JP6577230B2 - Sorting device - Google Patents

Sorting device Download PDF

Info

Publication number
JP6577230B2
JP6577230B2 JP2015092906A JP2015092906A JP6577230B2 JP 6577230 B2 JP6577230 B2 JP 6577230B2 JP 2015092906 A JP2015092906 A JP 2015092906A JP 2015092906 A JP2015092906 A JP 2015092906A JP 6577230 B2 JP6577230 B2 JP 6577230B2
Authority
JP
Japan
Prior art keywords
force
rotary
shaft
annular
rotary drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015092906A
Other languages
Japanese (ja)
Other versions
JP2016210528A (en
Inventor
俊臣 星
俊臣 星
嘉峰 佐藤
嘉峰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kanetsu Solutions K.K.
Original Assignee
Toyo Kanetsu Solutions K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kanetsu Solutions K.K. filed Critical Toyo Kanetsu Solutions K.K.
Priority to JP2015092906A priority Critical patent/JP6577230B2/en
Publication of JP2016210528A publication Critical patent/JP2016210528A/en
Application granted granted Critical
Publication of JP6577230B2 publication Critical patent/JP6577230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Of Articles From Conveyors (AREA)
  • Branching, Merging, And Special Transfer Between Conveyors (AREA)

Description

本発明は、仕分けコンベアの切換装置に関し、特に、多種多様な搬送対象物を搬送するときに、搬送および方向変換の仕分をおこなうための回転体の間隔を小さくすると同時に安定した搬送を可能とする構造を有した仕分装置に関するものである。   The present invention relates to a switching device for a sorting conveyor, and in particular, when conveying a wide variety of objects to be conveyed, enables a stable conveyance at the same time as reducing the interval between rotating bodies for performing conveyance and direction change sorting. The present invention relates to a sorting apparatus having a structure.

物流の分野において、搬送対象物の形状や寸法が多様な物品を混在搬送し、仕分ける場合があり、仕分部の回転体によって仕分方向に搬送する場合は、一般的にその回転体の数が多く、その間隔が小さく回転数が均一であるほど安定した確実な仕分が可能となる。   In the field of physical distribution, there are cases where articles with various shapes and sizes of objects to be transported are mixed and transported and sorted. When transported in the sorting direction by the rotating body of the sorting unit, the number of rotating bodies is generally large. As the interval is smaller and the rotation speed is more uniform, stable and reliable sorting becomes possible.

特許文献1においては所望の傾斜角度を有した回転円盤による仕分装置が開示され、特許文献2においては傾斜に対応した駆動回転体が回転円盤に回転力を伝搬する複数の具体的な構成案が開示されている。   Patent Document 1 discloses a sorting device using a rotating disk having a desired inclination angle, and Patent Document 2 discloses a plurality of specific configuration proposals in which a driving rotating body corresponding to the inclination propagates rotational force to the rotating disk. It is disclosed.

特許文献2における具体的に円盤が回転する回転体の構造として、円筒状の回転駆動体もしくは中央部の外径が小さく両端部の外径が大きな鼓状の駆動回転体の側面と回転円盤の外周平面部とが当接する特許文献1と同じ構造と、プーリーを介した構造と、本案の如くに傾斜面に圧接する同じ傾斜を有した駆動回転体と、大きく3つの事例が上げられている。   Specifically, as a structure of a rotating body in which a disk rotates in Patent Document 2, a side surface of a cylindrical rotating driving body or a drum-shaped driving rotating body having a small outer diameter at a central portion and a large outer diameter at both ends and a rotating disk There are three main examples: the same structure as in Patent Document 1 in which the outer peripheral flat surface abuts, the structure via a pulley, and the drive rotating body having the same inclination that presses against the inclined surface as in this proposal. .

ここに、第一の構造は圧接面が回転軸に対して直角であり回転円盤の面方向の圧接力が掛り、第二の構造は多少の角度を有しても回転伝達は可能でプーリーの回転部の径を選ぶことで大きなトルク力も得易く、第三の構造は前二者とは異なりプーリーを使わず、回転体の傾斜角度を同じくした駆動回転体との圧接により力を伝搬するものであるから、傾斜を持った円盤の外周一部にのみ力が掛る構造となっている。   Here, in the first structure, the pressure contact surface is perpendicular to the rotation axis and a pressure contact force is applied in the surface direction of the rotating disk, and the second structure can transmit the rotation even if it has a slight angle, and the pulley By selecting the diameter of the rotating part, it is easy to obtain a large torque force, and unlike the former two, the third structure does not use a pulley and propagates the force by pressure contact with the driving rotating body with the same inclination angle Therefore, the force is applied only to a part of the outer periphery of the inclined disk.

特開平4−115820号公報Japanese Patent Laid-Open No. 4-115820 実開平5−26921号公報Japanese Utility Model Publication No. 5-26921

しかしながら、これらの回転円盤を用いた仕分装置構造において、大きさの大小を含む多様な搬送対象物を確実に仕分けるためには回転円盤の数を増やし、その間隔を小さくする必要があるが、それに伴い回転円盤を駆動せしめる駆動部も増やすと同時に小型化の必要があり、保守点検の煩雑さを含み、初期コスト、運用コストの負担は大きくなる。   However, in the sorting device structure using these rotating disks, it is necessary to increase the number of rotating disks and reduce the interval in order to reliably sort various objects to be conveyed including large and small sizes. Along with this, the number of drive units for driving the rotating disk needs to be increased, and at the same time, it is necessary to reduce the size of the rotary disk. In addition, the burden of initial cost and operation cost increases including the complexity of maintenance and inspection.

それらの解決のために、回転駆動せしめる駆動部の両側に回転円盤を設けることで高密度化を図ることが可能となり、引用文献の如くの構造が有効である。その場合の従来構造においては、回転駆動体の軸方向前後に対称形の構造とすることで、一個の回転駆動体で二個の環状回転体を回転駆動することが可能であるが、回転駆動体に対する二個の環状回転体が圧接する箇所が、半径方向の180度反対位置に逆方向の力が掛ることになるので、回転駆動体の軸固定部には大きなモーメントを生じることになる。さらに、環状回転体においても反発力によるモーメントを生じることになる。これらに対しては部品の摩耗や金属疲労などへの対処のための配慮が必要となり、構造の補強を考慮する必要もある。   In order to solve these problems, it is possible to increase the density by providing rotating disks on both sides of the drive unit that is driven to rotate, and the structure as described in the cited document is effective. In the conventional structure in that case, it is possible to rotationally drive two annular rotators by one rotational drive body by adopting a symmetrical structure before and after the axial direction of the rotational drive body. Since a force in the reverse direction is applied to the position where the two annular rotators are pressed against the body at a position 180 degrees opposite to the radial direction, a large moment is generated in the shaft fixing portion of the rotary drive body. Furthermore, a moment due to the repulsive force is also generated in the annular rotating body. For these, consideration must be given to dealing with parts wear, metal fatigue, etc., and it is also necessary to consider structural reinforcement.

また従来構造においては、回転円盤の最大外周の高さ位置を大きくするためには、回転円盤の傾斜時における回転中心が円盤の中心に位置するより中心から偏らせることが望ましい。しかし、回転駆動体が軸方向前後に対して対称形の構造である場合は、その中心位置の偏りを大きくすることによって回転円盤における圧接位置の半径の長さが異なることになる。   Further, in the conventional structure, in order to increase the height position of the maximum outer periphery of the rotating disk, it is desirable that the center of rotation when the rotating disk is tilted is offset from the center rather than being positioned at the center of the disk. However, when the rotary drive has a symmetrical structure with respect to the front and rear in the axial direction, the length of the radius of the press contact position in the rotary disk differs by increasing the deviation of the center position.

一個の回転駆動体で二個の回転体を回転駆動する際に、回転駆動体によって摺動回転する回転体の回転速度もしくは回転数は、圧接位置の半径の比に従って異なることになる。一般的に摩擦による回転伝播の場合は、摩擦と滑りの組合せである程度の範囲で安定することになるが、回転速度が高速になると、搬送対象物の大きさによって、速度や回転数の絶対的な数値の大きな差を生じることになる。特に小物で軽量の搬送対象物が回転してしまうなどの不安定な動きを生じることになる。   When two rotary bodies are rotationally driven by one rotary drive body, the rotational speed or the rotational speed of the rotary body that is slidably rotated by the rotary drive body varies according to the ratio of the radii of the press contact positions. In general, in the case of rotational propagation due to friction, the combination of friction and slip will stabilize within a certain range, but when the rotational speed increases, the absolute speed and rotational speed depend on the size of the object to be conveyed. A large difference in numerical values. In particular, an unstable movement such as rotation of a small and lightweight conveyance object occurs.

本発明は上記の課題を解決するため、動力源を含む1組の回転駆動体で二個の回転体を回転せしめる構造において、回転円盤には不要なモーメントなどの外力を加えぬと同時に、接触半径の差を低減させることで、均一でスムーズな回転を得ると同時に運転寿命を確保することで稼働率を高め、保守点検コストや部材費用を大幅に低減可能な仕分装置を提供することを課題とした。   In order to solve the above-described problems, the present invention has a structure in which two rotating bodies are rotated by a set of rotary driving bodies including a power source. In addition, an external force such as an unnecessary moment is not applied to the rotating disk, and at the same time The challenge is to provide a sorting device that can achieve uniform and smooth rotation while at the same time ensuring operating life by reducing the difference in radii, increasing the operating rate, and greatly reducing maintenance and inspection costs and material costs. It was.

かかる課題のうち、経済性と寿命などの課題を解決するため、本発明は、駆動回転体の軸方向前後で同時に二個の環状回転体を回転させることで、動力源を含むベルトドライブ機構の数を低減させる構造としている。   In order to solve problems such as economy and life among such problems, the present invention provides a belt drive mechanism including a power source by simultaneously rotating two annular rotators before and after the axial direction of the drive rotator. The structure reduces the number.

さらに対称形の駆動回転体と二個の回転体を組み合わせることによって生じる不要なモーメントや、異なる回転数に関する前記課題に対しては、シャフトに自由回転可能に軸支される回転駆動体と、前記回転駆動体の一方の側に前記シャフトの軸方向に対し弾性的に固着される第1の固定軸の軸から所定角度をなすように円盤体が一体化されて形成される回転駆動体の第1傾斜部に、摺接機構を介して自由回転可能に配置され、外周部が環状に構成される第1の環状回転体の内径側が、前記回転駆動体の所定角度を有して拡張突出した傾斜外周部に圧接し、前記回転駆動体の他方の側に前記シャフトの軸方向に対し弾性的に固着される第2の固定軸の軸から所定角度をなすように円盤体が一体化されて形成される回転駆動体の第2傾斜部に、摺接機構を介して自由回転可能に配置され、第2の環状回転体の側面側が前記回転駆動体の所定角度を有した外周部に圧接することで、回転駆動体が所定の回転を行うことによって、圧接箇所における摩擦力により第1の環状回転体および第2の環状回転体に回転力を伝播する機能を具備した構造としている。   Furthermore, with respect to the unnecessary moment generated by combining a symmetric drive rotor and two rotors, and the above-described problem relating to different rotational speeds, the rotary driver that is supported rotatably on a shaft, and A rotary drive body is formed by integrating a disk body so as to form a predetermined angle from the axis of the first fixed shaft that is elastically fixed to one side of the rotary drive body with respect to the axial direction of the shaft. (1) An inner diameter side of a first annular rotating body, which is disposed on an inclined portion so as to be freely rotatable via a sliding contact mechanism and whose outer peripheral portion is formed in an annular shape, extends and protrudes at a predetermined angle of the rotational driving body. A disc body is integrated so as to form a predetermined angle from an axis of a second fixed shaft that is in pressure contact with the inclined outer peripheral portion and is elastically fixed to the other side of the rotary drive body with respect to the axial direction of the shaft. In sliding contact with the second inclined portion of the rotary drive body to be formed When the side surface side of the second annular rotator is in contact with the outer peripheral portion having a predetermined angle of the rotary drive body, the rotary drive body performs a predetermined rotation by being arranged so as to be freely rotatable through the structure. The structure has a function of propagating the rotational force to the first annular rotator and the second annular rotator by the frictional force at the press contact location.

即ち、本発明においては環状回転体の傾斜を利用することによって、一方は環状回転体の傾斜に略直角方向の内径面に摺接させ、他方は環状回転体の傾斜する外形部で摺接させる構造とすることで、回転駆動体の表裏面から挟み込む如くに押圧せずに、一方を軸方向に対して押圧状態にしながら他方は引張状態にすることで、二個の環状回転体に掛る押圧力が回転駆動体に対して同一方向に向くので前述の如くのモーメントを生じることはなく、回移転駆動体が接する半径位置と、傾斜する環状回転体が接する半径位置の比を略一定にすることが可能となり、回転数の差をなくすか小さくすることが可能となる。   That is, in the present invention, by utilizing the inclination of the annular rotator, one is brought into sliding contact with the inner surface of the annular rotator substantially perpendicular to the inclination of the annular rotator, and the other is brought into sliding contact with the inclined outer portion of the annular rotator. By adopting a structure, the pressing force applied to the two annular rotating bodies can be reduced by pressing one side in the axial direction and pressing the other without pressing as if sandwiched from the front and back surfaces of the rotary driving body. Since the pressure is directed in the same direction with respect to the rotary drive body, the moment as described above does not occur, and the ratio of the radial position where the rotational transfer drive body touches and the radial position where the inclined annular rotary body touches is made substantially constant. Thus, the difference in rotational speed can be eliminated or reduced.

駆動部の両側に設けられた回転円盤に効率的で確実な回転力を伝播するために、回転駆動体及び両側に設置される二個の環状回転体の3箇所の構成部材のいずれか一箇所の構成部材が、シャフトの軸方向に対して固定され、回転駆動体による回転力を伝播する圧接面に常に力が加わる加圧手法を具備し、相互に摺接する面の少なくともいずれか一方に摺接時の摩擦力を強化する手段を具備することで確実で安定した回転伝播力が得られる。   In order to transmit an efficient and reliable rotational force to the rotary disks provided on both sides of the drive unit, any one of the three components of the rotary drive body and the two annular rotary bodies installed on both sides The component member is fixed in the axial direction of the shaft, and has a pressing method in which a force is always applied to the pressure contact surface that propagates the rotational force by the rotary drive body, and is slid on at least one of the surfaces that are in sliding contact with each other. A reliable and stable rotational propagation force can be obtained by providing means for enhancing the frictional force at the time of contact.

また、回転駆動体の円錐筒状に拡張された第1傾斜部に1箇所もしくは複数のスリットを構成することによって、回転駆動体の回転に伴う遠心力によってその径が大きくなる方向に力が作用するために、摺接時の回転伝播力が摩擦力のみで得られる以上に大きな力を得ることが可能となる。   In addition, by forming one or more slits in the first inclined portion of the rotary drive body that is expanded in the shape of a conical cylinder, a force acts in the direction in which the diameter increases due to the centrifugal force associated with the rotation of the rotary drive body. Therefore, it is possible to obtain a larger force than the rotational propagation force at the time of sliding contact can be obtained only by the frictional force.

因みに、駆動回転体と環状回転体の摺接面の少なくとも一方の面、および搬送対象物に接する領域は、例えばポリアセタール樹脂やポリウレタン樹脂などのエンジニアリングプラスチックで構成させることで、摩擦力と弾性力による効果を活かした確実な回転力伝播と、搬送対象物への緩衝効果を得ることが可能となる。   Incidentally, at least one of the sliding contact surfaces of the drive rotating body and the annular rotating body and the area in contact with the object to be conveyed are made of engineering plastics such as polyacetal resin and polyurethane resin, for example, by frictional force and elastic force. It is possible to obtain a reliable rotational force propagation utilizing the effect and a buffering effect on the conveyance object.

それらによって、仕分けコンベアの切換装置における構造が簡素化され、環状回転体の数を増やし、回転体間の間隙を小さくすることが可能となると同時に、スムーズな回転を得られ、構造物の内部応力を低減することで、保守点検などのコストを低減することが可能となる。   As a result, the structure of the switching device of the sorting conveyor is simplified, the number of annular rotating bodies can be increased, the gap between the rotating bodies can be reduced, and at the same time, smooth rotation can be obtained and the internal stress of the structure can be reduced. By reducing the cost, it is possible to reduce the cost of maintenance and inspection.

仕分装置の配置と作用を説明する搬送装置の要部の平面図である。It is a top view of the principal part of the conveying apparatus explaining arrangement | positioning and an effect | action of a sorting apparatus. 搬送用コンベア部と回転体の傾斜における高さ方向の位置関係を示す構成図である。It is a block diagram which shows the positional relationship of the height direction in the inclination of a conveyance conveyor part and a rotary body. 従来構造における回転駆動体と二個の回転体における外力とモーメントの関係を示す図である。It is a figure which shows the relationship between the external force and moment in the rotary drive body in a conventional structure, and two rotary bodies. 従来構造における回転駆動体と二個の回転体における各部材間の押圧負荷部の回転中心からの半径の大きさを示す図である。It is a figure which shows the magnitude | size of the radius from the rotation center of the press load part between each member in the rotation drive body in a conventional structure, and two rotation bodies. 傾斜の回転中心が回転体円盤厚さ方向の中心にある場合の、回転体の傾斜回転中心の軸と最大高さ位置の軌跡を表す図である。It is a figure showing the locus | trajectory of the axis | shaft of the inclination rotation center of a rotary body, and the maximum height position in case the rotation center of an inclination exists in the center of a rotary body disc thickness direction. 傾斜の回転中心が回転体円盤厚さ方向の中心から偏る場合の、回転体の傾斜回転中心の軸と最大高さ位置の軌跡を表す図である。It is a figure showing the locus | trajectory of the axis | shaft of the inclination rotation center of a rotary body, and the maximum height position in case the rotation center of an inclination deviates from the center of a rotary body disk thickness direction. 本発明の実施形態に係わる回転駆動体と回転体の関係を示す構造図である。It is a structural diagram showing the relationship between the rotary drive and the rotary body according to the embodiment of the present invention. 本発明の実施形態に係る回転駆動体と回転体における押圧力とモーメントを示す模式図である。It is a schematic diagram which shows the pressing force and moment in a rotary drive body and rotary body which concern on embodiment of this invention. 本発明の実施形態に係る回転駆動体と回転体の押圧部の径方向に関する位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship regarding the radial direction of the rotation drive body which concerns on embodiment of this invention, and the press part of a rotary body. 本発明の実施形態に係る第1の回転体と回転駆動体の摺接部における圧接力と、その摩擦力に直接的に係る図7に示す構造におけるN21の分力を示す模式図である。Is a schematic view showing a pressure contact force at the sliding contact portion of the first rotating body and the rotating driving member according to an embodiment of the present invention, the component force of the N 21 in the structure shown in FIG. 7 according to the directly to the frictional force . 本発明の実施形態に係る第2の回転体と回転駆動体の摺接部における圧接力と、その摩擦力に直接的に係る図7に示す構造におけるN22の分力を示す模式図である。Is a schematic view showing a pressure contact force at the sliding contact portion of the second rotary member and the rotary driving member according to an embodiment of the present invention, the component force of the N 22 in the structure shown in FIG. 7 according to the directly to the frictional force . 本発明の実施形態に係る軸方向のバネ弾性構造体の設置位置の一例を示す構成図である。It is a block diagram which shows an example of the installation position of the spring elastic structure of the axial direction which concerns on embodiment of this invention. 本発明の実施形態に係る軸方向のバネ弾性構造体の設置位置のその他の例を示す構成図である。It is a block diagram which shows the other example of the installation position of the spring elastic structure body of the axial direction which concerns on embodiment of this invention. 本発明の実施形態に係る軸方向のバネ弾性構造体の設置位置のその他の例を示す構成図である。It is a block diagram which shows the other example of the installation position of the spring elastic structure body of the axial direction which concerns on embodiment of this invention. 構成部品の固定、または押圧を掛ける位置と方向の組合せを示す組合せ図表である。It is a combination chart which shows the combination of the position and direction which fixes or presses a component. 本発明の実施形態に係る回転駆動体の基本構造を示す斜視図と側面図である。It is the perspective view and side view which show the basic structure of the rotary drive body which concerns on embodiment of this invention. 本発明の実施形態に係る回転駆動体において、環状回転体に圧接する領域にスリットを設けた形状を示す斜視図と側面図である。In the rotary drive body which concerns on embodiment of this invention, it is the perspective view and side view which show the shape which provided the slit in the area | region press-contacted to a cyclic | annular rotary body.

以下、図面を参照し、本発明の一実施形態にかかる仕分装置について説明する。なお、以下では本発明の目的を達成するための説明に必要な範囲を模式的に示し、本発明の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。   Hereinafter, a sorting device according to an embodiment of the present invention will be described with reference to the drawings. In the following, the range necessary for the description for achieving the object of the present invention is schematically shown, and the range necessary for the description of the relevant part of the present invention will be mainly described. According to a known technique.

図1は、本発明に係る仕分装置81を適用した搬送装置8において、搬送対象物82が垂直方向(A)および仕分け方向(BもしくはC)に仕分けられる状態を模式的に示した図である。   FIG. 1 is a diagram schematically showing a state in which a conveyance object 82 is sorted in the vertical direction (A) and the sorting direction (B or C) in the transport device 8 to which the sorting device 81 according to the present invention is applied. .

図2は、本発明の実施形態に係る搬送用コンベア部6と仕分装置において、回転体1と回転駆動体4との接触摺動位置が変化するに伴って二か所のコンベアベルト6の間における高さ位置が変化する状況を示している(ここでは右側部分のみを示す)。シャフト2を中心軸に固定される回転駆動体4と、傾斜部を有する固定部3の回転に従って回転体1の最大外周部の高さ位置が変化する最大高さを破線矢印で示している。その高さは、搬送用のコンベア部6の高さ位置から突出している領域D2高さ方向の有効領域であり、二か所のコンベア間の隙間Wの内側に位置するW1の領域が幅方向の有効領域となる。 FIG. 2 is a diagram illustrating a conveyor belt 6 and a sorting device according to an embodiment of the present invention, in which the contact sliding position between the rotating body 1 and the rotation driving body 4 changes between two conveyor belts 6. This shows the situation where the height position at () is shown (only the right side is shown here). The maximum height at which the height position of the maximum outer peripheral portion of the rotating body 1 changes in accordance with the rotation of the rotary drive body 4 fixed to the shaft 2 and the fixed portion 3 having the inclined portion is indicated by broken line arrows. Its height is the effective area of the height protruding to have regions D2 is the height direction from the position of the conveyor 6 for transport, two positions of W1 region which is located inside the gap W between the conveyor width It becomes the effective area of the direction.

図3は、従来構造を基本とした回転駆動体4に回転体1を二重化する具体例であり、軸方向の押圧力(F、F)がそれぞれ固定部3に掛る場合、それぞれの回転体1が摺接する部分における圧接力(N11、N22)によって、回転駆動体4にはモーメント(M)が生じ、第1および第2の回転体(11、12)にはそれぞれMとMのモーメントが生じることを示している。このモーメントは常に回転をしながらの負荷として掛かることになるので、長時間運転においては繰り返し荷重による金属疲労なども考えられる。因みに、図示するN21とN12は前記圧接力(N11、N22)の反力として表記している。 FIG. 3 is a specific example in which the rotary body 1 is duplicated with the rotary drive body 4 based on the conventional structure. When the axial pressing forces (F 1 , F 2 ) are applied to the fixed portion 3, the rotations are respectively rotated. contact pressure at a portion where the body 1 comes into sliding contact (N 11, N 22) by the rotary drive member 4 occurs moment (M 3), each M 1 is the first and second rotary bodies (11, 12) And M 2 moments are generated. Since this moment is always applied as a load while rotating, metal fatigue or the like due to repetitive load can be considered in long-time operation. Incidentally, N 21 and N 12 shown in the figure are expressed as reaction forces of the pressure contact forces (N 11 , N 22 ).

図4は、前記図3の状態での具体例であり、回転駆動体4と回転体1が摺接する箇所の、シャフト2の中心からの半径(r、r)と、回転体1の回転中心から摺接する箇所までの半径(s、s)を示している。ここに、回転駆動体における摺接部の位置は、r=rであるが、回転体1が固定部3に対して傾斜する回転中心Oの位置が、回転体の厚さtに対してt>tの関係にある場合、第1および第2の回転体1の摺接部までの半径は、s>sとなる。即ち、第1および第2の環状回転体の回転数もしくは回転速度はsとsの比に相当する差を生じることになる。 FIG. 4 is a specific example in the state of FIG. 3, and the radius (r 1 , r 2 ) from the center of the shaft 2 at the portion where the rotary drive body 4 and the rotary body 1 are in sliding contact with each other, The radii (s 1 , s 2 ) from the center of rotation to the point of sliding contact are shown. Here, the position of the sliding contact portion in the rotary drive body is r 1 = r 2 , but the position of the rotation center O where the rotary body 1 is inclined with respect to the fixed portion 3 is the thickness t 1 of the rotary body. On the other hand, when the relationship is t 2 > t 3 , the radius to the sliding contact portion of the first and second rotating bodies 1 is s 1 > s 2 . That is, the number of rotations or the rotation speed of the first and second annular rotators causes a difference corresponding to the ratio of s 1 and s 2 .

図5aは、本発明の実施形態に係わる回転体1における傾斜する回転中心Oの位置が回転体1の厚みt1に対してt2=t3の関係にある場合を示している。因みに、回転体1が回転駆動体4に接触摺動する状態を回転体1が接する三つの位置x、y、zで示すが、回転体1は回転中心Oを通る水平断面図としているために、に関しては回転駆動体4との接触状態は図示されない。ここに、図中実線で示した回転体1の傾斜位置xにおける搬送対象物が接する箇所Xから、回転体1の傾斜角度が変化すると共にシャフト2の位置からの距離は大きくなり、最大高さのY地点を経て、図中一点鎖線で示す位置zで搬送対象物が接する高さの箇所Zまでの軌跡XYZを太い破線で示している。 FIG. 5 a shows a case where the position of the inclined rotation center O in the rotating body 1 according to the embodiment of the present invention has a relationship of t2 = t3 with respect to the thickness t1 of the rotating body 1. Incidentally, the state in which the rotating body 1 is in sliding contact with the rotational drive body 4 is indicated by three positions x, y, and z with which the rotating body 1 comes into contact. The rotating body 1 is a horizontal sectional view passing through the rotation center O. For y , the contact state with the rotary drive 4 is not shown. Here, the distance from the position of the shaft 2 is increased and the distance from the position of the shaft 2 is increased from the position X at which the conveyance object is in contact at the inclined position x of the rotating body 1 indicated by the solid line in FIG. A trajectory XYZ from a point Y to a point Z at a height at which the conveyance object comes into contact at a position z indicated by a one-dot chain line in the drawing is indicated by a thick broken line.

ここで回転体1における回転中心Oの位置に関し、t=tの場合は搬送対象物に接する回転体の位置は、図中実線で示す傾斜位置xでの対角の半径位置Lの接点箇所Xの高さ方向の位置が徐々に高くなり、図中の垂直方向での位置yの状態で最大値(Yの位置)になり、さらに回転することにより、図中一点鎖線で示す傾斜位置zでの半径位置Lの接点箇所に移ることになるが、L=Lであるので高低差はY点とX及びZ点との差で、Hで示される値となる。 Here, regarding the position of the rotation center O in the rotating body 1, when t 2 = t 3 , the position of the rotating body in contact with the object to be conveyed is the diagonal radial position L 1 at the inclined position x indicated by the solid line in the figure. The position of the contact point X in the height direction gradually increases, reaches the maximum value (position Y) in the state of the position y in the vertical direction in the figure, and further rotates, thereby the inclination indicated by the alternate long and short dash line in the figure The position moves to the contact point at the radial position L 2 at the position z. Since L 1 = L 2 , the height difference is the difference between the Y point and the X and Z points, which is a value indicated by H 1 .

一方図5bにおいては、回転体1における回転中心Oの位置に関し前記(a)と異なり、t>tの関係にある場合を示している。ここでも、図中実線で示した回転体1の傾斜位置xにおける搬送対象物が接する箇所Xから、傾斜位置yでの最大高さY地点を経て、図中一点鎖線で示す傾斜位置zでの接点箇所Zまでの軌跡XYZを太い破線で示している。 On the other hand, FIG. 5b shows a case where t 2 > t 3 in relation to the position of the rotation center O in the rotator 1 unlike the case (a). In this case as well, from the point X where the conveyance object is in contact at the inclined position x of the rotating body 1 indicated by the solid line in the figure, through the maximum height Y point at the inclined position y, at the inclined position z indicated by the one-dot chain line in the figure. The locus XYZ up to the contact point Z is indicated by a thick broken line.

ここでt2≠t3の関係にある場合は上記と異なり、例えばt2>t3の場合は、r1>r2およびL3>L4の関係が生じる。図4で示したように回転駆動体4に回転体1を二重化する構造の場合、二個の回転体の回転数もしくは回転速度は異なることになる。但し、ここでの搬送対象物に対する高低差H2は前記のH1より大きな値が得られることになる。ここに本図は、前記高低差は大きく取ることで搬送対象物の搬送方向を変えても安定した搬送が可能なる一方で、回転速度が異なるとの矛盾を示している。 Here, when t2 ≠ t3, the relationship is different from the above. For example, when t2> t3, relationships r1> r2 and L3> L4 occur. As shown in FIG. 4, in the case of the structure in which the rotary body 1 is duplicated with the rotary drive body 4, the rotational speeds or rotational speeds of the two rotary bodies are different. However, the height difference H2 with respect to the conveyance object here is larger than the above-mentioned H1. The figure here, the height difference conveyor while it becomes possible to have stable and changing the conveying direction of the conveying object by a large rotational speed indicates a conflict with a different.

図6は、本発明の実施形態に係わる回転駆動体4と回転体11、12の関係を示す構造図で、第1の回転体11の環状部の内径側と、第2の回転体12の外形側面部に、同時に摺接する回転駆動体41を示す。第1の環状回転体111は、シャフト2に一体的に固定される第1の固定軸311に対し所定の傾斜角度(θ)を有して固着される傾斜円盤312摺接機構7を介して自由に回転可能であり、第2の環状回転体はシャフト2に一体的に固定される第2の固定軸321に対し所定の角度(θ)を有して固着される傾斜円盤322摺接機構7を介して自由に回転可能な構造であり、回転駆動体42の一方は第1の環状回転体111の内径部に摺接し、他方は第2の環状回転体121の外周側面部に摺接して回転力を伝播する機能を有する構造を示している。 FIG. 6 is a structural diagram showing the relationship between the rotary drive body 4 and the rotary bodies 11 and 12 according to the embodiment of the present invention, and the inner diameter side of the annular portion of the first rotary body 11 and the second rotary body 12. The rotary drive body 41 which is in sliding contact with the outer side surface portion at the same time is shown. The first annular rotating body 111, via a sliding contact mechanism 7 in a first predetermined relative to the fixed shaft 311 of the tilt angle (theta) inclined disc 312 which is fixed with a integrally fixed to the shaft 2 Te freely rotatable, the second annular rotating body sliding on the inclined disc 322 relative to the second fixed shaft 321 is integrally fixed to the shaft 2 which is fixed with a predetermined angle (theta) The rotary drive body 42 is configured to be freely rotatable via the contact mechanism 7, and one of the rotational drive bodies 42 is in sliding contact with the inner diameter portion of the first annular rotary body 111, and the other is on the outer peripheral side surface portion of the second annular rotary body 121. A structure having a function of propagating rotational force in sliding contact is shown.

図7は、本発明の実施形態に係る回転駆動体4と回転体11、12における押圧力を示し、所定の傾斜角度(θ)を有した第1および第2の回転体11,12と駆動回転体4とが摺接する力は、第1の回転体11を図中右方向に向ける力F1と、第2の回転体12を図中右方向に向ける力F2が、回転駆動体4に対しては圧接力N21およびN22同じ方向を向くことを示している。これによって、前記図3における如くの大きなモーメント(図3におけるM3)は生じることはない。因みに、ここで生じるモーメントは二か所の摺接する半径の差(r3−r4)により生じるモーメントのみになる。
FIG. 7 shows the pressing force in the rotary drive body 4 and the rotary bodies 11 and 12 according to the embodiment of the present invention, and the first and second rotary bodies 11 and 12 having a predetermined inclination angle (θ) and the drive. The force with which the rotating body 4 is in sliding contact is the force F1 that directs the first rotating body 11 in the right direction in the figure and the force F2 that directs the second rotating body 12 in the right direction in the figure with respect to the rotational drive body 4. In other words , it indicates that it faces the same direction as the press contact forces N21 and N22. As a result, a large moment (M3 in FIG. 3) as in FIG. 3 does not occur. Incidentally, the moment generated here is only the moment generated by the difference between the two slidable radii (r3-r4).

例えば、図3におけるモーメントMを想定すると、F×rとF×rが合成されることになり、F=Fであるから、M=F(r+r)となる。一方の図7においては、M=F(r−r)であるので、理想的にはr=rとすればモーメントは発生しないが、両者間に差を生じても従来構造に比較して大幅な低減が図られる。 For example, assuming the moment M in FIG. 3, F 1 × r 1 and F 2 × r 2 are combined, and F 1 = F 2 , so that M = F (r 1 + r 2 ). . On the other hand, in FIG. 7, since M = F (r 3 −r 4 ), ideally, if r 3 = r 4 , no moment is generated, but even if there is a difference between the two, the conventional structure is obtained. In comparison, a significant reduction is achieved.

図8は、本発明の実施形態に係る回転駆動体4と回転体11、12の押圧部の径方向に関する位置関係を示し、所定の傾斜角度(θ)を有した第1の回転体11においては回転体11の内径部に相当する半径sの位置で回転駆動体4の第1傾斜部41が回転半径rの位置で摺接し、同じく第2の回転体12においては
回転体12の外周側面部が回転駆動体4の第2傾斜部42が回転体12の回転半径sの位置で摺接する。ここに、回転体1における回転中心の位置が前述の図5(b)の位置関係にある場合、回転駆動体4においてはr>rであり、回転体11、12においてはs>sの関係にある。さらに回転速度もしくは回転数は、回転駆動体4の半径(r)と回転体11、12の半径(s)の比が一定であれば一致する。現実的にはその比を極力近い値にすれば効果は上がる。
FIG. 8 shows the positional relationship in the radial direction of the pressing portions of the rotary drive body 4 and the rotary bodies 11 and 12 according to the embodiment of the present invention, and in the first rotary body 11 having a predetermined inclination angle (θ). The first inclined portion 41 of the rotary drive body 4 is in sliding contact with the position of the rotation radius r 3 at the position of the radius s 3 corresponding to the inner diameter portion of the rotation body 11. The outer peripheral side surface is in sliding contact with the second inclined portion 42 of the rotary drive body 4 at the position of the rotation radius s 4 of the rotary body 12. Here, when the position of the rotation center in the rotating body 1 is in the positional relationship shown in FIG. 5B, r 3 > r 4 in the rotation driving body 4 and s 3 > in the rotating bodies 11 and 12. s 4 relationship. Further, the rotational speed or the rotational speed is the same if the ratio of the radius (r) of the rotary drive body 4 and the radius (s) of the rotary bodies 11 and 12 is constant. Realistically, the effect increases if the ratio is made as close as possible.

図9は第1の回転体11と回転駆動体4が摺接する箇所における圧接力N21が掛る図であり、実際の回転力は当接する素材、形状による摩擦係数(μ)の効果に従い、μ×N21sinθの力を受けて回転することになる。 FIG. 9 is a diagram in which a pressure contact force N 21 is applied at a location where the first rotating body 11 and the rotational driving body 4 are in sliding contact, and the actual rotational force depends on the friction coefficient (μ) depending on the material and shape of the contact, μ It rotates by receiving the force of × N 21 sinθ.

図10は第2の回転体12と回転駆動体4が摺接する箇所における圧接力N22が掛る図であり、実際の回転力は当接する素材、形状による摩擦係数(μ)の効果に従い、μ×N22cosθの力を受けて回転することになる。 FIG. 10 is a diagram in which a pressure contact force N 22 is applied at a location where the second rotary body 12 and the rotary drive body 4 are in sliding contact, and the actual rotational force depends on the effect of the friction coefficient (μ) depending on the material and shape of contact. It rotates by receiving the force of × N 22 cos θ.

図11は本発明の実施形態に係る軸方向の押圧弾性構造体の設置位置の一例を示す図であり、回転駆動体4をシャフト2に対し軸方向に固定機構5で固定した場合の例である。回転駆動体4を軸方向に固定すると同時に、第1の固定軸31と回転駆動体4の双方にF’の力で反発しあうよう圧縮バネの如くの弾性構造を装着し、第2の固定軸32に対しては回転駆動体4への圧接力Fを与える押圧構造を装着することで、前記図9、10に示す圧接力N21およびN22が安定して得られる。 FIG. 11 is a diagram showing an example of the installation position of the axial pressing elastic structure according to the embodiment of the present invention. In this example, the rotational driving body 4 is fixed to the shaft 2 by the fixing mechanism 5 in the axial direction. is there. At the same time as fixing the rotary drive body 4 in the axial direction, an elastic structure such as a compression spring is mounted on both the first fixed shaft 31 and the rotary drive body 4 so as to be repelled by the force of F ′. The pressing force N 21 and N 22 shown in FIGS. 9 and 10 can be stably obtained by attaching a pressing structure that applies the pressing force F to the rotary drive body 4 to the shaft 32.

図12は本発明の実施形態に係る軸方向の押圧弾性構造体の設置位置の一例を示す図であり、第1の回転体11をシャフト2に対し軸方向に固定機構5で固定した場合の例である。第1の固定軸31を軸方向に固定すると同時に、第1の固定軸31と回転駆動体4の双方にF’の力で反発しあうよう圧縮バネの如くの弾性構造を装着し、第2の固定軸32に対しては回転駆動体4への圧接力Fを与える押圧構造を装着することで、前記図9、10に示す圧接力N21およびN22が安定して得られる。 FIG. 12 is a view showing an example of the installation position of the axial pressing elastic structure according to the embodiment of the present invention. When the first rotating body 11 is fixed to the shaft 2 in the axial direction by the fixing mechanism 5. It is an example. At the same time that the first fixed shaft 31 is fixed in the axial direction, an elastic structure such as a compression spring is attached to both the first fixed shaft 31 and the rotary drive body 4 so as to repel each other by the force of F ′. The pressing force N 21 and N 22 shown in FIGS. 9 and 10 can be stably obtained by attaching a pressing structure for applying the pressing force F to the rotary drive body 4 to the fixed shaft 32.

図13は本発明の実施形態に係る軸方向の押圧弾性構造体の設置位置の一例を示す図であり、第2の固定軸32をシャフト2に対し軸方向に固定機構5で固定した場合の例である。第2の固定軸32を軸方向に固定すると同時に、第1の固定軸31と回転駆動体4の双方にF’の力で反発しあうよう圧縮バネの如くの弾性構造を装着し、更に第1の固定軸31に対して回転駆動体4が位置する方向への圧接力Fを与える押圧構造を装着することで、前記図9、10に示す圧接力N21およびN22が安定して得られる。 FIG. 13 is a view showing an example of the installation position of the axial pressing elastic structure according to the embodiment of the present invention, and the second fixing shaft 32 is fixed to the shaft 2 by the fixing mechanism 5 in the axial direction. It is an example. At the same time as fixing the second fixed shaft 32 in the axial direction, both the first fixed shaft 31 and the rotary driving body 4 are mounted with an elastic structure such as a compression spring so as to repel each other by the force F ′. The pressure contact forces N 21 and N 22 shown in FIGS. 9 and 10 are stably obtained by attaching a pressing structure that applies a pressure contact force F in the direction in which the rotary drive body 4 is positioned to one fixed shaft 31. It is done.

図14は、図11〜13で示した内容を含む形態を表にしたもので、回転駆動体4およびその両端で接する第1の回転体11と第2の回転体12を横軸に、シャフト2に対して軸方向に固定する箇所を縦軸に描き、固定箇所と弾性構造の押圧方向を、片方向か両方向かを含めて矢印で表記している。   FIG. 14 is a table showing the form including the contents shown in FIGS. 11 to 13, and the rotary drive body 4 and the first rotary body 11 and the second rotary body 12 that are in contact at both ends thereof are arranged on the horizontal axis. A portion to be fixed in the axial direction with respect to 2 is drawn on the vertical axis, and the fixing portion and the pressing direction of the elastic structure are indicated by arrows including one direction or both directions.

図15は、本発明の実施形態に係る回転駆動体4の基本構造を示し、一方の回転体に対しては、傾斜する環状回転体の内径部に接するための突出した傾斜部41を有し、他方の回転体に対しては、傾斜する環状回転体の外形部に接するための傾斜部42を有する構造を示している。   FIG. 15 shows the basic structure of the rotary drive body 4 according to the embodiment of the present invention. One rotary body has a protruding inclined portion 41 for contacting the inner diameter portion of the inclined annular rotary body. For the other rotating body, a structure having an inclined portion 42 for contacting the outer shape portion of the inclined annular rotating body is shown.

図16は、図15における回転駆動体4の突出した傾斜部41の領域に軸方向に対する1箇所もしくは複数個所のスリット43を設けた構造を示している。このスリットを有することによって、回転駆動体4が回転することによって生じる遠心力、即ち傾斜部には外径方向に向かう力が働くことで、摺接摩擦が大きくなるために確実な回転力が伝播されることになる。特に、剛性構造物による傾斜面どうしの摺動の場合、微妙に傾斜角が一致しないと外周面全体の完全接触は難しく、外周の狭い領域の線状接触となる可能性があるが、本スリットを設けることで傾斜部41が遠心力によって弾性的に変形しやすくなるので広い面での接触が可能となる。   FIG. 16 shows a structure in which one or a plurality of slits 43 in the axial direction are provided in the region of the inclined portion 41 protruding from the rotary drive body 4 in FIG. By having this slit, a centrifugal force generated by the rotation of the rotary drive body 4, that is, a force in the outer diameter direction acts on the inclined portion, so that sliding friction is increased, so that a reliable rotational force is transmitted. Will be. In particular, in the case of sliding between inclined surfaces by a rigid structure, complete contact with the entire outer peripheral surface is difficult if the inclination angles do not match slightly, and there is a possibility of linear contact in a narrow area on the outer periphery. Since the inclined portion 41 is easily elastically deformed by the centrifugal force, the contact on a wide surface is possible.

本発明に係る搬送装置は、物流における多様な場所において、さらに様々な使用形態で数多く使われているが、特に搬送対象物が大きなものから小さなものまでを確実に搬送するためには、搬送のための回転盤の配置間隔を極力小さくすると同時に複数の回転盤の回転速度を極力均一にする必要があるが、特に搬送の高速化への対応においてはその要求度は高くなる。また、回転構造体において無理な力が掛らない構造とすることで、故障頻度が低減し、保守点検などに伴う運用コストを低減することが可能となる。搬送装置を適用する各種産業において搬送の効率化と装置コストの低減化が得られることで、利用価値を高めることが可能となる。   The transport device according to the present invention is used in many different forms of usage in various places in physical distribution. In particular, in order to reliably transport a large to small transport object, For this reason, it is necessary to make the rotation interval of the rotary plates as small as possible and at the same time make the rotation speeds of the plurality of rotary plates as uniform as possible. Further, by adopting a structure in which an excessive force is not applied to the rotating structure, it is possible to reduce the frequency of failure and to reduce the operation cost associated with maintenance and inspection. In various industries to which the transfer device is applied, it is possible to increase the utility value by improving the transfer efficiency and reducing the device cost.

1 回転体
11、12 第1および第2の回転体
111、121 第1および第2の環状回転体
1a、1b、1c 回転体の傾斜が一方の最大状態、傾斜がない場合、および傾斜が他方の最大状態
2 シャフト
3 固定部
31、32第1および第2の固定部
311、321 シャフトに固定する第1および第2の回転体の固定軸
312、322 第1および第2の回転体の固定軸に対して傾斜をなす傾斜円盤
331、332 第1および第二の固定部を押さえる固定支持部
4回転駆動体
41 回転駆動体の第1傾斜部
42 回転駆動体の第2傾斜部
43 スリット
5 回転円盤の固定部を軸方向に抑える固定機構
6 搬送用のコンベア部
7 摺接機構
8 搬送装置
81 方向変換部
82 搬送対象物
A、B、C 搬送方向
コンベア部の厚さ
コンベア部表面から回転体の突出する領域(有効領域)
F 固定もしくは外力によって掛る力
、F 第1および第2の回転体の固定軸に掛る力
、H 最も高い位置と最も低い位置の差
、L、L、L P位置およびR位置での最大高さとなる距離
、M、M、M、M 各部品に掛るモーメント
11、N21、N21、N22 各回転体に掛る外力と反作用(回転駆動体に掛る外力)
O 回転体が固定部に対して傾斜する回転中心
、r、r、r 回転駆動体が回転体と接触する際の接触半径の大きさ
、s、s、s 傾斜斜する回転体が回転駆動体によって回転する際の接触半径の大きさ
、t、t 回転体の厚さと、傾斜回転の中心までの厚さ
二つのコンベア間の間隙
コンベア部表面から回転体が突出する領域(有効領域)
X、Y、Z 回転体が傾斜する際のコンベア部表面からの最大高さ位置の軌跡におけるx、y、zの状態での各位置(高さ)
θ シャフトに対する固定傾斜盤および環状回転体の角度
DESCRIPTION OF SYMBOLS 1 Rotating body 11, 12 1st and 2nd rotating body 111, 121 1st and 2nd cyclic | annular rotating body 1a, 1b, 1c The inclination of a rotating body is one maximum state, when there is no inclination, and an inclination is the other 2 Shaft 3 Fixed portion 31, 32 First and second fixed portions 311, 321 Fixed shafts of first and second rotating bodies fixed to the shaft 312, 322 First and second rotating bodies fixed Inclined disks 331, 332 that hold the first and second fixing parts 4 Rotation drive body 41 First inclination part of rotation drive body 42 Second inclination part of rotation drive body 43 Slit 5 Fixing mechanism for holding the fixed part of the rotating disk in the axial direction 6 Conveying part 7 Conveying mechanism 8 Conveying device 81 Direction changing part 82 Object to be conveyed A, B, C Conveying direction D 1 Conveyor thickness D 2 Conveyor Area where the rotating body protrudes from the surface of the part (effective area)
F Force applied by fixing or external force F 1 , F 2 Force applied to fixed shafts of first and second rotating bodies H 1 , H 2 Difference between highest position and lowest position L 1 , L 2 , L 3 , L 4 Distance which becomes maximum height at P position and R position M 1 , M 2 , M 3 , M 4 , M 5 Moment applied to each part N 11 , N 21 , N 21 , N 22 External force applied to each rotating body Reaction (external force on the rotating drive)
O Rotation center where the rotator is inclined with respect to the fixed part r 1 , r 2 , r 3 , r 4 Magnitude of contact radius when the rotary drive body contacts the rotator s 1 , s 2 , s 3 , s 4 The size of the contact radius when the inclined body that is inclined is rotated by the rotary drive body The thicknesses of the t 1 , t 2 , and t 3 rotating bodies and the thickness to the center of the inclined rotation W 1 The gap between the two conveyors W 2 region rotator from the conveyor surface is projected (effective area)
X, Y, Z Each position (height) in the state of x, y, z in the locus of the maximum height position from the conveyor surface when the rotating body is inclined
Angle of fixed inclined plate and annular rotating body with respect to θ shaft

Claims (4)

搬送路面上に搬送対象物が載置されて搬送される搬送方向と略直交する位置に設置されるシャフトと、
前記シャフトに自由回転可能に軸支される回転駆動体であって、一方の側に所定角度を有するように拡張されて形成された第1外周部と、他方の側に所定角度を有して形成された第2外周部とを備えた回転駆動体と、
記シャフトの軸方向に対し弾性的に固着される第1の固定軸から所定角度をなすように固着される第1の円盤体に摺接機構を介して自由回転可能に配置される第1の環状回転体と
記シャフトの軸方向に対し弾性的に固着される第2の固定軸から所定角度をなすように固着される第2の円盤体に摺接機構を介して自由回転可能に配置される第2の環状回転体と
前記回転駆動体の前記第1外周部が前記第1の環状回転体の内径部に圧接し、前記回転駆動体の前記第2外周部が前記第2の環状回転体の外周面部に圧接することで、前記回転駆動体が所定の回転を行うことによって、前記圧接箇所における摩擦力により前記第1の環状回転体および前記第2の環状回転体に回転力が伝播される機能と
を具備することを特徴とする仕分装置。
A shaft installed at a position substantially orthogonal to a transport direction in which a transport target is placed and transported on a transport path surface;
A rotary driving body that is pivotally supported by the shaft so as to be freely rotatable, and has a first outer peripheral portion that is extended to have a predetermined angle on one side and a predetermined angle on the other side. A rotary drive body having a formed second outer peripheral portion ;
First a first disk body which is fixed prior to SL to form a first fixed shaft or al a predetermined angle which is elastically fixed with respect to the axial direction of the shaft Ru is freely rotatably arranged via a sliding mechanism 1 annular rotor ,
The Ru is freely rotatably arranged via a sliding contact mechanism in a second disk body which is fixed prior to SL to form a second fixed shaft or al a predetermined angle which is elastically fixed with respect to the axial direction of the shaft Two annular rotators;
Wherein the first outer peripheral portion of the rotary drive member is pressed against the inner diameter of the first annular rotating body, the second outer peripheral portion of the rotary drive member is pressed against the outer peripheral side surface of the second annular rotating body it is, by the rotational drive member performs a predetermined rotation, the rotation force and a function to be propagated the the first annular rotating body and the second annular rotating member by frictional force in the pressure contact portion Sorting device characterized by that.
前記回転駆動体と、前記第1の環状回転体および前記第2の環状回転体のうちのいずれか一ヶ所の構成部材が、前記シャフトの軸方向に対して固定され、前記回転駆動体による回転力を伝播する圧接面に常に力が加わる加圧手を具備する請求項1記載の仕分装置。 Wherein the rotary drive member, any one place of the components of said first annular rotating body and the second annular rotating body is fixed with respect to the axial direction of the shaft, rotation by the rotational drive member always sorting apparatus according to claim 1, further comprising a force is applied pressurized圧手stage pressing surface to propagate the force. 前記第1の環状回転体の前記圧接面および前記第2の環状回転体の前記圧接面の少なくともいずれか一方に圧接時の摩擦力を強化する手段を具備する請求項1記載の仕分装置。 2. The sorting apparatus according to claim 1, further comprising means for strengthening a frictional force during pressure contact on at least one of the pressure contact surface of the first annular rotator and the pressure contact surface of the second annular rotator. 前記回転駆動体の前記第1外周部は円錐筒状に拡張され、前記第1外周部には1箇所もしくは複数のスリットが設けられた、請求項1記載の仕分装置。 Wherein the first outer peripheral portion of the rotary drive member is extended in a conical tubular shape, wherein the first outer peripheral portion one place or a plurality of slits are provided, sorting apparatus according to claim 1.
JP2015092906A 2015-04-30 2015-04-30 Sorting device Active JP6577230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092906A JP6577230B2 (en) 2015-04-30 2015-04-30 Sorting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092906A JP6577230B2 (en) 2015-04-30 2015-04-30 Sorting device

Publications (2)

Publication Number Publication Date
JP2016210528A JP2016210528A (en) 2016-12-15
JP6577230B2 true JP6577230B2 (en) 2019-09-18

Family

ID=57549318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092906A Active JP6577230B2 (en) 2015-04-30 2015-04-30 Sorting device

Country Status (1)

Country Link
JP (1) JP6577230B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085141Y2 (en) * 1991-03-27 1996-02-14 トーヨーカネツ株式会社 Sorting device
JPH0526921U (en) * 1991-09-20 1993-04-06 トーヨーカネツ株式会社 Sorting device
JP3920981B2 (en) * 1998-03-02 2007-05-30 株式会社岡村製作所 Transported material sorting device

Also Published As

Publication number Publication date
JP2016210528A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
EP1832445B1 (en) Universal transmission roller wheel
US9683653B2 (en) Combined transmission shaft and rotating device having combined transmission shaft
JP2012225390A (en) Continuously variable transmission
WO2016181832A1 (en) Damper device
JP6577230B2 (en) Sorting device
JP2004522912A5 (en)
WO2018159539A1 (en) Roller gear cam mechanism
JP6683970B2 (en) Sorting device
WO2020008717A1 (en) Torque sensor support device
JPH0839463A (en) Conveyer
JP2007221845A (en) Spherical ultrasonic motor
CN1538252A (en) Moving parts for contact with other moving or fixing parts
JP6823137B2 (en) Sorting device
KR101715206B1 (en) Medium handling device
CN111677815A (en) Vibration damping device
CN102739102A (en) Annular vibration wave actuator
KR102013570B1 (en) Reducer
JP6577219B2 (en) Sorting device
JP5051449B2 (en) Conveyor equipment
JP6771864B2 (en) Sorting device
KR20160097963A (en) Tape cutting device
JP2010084810A (en) Rotating mechanism and conveying device
TWM569260U (en) Driven bearing device of track displacement mechanism
EP3441644A1 (en) Toroidal continuously variable transmission
JP2005098435A (en) Pulley split body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190822

R150 Certificate of patent or registration of utility model

Ref document number: 6577230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250