JP6576215B2 - Monitoring control device for water transmission facility plant and water level management method for distribution reservoir using monitoring control device - Google Patents

Monitoring control device for water transmission facility plant and water level management method for distribution reservoir using monitoring control device Download PDF

Info

Publication number
JP6576215B2
JP6576215B2 JP2015219108A JP2015219108A JP6576215B2 JP 6576215 B2 JP6576215 B2 JP 6576215B2 JP 2015219108 A JP2015219108 A JP 2015219108A JP 2015219108 A JP2015219108 A JP 2015219108A JP 6576215 B2 JP6576215 B2 JP 6576215B2
Authority
JP
Japan
Prior art keywords
water level
water
demand
control device
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015219108A
Other languages
Japanese (ja)
Other versions
JP2017091124A (en
Inventor
信也 眞辺
信也 眞辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015219108A priority Critical patent/JP6576215B2/en
Publication of JP2017091124A publication Critical patent/JP2017091124A/en
Application granted granted Critical
Publication of JP6576215B2 publication Critical patent/JP6576215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Description

この発明は、上水等の送水設備プラントの監視制御装置および監視制御装置を用いた配水池の水位管理方法に関するもので、特に上水を貯えた配水池の水位変化を配水池に供給される現在時点の上水量と、過去の時刻毎の需要量のデータを参照の上、時刻毎の水需要量を予測して、配水池の水位を変化線図を表示する送水設備プラントの監視制御装置および、監視制御装置を用いた配水池の水位管理方法に係るものである。   TECHNICAL FIELD The present invention relates to a monitoring control device for a water supply facility plant such as water supply and a water level management method for a distribution reservoir using the monitoring control device, and in particular, a change in the water level of a distribution reservoir that stores clean water is supplied to the distribution reservoir. A water supply equipment plant monitoring and control device that displays the water level of the distribution reservoir by predicting the water demand at each time with reference to the current water volume and the demand data at each past time In addition, the present invention relates to a water level management method for a distribution reservoir using a monitoring control device.

従来より、上水の送水設備プラントの監視制御装置において、大多数の一般家庭を含む需要家の上水使用量が時々刻々に変化することにより、上水の配水池の水位を安定して制御する技術は採用されてなく、送水設備プラントに常駐する運転員が、常時配水池の水位の監視を行い、配水池の送水ポンプによる流量調整を行い、水位管理、つまり、配水池における水位管理基準である上限水位、下限水位からの逸脱を未然に防止する運転管理を行っている。この運転管理の具体例は、配水池の水位が上限あるいは下限に達した際に、水位計が発信するアラームに基づき、運転員によってポンプ運転台数の増減等を行っており、後追いの水位管理運転となる場合もある。   Conventionally, in the monitoring and control system of the water supply facility plant, the water level of the water supply reservoir has been stably controlled by changing the amount of water used by consumers, including the majority of ordinary households, from moment to moment. Technology is not adopted, the operator who is resident in the water supply plant constantly monitors the water level of the reservoir, adjusts the flow rate with the water pump of the reservoir, and controls the water level, that is, the water level management standard in the reservoir Operation management is performed to prevent deviation from the upper and lower water levels. In this specific example of operation management, when the water level of the reservoir reaches the upper limit or the lower limit, the number of pumps operated is increased or decreased by the operator based on an alarm sent by the water level gauge. It may become.

一方、運転員が配水池の水位を上下限値内に維持する場合において、過剰なポンプ動力の発生を抑え、契約電力の増大を防ぐことが可能な配水池上下限値を設定する技術として、記録部にプラントデータと水需要データとが記録されており、シミュレーション部が、プラントデータを用いて複数のポンプの配水池への送水量を算出し、送水量と水需要のデータとの関係に基づいて配水池の水位を算出し、この水位が配水池の上下限値付近になるとポンプ数を増減させ、送水量に基づいて電力量とピーク電力を算出の上、この電力量とピーク電力に基づいて電力量料金を算出し、シミュレーション部によって電力量料金を抑制する配水池上下限値を設定するものが示されている(例えば、特許文献1参照)。   On the other hand, when the operator maintains the water level of the reservoir within the upper and lower limits, it is recorded as a technology to set the upper and lower limits of the reservoir that can suppress the generation of excessive pump power and prevent an increase in contract power. The plant data and water demand data are recorded in the section, and the simulation section uses the plant data to calculate the amount of water delivered to the reservoirs of multiple pumps, and based on the relationship between the amount of water delivered and the water demand data Calculate the water level of the reservoir, increase or decrease the number of pumps when this water level is near the upper and lower limits of the reservoir, calculate the amount of power and peak power based on the amount of water delivered, and then calculate the power based on this amount of power and peak power. An example is shown in which an amount charge is calculated and the upper and lower limits of the reservoir are set by the simulation unit to suppress the electricity amount charge (see, for example, Patent Document 1).

特開2014−178816号公報JP 2014-178816 A

しかしながら、上記特許文献1に示された技術は、過去の一定期間(例えば1年間)の水需要データをデータベースから読み出して水需要qkとして送水量Qkを求め、時刻Kにおける配水池の水位Ikを演算し、この水位Ikを定められた運用上の水位上下限範囲内に維持するものである。従って水需要qkがデータベースからの読み取りに基づくものであり、多様に変化する現在時点における水需要量とは必ずしも一致してなく、適切な水位管理を保つ運転つまり安定して需要家に供水を行う運転が行われない場合があるという問題点がある。またさらに、配水池の水位が上限あるいは下限に達する時刻が表示されてなく、アラーム発生後等の後追いの水位管理運転とならないように安定した水位管理運転を維持するには、運転員による常に監視を行う必要があり、省人化、省エネ化という観点から問題点がある。   However, the technique disclosed in Patent Document 1 reads out the water demand data for a certain period in the past (for example, one year) from the database, obtains the water supply amount Qk as the water demand qk, and determines the water level Ik of the reservoir at time K. The water level Ik is calculated and maintained within a predetermined operational water level upper and lower limit range. Therefore, the water demand qk is based on reading from the database, and does not always match the water demand at the present time, which varies in various ways. There is a problem that driving may not be performed. In addition, the time when the water level of the reservoir reaches the upper limit or lower limit is not displayed, and in order to maintain a stable water level management operation so that it will not be a follow-up water level management operation such as after an alarm occurs, it is always monitored by the operator. There is a problem from the viewpoint of labor saving and energy saving.

この発明は上記のような課題を解決するためになされたものであって、1日の水需要量実績値から水需要量を算出した予測条件と、現時点における配水池に供給される上水の流量を基に配水池の水位管理基準内に収まる該当日の時刻毎の水需要量の予測値を求めて水位変化線図を作成、表示するので、前記運転員は配水池の水位変化を時間単位で認識することが可能となり、運転の省人化、省エネ化とともに後追い水位管理運転発生を未然に防止可能となり効率的な運転を可能とする送水設備プラントの監視制御装置および監視制御装置を用いた配水池の水位管理方法を提供することを目的とする。   This invention was made in order to solve the problems as described above, and the prediction condition for calculating the water demand from the daily water demand actual value and the tap water supplied to the distribution reservoir at the present time. Based on the flow rate, the water level change chart is created and displayed by obtaining the predicted value of the water demand for each hour of the day that falls within the water level management standard of the reservoir, so the operator can change the water level of the reservoir in time. It is possible to recognize by unit, and it is possible to use the monitoring control device and monitoring control device of the water supply equipment plant that can prevent the occurrence of operation of management of the follow-up water level as well as save labor and energy, and enable efficient operation. The purpose is to provide a water level management method for a reservoir.

第1の発明は、
配水池の水位を監視制御する送水設備プラントの監視制御装置であって、前記配水池に上水を送水する送水ポンプと、前記送水ポンプの送水量を計測する流量計と、前記配水池の水位を計測する水位計とが設けられ、当日の曜日および気象を含む予測条件が前記監視制御装置の予測条件入力部に入力されると、水需要量予測部はデータベースから、当日から遡り前記予測条件に合致する複数の日付の水需要量実績値を取得するとともに、前記水需要量実績値を平均して時刻毎の水需要量予測値を算出し、水位計算部は前記配水池の断面積と前記算出された水需要量予測値と、前記流量計が示す現在時点の送水量と、前記水位計が示す水位とから、前記配水池の各時刻毎の水位を算出するとともに、時間経過に伴う水位の変化を示す水位変化線図であって、かつ前記配水池の上限水位管理基準値付近および下限水位管理基準値付近において、分、秒単位の水位変化が示された水位変化線図を作成し、前記水位変化線図は表示部に表示され、かつ前記水位変化線図には、前記監視制御装置の水位管理基準入力部からの入力によって前記上限水位管理基準値付近および前記下限水位管理基準値付近を含む複数の運転状態変更点が指示されるとともに、前記運転状態変更点に対応する時刻に、前記監視制御装置の制御部によって前記送水ポンプの吐出水量を増減するよう制御するものである。
第2の発明は、
次のステップを備えた送水設備プラントの監視制御装置を用いた配水池の水位管理方法である。
ステップ1.予測条件入力部に当日の曜日および気象を含む予測条件を入力する。
ステップ2.水需要量予測部は、当日から遡り前記予測条件に合致する複数の日付をデータベースから抽出する。
ステップ3.抽出された日付を基にデータベースから水需要量実績値を抽出する。
ステップ4.前記複数の日付の水需要量実績値を平均するとともに、時刻毎の水需要量予測値を算出する。
ステップ5.水位計算部に配水池の断面積を入力する。
ステップ6.前記水需要量予測値を水位計算部に入力する。
ステップ7.水位計算部は制御バスを介して、現時点での流量計の示す送水量と、水位計の示す水位とを入力する。
ステップ8.前記水需要量予測値と送水量と水位と断面積とから、時刻毎の配水池の水位を算出し、時間経過に伴う水位の変化を示す水位変化線図であって、かつ前記配水池の上限水位管理基準値付近および下限水位管理基準値付近において、分、秒単位の水位変化が示された水位変化線図を作成する。
ステップ9.水位管理基準入力部に前記上限水位管理基準値付近および前記下限水位管理基準値付近を含む複数の運転状態変更点および前記運転状態変更点の変更点時刻が入力する。
ステップ10.水位管理基準入力部は前記運転状態変更点および前記運転状態変更点の変更点時刻を水位変化線図に指示する。
ステップ11.表示部に前記水位変化線図を表示する。
ステップ12.運転状態変更点時刻に至った時、制御部は送水ポンプの吐出水量を増減するよう制御する。
The first invention is
A monitoring and control device of a water supply facility plant that monitors and controls the water level of a distribution reservoir, a water supply pump that supplies clean water to the distribution reservoir, a flow meter that measures a water supply amount of the water supply pump, and a water level of the distribution reservoir When the forecast condition including the day of the week and the weather is input to the forecast condition input unit of the monitoring and control device, the water demand forecast unit goes back from the database to the forecast condition. The water demand amount actual values for a plurality of dates that match the above are obtained, and the water demand actual value is averaged to calculate the water demand amount predicted value for each time, and the water level calculation unit calculates the cross-sectional area of the reservoir. The water level at each time of the reservoir is calculated from the calculated predicted water demand, the water supply amount at the current time point indicated by the flow meter, and the water level indicated by the water level meter. Water level change line showing changes in water level A is, and in the vicinity of the upper limit water level control reference value of the distribution reservoir and lower limit level near control reference value, min, to create a change in water level diagram level change is indicated in seconds, the water level change diagram is displayed A plurality of operating state changes including the vicinity of the upper limit water level management reference value and the vicinity of the lower limit water level management reference value by an input from the water level management reference input unit of the monitoring and control device. A point is specified, and at the time corresponding to the operating state change point, the control unit of the monitoring control device controls to increase or decrease the discharge water amount of the water pump.
The second invention is
It is a water level management method of a distribution reservoir using the monitoring control apparatus of a water supply equipment plant provided with the following steps.
Step 1. The prediction condition including the day of the week and the weather is input to the prediction condition input section.
Step 2. Water demand prediction unit extracts case match multiple dates from a database in the prediction condition going back from that day.
Step 3. Based on the date extracted, the actual water demand is extracted from the database.
Step 4. The water demand amount actual value of the plurality of dates is averaged, and a water demand prediction value for each time is calculated.
Step 5. Enter the reservoir cross-sectional area into the water level calculator.
Step 6. The predicted water demand is input to the water level calculation unit.
Step 7. The water level calculation unit inputs the current water supply amount indicated by the flow meter and the water level indicated by the water level meter via the control bus.
Step 8. It is a water level change diagram showing the change in the water level over time, calculating the water level of the reservoir for each time from the predicted value of water demand, the amount of water delivered, the water level, and the cross-sectional area , and A water level change diagram showing the water level change in minutes and seconds near the upper limit water level management reference value and near the lower limit water level management reference value is created.
Step 9. A plurality of operation state change points including the vicinity of the upper limit water level management reference value and the vicinity of the lower limit water level management reference value and the change time of the operation state change point are input to the water level management reference input unit.
Step 10. The water level management reference input unit instructs the operation state change point and the change time of the operation state change point on the water level change diagram.
Step 11. The water level change diagram is displayed on the display unit.
Step 12. When the operating state change point time is reached, the control unit controls to increase or decrease the discharge water amount of the water pump.

第1の発明に係る送水設備プラントの監視制御装置は、上記のような構成を採用しているので、1日の水需要量実績値から算出した水需要量予測値と、現時点における配水池に供給される上水の流量を基に、時刻毎の水位変化線図が表示されるので、配水池の水位変化を時間単位で認識することが可能で、従来の如くアラーム発生後の後追い制御の発生の可能性が少なくなり、運転の省力化、省エネ化と共に、効率的なプラント運転が行えるという効果がある。
さらに、第2の発明に係る配水池の水位管理方法は、運転状態の変更点と変更点時刻が水位変化線図に指示され、変更点時刻に至ると自動的に流量の増減を抑制するので、上記と同様の効果を奏する。
Since the monitoring control device of the water transmission equipment plant according to the first invention adopts the above-described configuration, the predicted water demand amount calculated from the daily water demand actual value and the current distribution reservoir Based on the flow rate of the supplied water, a water level change diagram for each time is displayed, so it is possible to recognize the water level change in the distribution basin in units of time. The possibility of occurrence is reduced, and there is an effect that efficient plant operation can be performed together with labor saving and energy saving of operation.
Furthermore, the water level control method of distributing reservoir according to the second invention, changes time and changes in OPERATION state is instructed to level changes diagram, automatically suppresses the increase or decrease of the flow rate reaches the changes time Therefore, the same effect as described above is achieved.

実施の形態1による送水設備プラントの概要を示す図である。It is a figure which shows the outline | summary of the water supply equipment plant by Embodiment 1. FIG. 実施の形態1による監視制御装置を含むプラント監視システムを示すブロック図である。1 is a block diagram illustrating a plant monitoring system including a monitoring control device according to Embodiment 1. FIG. 実施の形態1による水需要量の実績関連データを示す図である。It is a figure which shows the performance relevant data of the amount of water demand by Embodiment 1. FIG. 実施の形態1による予測条件を示す図である。FIG. 6 is a diagram illustrating a prediction condition according to the first embodiment. 実施の形態1による水需要量予測結果を示す図である。It is a figure which shows the water demand amount prediction result by Embodiment 1. FIG. 実施の形態1による配水池の水位変化線図を示す図である。It is a figure which shows the water level change diagram of the distribution reservoir by Embodiment 1. FIG. 実施の形態1によるフローチャートを示す図である。FIG. 3 is a diagram showing a flowchart according to the first embodiment. 実施の形態1による水位変化線図を示す図である。It is a figure which shows the water level change diagram by Embodiment 1. FIG. 実施の形態1による水位変化線図を示す図である。It is a figure which shows the water level change diagram by Embodiment 1. FIG. 実施の形態3によるフローチャートを示す図である。FIG. 10 is a diagram illustrating a flowchart according to the third embodiment.

実施の形態1.
以下、この発明の実施の形態1による送水設備プラントの監視制御装置(以下、監視制御装置と略す)10を、図に基づいて説明する。図1は監視制御装置10の動作説明をサポートする配水池50周辺の諸設備を示す送水設備プラントの概略を示す図であり、図1において一般家庭を含む需要家5に上水を送る配水池50は、上流池51からの上水が吐出水量Exの送水ポンプ1から流量計2を介して供給されている。配水池50に設置された水位計3は、配水池50の水位を計測し後述する情報処理装置18に出力するとともに水位管理基準に相当する上限水位管理基準PH、下限水位管理基準PLが設けられ、水位がそれに達するとそれぞれ発信するアラーム機能を備えている。配水池50の上水は水需要量予測値Drでもって需要家5に供給されている。この水需要量予測値Drは監視制御装置10で管理制御可能なものでなく、需要家5の上水使用量によって時々刻々変化する。すなわち監視制御装置10は、配水池50の現時点の水位Poを常時監視制御することで需要家5の需要要求に対応する。
Embodiment 1 FIG.
Hereinafter, a monitoring control device (hereinafter abbreviated as a monitoring control device) 10 for a water supply plant according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of a water supply equipment plant showing various facilities around a water reservoir 50 that supports the explanation of the operation of the monitoring and control apparatus 10. In FIG. 1, the water reservoir for sending clean water to a consumer 5 including a general household. 50, clean water from the upstream pond 51 is supplied from the water supply pump 1 having the discharge water amount Ex via the flow meter 2. The water level meter 3 installed in the distribution reservoir 50 measures the water level of the distribution reservoir 50 and outputs it to the information processing device 18 described later, and is provided with an upper limit water level management reference PH and a lower limit water level management reference PL corresponding to the water level management reference. , It has an alarm function to send each when the water level reaches it. The tap water of the distribution reservoir 50 is supplied to the customer 5 with the water demand predicted value Dr. This water demand predicted value Dr is not manageable and controllable by the monitoring control device 10 and changes from moment to moment depending on the amount of water consumed by the customer 5. That is, the monitoring control device 10 responds to the demand request of the customer 5 by constantly monitoring and controlling the current water level Po of the distribution reservoir 50.

図2は実施の形態1による監視制御装置10を含む送水設備プラントの監視制御システム100の構成を示すブロック図である。図2において監視制御装置10は、図1に示した送水ポンプ1、流量計2、水位計3等の設備機器19の各種プラントデータベースを情報処理装置18、制御バス17を介して入力、保存するとともに、需要家5に供給する水需要量を予測し、時刻毎の配水池50の水位を計算する。
情報処理装置18は、設備機器19の出力や計測データ情報を処理する。制御バス17は制御部10aからの指令を入力し、情報処理装置18、設備機器19との双方向での情報および制御指令の伝達を行う。
FIG. 2 is a block diagram illustrating a configuration of a monitoring control system 100 for a water transmission facility plant including the monitoring control apparatus 10 according to the first embodiment. In FIG. 2, the monitoring control device 10 inputs and stores various plant databases of the equipment 19 such as the water pump 1, the flow meter 2, and the water level meter 3 shown in FIG. 1 via the information processing device 18 and the control bus 17. At the same time, the amount of water demand to be supplied to the customer 5 is predicted, and the water level of the reservoir 50 for each time is calculated.
The information processing apparatus 18 processes the output of the equipment 19 and measurement data information. The control bus 17 receives a command from the control unit 10a and transmits information and a control command bidirectionally with the information processing device 18 and the equipment 19.

監視制御装置10は、制御部10aと制御バス17を介して水需要量実績値を保存するデータベース11と、当日の曜日および気象を含む予測条件を入力する予測条件入力部12と、この予測条件入力部12に入力された予測条件を基にして、前記データベース11から水需要量実績値を取得して当日の水需要量予測値を算出する水需要量予測部13と、配水池50の水位管理基準を入力する水位管理基準入力部14と、配水池50の水位変化を時刻毎に算出するとともに、その水位変化線図を作成する水位計算部15と、前記水需要量予測値および前記水位変化線図を表示する表示部16とが設けられている。   The monitoring control device 10 includes a database 11 that stores the actual water demand amount value via the control unit 10a and the control bus 17, a prediction condition input unit 12 that inputs a prediction condition including the day of the week and the weather, and the prediction condition. Based on the prediction condition input to the input unit 12, the water demand amount prediction unit 13 that obtains the water demand amount actual value from the database 11 and calculates the water demand amount prediction value for the day, and the water level of the distribution reservoir 50 The water level management standard input unit 14 for inputting the management standard, the water level calculation unit 15 for calculating the water level change of the distribution reservoir 50 for each time, and creating the water level change diagram, the water demand predicted value and the water level A display unit 16 for displaying a change diagram is provided.

次に、監視制御装置10の動作と詳細構成を図3〜図7に基づいて説明する。
図7に示すフローチャートのステップ(以下、STと略す)1において、運転員によって図4に示す如く、当日の曜日、予想気象、過去の水需要量実績値の時間単位、検索数、抽出日数が“3”(3日間)となるような予測条件12aが、予測条件入力部12に入力される。
ST2において、水需要量予測部13はデータベース11に保存されている図3に示すような過去の日付、曜日、気候、気温、特殊日、24時間にわたる各時刻毎(この例では図4の予測条件12aで6時間毎のデータ)の水需要量関連データ11aを参照し、直近の日付から遡り、前記予測条件12aとほぼ合致する日付の水需要量関連データ11aを抽出する。この例では図5に示すように8月5日、8月4日、8月2日の3日間の日付のものが抽出されている。
ST3において、水需要量予測部13は抽出された日付の水需要量実績値が図5の水需要量予測結果13aに示すように取得される。
ST4において、水需要量予測部13は上記日付の水需要量実績値を平均して図5に示すように当日の時刻毎の水需要量予測値Drを算出する。
ST5において、運転員によって水位管理基準入力部14に、配水池50の断面積Sが入力される。
ST6において、水位計算部15は前記ST4で算出した水需要量予測値Drを入力する。
ST7において、水位計算部15は制御バス17を介して流量計2の示す現時点で流量Xoと、水位計3が示す現時点での配水池50の水位Poを入力する。
ST8において、水位計算部15は水需要量予測値Dr、流量Xo、水位Po、断面積Sとから、各時刻における配水池50の水位Piを次式にて算出する。
Pi=((Xo−Dr)/S)+Po
求めた各時刻(この例では6時間毎の)での水位Piを結ぶ水位変化線図Pfを作成する。この水位変化線図Pfを図6に示す。
ST9において、表示部16に当日の時刻毎の水需要量予測値Drと、水位変化線図Pfを表示する。
Next, operation | movement and detailed structure of the monitoring control apparatus 10 are demonstrated based on FIGS.
In step (hereinafter abbreviated as ST) 1 of the flowchart shown in FIG. 7, as shown in FIG. 4, by the operator, the day of the day, forecast weather, time unit of past water demand actual value, number of searches, number of extraction days are A prediction condition 12 a that is “3” (three days) is input to the prediction condition input unit 12.
In ST2, the water demand forecasting unit 13 stores the past date, day of the week, climate, temperature, special day, and each time over 24 hours as shown in FIG. 3 stored in the database 11 (in this example, the forecast of FIG. 4). By referring to the water demand related data 11a (data every 6 hours under the condition 12a), the water demand related data 11a on the date almost matching the prediction condition 12a is extracted by going back from the most recent date. In this example, as shown in FIG. 5, the date of August 5, August 4, and August 2 is extracted.
In ST3, the water demand amount prediction unit 13 acquires the water demand amount actual value on the extracted date as shown in the water demand amount prediction result 13a in FIG.
In ST4, the water demand amount prediction unit 13 calculates the water demand amount prediction value Dr for each time of the day as shown in FIG.
In ST5, the cross-sectional area S of the reservoir 50 is input to the water level management reference input unit 14 by the operator.
In ST6, the water level calculation unit 15 inputs the predicted water demand value Dr calculated in ST4.
In ST7, the water level calculation unit 15 inputs the current flow rate Xo indicated by the flow meter 2 and the current water level Po of the distribution reservoir 50 indicated by the water level meter 3 via the control bus 17.
In ST8, the water level calculation unit 15 calculates the water level Pi of the distributing reservoir 50 at each time from the water demand predicted value Dr, the flow rate Xo, the water level Po, and the cross-sectional area S by the following equation.
Pi = ((Xo−Dr) / S) + Po
A water level change diagram Pf connecting the water levels Pi at each obtained time (every 6 hours in this example) is created. This water level change diagram Pf is shown in FIG.
In ST9, the water demand predicted value Dr and the water level change diagram Pf for each time of the day are displayed on the display unit 16.

尚、図6に示す送水ポンプ1の吐出水量Exは、流量計2が示す流量Xoと同等のものであり、また吐出水量Exは水需要量予測値Drに対応して、時刻毎に変化するよう送水ポンプ1の運転台数や図示省略した弁開度等が制御運転される。   The discharge water amount Ex of the water pump 1 shown in FIG. 6 is equivalent to the flow rate Xo indicated by the flow meter 2, and the discharge water amount Ex changes with time corresponding to the predicted water demand amount Dr. The number of operating water pumps 1 and the valve opening degree not shown are controlled.

さらに、ST8で算出された各時刻毎の水位Piは図1で示した配水池50の上限水位管理基準PH、下限水位管理基準PLを用い、
PL≦Pi≦PH
に収まるようにこの実施の形態1では運転員によって監視制御される。
Furthermore, the water level Pi at each time calculated in ST8 uses the upper limit water level management standard PH and the lower limit water level management standard PL of the distribution reservoir 50 shown in FIG.
PL ≦ Pi ≦ PH
In the first embodiment, monitoring and control are performed by the operator so as to be within the range.

また、上記図6に示す各時刻毎の水位Piの変化は、図3の水需要量関連データ11aの24時、6時、12時等の6時間毎の粗い時刻目盛りの実績値を受けて、図5に示すような当日の水需要量予測値Drを採用しているが、データベース11にはよりきめ細かな時刻(分、秒単位)毎の水需要量実績値が保存されているので、図6で示す水位変化線図Pfの最大値すなわち上限水位管理基準PH付近の値となる19時から20時付近、および水位変化線図Pfの最小値すなわち下限水位管理基準PL付近の値となる24時から1時30分付近については、例えば10分毎の水需要量実績値を取得し、前記で述べたST6〜ST9の手順と動作で、水位計算部15は図8、図9に示すような10分毎の水位Pi1〜Pi7や水位Pi11〜Pi16を結ぶ水位変化線図Pfを作成することも可能であり、この図8、図9に示す水位変化線図Pfが表示部16に追加して表示される。また、水需要量実績値を各時間毎でなく1時間毎とし、かつ上記10分毎のデータとし、これらを併用した水位変化線図Pfとしてもよい。 The change in the water level Pi at each time shown in FIG. 6 is based on the actual value of the coarse time scale every 6 hours such as 24:00, 6 o'clock, 12 o'clock, etc. of the water demand related data 11a in FIG. 5, the water demand forecast value Dr on the day as shown in FIG. 5 is adopted, but since the water demand actual value for each minute time (minute, second unit) is stored in the database 11, The maximum value of the water level change diagram Pf shown in FIG. 6, that is, a value near the upper limit water level management reference PH, and the value near 10:00 to 20:00, and the minimum value of the water level change diagram Pf, that is, a value near the lower limit water level management reference PL. for around 1:30 o'clock 24, for example, to get the water demand actual value of every 10 minutes, the procedure and operation of ST6~ST9 mentioned above, the water level calculation unit 15 shown in FIG. 8, FIG. 9 Water level Pi1-Pi7 and water level Pi11- It is also possible to create a water level variation diagram Pf connecting i16, FIG. 8, the water level varies diagram Pf shown in FIG. 9 is displayed in addition to the display unit 16. Moreover, it is good also as the water level change diagram Pf which uses the water demand amount actual value not only for every hour but for every hour and as the data for every 10 minutes, and using these together.

尚、図6に示した運転状態変更点Pct、Pcbおよび変更点時刻Tct、Tcbは後に詳述する。   The operating state change points Pct and Pcb and the change point times Tct and Tcb shown in FIG. 6 will be described in detail later.

以上のようにこの実施の形態1では、配水池50の水位変化を、供給される現在時点の流量Xoと、当日の気象条件に類似の過去の複数日の水需要量実績値を平均して得た時刻毎の水需要量予測結果とを基に、各時刻毎の配水池50の水位変化線図Pfを算出、表示部16に表示するので、運転員は水位計3が水位の上限、下限にて発信するアラーム発生の時刻を予め詳しく認識することができ、配水池50の水位管理が従来の如く後追い処理でなく、アラーム発生以前に配水池50の水位の管理態勢を整えるとともに、水位を基準内に保持することが可能となり、需要家に安定した上水の供給が可能となる。また水位変化を時間単位、分単位等に算出、表示することが可能なので、運転員の省力化、省人化や、プラント運転の監視制御の効率化がはかれるという効果がある。尚、何らかの原因によって配水池50の水位Poが上、下限水位管理基準PH、PLに達した際には、水位計3はアラームを発生する。   As described above, in the first embodiment, the change in the water level of the distribution reservoir 50 is calculated by averaging the flow rate Xo at the current time point supplied and the actual water demand amount values in the past similar to the weather conditions of the day. Based on the obtained water demand prediction results for each time, the water level change diagram Pf of the reservoir 50 for each time is calculated and displayed on the display unit 16, so that the operator can set the water level meter 3 to the upper limit of the water level, It is possible to recognize in advance in advance the alarm occurrence time to be transmitted at the lower limit, and the water level management of the distribution reservoir 50 is not a follow-up process as in the past, and the management system of the water level of the distribution reservoir 50 is prepared before the alarm occurrence and the water level Can be kept within the standard, and stable supply of drinking water to consumers is possible. In addition, since the water level change can be calculated and displayed in units of hours, minutes, etc., there is an effect that labor saving and labor saving of the operator and efficiency of monitoring and control of the plant operation can be achieved. When the water level Po of the distribution reservoir 50 reaches the upper and lower limit water level management standards PH and PL for some reason, the water level meter 3 generates an alarm.

実施の形態2.
次に実施の形態2について説明する。前述した実施の形態1における予測条件入力部12に入力される予測条件12aは、抽出日数を“3”とした平日のデータを水需要量関連データとしてデータベース11から抽出するものであったが、この実施の形態2による予測条件12aは、上記平日に代替して図3に示すような8月3日の特殊日とするものである。この特殊日とは、例えば需要家5においてイベント(行事)等が行われ、水需要量実績値が平日と比較して大幅に変化する日としている。運転員は、当日が特殊日に相当すると認識すると、データベース11に格納されている関連データを参照して予測条件12aを特殊日の1日とし、水需要量予測部13は特殊日の1日の時刻毎の水需要量実績値を取得してこれを水需要量予測値Drとし、以降前述した実施の形態1と同様の動作を行う。このことにより、特殊日であっても実施の形態1と同様の効果を奏する。
Embodiment 2. FIG.
Next, a second embodiment will be described. The prediction condition 12a input to the prediction condition input unit 12 in the first embodiment described above is to extract weekday data with the extraction days being “3” from the database 11 as water demand related data. The prediction condition 12a according to the second embodiment is a special day of August 3 as shown in FIG. 3 instead of the weekday. The special day is, for example, a day when an event (event) or the like is performed in the customer 5 and the actual amount of water demand changes significantly compared to weekdays. When the operator recognizes that the day corresponds to a special day, the prediction condition 12a is set to one day of the special day with reference to the related data stored in the database 11, and the water demand forecasting unit 13 sets the day of the special day. The water demand amount actual value for each time is acquired and used as the water demand prediction value Dr, and the same operation as that of the first embodiment described above is performed thereafter. As a result, the same effects as in the first embodiment can be obtained even on a special day.

実施の形態3.
次に、実施の形態3について説明する。前述した実施の形態1、2は監視制御装置10の表示部16に表示されるデータに基づき、配水池50の水位管理を運転員によって行うものであったが、この実施の形態3は、監視制御装置10によって配水池50の水位を基準内に保つよう自動運転制御する場合である。監視制御装置10の構成は実施の形態1で示した図2と同様であるので説明を省略し、動作のフローチャートを図10に示す。
図10において、ST1〜ST8は実施の形態1で示した図7と同様であるので動作の説明を省略している。
ST9において、図6に示す水位変化線図Pfに運転員によって運転状態変更点Pct、Pcbおよびその変更点時刻Tct、Tcbを、水位管理基準入力部14に入力される。ここで、前記Pctは例えば配水池50の水位が最大値を示す運転状態変更点であり、Tctはその変更点時刻(20時)である。またPcbは配水池50の水位が最小値を示す運転状態変更点であり、Tcbはその変更点時刻(1時)である。
ST10において、前記ST9にて入力、指示されたPct、PcbおよびTct、Tcbが図6の水位変化線図Pfに指示される。
ST11において、ST10による水位変化線図Pfが表示部16に表示される。
ST12において、前記運転状態変更点Pctの発生の変更点時刻Tct(20時)となると、制御部10aは送水ポンプ1の運転台数の減少やポンプ吐出水量の減少化等により、流量Xoを減少させるよう制御指令を発する。また、運転状態変更点Pcbの発生の変更点時刻Tcb(1時)になると、制御部10aは送水ポンプ1の運転台数の増加やポンプ吐出水量の増加等により、流量Xoを増加させるよう制御指令を発する。
Embodiment 3 FIG.
Next, Embodiment 3 will be described. In the first and second embodiments described above, the water level of the reservoir 50 is managed by the operator based on the data displayed on the display unit 16 of the monitoring and control device 10, but this third embodiment is a monitoring method. This is a case where automatic operation control is performed by the control device 10 so as to keep the water level of the distribution reservoir 50 within the standard. Since the configuration of the monitoring control apparatus 10 is the same as that of FIG. 2 shown in the first embodiment, the description thereof is omitted, and a flowchart of the operation is shown in FIG.
In FIG. 10, ST1 to ST8 are the same as those in FIG.
In ST9, the operating level change points Pct, Pcb and the change point times Tct, Tcb are input to the water level management reference input unit 14 by the operator in the water level change diagram Pf shown in FIG. Here, the Pct is, for example, the operating state change point at which the water level of the distribution reservoir 50 shows the maximum value, and Tct is the change point time (20 o'clock). Pcb is an operating state change point at which the water level of the distributing reservoir 50 shows a minimum value, and Tcb is the change point time (1 o'clock).
In ST10, Pct, Pcb and Tct, Tcb input and instructed in ST9 are instructed in the water level change diagram Pf in FIG.
In ST11, the water level change diagram Pf by ST10 is displayed on the display unit 16.
In ST12, when the change point time Tct (20 o'clock) of the generation of the operation state change point Pct is reached, the control unit 10a decreases the flow rate Xo by reducing the number of water pumps 1 operated or the pump discharge water amount. A control command is issued. Further, when the change point time Tcb (1 o'clock) of occurrence of the operation state change point Pcb is reached, the control unit 10a performs a control command to increase the flow rate Xo due to an increase in the number of operating water pumps 1 or an increase in the amount of pump discharge water. To emit.

以上の説明では運転員は変更点時刻としてTctを水位変化線図Pfにおける水位の最大値を、Tcbを水位の最小値を示す個所の2点を選択、入力したが、必ずしも最大値、最小値の個所でなく、プラント監視制御上、必要とする個所を選択して入力してもよく、文、入力個所も2個所でなく複数個所であってもよい。   In the above description, the operator selects and inputs Tct as the change point time and the two points of the water level change diagram Pf indicating the maximum value of the water level and Tcb indicating the minimum value of the water level. Instead of the above-mentioned locations, the locations required for plant monitoring control may be selected and input, and the sentence and input locations may be a plurality of locations instead of two.

以上のようにこの実施の形態3では、得られた水位変化線図Pfを基に、運転状態変更点を選択、入力しているので、その運転状態変更点の時刻に達すると、自動運転制御により送水ポンプ1からの吐出水量Exの増減を制御可能となり、省力化、省人化が達成でき、また運転状態変更時刻が表示部16に表示されているので、運転員間の情報の共通化がなされ、効率的な送水設備プラントの監視制御が可能となる。   As described above, in the third embodiment, since the operation state change point is selected and input based on the obtained water level change diagram Pf, automatic operation control is performed when the time of the operation state change point is reached. This makes it possible to control the increase and decrease in the discharge water amount Ex from the water pump 1, achieve labor saving and labor saving, and the operating state change time is displayed on the display unit 16, so that information among operators is shared. Therefore, efficient monitoring and control of the water supply equipment plant becomes possible.

尚、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that within the scope of the present invention, the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.

1 送水ポンプ、2 流量計、3 水位計、5 需要家、10 監視制御装置、
10a 制御部、11 データベース、11a 水需要量関連データ、
12 予測条件入力部、12a 予測条件、13 水需要量予測部、
13a 水需要量予測結果、14 水位管理基準入力部、15 水位計算部、
16 表示部、19 設備機器、50 配水池、Po 現時点の水位、
Xo 現時点での流量、Dr 水需要量予測値、PH 上限水位管理基準、
Pf 水位変化線図、PL 下限水位管理基準、Ex ポンプ吐出水量、
Pct,Pcb 運転状態変更点、Tct,Tcb 変更点時刻。
1 water pump, 2 flow meter, 3 water level meter, 5 customer, 10 monitoring and control device,
10a control unit, 11 database, 11a water demand related data,
12 prediction condition input unit, 12a prediction condition, 13 water demand prediction unit,
13a Water demand forecast result, 14 Water level management standard input part, 15 Water level calculation part,
16 Display, 19 Equipment, 50 Reservoir, Po Current water level,
Xo Current flow rate, Dr water demand forecast value, PH upper water level management standard,
Pf water level change diagram, PL lower limit water level management standard, Ex pump discharge water volume,
Pct, Pcb Operating state change point, Tct, Tcb change point time.

Claims (2)

配水池の水位を監視制御する送水設備プラントの監視制御装置であって、前記配水池に上水を送水する送水ポンプと、前記送水ポンプの送水量を計測する流量計と、前記配水池の水位を計測する水位計とが設けられ、当日の曜日および気象を含む予測条件が前記監視制御装置の予測条件入力部に入力されると、水需要量予測部はデータベースから、当日から遡り前記予測条件に合致する複数の日付の水需要量実績値を取得するとともに、前記水需要量実績値を平均して時刻毎の水需要量予測値を算出し、水位計算部は前記配水池の断面積と前記算出された水需要量予測値と、前記流量計が示す現在時点の送水量と、前記水位計が示す水位とから、前記配水池の各時刻毎の水位を算出するとともに、時間経過に伴う水位の変化を示す水位変化線図であって、かつ前記配水池の上限水位管理基準値付近および下限水位管理基準値付近において、分、秒単位の水位変化が示された水位変化線図を作成し、前記水位変化線図は表示部に表示され、かつ前記水位変化線図には、前記監視制御装置の水位管理基準入力部からの入力によって前記上限水位管理基準値付近および前記下限水位管理基準値付近を含む複数の運転状態変更点が指示されるとともに、前記運転状態変更点に対応する時刻に、前記監視制御装置の制御部によって前記送水ポンプの吐出水量を増減するよう制御する送水設備プラントの監視制御装置。 A monitoring and control device of a water supply facility plant that monitors and controls the water level of a distribution reservoir, a water supply pump that supplies clean water to the distribution reservoir, a flow meter that measures a water supply amount of the water supply pump, and a water level of the distribution reservoir When the forecast condition including the day of the week and the weather is input to the forecast condition input unit of the monitoring and control device, the water demand forecast unit goes back from the database to the forecast condition. The water demand amount actual values for a plurality of dates that match the above are obtained, and the water demand actual value is averaged to calculate the water demand amount predicted value for each time, and the water level calculation unit calculates the cross-sectional area of the reservoir. The water level at each time of the reservoir is calculated from the calculated predicted water demand, the water supply amount at the current time point indicated by the flow meter, and the water level indicated by the water level meter. Water level change line showing changes in water level A is, and in the vicinity of the upper limit water level control reference value of the distribution reservoir and lower limit level near control reference value, min, to create a change in water level diagram level change is indicated in seconds, the water level change diagram is displayed A plurality of operating state changes including the vicinity of the upper limit water level management reference value and the vicinity of the lower limit water level management reference value by an input from the water level management reference input unit of the monitoring and control device. A monitoring control device for a water supply facility plant, in which a point is indicated and at the time corresponding to the operating state change point, the control unit of the monitoring control device controls to increase or decrease the discharge water amount of the water pump. 次のステップを備えた送水設備プラントの監視制御装置を用いた配水池の水位管理方法。
ステップ1.予測条件入力部に当日の曜日および気象を含む予測条件を入力する。
ステップ2.水需要量予測部は、当日から遡り前記予測条件に合致する複数の日付をデータベースから抽出する。
ステップ3.抽出された日付を基にデータベースから水需要量実績値を抽出する。
ステップ4.前記複数の日付の水需要量実績値を平均するとともに、時刻毎の水需要量予測値を算出する。
ステップ5.水位計算部に配水池の断面積を入力する。
ステップ6.前記水需要量予測値を水位計算部に入力する。
ステップ7.水位計算部は制御バスを介して、現時点での流量計の示す送水量と、水位計の示す水位とを入力する。
ステップ8.前記水需要量予測値と送水量と水位と断面積とから、時刻毎の配水池の水位を算出し、時間経過に伴う水位の変化を示す水位変化線図であって、かつ前記配水池の上限水位管理基準値付近および下限水位管理基準値付近において、分、秒単位の水位変化が示された水位変化線図を作成する。
ステップ9.水位管理基準入力部に前記上限水位管理基準値付近および前記下限水位管理基準値付近を含む複数の運転状態変更点および前記運転状態変更点の変更点時刻が入力する。
ステップ10.水位管理基準入力部は前記運転状態変更点および前記運転状態変更点の変更点時刻を水位変化線図に指示する。
ステップ11.表示部に前記水位変化線図を表示する。
ステップ12.運転状態変更点時刻に至った時、制御部は送水ポンプの吐出水量を増減するよう制御する。
A water level management method for a distribution reservoir using a monitoring and control device of a water transmission facility plant comprising the following steps.
Step 1. The prediction condition including the day of the week and the weather is input to the prediction condition input section.
Step 2. Water demand prediction unit extracts case match multiple dates from a database in the prediction condition going back from that day.
Step 3. Based on the date extracted, the actual water demand is extracted from the database.
Step 4. The water demand amount actual value of the plurality of dates is averaged, and a water demand prediction value for each time is calculated.
Step 5. Enter the reservoir cross-sectional area into the water level calculator.
Step 6. The predicted water demand is input to the water level calculation unit.
Step 7. The water level calculation unit inputs the current water supply amount indicated by the flow meter and the water level indicated by the water level meter via the control bus.
Step 8. It is a water level change diagram showing the change in the water level over time, calculating the water level of the reservoir for each time from the predicted value of water demand, the amount of water delivered, the water level, and the cross-sectional area , and A water level change diagram showing the water level change in minutes and seconds near the upper limit water level management reference value and near the lower limit water level management reference value is created.
Step 9. A plurality of operation state change points including the vicinity of the upper limit water level management reference value and the vicinity of the lower limit water level management reference value and the change time of the operation state change point are input to the water level management reference input unit.
Step 10. The water level management reference input unit instructs the operation state change point and the change time of the operation state change point on the water level change diagram.
Step 11. The water level change diagram is displayed on the display unit.
Step 12. When the operating state change point time is reached, the control unit controls to increase or decrease the discharge water amount of the water pump.
JP2015219108A 2015-11-09 2015-11-09 Monitoring control device for water transmission facility plant and water level management method for distribution reservoir using monitoring control device Active JP6576215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015219108A JP6576215B2 (en) 2015-11-09 2015-11-09 Monitoring control device for water transmission facility plant and water level management method for distribution reservoir using monitoring control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015219108A JP6576215B2 (en) 2015-11-09 2015-11-09 Monitoring control device for water transmission facility plant and water level management method for distribution reservoir using monitoring control device

Publications (2)

Publication Number Publication Date
JP2017091124A JP2017091124A (en) 2017-05-25
JP6576215B2 true JP6576215B2 (en) 2019-09-18

Family

ID=58768273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015219108A Active JP6576215B2 (en) 2015-11-09 2015-11-09 Monitoring control device for water transmission facility plant and water level management method for distribution reservoir using monitoring control device

Country Status (1)

Country Link
JP (1) JP6576215B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109447336B (en) * 2018-10-22 2021-11-05 国网四川省电力公司 Optimized control method for water level between upstream reservoir and reverse regulation reservoir dam thereof
CN113190796A (en) * 2021-04-14 2021-07-30 黄河水利委员会黄河水利科学研究院 Method for representing water level change in multiple dimensions
CN115124097B (en) * 2022-07-08 2024-05-03 陕西新泓水艺环境科技有限公司 Balanced water inlet control method, device, water inlet device, system and medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267611A (en) * 1985-09-20 1987-03-27 Toshiba Corp Controller for water conveyance system
JPH01204113A (en) * 1988-02-09 1989-08-16 Yokogawa Electric Corp Method for controlling water quantity of purification plant
JPH0735783U (en) * 1993-11-24 1995-07-04 株式会社明電舎 Pump operation number control device
JP2001022429A (en) * 1999-07-12 2001-01-26 Toshiba Corp Plant monitoring/controlling device
JP3974294B2 (en) * 1999-09-13 2007-09-12 株式会社東芝 Water and sewage monitoring and control system
JP2012160170A (en) * 2011-01-13 2012-08-23 Jfe Steel Corp Water supply control method of water purification facility
JP6270331B2 (en) * 2013-04-04 2018-01-31 三菱電機株式会社 Operation support device for water equipment plant

Also Published As

Publication number Publication date
JP2017091124A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
US8068938B2 (en) Method and system for managing a load demand on an electrical grid
KR101674260B1 (en) System and method for managing water in water pipe network
US8880202B2 (en) Optimization system using an iteratively coupled expert engine
EP3455913B1 (en) Systems and methods for regulating a microgrid
JP6576215B2 (en) Monitoring control device for water transmission facility plant and water level management method for distribution reservoir using monitoring control device
WO2012145563A1 (en) Methods, apparatus and systems for managing energy assets
US20170053360A1 (en) System and method to dynamically allocate water savings amounts for remote water devices
JP2005086953A (en) Energy supply and demand control method and device
CN104412481A (en) Energy management server, energy management method, and program
NO20140362A1 (en) System and procedure for optimizing operation of a water network
JP5455724B2 (en) Operational status monitoring system for water and sewage plants
JP5143209B2 (en) Middle water use management system
KR20190019346A (en) A system for managing the manufacturing water
CA2952043C (en) Method of supplying hydrogen through an integrated supply system
WO2017183337A1 (en) Demand monitoring device, demand monitoring method, and demand monitoring program
JP2016067125A (en) Energy equipment operation controller and energy equipment operation control method
JP6446318B2 (en) Electric energy control operation planning device and water supply system including the same
JP2015098724A (en) Water management system, water management method, program, and server
Berardino et al. Economic demand dispatch of controllable building electric loads for demand response
JP2009192120A (en) Operation method of hot water storage type hot water supply system
JP2012099049A (en) Water distribution amount plan prediction system, and prediction method and program thereof
JP5544314B2 (en) Optimal operation system for utility equipment
CN117280167A (en) Method for controlling a device connected to a geothermal source for providing thermal energy to at least one building, device and regulation system associated with such a device
Khatavkar et al. Testing an optimization/simulation model for the real-time operations of water distribution systems under limited power availability
JP6779815B2 (en) Water distribution management support system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190820

R150 Certificate of patent or registration of utility model

Ref document number: 6576215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250