bicarbonate and potassium bicarbonate. Examples include salts, amines such as ethylamine, diethylamine, triethylamino, monoethanolamine, diethanolamine, and triethanolamine. The firing temperature for obtaining the rare earth metal-containing oxide is preferably 200 to 700 ° C, more preferably about 300 to 500 ° C.

触媒を製造する方法としては「希土類金属を含む酸化物とイリジウム化合物を溶媒中で処理」し、その後に必要に応じて加熱すればよい。例えば、イリジウム化合物と希土類金属含有酸化物をともに溶媒中に投入して混合し、必要に応じて溶媒中で加熱すること、あるいは希土類金属含有酸化物を溶媒中のイリジウム化合物溶液に含浸もしくは浸漬し、必要に応じて加熱することにより、イリジウム触媒を製造することができる。これらの混合、含浸、浸漬は、全て「希土類金属を含む酸化物とイリジウム化合物を溶媒中で処理する」ことに該当する。溶媒としては、ヒドロシラン類(1)とアルケン(2)を原料とした脱水素シリル化反応によりシリルアルケン類(I)を製造する際の溶媒が好ましく例示され、具体的にはベンゼン、トルエン、キシレン、メシチレンなどの芳香族炭化水素、ヘキサン、シクロヘキサン等の脂肪族又は脂環式炭化水素、アセトニトリルなどのニトリル類、ピリジン、イミダゾールなどのヘテロ芳香族化合物、塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、テトラクロロエタン等のハロゲン化炭化水素、水、メタノール、エタノール、プロパノール、ブタノールなどの低級アルコール、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、テトラヒドロフラン、エーテル、ジイソプロピルエーテルなどのエーテル類、エチレングリコール、プロピレングリコール、ジエチレングリコールなどのグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテルなどのアルキレングリコールモノ/ジアルキルエーテル、グリセリン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド、酢酸などが挙げられる。本発明で使用するイリジウム触媒は、一般式(I)で表される不飽和シラン化合物の製造の反応系で調製することができ、溶媒としてはこのような反応に使用する溶媒が好ましく例示される。  As a method for producing the catalyst, "treatment of an oxide containing a rare earth metal and an iridium compound in a solvent" may be performed, and then heating may be performed as necessary. For example, an iridium compound and a rare earth metal-containing oxide are both put in a solvent and mixed, and if necessary, heated in a solvent, or the rare earth metal-containing oxide is impregnated or immersed in an iridium compound solution in a solvent. The iridium catalyst can be produced by heating as necessary. These mixing, impregnation and immersion all correspond to “treating an oxide containing a rare earth metal and an iridium compound in a solvent”. Preferred examples of the solvent include solvents for producing silylalkenes (I) by a dehydrogenation silylation reaction using hydrosilanes (1) and alkenes (2) as raw materials, specifically benzene, toluene, xylene. , Aromatic hydrocarbons such as mesitylene, aliphatic or alicyclic hydrocarbons such as hexane and cyclohexane, nitriles such as acetonitrile, heteroaromatic compounds such as pyridine and imidazole, methylene chloride, chloroform, carbon tetrachloride, dichloroethane, Halogenated hydrocarbons such as trichloroethane and tetrachloroethane, water, lower alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, esters such as ethyl acetate and butyl acetate, tetrahydrofuran and ether Ethers such as diisopropyl ether, glycols such as ethylene glycol, propylene glycol, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, alkylene glycol mono / dialkyl ethers such as ethylene glycol diethyl ether, glycerin, dioxane Dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, acetic acid and the like. The iridium catalyst used in the present invention can be prepared in a reaction system for producing an unsaturated silane compound represented by the general formula (I), and the solvent used in such a reaction is preferably exemplified as the solvent. .

本発明の他の実施形態において、溶媒中にイリジウム化合物とヒドロシラン類と希土類金属を含む酸化物を加えることで、本発明のイリジウム触媒を得ることができる。  In another embodiment of the present invention, the iridium catalyst of the present invention can be obtained by adding an oxide containing an iridium compound, a hydrosilane, and a rare earth metal to a solvent.

本発明のさらに他の実施形態において、溶媒中にイリジウム化合物とヒドロシラン類とアルケンと希土類金属を含む酸化物とアルケン化合物を加え、イリジウム触媒を反応系中で生成させながら同時に脱水素シリル化反応を行ってもよい。  In yet another embodiment of the present invention, an iridium compound, a hydrosilane, an alkene, an oxide containing a rare earth metal, and an alkene compound are added to a solvent, and an iridium catalyst is generated in the reaction system while simultaneously performing a dehydrogenation silylation reaction. You may go.

イリジウム化合物としては、イリジウム塩、イリジウム錯体などが挙げられ、具体的には、IrCl4,IrCl3,IrCl2,IrBr4,IrBr3,IrBr2,IrI4,IrI3,IrI2,酢酸イリジウムなどのイリジウム塩、ヘキサクロロイリジン酸[H2IrCl6]、(NH4)2IrCl6、(NH4)2IrBr6、[Ir(CO)2I]2、[Ir(CO)2Cl]2、[Ir(CO)2Br]2、[Ir(CO)2I2]-H+、[Ir(CO)2Br2]-H+、[Ir(CO)2I 4]-H+、[Ir(CH3)I3(CO)2]-H+、Ir4(CO)12、Ir(acac)(CO)2、Ir(acac)3(「acac」はアセチルアセトナトである)、ビス(シクロペンタジエニルイリジウムジクロリド)などのイリジウム錯体が挙げられ、これらイリジウム化合物は水和物であってもよい。好ましいイリジウム化合物は、IrCl3・xH2O(x=0〜3)、トリアセチルアセトナトイリジウム、Ir(CO)12、ビス(シクロペンタジエニルイリジウムジクロリド)である。  Examples of the iridium compound include iridium salts and iridium complexes. Specifically, IrClFour, IrClThree, IrCl2, IrBrFour, IrBrThree, IrBr2, IrIFour, IrIThree, IrI2, Iridium salts such as iridium acetate, hexachloroiridic acid [H2IrCl6], (NHFour)2IrCl6, (NHFour)2IrBr6, [Ir (CO)2I]2, [Ir (CO)2Cl]2, [Ir (CO)2Br]2, [Ir (CO)2I2]-H+, [Ir (CO)2Br2]-H+, [Ir (CO)2I Four]-H+, [Ir (CHThree) IThree(CO)2]-H+, IrFour(CO)12, Ir (acac) (CO)2, Ir (acac)Three(“Acac” is acetylacetonato), iridium complexes such as bis (cyclopentadienyliridium dichloride) and the like, and these iridium compounds may be hydrates. Preferred iridium compounds are IrClThreeXH2O (x = 0-3), triacetylacetonatoiridium, Ir4(CO)12, Bis (cyclopentadienyliridium dichloride).

本発明のイリジウム触媒はイリジウム化合物の溶媒溶液中で希土類金属含有酸化物を処理(混合、含浸、浸漬)することで製造することができるが、好ましくは溶媒中でさらに加熱することにより製造することができる。  The iridium catalyst of the present invention can be produced by treating (mixing, impregnating, immersing) a rare earth metal-containing oxide in a solvent solution of an iridium compound, but preferably by further heating in a solvent. Can do.

イリジウム錯体あるいはイリジウム塩等のイリジウム化合物の割合(溶媒中に添加されたイリジウム化合物の量)としては、希土類金属含有酸化物の添加量を基準として0.001〜20質量%程度が好ましく、0.1〜5質量%程度がより好ましく、0.08〜0.2質量%程度がさらに好ましい。このような範囲は、触媒にかかるコストを低減し、同時に触媒回転数の低下を防ぐために好ましい。  The ratio of the iridium compound such as an iridium complex or an iridium salt (the amount of the iridium compound added to the solvent) is preferably about 0.001 to 20% by mass based on the addition amount of the rare earth metal-containing oxide. About 1-5 mass% is more preferable, and about 0.08-0.2 mass% is still more preferable. Such a range is preferable in order to reduce the cost of the catalyst and at the same time prevent the catalyst rotational speed from decreasing.

本発明の好ましい実施形態において、希土類金属含有酸化物とともに添加したイリジウム化合物を、溶媒(好ましい実施形態では脱水素シリル化の原料および溶媒)中で混合し加熱する工程によって本発明のイリジウム触媒が製造され得る。  In a preferred embodiment of the present invention, the iridium compound added together with the rare earth metal-containing oxide is mixed and heated in a solvent (in the preferred embodiment, the raw material and solvent for dehydrogenation silylation), and the iridium catalyst of the present invention is produced. Can be done.

イリジウム化合物と希土類金属含有酸化物は溶媒中で混合した後、必要に応じて加熱を行う。加熱しない場合には、その分長時間反応させることで、本発明の触媒を得ることができる。反応温度は室温以上が好ましく、より好ましくは40〜200℃程度、さらに好ましくは80〜170℃程度、特に好ましくは120〜140℃程度である。この反応温度は、イリジウム触媒の製造と脱水素シリル化反応の両方に適用できる。ヒドロシラン類とアルケンを原料とした脱水素シリル化反応の反応系でイリジウム触媒を調製する場合、反応温度が40℃以上であれば、触媒の合成および脱水素シリル化反応に要する時間を短縮することができる。また、反応温度を200℃以下に設定することで、比較的沸点の低い成分のロスを抑制することができる。このような温度で反応を行うことで、高活性なイリジウム触媒を得ることができる。脱水素シリル化に要する反応時間は30分から48時間程度、好ましくは1〜24時間程度である。  The iridium compound and the rare earth metal-containing oxide are mixed in a solvent, and then heated as necessary. When not heating, the catalyst of this invention can be obtained by making it react for that much time. The reaction temperature is preferably room temperature or higher, more preferably about 40 to 200 ° C, still more preferably about 80 to 170 ° C, and particularly preferably about 120 to 140 ° C. This reaction temperature is applicable to both iridium catalyst production and dehydrogenation silylation reactions. When preparing an iridium catalyst in a dehydrogenation silylation reaction system using hydrosilanes and alkenes as raw materials, the time required for catalyst synthesis and dehydrogenation silylation reaction should be shortened if the reaction temperature is 40 ° C or higher. Can do. Moreover, the loss of the component with a comparatively low boiling point can be suppressed by setting reaction temperature to 200 degrees C or less. By carrying out the reaction at such a temperature, a highly active iridium catalyst can be obtained. The reaction time required for dehydrogenation silylation is about 30 minutes to 48 hours, preferably about 1 to 24 hours.

希土類金属含有酸化物およびイリジウム化合物の混合及び上記反応温度での反応工程は、空気中で行うことも可能であるが、不活性ガス雰囲気下で行われてもよい。不活性ガスとしては、アルゴン、窒素、ヘリウム等が挙げられる。  The mixing of the rare earth metal-containing oxide and the iridium compound and the reaction step at the reaction temperature can be performed in air, but may be performed in an inert gas atmosphere. Examples of the inert gas include argon, nitrogen, helium and the like.

上記のように製造された金属酸化物に担持したイリジウム触媒は、式(I)の化合物を製造後、必要に応じて洗浄後に分離、回収を行い、再生することなく次の反応に使用することができる。  The iridium catalyst supported on the metal oxide produced as described above should be used for the next reaction without separation and recovery after washing, if necessary, after producing the compound of formula (I). Can do.

洗浄に用いられる洗浄剤としては、特に限定されるものではないが、例えば、THF、ジエチルエーテル、メタノール、エタノール、水、ヘキサン、石油エーテルあるいはこれらの混合物等が挙げられる。  Although it does not specifically limit as a cleaning agent used for washing | cleaning, For example, THF, diethyl ether, methanol, ethanol, water, hexane, petroleum ether, or these mixtures etc. are mentioned.

本発明で得られたイリジウム触媒は、ヒドロシラン類とアルケンを原料とした脱水素シリル化反応によりシリルアルケン類を製造する反応系中で発生させた場合には、そのまま触媒として使用すればよく、触媒を回収/再利用する場合には、反応系の温度を下げ(例えば室温)、その状態で希土類金属を含む酸化物を濾別すればよい。反応系の温度を下げることで、イリジウム成分はほぼ完全に希土類金属を含む酸化物に吸着され、溶液中には検出限界以下のイリジウムのみ存在するようにできるため、イリジウムの損失を最小限にして回収し、生成物中のイリジウム含量をできるだけ低下することができる。  The iridium catalyst obtained in the present invention may be used as it is as a catalyst when it is generated in a reaction system for producing silylalkenes by a dehydrogenation silylation reaction using hydrosilanes and alkenes as raw materials. In the case of recovering / reusing the catalyst, the temperature of the reaction system is lowered (for example, room temperature), and the oxide containing the rare earth metal may be filtered off in that state. By lowering the temperature of the reaction system, the iridium component is almost completely adsorbed by the oxide containing rare earth metal, so that only iridium below the detection limit exists in the solution, so that the loss of iridium is minimized. It can be recovered and the iridium content in the product can be reduced as much as possible.

イリジウム化合物は溶媒中で少なくとも一部は溶解し、希土類金属を含む酸化物は不溶物として存在する。溶媒中でこれらの化合物を反応させて活性なイリジウム化合物を発生させてそれを濾過すれば、ろ液と濾別される不溶物の両方に触媒活性が確認され得る。理論に拘束されることを望むわけではないが、ろ液中の触媒活性イリジウムは、希土類金属を含む酸化物と接触することでヒドロシラン類とアルケンを原料とした脱水素シリル化反応に適したイリジウム触媒に変換されたものと本発明者は考えている。一方、このような触媒活性イリジウムは大部分が溶媒不溶性の希土類金属含有酸化物の表面に吸着された形態で存在し、この不溶物を不飽和シラン化合物を製造するための反応系中に添加すると、この反応系において触媒活性イリジウムが溶媒中に微量遊離するか、或いは、希土類金属を含む酸化物の表面に吸着されたままで選択性の高いイリジウム触媒として作用すると本発明者は考えている。従って、本発明の触媒の製造方法で得られるイリジウム触媒は、溶媒に溶解する形態であってもよく、溶媒に不溶な形態であってもよい。  The iridium compound is at least partially dissolved in the solvent, and the oxide containing the rare earth metal exists as an insoluble substance. When these compounds are reacted in a solvent to generate an active iridium compound and filtered, the catalytic activity can be confirmed in both the filtrate and the insoluble matter to be filtered off. Although not wishing to be bound by theory, catalytically active iridium in the filtrate is suitable for dehydrogenation silylation reaction using hydrosilanes and alkenes as raw materials by contacting with oxides containing rare earth metals. The present inventor believes that it has been converted to a catalyst. On the other hand, most of such catalytically active iridium exists in a form adsorbed on the surface of the solvent-insoluble rare earth metal-containing oxide, and when this insoluble matter is added to the reaction system for producing the unsaturated silane compound, In this reaction system, the present inventor believes that a small amount of catalytically active iridium is liberated in the solvent or acts as a highly selective iridium catalyst while adsorbed on the surface of an oxide containing a rare earth metal. Therefore, the iridium catalyst obtained by the method for producing a catalyst of the present invention may be in a form dissolved in a solvent or in a form insoluble in a solvent.

式(I)の化合物の製造方法
本発明は、上記製造方法により得られたイリジウム触媒の存在下で、化合物(1)と化合物(2)を反応させる工程を含む化合物(I)の製造方法にも関する。
化合物(I)の製造方法をScheme1に示す。
Method for Producing Compound of Formula (I) The present invention relates to a method for producing compound (I) comprising a step of reacting compound (1) and compound (2) in the presence of an iridium catalyst obtained by the above production method. Also related.
The production method of compound (I) is shown in Scheme 1.

Figure 0006578211

(式中、R、Rは、前記に定義されるとおりである)
Figure 0006578211

(Wherein R 1 and R 2 are as defined above)

溶媒の存在下で式(I)の化合物を製造する場合、溶媒としては、メシチレン、キシレン、トルエン、ベンゼン、ヘキサン、n−オクタン、n−デカン等の無極性溶媒;N−メチル−2−ピロリドン(以下、NMPともいう)、N,N−ジメチルホルムアミド、THF、ジオキサン、塩化メチレン等の極性溶媒が挙げられるが、これらの中で、式(I)の化合物の収率が向上するという点において、無極性溶媒であることが好ましく、具体的には、トルエン、メシチレン等が特に好ましい。  When the compound of formula (I) is produced in the presence of a solvent, the solvent is a nonpolar solvent such as mesitylene, xylene, toluene, benzene, hexane, n-octane, n-decane; N-methyl-2-pyrrolidone (Hereinafter also referred to as NMP), polar solvents such as N, N-dimethylformamide, THF, dioxane, methylene chloride and the like. Among these, the yield of the compound of formula (I) is improved. A nonpolar solvent is preferable, and specifically, toluene, mesitylene and the like are particularly preferable.

式(I)の化合物の製造方法において、反応温度は、40〜200℃程度であることが好ましく、80〜150℃程度であることがより好ましい。反応時間は、30分から48時間程度、好ましくは1〜24時間程度である。  In the method for producing the compound of formula (I), the reaction temperature is preferably about 40 to 200 ° C, more preferably about 80 to 150 ° C. The reaction time is about 30 minutes to 48 hours, preferably about 1 to 24 hours.

式(I)の化合物の製造法は、化合物(1)1モルに対し、化合物(2)を0.5モル〜10モル程度、好ましくは1.6モル〜2.4モル程度使用する。  In the process for producing the compound of formula (I), compound (2) is used in an amount of about 0.5 mol to 10 mol, preferably about 1.6 mol to 2.4 mol, per 1 mol of compound (1).

本発明で用いられるイリジウム触媒は、希土類金属含有酸化物にイリジウム種が吸着した固体触媒及びこの固体から溶液に溶出するイリジウム種であるため、本発明の製造方法は、液相プロセス又は固相−液相プロセスにおいて行われる。そのため、例えば、本発明の希土類金属含有酸化物に担持されたイリジウム触媒をカラム等に詰め、出発物質等を流して(必要に応じて循環させる)、化合物(I)を得るといった連続的に反応を行う方法や、溶液中に分散させて反応後にろ過や傾斜法によって触媒と生成物を分離する方法等に応用することが可能である。  The iridium catalyst used in the present invention is a solid catalyst in which an iridium species is adsorbed on a rare earth metal-containing oxide and an iridium species that elutes from the solid into a solution. Performed in a liquid phase process. Therefore, for example, the iridium catalyst supported on the rare earth metal-containing oxide of the present invention is packed in a column or the like, and a starting material or the like is flowed (circulated as necessary) to obtain a compound (I) continuously. It is possible to apply to a method of performing the above, a method of dispersing in a solution and separating a catalyst and a product by filtration or a gradient method after the reaction.

また、本発明の製造方法によって製造される化合物(I)は、有機ケイ素ポリマー原料として有用である。均一系触媒を用いる現行プロセスでは、生成物からの触媒成分の除去段階の環境・エネルギー負荷が大きい。これに対して、本願発明の触媒を用いた製造方法によると、触媒成分の除去にかかるコストを低減することが可能となり、再生工程が不要であり、トリフェニルホスフィンなどのリン化合物や、1,10−フェナントロリン等の高価な配位子の使用が必要とされないため、有用な活用が期待できる。  The compound (I) produced by the production method of the present invention is useful as an organosilicon polymer raw material. In the current process using a homogeneous catalyst, the environmental and energy load is high in the stage of removing the catalyst component from the product. On the other hand, according to the production method using the catalyst of the present invention, it is possible to reduce the cost for removing the catalyst component, no regeneration step is required, and a phosphorus compound such as triphenylphosphine, Since it is not necessary to use an expensive ligand such as 10-phenanthroline, useful utilization can be expected.

以下に参考例、実施例及び試験例を挙げて本発明を更に具体的に説明するが、これらは本発明を限定するものではない。  Hereinafter, the present invention will be described in more detail with reference to Reference Examples, Examples and Test Examples, but these do not limit the present invention.

実施例1
1.実験
1.1)触媒調製
(酸化セリウムの調製)硝酸セリウム(III)六水和物12.6g(和光純薬製29.0mmol)をイオン交換水400mLに溶解させ、28%アンモニア水35mLを滴下して室温で2時間撹拌した。1時間以上放置した後、生じた紫色の沈殿をイオン交換水で洗浄し80℃で一晩乾燥させ、空気中10℃/minで昇温、所定温度にて30分間焼成して酸化セリウムを得た。このようにして得られた酸化セリウムを例えば沈殿剤にアンモニア水、400℃で焼成した際にはCeO(NH,400)のように表記する。また、水酸化ナトリウム水溶液を沈殿剤とした際には、アンモニア水の代わりに3.0M水酸化ナトリウム水溶液を40mL用いた。その際得られた酸化セリウムは、例えばCeO(NaOH,400)のように表記する。沈殿剤としてNaOHを使用した場合、微量のNaが酸化セリウムに含まれる。
Example 1
1. Experiment 1.1) Catalyst preparation
(Preparation of cerium oxide) 12.6 g of cerium (III) nitrate hexahydrate (29.0 mmol manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 400 mL of ion-exchanged water, and 35 mL of 28% aqueous ammonia was added dropwise and stirred at room temperature for 2 hours. did. After standing for 1 hour or more, the resulting purple precipitate was washed with ion-exchanged water, dried at 80 ° C. overnight, heated in air at 10 ° C./min, and calcined at a predetermined temperature for 30 minutes to obtain cerium oxide. It was. The cerium oxide thus obtained is expressed as, for example, CeO 2 (NH 3 , 400) when calcined at 400 ° C. with ammonia water as a precipitant. Moreover, when using sodium hydroxide aqueous solution as a precipitant, 40 mL of 3.0M sodium hydroxide aqueous solution was used instead of ammonia water. The cerium oxide obtained at this time is expressed as, for example, CeO 2 (NaOH, 400). When NaOH is used as the precipitating agent, a trace amount of Na is contained in cerium oxide.

(本発明触媒及び比較触媒の調製)
上記で調製した酸化セリウム125mgにトリアセチルアセトナトイリジウム(Ir(acac)3、アルドリッチ社製、イリジウムとして13〜0.625μmol)を20mLのPyrex(登録商標)製反応容器に加え、以下に述べる反応条件下でのシリル化合物合成反応に供した。
(Preparation of catalyst of the present invention and comparative catalyst)
To 125 mg of cerium oxide prepared above, triacetylacetonatoiridium (Ir (acac) 3, manufactured by Aldrich, 13 to 0.625 μmol as iridium) is added to a 20 mL reaction container made of Pyrex (registered trademark), and the reaction described below It was subjected to a silyl compound synthesis reaction under conditions.

比較触媒(Ir/CeO)はトリアセチルアセトナトイリジウム(アルドリッチ社製)を0.2〜2質量%の担持量となるようにメタノール約10mLに溶かし、酸化セリウム1.0gを加えて室温で含浸し、蒸発乾固させ、空気中で300℃にて30分焼成し、酸化セリウムに担持したイリジウム(Ir/CeO)触媒を得た。その他の担持触媒も同様の方法で合成した。The comparative catalyst (Ir / CeO 2 ) was prepared by dissolving triacetylacetonatoiridium (manufactured by Aldrich) in about 10 mL of methanol so that the supported amount was 0.2 to 2% by mass, and adding 1.0 g of cerium oxide at room temperature. It was impregnated, evaporated to dryness, and calcined in air at 300 ° C. for 30 minutes to obtain an iridium (Ir / CeO 2 ) catalyst supported on cerium oxide. Other supported catalysts were synthesized in the same manner.

1.2)触媒の検討
磁気回転子を入れた20mLのPyrex(登録商標)製反応容器に、所定量のCeO(NH,400)及びトリアセチルアセトナトイリジウムを加え、アルゴン置換後、ジメチルフェニルシラン(1a)を1.0mmol、スチレン(1b)を3.0mmol、内部標準としてテトラデカン(C1430)、及び溶媒としてトルエンを2.0mL加え、アルゴン雰囲気下、還流冷却装置を備えた120℃に保ったホットプレート上で3時間反応を行い、エチルベンゼンとともに、シリルスチレンを合成した。なお、反応容器にアルゴンを充填したゴムバルーンを装着させた。得られた化合物の定性、及び定量は、NMR(日本電子(株)製のEX−400)、GC−MS((株)島津製作所製のParvum2)及びGC((株)島津製作所製のGC14APF)を用いて測定した。
1.2) Examination of catalyst A predetermined amount of CeO 2 (NH 3 , 400) and triacetylacetonatoiridium were added to a 20 mL Pyrex (registered trademark) reaction vessel containing a magnetic rotor, and after substitution with argon, dimethyl 1.0 mmol of phenylsilane (1a), 3.0 mmol of styrene (1b), tetradecane (C 14 H 30 ) as an internal standard, and 2.0 mL of toluene as a solvent were added, and a reflux cooling device was provided in an argon atmosphere. Reaction was carried out on a hot plate maintained at 120 ° C. for 3 hours to synthesize silylstyrene together with ethylbenzene. Note that a rubber balloon filled with argon was attached to the reaction vessel. The qualitative and quantitative properties of the obtained compound are NMR (EX-400 manufactured by JEOL Ltd.), GC-MS (Parvum2 manufactured by Shimadzu Corporation) and GC (GC14APF manufactured by Shimadzu Corporation). It measured using.

触媒、反応温度を以下の図表に示すように変更し、同様の方法で脱水素シリル化反応を行った。The catalyst and reaction temperature were changed as shown in the following chart, and the dehydrogenation silylation reaction was performed in the same manner.

1.3)固体成分の熱時ろ過試験
本処方により反応系中で調製した固体触媒について、固体表面から溶液中に溶出した金属種、あるいは固体表面に固定化された金属種のいずれが触媒活性種として機能しているかを調べるため、熱時ろ過試験を行った。1.2)に示した条件下で所定時間反応後、加熱中の懸濁液をシリンジにて採取し、シリンジフィルタを用いて触媒をろ過した。その際、予め加熱しておいた反応容器にろ液を加えて再度加熱反応を行い、その後は1.2)と同様の操作によって経時変化測定を続けた。
1.3) Hot filtration test for solid components For the solid catalyst prepared in the reaction system according to this formulation, either the metal species eluted from the solid surface into the solution or the metal species immobilized on the solid surface has catalytic activity. A hot filtration test was conducted to see if it functions as a seed. After reaction for a predetermined time under the conditions shown in 1.2), the suspension being heated was collected with a syringe, and the catalyst was filtered using a syringe filter. At that time, the filtrate was added to the reaction vessel that had been heated in advance, and the reaction was again carried out. Thereafter, the change over time was continued by the same operation as in 1.2).

1.4)固体成分の回収・再利用
1.2)に示した条件下で反応後、遠心分離により固体成分を回収したのち、ジエチルエーテルを用いて3回洗浄、減圧乾燥器にて80℃で終夜乾燥し、その後再度触媒として1.2)に示した条件下で反応に用いた。
1.4) Recovery and reuse of solid components
After the reaction under the conditions shown in 1.2), the solid component was collected by centrifugation, washed three times with diethyl ether, dried overnight at 80 ° C. in a vacuum dryer, and then again as a catalyst. Used for the reaction under the conditions shown in 2).

2.結果と考察
(Ir(acac)に及ぼす金属酸化物の添加効果)
ジメチルフェニルシランによるスチレンの脱水素型シリル化反応に対する本発明触媒(Ir(acac)+CeO)、及び比較触媒(Ir(acac))を用いた検討結果を式1及び図1に示した。ここで、各触媒中のIr量はいずれも0.013mmol(原料に対して1.3%)であり、本反応に於ける目的生成物はIaa、副生成物はIIaaである。酸化セリウムとしては特に表記のない限りCeO(NH,400)を用いた。なお、非特許文献2によると、ジメチルフェニルシランは最もヒドロシリル化反応が進行しやすく、Iaaのみを選択的に生成できる触媒の開発が求められている原料である。
2. Results and discussion (addition effect of metal oxide on Ir (acac) 3 )
The results of studies using the catalyst of the present invention (Ir (acac) 3 + CeO 2 ) and the comparative catalyst (Ir (acac) 3 ) for the dehydrogenation-type silylation reaction of styrene with dimethylphenylsilane are shown in Formula 1 and FIG. . Here, the amount of Ir in each catalyst is 0.013 mmol (1.3% with respect to the raw material), and the target product in this reaction is Iaa and the by-product is IIaa. CeO 2 (NH 3 , 400) was used as cerium oxide unless otherwise specified. According to Non-Patent Document 2, dimethylphenylsilane is the raw material for which the hydrosilylation reaction is most likely to proceed and the development of a catalyst capable of selectively producing only Iaa is required.

比較触媒(Ir(acac)のみ)を用いた際には、反応開始3時間後にIaaが収率60%程度、IIaaが収率10%程度生成したのに対して、本発明触媒を用いることで顕著な活性、選択性の向上が認められ、開始3時間後のIaa及び副生物IIaaの収率はそれぞれ86%、3%となった。一方で、酸化チタンや酸化マグネシウムのような他の酸化物や、炭酸ナトリウムのような固体塩基を添加した場合は、Iaaの選択性の向上は認められず、Iaaの収率にも顕著な向上効果は認められなかった。なお、本反応においては、目的生成物Iaaに対して当量のエチルベンゼンの生成が確認されており、イリジウムヒドリド種からスチレンへの水素移動を伴って進行することが判明している。以上の結果から、Ir(acac)と酸化セリウム間の特異な相互作用によって、高活性・高選択性を有するイリジウム種が生成することが示された。When a comparative catalyst (Ir (acac) 3 only) was used, Iaa was produced in a yield of about 60% and IIaa was produced in a yield of about 10% 3 hours after the start of the reaction, whereas the catalyst of the present invention was used. Markedly improved activity and selectivity, and the yields of Iaa and by-product IIaa 3 hours after the start were 86% and 3%, respectively. On the other hand, when other oxides such as titanium oxide and magnesium oxide and solid bases such as sodium carbonate are added, Iaa selectivity is not improved, and Iaa yield is also significantly improved. No effect was observed. In this reaction, formation of an equivalent amount of ethylbenzene relative to the target product Iaa has been confirmed, and it has been found that the reaction proceeds with hydrogen transfer from the iridium hydride species to styrene. From the above results, it was shown that iridium species having high activity and high selectivity are generated by the specific interaction between Ir (acac) 3 and cerium oxide.

Figure 0006578211
Figure 0006578211

本発明触媒に於いて添加する酸化セリウムの焼成温度の影響を検討した。本発明触媒の活性・選択性は焼成温度の影響を受け、酸化セリウムの焼成温度は400℃程度がより望ましいことが判明した。より低温で焼成した場合には活性が低下する傾向があり、より高温で焼成した場合には活性はやや向上する一方、Iaaの選択性が低下する傾向が見られた。  The influence of the calcination temperature of cerium oxide added in the catalyst of the present invention was examined. It has been found that the activity and selectivity of the catalyst of the present invention are affected by the firing temperature, and the firing temperature of cerium oxide is more preferably about 400 ° C. When baked at a lower temperature, the activity tended to decrease, and when baked at a higher temperature, the activity was slightly improved, while the Iaa selectivity tended to decrease.

(種々のイリジウム錯体及びイリジウム塩に対する酸化セリウムの添加効果)
Ir(CO)12、IrCl・xHO等の様々なイリジウム錯体やイリジウム塩について酸化セリウムの添加効果を検討した。結果を図2に示す。いずれのイリジウム錯体もそのままでは本反応にはほとんど活性を示さないが、酸化セリウムの共存下では優れた触媒活性を示し、選択的にIaaが得られた。特にIr(CO)12触媒に酸化セリウムを添加した場合には含浸担持Ir/CeO触媒を上回る活性を示した。一方、IrCl・xHOを前駆体とする含浸担持Ir/CeO触媒を用いるとIIaaの副生が認められたが、IrCl・xHOに酸化セリウムを共存させた場合にはこうしたIIaaの副生は顕著に抑制された。このように、幅広いイリジウム錯体に対して、酸化セリウムの添加による効果が認められ、特に非特許論文10に示した従来法固体触媒(含浸担持Ir/CeO触媒)よりも優れた性能が示された。
(Additional effect of cerium oxide on various iridium complexes and iridium salts)
The effect of adding cerium oxide on various iridium complexes and iridium salts such as Ir 4 (CO) 12 and IrCl 3 .xH 2 O was examined. The results are shown in FIG. None of the iridium complexes showed any activity in this reaction as they were, but exhibited excellent catalytic activity in the presence of cerium oxide, and Iaa was selectively obtained. In particular, when cerium oxide was added to the Ir 4 (CO) 12 catalyst, the activity was higher than that of the impregnated supported Ir / CeO 2 catalyst. On the other hand, IrCl 3 · xH 2 is O to use impregnation Ir / CeO 2 catalyst precursor when IIaa-production of was observed, and this is In the co-existence of cerium oxide IrCl 3 · xH 2 O IIaa by-product was significantly suppressed. Thus, the effect of addition of cerium oxide was recognized for a wide range of iridium complexes, and in particular, performance superior to the conventional solid catalyst (impregnated supported Ir / CeO 2 catalyst) shown in Non-Patent Paper 10 was shown. It was.

(高基質/触媒比における酸化セリウムの添加効果)
酸化セリウム(125mg)共存下でIr(acac)の量が及ぼす影響を検討したところ、0.625μmol付近で触媒回転頻度が最大となった。この際の基質/触媒比は1600である。図3には本条件下で、本発明触媒、及び比較触媒(Ir(acac) )を用いた検討結果を示した。同イリジウム量の含浸担持Ir/CeO触媒を用いた場合の結果も併せて示した。図3に示すように、本発明触媒は比較触媒群を上回る高い触媒活性と優れた選択性が示された。このように、実用水準の高い基質/触媒比においても、本発明触媒は優れた選択性、活性を維持することが判明した。さらに、反応終了後、室温にて固体をろ過し、ろ液中に含まれるイリジウム量をICP発光分析装置(サーモフィッシャーサイエンティフィク社製iCAP6300)によって測定したところ、イリジウムは検出されず、反応系の温度を下げることで、イリジウム成分はほぼ完全に希土類金属を含む酸化物に吸着されることが判明した。
(Additional effect of cerium oxide at high substrate / catalyst ratio)
  Ir (acac) in the presence of cerium oxide (125 mg)3As a result of examining the effect of the amount of catalyst, the catalyst rotation frequency became maximum at around 0.625 μmol. The substrate / catalyst ratio at this time is 1600. FIG. 3 shows the catalyst of the present invention and the comparative catalyst (Ir (acac)) under these conditions. 3) Shows the results of the study. Ir / CeO impregnated with the same amount of iridium2The results when using a catalyst are also shown. As shown in FIG. 3, the catalyst of the present invention showed high catalytic activity and superior selectivity over the comparative catalyst group. Thus, it has been found that the catalyst of the present invention maintains excellent selectivity and activity even at a practically high substrate / catalyst ratio. Further, after completion of the reaction, the solid was filtered at room temperature, and the amount of iridium contained in the filtrate was measured with an ICP emission analyzer (iCAP6300 manufactured by Thermo Fisher Scientific Co., Ltd.). It was found that the iridium component was almost completely adsorbed by the oxide containing the rare earth metal by lowering the temperature of.

(本発明触媒の熱時ろ過試験結果)
本発明触媒(イリジウム量0.625μmol)について、反応開始1時間後に固体をろ過し、ろ液を再度加熱したところ、反応は停止せず副生物IIaaの生成もほとんど認められなかった。これより、Ir(acac)と酸化セリウムとの相互作用により反応初期段階でイリジウム種の形態が変化し、これらのイリジウム種が液相に溶出して触媒として機能すると考えられる。
(Results of hot filtration test of the catalyst of the present invention)
With respect to the catalyst of the present invention (iridium amount 0.625 μmol), the solid was filtered 1 hour after the start of the reaction, and the filtrate was heated again. As a result, the reaction did not stop and almost no by-product IIaa was observed. From this, it is considered that the form of iridium species changes in the initial stage of the reaction due to the interaction between Ir (acac) 3 and cerium oxide, and these iridium species are eluted into the liquid phase and function as a catalyst.

(本発明触媒の再利用試験結果)
本発明触媒(イリジウム量0.625μmol)を用いた検討に於いて、反応終了後の固体を回収、洗浄及び乾燥し、再度触媒として用いたところ、図4に示すように活性及び選択性の低下をほとんど伴わずに円滑に反応が進行した。さらに、活性の低下を伴わず少なくとも3回使用可能であることを確認した。すなわち、大部分のイリジウム種が触媒反応後に酸化セリウム表面に吸着し、再度固体触媒として反応に用いた際に高い活性・選択性を示すことが判明した。
(Reuse test result of the catalyst of the present invention)
In the study using the catalyst of the present invention (iridium amount 0.625 μmol), the solid after the reaction was recovered, washed and dried, and used again as a catalyst. As shown in FIG. 4, the activity and selectivity decreased. The reaction proceeded smoothly with little to no. Furthermore, it was confirmed that it can be used at least three times without a decrease in activity. That is, it has been found that most iridium species are adsorbed on the surface of cerium oxide after the catalytic reaction and show high activity and selectivity when used again as a solid catalyst in the reaction.

(アルカリ金属の影響)
NaOHを沈殿剤として用いて調製した酸化セリウムを使用したところ、IIaaの副生がほとんど抑制されなかった。そこで、NaClやKClを本発明触媒(CeO(NH,400使用))に添加して検討したところ、いずれの場合もIIaaの副生が認められた。これよりアルカリ金属の存在がIIaaの副生を促進すると考えられ、アルカリ金属を含まない酸化セリウムを用いることがより望ましいことが判明した。
(Influence of alkali metals)
When cerium oxide prepared using NaOH as a precipitant was used, by-product IIaa was hardly suppressed. Thus, when NaCl or KCl was added to the catalyst of the present invention (CeO 2 (using NH 3 , 400)) and studied, by-product IIaa was observed in any case. From this, it is considered that the presence of alkali metal promotes the by-production of IIaa, and it has been found that it is more desirable to use cerium oxide containing no alkali metal.

(原料の適用範囲の検討)
種々のスチレン誘導体及びアルケンを用いて、ジメチルビニルフェニルシランとのクロスカップリング反応における基質適応範囲を検討した結果を表1に示す。
ここに示したスチレン誘導体との反応は、これらの構造や置換基に関係なく反応温度130℃で円滑に反応が進行した。なお、現時点では正確な定量には至っていないが、GC−MS測定の結果から、良好な収率で目的生成物が生成していると見積もられた(◎)。このように多種多様なスチレン誘導体が適用可能であることが示された。さらにアクリル酸誘導体との反応も進行した(○)。なお、アルケン化合物とトリエチルシランとの反応(生成物:Iba)は、良好な収率で進行する(◎)ことを本発明者は確認した。
(Examination of application range of raw materials)
Table 1 shows the results of examining the substrate application range in the cross-coupling reaction with dimethylvinylphenylsilane using various styrene derivatives and alkenes.
The reaction with the styrene derivative shown here proceeded smoothly at a reaction temperature of 130 ° C. regardless of these structures and substituents. Although accurate quantification has not been achieved at the present time, it was estimated from the results of GC-MS measurement that the target product was produced in good yield ((). Thus, it was shown that a wide variety of styrene derivatives are applicable. Furthermore, the reaction with the acrylic acid derivative also proceeded (◯). The present inventor confirmed that the reaction between alkene compound and triethylsilane (product: Iba) proceeds in good yield (◎).

Figure 0006578211
Figure 0006578211

(ヒドロシラン前処理の影響)
トルエン溶媒(2.0mL)およびジメチルフェニルシラン(1a)1.0mmol存在下、アルゴン雰囲気中でIr(acac)(イリジウム量1.25μmol)を130℃で90分前処理した後、もう一方の基質であるスチレン(1b)を3.0mmol、およびCeOを125mg加えて反応を行ったところ、反応初期に短い誘導期が認められたものの、その後の反応はIIaaの副生を伴うことなく円滑に進行し、反応開始1時間後にIaaの収率は77%に達した。このようにイリジウム錯体にヒドロシラン存在下で加熱前処理を施し、その後にCeOを加えることによって触媒活性が顕著に向上すること判明した。
(Effect of hydrosilane pretreatment)
In the presence of toluene solvent (2.0 mL) and 1.0 mmol of dimethylphenylsilane (1a), Ir (acac) 3 (iridium content: 1.25 μmol) was pretreated at 130 ° C. for 90 minutes in an argon atmosphere. When the reaction was carried out by adding 3.0 mmol of styrene (1b) as a substrate and 125 mg of CeO 2 , a short induction period was observed at the initial stage of the reaction, but the subsequent reaction was smooth without any by-product of IIaa. The yield of Iaa reached 77% 1 hour after the start of the reaction. Thus, it has been found that the catalytic activity is remarkably improved by subjecting the iridium complex to a heat pretreatment in the presence of hydrosilane and then adding CeO 2 .

磁気回転子を入れた20mLのPyrex(登録商標)製反応容器に、所定量のCeO(NH,400)及びトリアセチルアセトナトイリジウムを加え、アルゴン置換後、ジメチルフェニルシラン(1a)を1.0mmol、スチレン(1b)を3.0mmol、内部標準としてテトラデカン(C1430)、及び溶媒としてトルエンを2.0mL加え、アルゴン雰囲気下、還流冷却装置を備えた120℃に保ったホットプレート上で3時間反応を行い、エチルベンゼンとともに、シリルスチレンを合成した。なお、反応容器にアルゴンを充填したゴムバルーンを装着させた。得られた化合物の定性、及び定量は、NMR(日本電子(株)製のEX−400)、GC−MS((株)島津製作所製のParvum2)及びGC((株)島津製作所製のGC14APF)を用いて測定した。Predetermined amounts of CeO 2 (NH 3 , 400) and triacetylacetonatoiridium are added to a 20 mL Pyrex (registered trademark) reaction vessel containing a magnetic rotor, and after substitution with argon, dimethylphenylsilane (1a) is 1 1.0 mmol, 3.0 mmol of styrene (1b), tetradecane (C 14 H 30 ) as an internal standard, and 2.0 mL of toluene as a solvent, and a hot plate maintained at 120 ° C. equipped with a reflux cooling device in an argon atmosphere The reaction was carried out for 3 hours above, and silylstyrene was synthesized together with ethylbenzene. Note that a rubber balloon filled with argon was attached to the reaction vessel. The qualitative and quantitative properties of the obtained compound are NMR (EX-400 manufactured by JEOL Ltd.), GC-MS (Parvum2 manufactured by Shimadzu Corporation) and GC (GC14APF manufactured by Shimadzu Corporation). It measured using.

本発明の製造方法で得られる触媒は、ホスフィン等の有害物質や1,10−フェナントロリン等の高価な配位子の添加が不要であり、生成物へのイリジウム種の混入を抑制でき、活性を失うことなく繰り返し再利用が可能であることから、この触媒の使用によって、従来の錯体触媒、及び本発明者らが既に報告した担持イリジウム触媒が有する、シリルアルケン類の製造上の諸問題が解決される。 The catalyst obtained by the production method of the present invention does not require the addition of harmful substances such as phosphine and expensive ligands such as 1,10-phenanthroline, can suppress the mixing of iridium species into the product, and has an activity. Since it can be reused repeatedly without losing it, the use of this catalyst solves various problems in the production of silylalkenes possessed by conventional complex catalysts and supported iridium catalysts already reported by the present inventors. Is done.

有機ケイ素ポリマー原料、有機無機複合多孔質材料原料、医薬品原料、農薬原料、液晶材料、電子材料等の効率的かつ低環境負荷型製造方法として活用されているが、均一系触媒を用いる現行プロセスでは、生成物からの触媒成分の除去段階の環境・エネルギー負荷が大きい。特に医療用ポリマー原料として用いる場合にはポリマー内に取り込まれた重金属種の除去が極めて困難であり、金属種の生成物への混入を最小化できる本発明の将来的な活用が期待できる。  It is used as an efficient and low environmental impact manufacturing method for organosilicon polymer raw materials, organic inorganic composite porous material raw materials, pharmaceutical raw materials, agricultural chemical raw materials, liquid crystal materials, electronic materials, etc., but in the current process using homogeneous catalysts The environmental and energy load during the removal of catalyst components from the product is large. In particular, when used as a polymer material for medical use, it is extremely difficult to remove heavy metal species incorporated into the polymer, and future utilization of the present invention that can minimize the mixing of metal species into the product can be expected.

Claims (15)

希土類金属を含む酸化物とイリジウム化合物を溶媒中で処理し、溶媒中でイリジウム触媒を調製することを特徴とする、非焼成方式のシリル基置換不飽和化合物製造用イリジウム触媒の製造方法。 A method for producing an iridium catalyst for producing a non-fired silyl group-substituted unsaturated compound , comprising treating an oxide containing a rare earth metal and an iridium compound in a solvent to prepare an iridium catalyst in the solvent. 溶媒中にイリジウム化合物とヒドロシラン類を添加して加熱し、次いで希土類金属を含む酸化物を加えてイリジウム化合物とヒドロシラン類を溶媒中で処理することを特徴とする、請求項1に記載のシリル基置換不飽和化合物製造用イリジウム触媒の製造方法。 The silyl group according to claim 1, wherein the iridium compound and the hydrosilane are added to the solvent and heated, and then the oxide containing the rare earth metal is added to treat the iridium compound and the hydrosilane in the solvent. A method for producing an iridium catalyst for producing a substituted unsaturated compound . 前記処理が希土類金属を含む酸化物とイリジウム化合物を溶媒中で混合することである、請求項1又は2に記載のシリル基置換不飽和化合物製造用イリジウム触媒の製造方法。 The method for producing an iridium catalyst for producing a silyl group-substituted unsaturated compound according to claim 1 or 2, wherein the treatment is mixing an oxide containing a rare earth metal and an iridium compound in a solvent. 前記処理が希土類金属を含む酸化物をイリジウム化合物の溶媒溶液に含浸もしくは浸漬することである、請求項1又は2に記載のシリル基置換不飽和化合物製造用イリジウム触媒の製造方法。 The method for producing an iridium catalyst for producing a silyl group-substituted unsaturated compound according to claim 1 or 2, wherein the treatment is impregnating or immersing an oxide containing a rare earth metal in a solvent solution of an iridium compound. 希土類金属を含む酸化物とイリジウム化合物を溶媒中で処理し、加熱することを特徴とする請求項1又は2に記載のシリル基置換不飽和化合物製造用イリジウム触媒の製造方法。 The method for producing an iridium catalyst for producing a silyl group-substituted unsaturated compound according to claim 1 or 2, wherein the oxide containing the rare earth metal and the iridium compound are treated in a solvent and heated. 希土類金属を含む酸化物が希土類金属酸化物又は希土類金属を含む複合酸化物である、請求項1〜5のいずれか1項に記載のシリル基置換不飽和化合物製造用イリジウム触媒の製造方法。 The method for producing an iridium catalyst for producing a silyl group-substituted unsaturated compound according to any one of claims 1 to 5, wherein the oxide containing a rare earth metal is a rare earth metal oxide or a complex oxide containing a rare earth metal. 前記酸化物が酸化セリウムである、請求項1〜6のいずれか1項に記載のシリル基置換不飽和化合物製造用イリジウム触媒の製造方法。 The method for producing an iridium catalyst for producing a silyl group-substituted unsaturated compound according to any one of claims 1 to 6, wherein the oxide is cerium oxide. イリジウム化合物がイリジウム錯体またはイリジウム塩である、請求項1〜7のいずれか1項に記載のシリル基置換不飽和化合物製造用イリジウム触媒の製造方法。 The method for producing an iridium catalyst for producing a silyl group-substituted unsaturated compound according to any one of claims 1 to 7, wherein the iridium compound is an iridium complex or an iridium salt. イリジウム化合物がIrCl・xHO(x=0〜3)、トリアセチルアセトナトイリジウム、Ir(CO)12、ビス(シクロペンタジエニルイリジウムジクロリド)である、請求項1〜8のいずれかに記載のシリル基置換不飽和化合物製造用イリジウム触媒の製造方法。 The iridium compound is IrCl 3 · xH 2 O (x = 0 to 3), triacetylacetonatoiridium, Ir 4 (CO) 12 , or bis (cyclopentadienyliridium dichloride). The manufacturing method of the iridium catalyst for silyl group substituted unsaturated compound manufacture of description. 請求項1〜9のいずれかに記載の製造方法によって得られるシリル基置換不飽和化合物製造用イリジウム触媒。 The iridium catalyst for silyl group substituted unsaturated compound manufacture obtained by the manufacturing method in any one of Claims 1-9. 請求項10に記載のイリジウム触媒の存在下で、シラン化合物(1)と不飽和化合物(2)を反応させることを特徴とする、一般式(I)で表されるシラン化合物の製造方法:
Figure 0006578211
(式中、RはR1a1b1cSi基を示し、Rはアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいヘテロアリールアルキル基、置換基を有していてもよいアラルキル基を示す。
1a、R1b、R1cは、各々独立してアルキル基、アルコキシ基、置換基を有していてもよいアリール基、ハロゲン原子を示す。)
A process for producing a silane compound represented by the general formula (I), wherein the silane compound (1) and the unsaturated compound (2) are reacted in the presence of the iridium catalyst according to claim 10:
Figure 0006578211
(In the formula, R 1 represents an R 1a R 1b R 1c Si group, and R 2 represents an alkyl group, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, a substituted group. A heteroarylalkyl group which may have a group and an aralkyl group which may have a substituent are shown.
R 1a , R 1b and R 1c each independently represent an alkyl group, an alkoxy group, an aryl group which may have a substituent, or a halogen atom. )
溶媒中に希土類金属を含む酸化物とイリジウム化合物を添加し、必要に応じて加熱してイリジウム触媒を溶媒中で調製し、得られた非焼成方式のイリジウム触媒をヒドロシラン類とアルケンを原料とした脱水素シリル化反応に使用して反応液からイリジウム触媒を濾過により回収し、回収した非焼成方式のイリジウム触媒をさらに次の脱水素シリル化反応に使用する工程を少なくとも1回行うことを特徴とするイリジウム触媒の回収及び再利用方法。 Add an oxide containing a rare earth metal and an iridium compound in a solvent, heat as necessary to prepare an iridium catalyst in the solvent, and use the resulting non-fired iridium catalyst as a raw material from hydrosilanes and alkenes The iridium catalyst is recovered from the reaction solution by filtration using the dehydrogenation silylation reaction, and the recovered non-calcined iridium catalyst is further used for the next dehydrogenation silylation reaction at least once. To recover and reuse iridium catalyst. 溶媒中にイリジウム化合物とヒドロシラン類と希土類金属を含む酸化物を添加して加熱することにより最初のイリジウム触媒の調製を行い、以下、イリジウム触媒の回収と脱水素シリル化反応への再利用を少なくとも1回行うことを特徴とする、請求項12に記載の脱水素シリル化反応におけるイリジウム触媒の回収及び再利用方法。 The first iridium catalyst was prepared by adding an iridium compound, hydrosilanes, and an oxide containing a rare earth metal to the solvent and heating. Hereinafter, at least the recovery of the iridium catalyst and its reuse in the dehydrogenation silylation reaction were performed. The method for recovering and reusing an iridium catalyst in the dehydrogenation silylation reaction according to claim 12, wherein the method is performed once. 溶媒中にイリジウム化合物とヒドロシラン類とアルケンと希土類金属を含む酸化物を添加して加熱し、最初のイリジウム触媒の調製と脱水素シリル化反応を同時に行い、以下、イリジウム触媒の回収と脱水素シリル化反応への再利用を少なくとも1回行うことを特徴とする、請求項12に記載の脱水素シリル化反応におけるイリジウム触媒の回収及び再利用方法。 An iridium compound, hydrosilanes, alkene and oxide containing rare earth metal are added to the solvent and heated, and the initial iridium catalyst preparation and dehydrogenation silylation reaction are performed simultaneously. The method for recovering and reusing an iridium catalyst in a dehydrogenation silylation reaction according to claim 12, wherein the recycle to the hydration reaction is performed at least once. 溶媒中にイリジウム化合物とヒドロシラン類を添加して加熱し、さらに希土類金属を含む酸化物を添加して加熱することにより最初のイリジウム触媒の調製を行い、得られたイリジウム触媒とアルケンの存在下に脱水素シリル化反応を行い、以下、イリジウム触媒の回収と脱水素シリル化反応への再利用を少なくとも1回行うことを特徴とする、請求項12〜14のいずれか1項に記載の脱水素シリル化反応におけるイリジウム触媒の回収及び再利用方法。 The first iridium catalyst was prepared by adding an iridium compound and hydrosilane to the solvent and heating, and further adding an oxide containing a rare earth metal and heating, and in the presence of the obtained iridium catalyst and alkene. The dehydrogenation silylation reaction is performed, and the dehydrogenation according to any one of claims 12 to 14, wherein the recovery of the iridium catalyst and the reuse for the dehydrogenation silylation reaction are performed at least once. A method for recovering and reusing an iridium catalyst in a silylation reaction.
JP2015561055A 2014-02-07 2015-02-06 Method for producing solid catalyst by adding metal oxide to metal complex Expired - Fee Related JP6578211B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014022456 2014-02-07
JP2014022456 2014-02-07
PCT/JP2015/053377 WO2015119244A1 (en) 2014-02-07 2015-02-06 Process for producing solid catalyst by addition of metal oxide to metal complex

Publications (2)

Publication Number Publication Date
JPWO2015119244A1 JPWO2015119244A1 (en) 2017-03-30
JP6578211B2 true JP6578211B2 (en) 2019-09-18

Family

ID=53778041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015561055A Expired - Fee Related JP6578211B2 (en) 2014-02-07 2015-02-06 Method for producing solid catalyst by adding metal oxide to metal complex

Country Status (2)

Country Link
JP (1) JP6578211B2 (en)
WO (1) WO2015119244A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102054981B1 (en) * 2017-08-16 2019-12-12 한국과학기술원 Iridium oxide nano catalyst and preparation method thereof
CN107570172B (en) * 2017-08-30 2020-06-09 江苏大学 Preparation method and application of ruthenium/nickel alloy nano catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599570B2 (en) * 2009-02-10 2014-10-01 国立大学法人 香川大学 Method for producing aryl derivative using heterogeneous catalyst
CN103084214B (en) * 2011-11-02 2014-11-05 中国石油化工股份有限公司 Iridium catalyst system

Also Published As

Publication number Publication date
WO2015119244A1 (en) 2015-08-13
JPWO2015119244A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
Takaya Catalysis using transition metal complexes featuring main group metal and metalloid compounds as supporting ligands
US20190217277A1 (en) Olefin metathesis reaction catalyst and preparation method therefor
JP5452478B2 (en) Preparation of surface-functionalized porous organic-inorganic hybrid materials or mesoporous materials with coordinately unsaturated metal sites and their catalytic application
Wang et al. Central-metal exchange, improved catalytic activity, photoluminescence properties of a new family of d 10 coordination polymers based on the 5, 5′-(1 H-2, 3, 5-triazole-1, 4-diyl) diisophthalic acid ligand
Rasero-Almansa et al. Synthesis of bimetallic Zr (Ti)-naphthalendicarboxylate MOFs and their properties as Lewis acid catalysis
Ghasemzadeh et al. C–P bond construction catalyzed by Ni II immobilized on aminated Fe 3 O 4@ TiO 2 yolk–shell NPs functionalized by (3-glycidyloxypropyl) trimethoxysilane (Fe 3 O 4@ TiO 2 YS-GLYMO-UNNi II) in green media
KR20130045899A (en) Functionalization of organic molecules using metal-organic frameworks(mofs) as catalysts
JP5956930B2 (en) Process for the production of ruthenium-based carbene catalysts with chelated alkylidene ligands
CN102153592A (en) Suzuki-Miyaura coupling reaction of catalyzing aryl chloride by N-heterocyclic carbine-palladium-imidazole complex at room temperature under condition of water phase
EP2170914A1 (en) N-heterocyclic carbene metallacycle catalysts and methods
Nasseri et al. The CuFe 2 O 4@ SiO 2@ ZrO 2/SO 4 2−/Cu nanoparticles: an efficient magnetically recyclable multifunctional Lewis/Brønsted acid nanocatalyst for the ligand-and Pd-free Sonogashira cross-coupling reaction in water
Nouri et al. Post-synthetic modification of IRMOF-3 with an iminopalladacycle complex and its application as an effective heterogeneous catalyst in Suzuki-Miyaura cross-coupling reaction in H2O/EtOH media at room temperature
EP2729434A1 (en) Method of carrying out cc-coupling reactions using oxide supported pd-catalysts
JP6578211B2 (en) Method for producing solid catalyst by adding metal oxide to metal complex
Xie et al. An efficient approach to the ammoxidation of alcohols to nitriles and the aerobic oxidation of alcohols to aldehydes in water using Cu (II)/pypzacac complexes as catalysts
Zhang et al. Hydrothermal Heck reaction catalyzed by Ni nanoparticles
Tyagi et al. N‐Substituted Iminopyridine Arene–Ruthenium Complexes for the Regioselective Catalytic Hydration of Terminal Alkynes
Karami et al. Synthesis and characterization of functionalized titania-supported Pd catalyst deriving from new orthopalladated complex of benzophenone imine: catalytic activity in the copper-free Sonogashira cross-coupling reactions at low palladium loadings
CN110382512B (en) Method for producing transition metal-isonitrile complex
JP5599570B2 (en) Method for producing aryl derivative using heterogeneous catalyst
Bakherad et al. Palladium-free and phosphine-free Sonogashira coupling reaction of aryl halides with terminal alkynes catalyzed by boehmite nanoparticle-anchored Cu (I) diethylenetriamine complex
CN109593085B (en) Pyridine-amide-oxazoline ligand, synthetic method thereof, metal complex thereof and application thereof
US20020077250A1 (en) Process for preparing aryl compounds
Vasconcellos-Dias et al. Pyridine carboxylate complexes of Mo (II) as active catalysts in homogeneous and heterogeneous olefin epoxidation
Zheng et al. Synthesis of new dipyridinylamine and dipyridinylmethane ligands and their coordination chemistry with Mg (II) and Zn (II)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190826

R150 Certificate of patent or registration of utility model

Ref document number: 6578211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees