JP6576175B2 - Thin film magnetic field sensor and array type thin film magnetic field sensor - Google Patents

Thin film magnetic field sensor and array type thin film magnetic field sensor Download PDF

Info

Publication number
JP6576175B2
JP6576175B2 JP2015176032A JP2015176032A JP6576175B2 JP 6576175 B2 JP6576175 B2 JP 6576175B2 JP 2015176032 A JP2015176032 A JP 2015176032A JP 2015176032 A JP2015176032 A JP 2015176032A JP 6576175 B2 JP6576175 B2 JP 6576175B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic field
magnetic
magnet
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015176032A
Other languages
Japanese (ja)
Other versions
JP2017053655A (en
Inventor
早坂 淳一
淳一 早坂
白川 究
究 白川
伸聖 小林
伸聖 小林
荒井 賢一
賢一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP2015176032A priority Critical patent/JP6576175B2/en
Publication of JP2017053655A publication Critical patent/JP2017053655A/en
Application granted granted Critical
Publication of JP6576175B2 publication Critical patent/JP6576175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気抵抗効果を利用した薄膜磁界センサに関し、特に、磁気バイアス機構としての薄膜磁石を有する薄膜磁界センサおよびそれを用いたアレイ型薄膜磁界センサに関する。   The present invention relates to a thin film magnetic field sensor using a magnetoresistive effect, and more particularly to a thin film magnetic field sensor having a thin film magnet as a magnetic bias mechanism and an array type thin film magnetic field sensor using the same.

磁気抵抗素子は、ホール素子や半導体型磁気抵抗素子に比べて微小磁界に対する感度が高く、これを利用した薄膜磁界センサが広く用いられている。このような薄膜磁界センサとしては、特許文献1および特許文献2に提案されたものが知られている。   A magnetoresistive element has higher sensitivity to a minute magnetic field than a Hall element or a semiconductor type magnetoresistive element, and a thin film magnetic field sensor using this is widely used. As such a thin film magnetic field sensor, what was proposed by patent documents 1 and patent documents 2 is known.

図9は、特許文献1に記載された薄膜磁界センサの構造を示す斜視図である。この薄膜磁界センサは、外部磁場に対して電気抵抗が変化する磁気抵抗薄膜31と、その磁気抵抗薄膜31の両側に配された一対の軟磁性薄膜32と、軟磁性薄膜32の下に設けられた薄膜磁石である一対の硬磁性薄膜33とを有している。硬磁性薄膜33と軟磁性薄膜32は、基板上に積層されており、磁気抵抗薄膜31は、一対の軟磁性薄膜32の間および一対の硬磁性薄膜33の間に介在されるように基板34上に形成されている。   FIG. 9 is a perspective view showing the structure of the thin film magnetic field sensor described in Patent Document 1. As shown in FIG. The thin film magnetic field sensor is provided below a magnetoresistive thin film 31 whose electric resistance changes with respect to an external magnetic field, a pair of soft magnetic thin films 32 disposed on both sides of the magnetoresistive thin film 31, and a soft magnetic thin film 32. And a pair of hard magnetic thin films 33 which are thin film magnets. The hard magnetic thin film 33 and the soft magnetic thin film 32 are laminated on the substrate, and the magnetoresistive thin film 31 is interposed between the pair of soft magnetic thin films 32 and between the pair of hard magnetic thin films 33. Formed on top.

図9の薄膜磁界センサにおいて、軟磁性薄膜32は、外部磁場を収束し磁気抵抗薄膜31の磁気感度を高める機能を有し、硬磁性薄膜33は、磁気抵抗薄膜31に磁気バイアスを印加するための磁界発生源としての機能を有する。硬磁性薄膜33から磁気バイアスを印加することにより、磁界の大きさばかりでなく磁界の方向も検出することができる。   In the thin film magnetic field sensor of FIG. 9, the soft magnetic thin film 32 has a function of converging an external magnetic field and increasing the magnetic sensitivity of the magnetoresistive thin film 31, and the hard magnetic thin film 33 applies a magnetic bias to the magnetoresistive thin film 31. As a magnetic field generation source. By applying a magnetic bias from the hard magnetic thin film 33, not only the magnitude of the magnetic field but also the direction of the magnetic field can be detected.

また、特許文献1には、硬磁性薄膜が軟磁性薄膜に接していても離れていてもよく、さらには一対の硬磁性薄膜のうちどちらか一つでも磁気バイアスを付与できると記載されている。   Patent Document 1 describes that the hard magnetic thin film may be in contact with or away from the soft magnetic thin film, and that any one of the pair of hard magnetic thin films can provide a magnetic bias. .

図10は、特許文献2に記載された薄膜磁界センサの構造を示す図である。この薄膜磁界センサは、磁気抵抗素子41と、2個の薄膜磁石42,43が同一チップ上に形成され、薄膜磁石42,43は、磁気抵抗素子41を挟んで両側に異極が対向するように配置されている。このように、磁気抵抗素子41と2個の薄膜磁石42,43を同一基板上に作成するため、位置合わせ精度が高く、また間隔をあけて配置された2個の薄膜磁石42,43の極間で発生した平行磁界をバイアス磁界として利用するので、正負の磁界検出が対称性良く高精度でできるとしている。   FIG. 10 is a diagram showing the structure of the thin film magnetic field sensor described in Patent Document 2. As shown in FIG. In this thin film magnetic field sensor, a magnetoresistive element 41 and two thin film magnets 42 and 43 are formed on the same chip, and the thin film magnets 42 and 43 have opposite polarities on both sides with the magnetoresistive element 41 interposed therebetween. Is arranged. In this way, since the magnetoresistive element 41 and the two thin film magnets 42 and 43 are formed on the same substrate, the positioning accuracy is high, and the poles of the two thin film magnets 42 and 43 arranged at intervals are provided. Since the parallel magnetic field generated between the two is used as the bias magnetic field, positive and negative magnetic field detection can be performed with high symmetry and high accuracy.

特開2003−078187号公報JP 2003-078187 A 特開平06−148301号公報Japanese Patent Laid-Open No. 06-148301

しかしながら、従来の薄膜磁界センサは、磁界発生源である薄膜磁石から外部への漏洩磁界が少なからず存在し、その影響により微小磁界の計測が困難な場合がある。例えば、金属のような高い電気導電性を有する構造体が移動していて、その移動する構造体中から発生する微小磁界を計測するような場合、薄膜磁界センサの薄膜磁石からの漏洩磁界が存在すると、構造体には誘導電流が生じ、それによって生成される磁界の影響が無視できない。   However, in the conventional thin film magnetic field sensor, there is a considerable leakage magnetic field from the thin film magnet that is a magnetic field generation source to the outside, and measurement of a minute magnetic field may be difficult due to the influence. For example, when a structure with high electrical conductivity such as metal is moving and measuring a minute magnetic field generated from the moving structure, there is a leakage magnetic field from the thin film magnet of the thin film magnetic field sensor. Then, an induced current is generated in the structure, and the influence of the magnetic field generated thereby cannot be ignored.

また、薄膜磁石を有する薄膜磁界センサを複数個、同一基板上に並べるようなアレイ型薄膜磁界センサにおいては、薄膜磁石の漏洩磁界が近接する他の薄膜磁界センサと磁気的に干渉し合うおそれがある。   Moreover, in an array type thin film magnetic field sensor in which a plurality of thin film magnetic field sensors having thin film magnets are arranged on the same substrate, there is a risk that the leakage magnetic field of the thin film magnet may interfere with other thin film magnetic field sensors in proximity. is there.

したがって、本発明は、磁気バイアス機構としての薄膜磁石からの漏洩磁界が極めて小さい薄膜磁界センサおよびそのような薄膜磁界センサを複数個有するアレイ型薄膜磁界センサを提供することを課題とする。   Accordingly, an object of the present invention is to provide a thin film magnetic field sensor having a very small leakage magnetic field from a thin film magnet as a magnetic bias mechanism and an array type thin film magnetic field sensor having a plurality of such thin film magnetic field sensors.

上記課題を解決するため、本発明は、以下の(1)〜(5)を提供する。
(1)外部磁場に対して電気抵抗が変化する磁気抵抗薄膜と、
前記磁気抵抗薄膜の両側に隙間なく配された一対の軟磁性薄膜と、
前記磁気抵抗薄膜に対して磁気バイアスを与える薄膜磁石と
を有し、
前記薄膜磁石は基板上に形成され、前記軟磁性薄膜は、前記薄膜磁石の上に形成されるとともに、前記薄膜磁石の少なくとも磁極を含む部分を覆うように設けられていることを特徴とする薄膜磁界センサ。
In order to solve the above problems, the present invention provides the following (1) to (5).
(1) a magnetoresistive thin film whose electrical resistance changes with respect to an external magnetic field;
A pair of soft magnetic thin films disposed without gaps on both sides of the magnetoresistive thin film; and
A thin film magnet that provides a magnetic bias to the magnetoresistive thin film;
The thin film magnet is formed on a substrate, and the soft magnetic thin film is formed on the thin film magnet and is provided so as to cover at least a portion including the magnetic pole of the thin film magnet. Magnetic field sensor.

(2)前記軟磁性薄膜および前記薄膜磁石は、少なくとも一方が絶縁性材料で構成され、前記軟磁性薄膜は、前記薄膜磁石とが直接接するように設けられることを特徴とする(1)に記載の薄膜磁界センサ。   (2) At least one of the soft magnetic thin film and the thin film magnet is made of an insulating material, and the soft magnetic thin film is provided so as to be in direct contact with the thin film magnet. Thin film magnetic field sensor.

(3)前記軟磁性薄膜および前記薄膜磁石は、いずれも導電性材料で構成され、前記軟磁性薄膜と前記薄膜磁石との間に電気的絶縁膜が介在されていることを特徴とする(1)に記載の薄膜磁界センサ。   (3) The soft magnetic thin film and the thin film magnet are both made of a conductive material, and an electrical insulating film is interposed between the soft magnetic thin film and the thin film magnet (1). ) Thin film magnetic field sensor.

(4)前記軟磁性薄膜の厚みは、前記薄膜磁石の厚み以上であり、前記軟磁性薄膜の前記薄膜磁石の磁極端部からはみ出た領域の幅は、前記軟磁性薄膜の厚みの10倍以下であることを特徴とする(1)から(3)のいずれかに記載の薄膜磁界センサ。   (4) The thickness of the soft magnetic thin film is not less than the thickness of the thin film magnet, and the width of the region of the soft magnetic thin film that protrudes from the magnetic pole end of the thin film magnet is not more than 10 times the thickness of the soft magnetic thin film. The thin film magnetic field sensor according to any one of (1) to (3), wherein

(5)基板上に、(1)から(4)のいずれかに記載の薄膜磁界センサが複数個、周期的または非周期的に配置されてなることを特徴とするアレイ型薄膜磁界センサ。   (5) An array type thin film magnetic field sensor, wherein a plurality of thin film magnetic field sensors according to any one of (1) to (4) are periodically or aperiodically arranged on a substrate.

本発明によれば、磁気バイアス機構としての薄膜磁石からの漏洩磁界が極めて小さい薄膜磁界センサおよびそのような薄膜磁界センサを複数個有するアレイ型薄膜磁界センサが提供される。   According to the present invention, a thin film magnetic field sensor having a very small leakage magnetic field from a thin film magnet as a magnetic bias mechanism and an array type thin film magnetic field sensor having a plurality of such thin film magnetic field sensors are provided.

本発明の一実施形態に係る薄膜磁界センサを示す平面図および断面図である。It is the top view and sectional drawing which show the thin film magnetic field sensor which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る薄膜磁界センサを示す断面図である。It is sectional drawing which shows the thin film magnetic field sensor which concerns on other embodiment of this invention. 薄膜磁界センサの電気抵抗の外部磁場依存性を示す図である。It is a figure which shows the external magnetic field dependence of the electrical resistance of a thin film magnetic field sensor. 本発明の一実施形態に係る薄膜磁界センサの一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of thin film magnetic field sensor which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る薄膜磁界センサの一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of thin film magnetic field sensor which concerns on other embodiment of this invention. 図2の薄膜磁界センサにおいて、薄膜磁石のエッジに勾配を設けた例を示す断面図である。FIG. 3 is a cross-sectional view showing an example in which a gradient is provided at the edge of a thin film magnet in the thin film magnetic field sensor of FIG. 2. 本発明の薄膜磁界センサの漏れ磁界特性を示す図である。It is a figure which shows the leakage magnetic field characteristic of the thin film magnetic field sensor of this invention. 薄膜磁界センサを同一の基板上に複数個一括して形成したアレイ型薄膜磁界センサを示す平面図である。It is a top view which shows the array type thin film magnetic field sensor which formed the thin film magnetic field sensor collectively on the same board | substrate collectively. 特許文献1に記載された薄膜磁界センサの構造を示す斜視図である。It is a perspective view which shows the structure of the thin film magnetic field sensor described in patent document 1. FIG. 特許文献2に記載された薄膜磁界センサの構造を示す図である。It is a figure which shows the structure of the thin film magnetic field sensor described in patent document 2. FIG.

以下、添付の図面を参照しながら、本発明の実施の形態について説明する。
図1は、本発明の一実施形態に係る薄膜磁界センサを示す平面図および断面図である。この薄膜磁界センサ10は、外部磁場に対して電気抵抗が変化する磁気抵抗薄膜1と、その磁気抵抗薄膜1の両側に配された一対の軟磁性薄膜2と、磁気抵抗薄膜1に磁気バイアスを与える薄膜磁石3とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a plan view and a sectional view showing a thin film magnetic field sensor according to an embodiment of the present invention. The thin film magnetic field sensor 10 includes a magnetoresistive thin film 1 whose electric resistance changes with respect to an external magnetic field, a pair of soft magnetic thin films 2 disposed on both sides of the magnetoresistive thin film 1, and a magnetic bias applied to the magnetoresistive thin film 1. And a thin film magnet 3 to be provided.

薄膜磁石3は基板4上に形成されており、軟磁性薄膜2は薄膜磁石3の上に形成されている。このとき、軟磁性薄膜2は、薄膜磁石3の少なくとも磁極を含む部分を覆うように設けられている。すなわち、軟磁性薄膜2は、薄膜磁石3の少なくとも磁極を含む部分の上面、側面、端面を覆うように設けられている。   The thin film magnet 3 is formed on the substrate 4, and the soft magnetic thin film 2 is formed on the thin film magnet 3. At this time, the soft magnetic thin film 2 is provided so as to cover at least a portion including the magnetic pole of the thin film magnet 3. That is, the soft magnetic thin film 2 is provided so as to cover the upper surface, the side surface, and the end surface of the portion including at least the magnetic pole of the thin film magnet 3.

具体的には、薄膜磁石3は、基板4上にY方向に延びるように短冊状に形成されており、その長手方向の概ね両端部に磁極が形成される。薄膜磁石3の上の中央にはX方向に延びるように磁気抵抗薄膜1が形成されている。磁気抵抗薄膜1のX方向の長さは薄膜磁石3のX方向の長さよりも短くなっている。本例では、軟磁性薄膜2は、磁気抵抗薄膜1の両側に薄膜磁石3の上面および側面の大部分、および端面の全部を覆うように形成されて、これにより薄膜磁石3の少なくとも磁極が軟磁性薄膜2に覆われている。   Specifically, the thin-film magnet 3 is formed in a strip shape so as to extend in the Y direction on the substrate 4, and magnetic poles are formed at substantially both ends in the longitudinal direction. A magnetoresistive thin film 1 is formed at the center above the thin film magnet 3 so as to extend in the X direction. The length of the magnetoresistive thin film 1 in the X direction is shorter than the length of the thin film magnet 3 in the X direction. In this example, the soft magnetic thin film 2 is formed on both sides of the magnetoresistive thin film 1 so as to cover most of the upper surface and side surfaces of the thin film magnet 3 and the entire end surface, so that at least the magnetic poles of the thin film magnet 3 are soft. The magnetic thin film 2 is covered.

図1の例では、軟磁性薄膜2および薄膜磁石3のうち少なくとも一方が絶縁性材料の場合であり、このため、図1(b)に示すように、軟磁性薄膜2と薄膜磁石3とが直接接するように設けられる。   In the example of FIG. 1, at least one of the soft magnetic thin film 2 and the thin film magnet 3 is an insulating material. Therefore, as shown in FIG. Provided in direct contact.

これに対して、軟磁性薄膜2および薄膜磁石3の両方が導電性材料(金属材料)の場合は、図2に示すように、軟磁性薄膜2と薄膜磁石3との間に電気的絶縁膜5を介在させる。   On the other hand, when both the soft magnetic thin film 2 and the thin film magnet 3 are conductive materials (metal materials), an electrically insulating film is interposed between the soft magnetic thin film 2 and the thin film magnet 3 as shown in FIG. 5 is interposed.

基板4としては、適宜の厚み(例えば約0.5mm)を有し、表面に鏡面研磨を施したガラスを用いることができる。また、半導体IC回路と一体形成する場合には、基板4として、表面に熱酸化膜を形成したシリコン、SOI(Silicon on insulator)、SiC、サファイア、化合物半導体等が好適である。   As the substrate 4, glass having an appropriate thickness (for example, about 0.5 mm) and mirror-polished on the surface can be used. In the case where the substrate 4 is formed integrally with a semiconductor IC circuit, silicon, a silicon on insulator (SOI), SiC, sapphire, a compound semiconductor, or the like having a thermal oxide film formed on the surface is suitable as the substrate 4.

薄膜磁石3は、磁気抵抗薄膜1に対して磁気バイアスを与えるため、外部に大きな磁界を生成する能力を有している。したがって、薄膜磁石3の材料としては、大きな最大磁束密度と高い保磁力を有するものが選択され、金属系のSmCo、Nd−Fe−B、Sm−Fe−N、Nd−Fe−N系磁石、あるいは、鉄酸化物系のハードフェライト磁石を好適に用いることができる。   The thin film magnet 3 has an ability to generate a large magnetic field outside in order to give a magnetic bias to the magnetoresistive thin film 1. Therefore, as the material of the thin film magnet 3, one having a large maximum magnetic flux density and a high coercive force is selected, and a metallic SmCo, Nd—Fe—B, Sm—Fe—N, Nd—Fe—N based magnet, Alternatively, an iron oxide hard ferrite magnet can be suitably used.

軟磁性薄膜2は、約数千の高い透磁率を有し、多くの磁力線を収束して、磁気抵抗薄膜1の両側に強い磁界を付与する機能を有する。軟磁性薄膜2の厚みは、薄膜磁石3の厚み以上であることが望ましい。軟磁性薄膜2の材料としては、高い透磁率を有するFeNi、CoFeSiB、FeSiAl、FeNiNb系等の金属合金、あるいは酸化物系のソフトフェライトを好適に用いることができる。   The soft magnetic thin film 2 has a high magnetic permeability of about several thousand, and has a function of converging many lines of magnetic force and applying a strong magnetic field to both sides of the magnetoresistive thin film 1. The thickness of the soft magnetic thin film 2 is preferably equal to or greater than the thickness of the thin film magnet 3. As a material for the soft magnetic thin film 2, a metal alloy such as FeNi, CoFeSiB, FeSiAl, FeNiNb or the like having high magnetic permeability, or oxide soft ferrite can be preferably used.

薄膜磁石3がSmCo、Nd−Fe−B、Sm−Fe−N、Nd−Fe−N系磁石等の金属系であり、軟磁性薄膜2の材料がFeNi、CoFeSiB、FeSiAl、FeNiNb系等の金属系の場合には、上述した図2に示すように、これらの間に電気的絶縁膜5を形成する。電気的絶縁膜5としては、SiO膜やAl膜等を用いることができる。 The thin film magnet 3 is a metal system such as SmCo, Nd—Fe—B, Sm—Fe—N, Nd—Fe—N magnet, and the soft magnetic thin film 2 is a metal such as FeNi, CoFeSiB, FeSiAl, FeNiNb. In the case of the system, as shown in FIG. 2 described above, an electrical insulating film 5 is formed between them. As the electrical insulating film 5, an SiO 2 film, an Al 2 O 3 film, or the like can be used.

磁気抵抗薄膜1は、外部磁界に対して高い電気抵抗変化を示すものであり、その厚みは、例えば約0.5μmである。磁気抵抗薄膜1の材料としては、磁気巨大磁気抵抗効果やトンネル磁気抵抗効果により、外部磁界に応じて数10%以上の高い電気抵抗変化を示すものが好ましく、CoAlO系、CoYO系、FeMgF系、FeCoMgF系、FeCoAlF系のナノグラニュラー合金等を好適に用いることができる。   The magnetoresistive thin film 1 exhibits a high electric resistance change with respect to an external magnetic field, and the thickness thereof is, for example, about 0.5 μm. The material of the magnetoresistive thin film 1 is preferably a material that exhibits a high electrical resistance change of several tens of percent or more depending on the external magnetic field due to the giant magnetoresistive effect or the tunnel magnetoresistive effect, such as CoAlO, CoYO, FeMgF, FeCoMgF-based, FeCoAlF-based nanogranular alloys, and the like can be preferably used.

磁気抵抗薄膜1、軟磁性薄膜2、および薄膜磁石3は、真空蒸着、スパッタリング等の公知の薄膜形成技術、およびフォトリソグラフィー、エッチング等の公知の微細加工技術により、所望の微細パターンに形成することができる。   The magnetoresistive thin film 1, the soft magnetic thin film 2, and the thin film magnet 3 are formed in a desired fine pattern by a known thin film forming technique such as vacuum deposition and sputtering, and a known fine processing technique such as photolithography and etching. Can do.

本例の場合は、基板4上に薄膜磁石3を成膜し、短冊状に加工した後、薄膜磁石3およびその外側の基板4の領域に、直接または電気的絶縁膜5を介して軟磁性薄膜2を成膜し、その後、軟磁性薄膜2を所定形状に加工し、一対の軟磁性薄膜2の間の空隙に磁気抵抗薄膜1を形成することにより、図1または図2に示すパターンの薄膜磁界センサ10が得られる。   In the case of this example, after the thin film magnet 3 is formed on the substrate 4 and processed into a strip shape, the soft magnetism is applied directly or via the electrical insulating film 5 to the region of the thin film magnet 3 and the substrate 4 outside thereof. After forming the thin film 2, the soft magnetic thin film 2 is processed into a predetermined shape, and the magnetoresistive thin film 1 is formed in the gap between the pair of soft magnetic thin films 2. Thus, the pattern shown in FIG. A thin film magnetic field sensor 10 is obtained.

また、薄膜磁石3および軟磁性薄膜2は、所定の工程における磁場中熱処理により、任意の一軸異方性磁界と保磁力を付与することができる。   Further, the thin film magnet 3 and the soft magnetic thin film 2 can be provided with an arbitrary uniaxial anisotropic magnetic field and coercive force by heat treatment in a magnetic field in a predetermined process.

次に、以上のように構成される薄膜磁界センサ10の動作について動作原理を含めて説明する。   Next, the operation of the thin film magnetic field sensor 10 configured as described above will be described including the operating principle.

磁気抵抗薄膜1は、上述したように、巨大磁気抵抗効果やトンネル磁気抵抗効果により、外部磁界に応じて数10%以上の高い電気抵抗変化を示す。また、その磁気抵抗薄膜1の両側に設けられている一対の軟磁性薄膜2は、約数千の高い透磁率を有しており、多くの磁力線を収束するため、磁気抵抗薄膜1には強い磁界が加わる。したがって、磁気抵抗薄膜1と軟磁性薄膜2の組合せにより、外部の小さな磁界変化に対して、より大きな磁気抵抗変化を得ることができる。   As described above, the magnetoresistive thin film 1 exhibits a high electrical resistance change of several tens of percent or more depending on the external magnetic field due to the giant magnetoresistive effect or the tunnel magnetoresistive effect. Further, the pair of soft magnetic thin films 2 provided on both sides of the magnetoresistive thin film 1 has a high magnetic permeability of about several thousand and is strong against the magnetoresistive thin film 1 because it converges many lines of magnetic force. A magnetic field is applied. Therefore, the combination of the magnetoresistive thin film 1 and the soft magnetic thin film 2 can provide a larger magnetoresistance change with respect to a small external magnetic field change.

一方、薄膜磁石3は、外部に大きな磁界を生成する能力を有しており、磁気抵抗薄膜1の両側に対して磁気バイアスを与える。本来、磁気抵抗薄膜1は、外部磁場に対して偶関数的な磁気特性を有し、磁界の方向を特定することができないが、磁気バイアスが与えられることにより、零磁界の近傍において陰関数的な特性に変換されるため、磁界の方向を特定することができる。なお、この磁気バイアスは、薄膜磁石の材料組成、サイズ、特に厚みによって、任意に調整することが可能である。   On the other hand, the thin film magnet 3 has an ability to generate a large magnetic field outside, and applies a magnetic bias to both sides of the magnetoresistive thin film 1. Originally, the magnetoresistive thin film 1 has an even function magnetic characteristic with respect to an external magnetic field, and the direction of the magnetic field cannot be specified. However, when a magnetic bias is applied, the magnetoresistive film 1 is implicit in the vicinity of the zero magnetic field. Therefore, the direction of the magnetic field can be specified. The magnetic bias can be arbitrarily adjusted according to the material composition, size, and particularly thickness of the thin film magnet.

図3は、薄膜磁界センサの電気抵抗の外部磁場依存性を示す図である。同図中の点線に示すように、薄膜磁石がない薄膜磁界センサに関しては、外部磁場に対して偶関数的な磁気特性が示されるが、薄膜磁石により磁気バイアスが与えられると、同図中の実線のように、零磁界の近傍において陰関数的な特性に変換される。例えば、SmCo系の厚みが1μmの薄膜磁石により、約数Oe以上の磁界バイアスが磁気抵抗薄膜に印加される。   FIG. 3 is a diagram showing the external magnetic field dependence of the electrical resistance of the thin film magnetic field sensor. As shown by the dotted line in the figure, the thin film magnetic sensor without the thin film magnet shows an even function magnetic characteristic with respect to the external magnetic field, but when a magnetic bias is given by the thin film magnet, As indicated by the solid line, the characteristic is converted to an implicit characteristic in the vicinity of the zero magnetic field. For example, a magnetic field bias of about several Oe or more is applied to the magnetoresistive thin film by an SmCo-based thin film magnet having a thickness of 1 μm.

ところで、薄膜磁石3から生成される磁界は、薄膜磁界センサの外部にある計測対象物にも影響を及ぼすため、外部へ漏洩する磁界は極力小さくしなければならない。従来は、この点は考慮されておらず、上記特許文献1および2の薄膜磁界センサでは1Oe程度の漏洩磁界が発生し、微小磁界の測定が困難になる場合がある。   By the way, since the magnetic field generated from the thin film magnet 3 also affects a measurement object outside the thin film magnetic field sensor, the magnetic field leaking to the outside must be minimized. Conventionally, this point has not been taken into account, and the thin film magnetic field sensors of Patent Documents 1 and 2 generate a leakage magnetic field of about 1 Oe, which sometimes makes it difficult to measure a minute magnetic field.

そこで、本実施形態では、薄膜磁石3の少なくとも磁極を含む部分を覆うように軟磁性薄膜2を設ける。すなわち、薄膜磁石3の少なくとも磁極を含む部分の上面、側面、端面を覆うように軟磁性薄膜2を設ける。具体的には、薄膜磁石3の上面の大部分、側面の大部分、端面の全部を軟磁性薄膜2で覆っている。薄膜磁石3からの漏洩磁界は、薄膜磁石3の磁極から放出されるため、少なくともその部分を軟磁性薄膜2で覆うことにより、薄膜磁石3から外部に漏洩する漏洩磁界を極めて小さくすることができる。   Therefore, in this embodiment, the soft magnetic thin film 2 is provided so as to cover at least a portion including the magnetic pole of the thin film magnet 3. That is, the soft magnetic thin film 2 is provided so as to cover the upper surface, side surfaces, and end surfaces of the thin film magnet 3 including at least the magnetic poles. Specifically, most of the upper surface, most of the side surfaces, and all of the end surfaces of the thin film magnet 3 are covered with the soft magnetic thin film 2. Since the leakage magnetic field from the thin film magnet 3 is emitted from the magnetic pole of the thin film magnet 3, the leakage magnetic field leaking to the outside from the thin film magnet 3 can be made extremely small by covering at least that portion with the soft magnetic thin film 2. .

漏洩磁界をより小さくするためには、軟磁性薄膜2は低い磁気抵抗であることが好ましく、このように低い磁気抵抗を得る観点および製造上の観点から、軟磁性薄膜2の厚さを薄膜磁石3の厚さ以上にすることが望ましい。また、軟磁性薄膜2そのものの磁気抵抗を十分小さくするためには、その比透磁率が500以上であることが好ましい。   In order to make the leakage magnetic field smaller, the soft magnetic thin film 2 preferably has a low magnetic resistance. From the viewpoint of obtaining such a low magnetic resistance and the manufacturing viewpoint, the thickness of the soft magnetic thin film 2 is reduced to a thin film magnet. It is desirable that the thickness be 3 or more. Further, in order to sufficiently reduce the magnetic resistance of the soft magnetic thin film 2 itself, the relative permeability is preferably 500 or more.

図4は図1(b)の薄膜磁界センサの一部を拡大して示す図であるが、上述したように、漏洩磁界をより小さくするためには、軟磁性薄膜2の厚みtsmが薄膜磁石3の厚みthm以上であることが望ましい他、薄膜磁石3の磁極の外側において軟磁性薄膜2が基板4に接する領域の幅、すなわち軟磁性薄膜2の薄膜磁石3の磁極端部からはみ出た領域の幅Wsmは、軟磁性薄膜2の厚みtsmの10倍以下であることが望ましい。Wsmがtsmの10倍を超えると、軟磁性薄膜2を経由して磁気抵抗薄膜1に向かう磁界が小さくなってしまう。 FIG. 4 is an enlarged view of a part of the thin film magnetic field sensor of FIG. 1B. As described above, in order to reduce the leakage magnetic field, the thickness t sm of the soft magnetic thin film 2 is thin. The thickness of the magnet 3 is preferably equal to or greater than hm , and the width of the area where the soft magnetic thin film 2 is in contact with the substrate 4 outside the magnetic pole of the thin film magnet 3, that is, protrudes from the magnetic pole end of the thin film magnet 3 of the soft magnetic thin film 2. The width W sm of the region is preferably 10 times or less the thickness t sm of the soft magnetic thin film 2. If W sm exceeds 10 times t sm , the magnetic field toward the magnetoresistive thin film 1 via the soft magnetic thin film 2 becomes small.

図5は、図2の軟磁性薄膜2と薄膜磁石3との間に電気的絶縁膜5を設けた薄膜磁界センサの一部を拡大して示す図であるが、同様に、軟磁性薄膜2の厚みtsmが薄膜磁石3の厚みthm以上であることが望ましい他、軟磁性薄膜2の薄膜磁石3の磁極端部からはみ出た領域の幅Wsmーsは、軟磁性薄膜2の厚みtsmの10倍以下であることが望ましい。 FIG. 5 is an enlarged view of a part of the thin film magnetic field sensor in which the electrical insulating film 5 is provided between the soft magnetic thin film 2 and the thin film magnet 3 of FIG. It is preferable that the thickness t sm of the thin film magnet 3 is equal to or greater than the thickness t hm of the thin film magnet 3, and the width W sm-s of the soft magnetic thin film 2 protruding from the magnetic pole end of the thin film magnet 3 is the thickness of the soft magnetic thin film 2. It is desirable that it is 10 times or less of t sm .

上記図4、図5に示すように、製造上、軟磁性薄膜2は、薄膜磁石3のエッジ近傍において薄くなりやすく、それによって磁気抵抗が増加するおそれがある。これを抑制するためには、軟磁性薄膜2の成膜の際に、例えば、基板に対して斜め入射スパッタリングによる追加成膜を行うか、または、図6のように薄膜磁石3のエッジ部に予め勾配を設けることが効果的である。図6は、図2の軟磁性薄膜2と薄膜磁石3との間に電気的絶縁膜5を設けた薄膜磁界センサにおいて、薄膜磁石3のエッジ部に勾配3aを設けた例であるが、図5に比べて薄膜磁石3のエッジ近傍における軟磁性薄膜2の厚みが厚いことがわかる。   As shown in FIGS. 4 and 5, the soft magnetic thin film 2 is likely to be thin in the vicinity of the edge of the thin film magnet 3 in manufacturing, which may increase the magnetic resistance. In order to suppress this, when the soft magnetic thin film 2 is formed, for example, an additional film formation by oblique incident sputtering is performed on the substrate, or the thin film magnet 3 is formed on the edge portion as shown in FIG. It is effective to provide a gradient in advance. 6 shows an example in which a gradient 3a is provided at the edge portion of the thin film magnet 3 in the thin film magnetic field sensor in which the electrically insulating film 5 is provided between the soft magnetic thin film 2 and the thin film magnet 3 of FIG. It can be seen that the thickness of the soft magnetic thin film 2 in the vicinity of the edge of the thin film magnet 3 is thicker than that of the thin film magnet 3.

図7は、本発明の薄膜磁界センサの漏れ磁界特性を示す図である。例えば、薄膜磁界センサの短冊状の薄膜磁石の長手方向において、ΔHで表される漏洩磁界は、約0.1Oe以下と極めて小さな値であった。   FIG. 7 is a diagram showing the leakage magnetic field characteristics of the thin film magnetic field sensor of the present invention. For example, in the longitudinal direction of the strip-shaped thin film magnet of the thin film magnetic field sensor, the leakage magnetic field represented by ΔH was an extremely small value of about 0.1 Oe or less.

さらに、形状、成膜方法、材料等を最適化することにより、漏洩磁界が0.01Oe以下という極めて小さい値となることが期待される。   Furthermore, by optimizing the shape, film forming method, material, etc., it is expected that the leakage magnetic field will be an extremely small value of 0.01 Oe or less.

以上は、薄膜磁界センサ10そのものについて説明したが、図8に示すように、公知の薄膜形成技術および微細加工技術により、以上のような薄膜磁界センサ10を同一の基板15上に複数個一括して形成して、アレイ型薄膜磁界センサ20としてもよい。図8では薄膜磁界センサ10を周期的に形成しているが、非周期的に形成してもよい。   The thin film magnetic field sensor 10 itself has been described above. However, as shown in FIG. 8, a plurality of the thin film magnetic field sensors 10 as described above are collectively put on the same substrate 15 by a known thin film formation technique and fine processing technique. The array type thin film magnetic field sensor 20 may be formed. Although the thin film magnetic field sensor 10 is formed periodically in FIG. 8, it may be formed aperiodically.

上述したように、薄膜磁界センサ10は薄膜磁石の漏洩磁界を小さくすることができるので、アレイ型薄膜磁界センサ20において、一つの薄膜磁界センサ10の薄膜磁石の漏洩磁界が、近接する他の薄膜磁界センサ10と磁気的に干渉し合うことを有効に防止することができる。   As described above, since the thin film magnetic field sensor 10 can reduce the leakage magnetic field of the thin film magnet, in the array type thin film magnetic field sensor 20, the leakage magnetic field of the thin film magnet of one thin film magnetic field sensor 10 is different from other thin films. Magnetic interference with the magnetic field sensor 10 can be effectively prevented.

なお、本発明は上記実施形態に限定されることなく、本発明の技術思想の範囲内で種々変形することが可能である。上記実施形態では薄膜磁石の上面の大部分、側面の大部分、端面の全部を軟磁性薄膜で被覆することで、薄膜磁石の少なくとも磁極を含む部分を軟磁性薄膜で被覆することを実現したが、薄膜磁石の磁極が被覆されていれば、それに限らない。また、上記実施形態では薄膜磁界センサの構成要素を単純化して示しているが、磁気抵抗薄膜、軟磁性薄膜、薄膜磁石の形状や配置については種々の形態をとることができ、また、それ以外の薄膜磁界センサの要素を付加することは許容される。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the technical idea of the present invention. In the above embodiment, most of the upper surface, most of the side surfaces, and all of the end surface of the thin film magnet are covered with the soft magnetic thin film, so that at least the portion including the magnetic pole of the thin film magnet is covered with the soft magnetic thin film. If the magnetic pole of a thin film magnet is coat | covered, it will not restrict to it. In the above embodiment, the constituent elements of the thin film magnetic field sensor are shown in a simplified manner. However, the shape and arrangement of the magnetoresistive thin film, soft magnetic thin film, and thin film magnet can take various forms. It is permissible to add a thin film magnetic field sensor element.

1;磁気抵抗薄膜
2;軟磁性薄膜
3;薄膜磁石
4;基板
5;電気的絶縁膜
10;薄膜磁界センサ
15;基板
20;アレイ型薄膜磁界センサ
DESCRIPTION OF SYMBOLS 1; Magnetoresistive thin film 2; Soft magnetic thin film 3; Thin film magnet 4; Substrate 5; Electrical insulation film 10; Thin film magnetic field sensor 15;

Claims (5)

外部磁場に対して電気抵抗が変化する磁気抵抗薄膜と、
前記磁気抵抗薄膜の両側に隙間なく配された一対の軟磁性薄膜と、
前記磁気抵抗薄膜に対して磁気バイアスを与える薄膜磁石と
を有し、
前記薄膜磁石は基板上に形成され、前記軟磁性薄膜は、前記薄膜磁石の上に形成されるとともに、前記薄膜磁石の少なくとも磁極を含む部分を被覆するように設けられていることを特徴とする薄膜磁界センサ。
A magnetoresistive thin film whose electrical resistance changes with respect to an external magnetic field;
A pair of soft magnetic thin films disposed without gaps on both sides of the magnetoresistive thin film; and
A thin film magnet that provides a magnetic bias to the magnetoresistive thin film;
The thin film magnet is formed on a substrate, and the soft magnetic thin film is formed on the thin film magnet and is provided so as to cover at least a portion including the magnetic pole of the thin film magnet. Thin film magnetic field sensor.
前記軟磁性薄膜および前記薄膜磁石は、少なくとも一方が絶縁性材料で構成され、前記軟磁性薄膜は、前記薄膜磁石とが直接接するように設けられることを特徴とする請求項1に記載の薄膜磁界センサ。   The thin film magnetic field according to claim 1, wherein at least one of the soft magnetic thin film and the thin film magnet is made of an insulating material, and the soft magnetic thin film is provided so as to be in direct contact with the thin film magnet. Sensor. 前記軟磁性薄膜および前記薄膜磁石は、いずれも導電性材料で構成され、前記軟磁性薄膜と前記薄膜磁石との間に電気的絶縁膜が介在されていることを特徴とする請求項1に記載の薄膜磁界センサ。   The soft magnetic thin film and the thin film magnet are both made of a conductive material, and an electrically insulating film is interposed between the soft magnetic thin film and the thin film magnet. Thin film magnetic field sensor. 前記軟磁性薄膜の厚みは、前記薄膜磁石の厚み以上であり、前記軟磁性薄膜の前記薄膜磁石の磁極端部からはみ出た領域の幅は、前記軟磁性薄膜の厚みの10倍以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の薄膜磁界センサ。   The thickness of the soft magnetic thin film is not less than the thickness of the thin film magnet, and the width of the region of the soft magnetic thin film protruding from the magnetic pole end of the thin film magnet is not more than 10 times the thickness of the soft magnetic thin film. The thin film magnetic field sensor according to any one of claims 1 to 3, wherein: 基板上に、請求項1から請求項4のいずれかに記載の薄膜磁界センサが複数個、周期的または非周期的に配置されてなることを特徴とするアレイ型薄膜磁界センサ。   An array type thin film magnetic field sensor comprising a plurality of thin film magnetic field sensors according to any one of claims 1 to 4 arranged periodically or aperiodically on a substrate.
JP2015176032A 2015-09-07 2015-09-07 Thin film magnetic field sensor and array type thin film magnetic field sensor Active JP6576175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015176032A JP6576175B2 (en) 2015-09-07 2015-09-07 Thin film magnetic field sensor and array type thin film magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015176032A JP6576175B2 (en) 2015-09-07 2015-09-07 Thin film magnetic field sensor and array type thin film magnetic field sensor

Publications (2)

Publication Number Publication Date
JP2017053655A JP2017053655A (en) 2017-03-16
JP6576175B2 true JP6576175B2 (en) 2019-09-18

Family

ID=58320697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015176032A Active JP6576175B2 (en) 2015-09-07 2015-09-07 Thin film magnetic field sensor and array type thin film magnetic field sensor

Country Status (1)

Country Link
JP (1) JP6576175B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259293B2 (en) 2018-11-29 2023-04-18 株式会社レゾナック Magnetic sensor and method for manufacturing magnetic sensor
EP4119925A4 (en) 2020-03-11 2024-03-13 Yokogawa Electric Corp Device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353611A (en) * 1991-05-31 1992-12-08 Hitachi Ltd Magnetoresistance effect-type head
JP2004363157A (en) * 2003-06-02 2004-12-24 Res Inst Electric Magnetic Alloys Thin film magnetic sensor and its manufacturing method
JP2008197089A (en) * 2007-01-17 2008-08-28 Fujikura Ltd Magnetic sensor element and method for manufacturing the same
JP2008249406A (en) * 2007-03-29 2008-10-16 Fujikura Ltd Magnetic impedance effect element and its manufacturing method
EP2703831B1 (en) * 2012-08-31 2015-08-05 Hitachi Ltd. Magnetic field sensor

Also Published As

Publication number Publication date
JP2017053655A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
Schmid et al. Transverse spin Seebeck effect versus anomalous and planar Nernst effects in permalloy thin films
US8085513B2 (en) Magnetic sensor
JP2008249406A (en) Magnetic impedance effect element and its manufacturing method
US20100045285A1 (en) Magnetic sensor element and manufacturing method thereof
JP5210983B2 (en) Geomagnetic sensor
JP6439413B2 (en) Magnetic sensor, magnetic head, and biomagnetic sensor
JP5899012B2 (en) Magnetic sensor
JP6413428B2 (en) Magnetic sensor, magnetic head, and biomagnetic sensor
JP2008134181A (en) Magnetic detector and its manufacturing method
US9110124B2 (en) Magnetic sensor and magnetic detection apparatus
US20170052233A1 (en) Magnetic sensor device
US10062836B2 (en) Magnetic sensor and method of manufacturing the same
JP2009162540A (en) Magnetometric sensor and its manufacturing method
JP6576175B2 (en) Thin film magnetic field sensor and array type thin film magnetic field sensor
JP2016125901A (en) Magnetic field detector
JP5802565B2 (en) Magnetic sensor
JP5935444B2 (en) Spin transport element, and magnetic sensor and magnetic head using spin transport
JP2005502052A (en) Three-dimensional strap for magnetoresistive sensors
US20110273174A1 (en) Magnetic field detection element and signal transmission element
WO2013153949A1 (en) Magnetic field measurement device and magnetic field measurement method
JP2011009531A (en) Spin transport device
JP2009271044A (en) Current sensor
KR101541992B1 (en) Spontaneous hall effect magnetic sensor and magnetic sensing device having the same
JP2008197002A (en) Magnetic sensor
JP5630247B2 (en) Rotation angle sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190820

R150 Certificate of patent or registration of utility model

Ref document number: 6576175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250