JP6575993B2 - Ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter - Google Patents

Ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter Download PDF

Info

Publication number
JP6575993B2
JP6575993B2 JP2015105858A JP2015105858A JP6575993B2 JP 6575993 B2 JP6575993 B2 JP 6575993B2 JP 2015105858 A JP2015105858 A JP 2015105858A JP 2015105858 A JP2015105858 A JP 2015105858A JP 6575993 B2 JP6575993 B2 JP 6575993B2
Authority
JP
Japan
Prior art keywords
dioxide gas
activated carbon
gas
silica gel
mixed paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015105858A
Other languages
Japanese (ja)
Other versions
JP2016215168A (en
Inventor
善春 西野
善春 西野
卓也 知念
卓也 知念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Original Assignee
Suminoe Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd filed Critical Suminoe Textile Co Ltd
Priority to JP2015105858A priority Critical patent/JP6575993B2/en
Publication of JP2016215168A publication Critical patent/JP2016215168A/en
Application granted granted Critical
Publication of JP6575993B2 publication Critical patent/JP6575993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、家庭用または業務用のエアコン、空気清浄機等のフィルターに関する。詳しくは、アンモニア、硫黄酸化物、窒素酸化物を除去するフィルターに関する技術である。   The present invention relates to a filter for an air conditioner, an air cleaner or the like for home use or business use. Specifically, the technology relates to a filter that removes ammonia, sulfur oxides, and nitrogen oxides.

消臭フィルターは、様々な用途に利用されており、その消臭方法として活性炭やゼオライト等の物理吸着材を利用した物理吸着タイプと、化学吸着タイプと、オゾンや光触媒、金属フタロシアニン錯体等により悪臭物質を分解除去する触媒タイプ、あるいはこの吸着タイプと触媒タイプを併用した併用タイプがある。   Deodorizing filters are used in various applications, and as a deodorizing method, a physical adsorption type using a physical adsorbent such as activated carbon or zeolite, a chemical adsorption type, ozone, a photocatalyst, a metal phthalocyanine complex, etc. There is a catalyst type that decomposes and removes substances, or a combined type that uses this adsorption type and catalyst type together.

このうち例えば、活性炭の優れた吸着作用を利用した技術がよく知られているが、これらは悪臭成分を吸着し、周辺の臭気濃度を短期的に低下さす働きには優れているが、悪臭成分の量が減少するわけではなく、有効期間に限りのある消臭方法であるといわれている。また、悪臭物質を分解除去する触媒タイプあるいは併用タイプの場合、様々な悪臭に対して効果的に消臭する有用な方法である。   Of these, for example, techniques using the excellent adsorption action of activated carbon are well known, but these adsorb bad odor components and are excellent in reducing the odor concentration in the short term, but bad odor components It is said that it is a deodorizing method with a limited lifetime. Further, in the case of a catalyst type or a combination type that decomposes and removes malodorous substances, it is a useful method for effectively deodorizing various malodors.

出願人は特許文献1を出願し、多孔質無機物質混抄紙にヒドラジン化合物と弱アルカリ性の金属塩を坦持させることで、自動車の排気ガス中に多く含まれるとされるアセトアルデヒド、二酸化硫黄、二酸化窒素、アンモニア等の有害ガスを耐久性があって効率的に吸着浄化するフィルターに関する技術を開示している。   The applicant filed Patent Document 1, and by supporting a hydrazine compound and a weakly alkaline metal salt on a porous inorganic material mixed paper, acetaldehyde, sulfur dioxide, A technology related to a filter that is durable and efficiently adsorbs and purifies harmful gases such as nitrogen and ammonia is disclosed.

特開2010−42334号公報JP 2010-42334 A

上記技術は自動車の排気ガス除去フィルターとして十分な性能を発揮するが、PM2.5をはじめ二酸化硫黄や浮遊粒子物質などによる大気汚染に対する関心の高まりもあり、工場や自動車などから排出される二酸化硫黄や三酸化硫黄などの硫黄酸化物、及び主に一酸化窒素や二酸化窒素などの窒素酸化物、及びアンモニアに対して性能の向上が求められている。   Although the above technology exhibits sufficient performance as an exhaust gas removal filter for automobiles, sulfur dioxide emitted from factories, automobiles, etc. has increased due to increased concern about air pollution caused by PM2.5 and other sulfur dioxide and suspended particulate matter. There is a demand for improved performance for sulfur oxides such as sulfur trioxide, nitrogen oxides such as nitrogen monoxide and nitrogen dioxide, and ammonia.

本発明は、かかる技術的背景に鑑みてなされたものであって、アンモニア、硫黄酸化物、窒素酸化物の全てに対して優れた除去効果を発揮するアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去フィルターを提供することを目的とする。 The present invention has been made in view of such a technical background, and removes ammonia gas, sulfur dioxide gas, and nitrogen dioxide gas, which exhibit an excellent removal effect on all of ammonia, sulfur oxide, and nitrogen oxide. The purpose is to provide a filter.

前記目的を達成するために、本発明は以下の手段を提供する。   In order to achieve the above object, the present invention provides the following means.

[1]活性炭及び/又はシリカゲル混抄紙に、粒径が1nm〜50nmの範囲の層状複水酸化物を坦持したことに特徴のあるアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去フィルター。 [1] A filter for removing ammonia gas, sulfur dioxide gas and nitrogen dioxide gas, which is characterized in that a layered double hydroxide having a particle size in the range of 1 nm to 50 nm is supported on activated carbon and / or silica gel mixed paper.

[2]前記層状複水酸化物が、ハイドロタルサイト、マナセアイト、パイロオウライトから選ばれる1種または複数の層状複水酸化物である前項1に記載のアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去フィルター。 [2] The ammonia gas, sulfur dioxide gas, and nitrogen dioxide gas according to item 1 above, wherein the layered double hydroxide is one or more layered double hydroxides selected from hydrotalcite, manaceite, and pyroaulite. Removal filter.

[3]前記層状複水酸化物を混抄紙1g当たり5mg〜100mg担持させた前項1または2に記載のアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去フィルター。 [3] The ammonia gas, sulfur dioxide gas, and nitrogen dioxide gas removal filter according to item 1 or 2, wherein the layered double hydroxide is supported at 5 mg to 100 mg per 1 g of mixed paper.

[1]の発明では、活性炭及び/又はシリカゲル混抄紙に、粒径が1nm〜50nmの範囲の層状複水酸化物を坦持しているので、活性炭及び/又はシリカゲルの初期吸着力と層状複水酸化物による層間に吸収・吸着する力と相俟って、アンモニア、硫黄酸化物、窒素酸化物の全てに対して初期から優れたアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去効果を発揮することができる。 In the invention of [1], the activated carbon and / or silica gel mixed paper carries a layered double hydroxide having a particle size in the range of 1 nm to 50 nm. Combined with the ability of hydroxide to absorb and adsorb between layers, it exhibits excellent ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal effects from the beginning for all of ammonia, sulfur oxide and nitrogen oxide. be able to.

[2]の発明では、前記層状複水酸化物が、ハイドロタルサイト、マナセアイト、パイロオウライトから選ばれる1種または複数の層状複水酸化物であるので、安定的にアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去効果を発揮することができる。 In the invention of [2], since the layered double hydroxide is one or more layered double hydroxides selected from hydrotalcite, manaceite, and pyroaulite, ammonia gas and sulfur dioxide gas can be stably used. And the nitrogen dioxide gas removal effect can be exhibited.

[3]の発明では、前記層状複水酸化物を混抄紙1g当たり5mg〜100mg担持しているので、十分なアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去効果を発揮することができる。 In the invention of [3], since the layered double hydroxide is supported at 5 mg to 100 mg per 1 g of mixed paper, a sufficient effect of removing ammonia gas, sulfur dioxide gas and nitrogen dioxide gas can be exhibited.

本発明のアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去フィルターについて、さらに詳しく説明する。 The ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter of the present invention will be described in more detail.

本発明で用いる混抄紙は、活性炭混抄紙であってもシリカゲル混抄紙でもよく、さらに活性炭とシリカゲルの両方を用いてもよい。活性炭混抄紙は通常の湿式抄紙法により製造できる。例えば活性炭と天然パルプを水に添加し、水スラリーを作成する。そのスラリーを攪拌しながら所定の固形分濃度に調整し、得られた凝集体水分散液を抄紙機を使い湿式抄紙法によりシート化し、乾燥処理を施し活性炭混抄紙を得る。この活性炭混抄紙にヒートプレス機を用いてプレス加工を施したのち、この活性炭混抄紙をコルゲート加工機を用いハニカム形状に加工しフィルターの形状にする。フィルターの開口率を、ヒートプレス機を用いたプレス加工による紙厚、およびコルゲート加工機によるコルゲートの山高さと、コルゲート間隔(ピッチ)から65〜80%の範囲にするのが好ましい。   The mixed paper used in the present invention may be activated carbon mixed paper or silica gel mixed paper, and both activated carbon and silica gel may be used. The activated carbon mixed paper can be produced by a normal wet papermaking method. For example, activated carbon and natural pulp are added to water to create a water slurry. The slurry is adjusted to a predetermined solid content concentration while stirring, and the obtained aggregate aqueous dispersion is formed into a sheet by a wet papermaking method using a paper machine and dried to obtain an activated carbon mixed paper. After this activated carbon mixed paper is pressed using a heat press machine, the activated carbon mixed paper is processed into a honeycomb shape using a corrugating machine to obtain a filter shape. The aperture ratio of the filter is preferably in the range of 65 to 80% from the paper thickness by press working using a heat press, the peak height of the corrugated by the corrugating machine, and the corrugated interval (pitch).

この活性炭混抄紙によるハニカムフィルターは活性炭の強い吸着力によって悪臭ガスの吸着体の役割をなすものである。本発明に使用する活性炭としては、椰子殻活性炭、石油ピッチ系球状活性炭、活性炭素繊維、木質系活性炭等の活性炭系炭素多孔質体が、吸着比表面積が非常に高いことから好ましく用いられる。中でも、椰子殻活性炭が好ましい。また、この活性炭混抄紙に使用する繊維は天然パルプ、ポリオレフィン及びアクリル繊維などのフィブリル化繊維を用いればよい。   The honeycomb filter made of the activated carbon mixed paper serves as an adsorbent for malodorous gas due to the strong adsorption power of the activated carbon. As the activated carbon used in the present invention, activated carbon-based carbon porous bodies such as coconut shell activated carbon, petroleum pitch-based spherical activated carbon, activated carbon fiber, and wood-based activated carbon are preferably used because of their very high specific adsorption surface area. Of these, coconut shell activated carbon is preferable. Moreover, what is necessary is just to use fibrillated fibers, such as a natural pulp, polyolefin, and an acrylic fiber, for the fiber used for this activated carbon mixed paper.

活性炭混抄紙における活性炭の担持量は、0.2〜0.7g/cm担持させるのが好ましい。0.2g/cmを下回る活性炭の担持量では、十分な吸着量とならない。また、0.7g/cmを上回って活性炭を担持させても、十分に大きな吸着量とはならず、活性炭混抄紙の強度も得られず好ましくない。 The supported amount of activated carbon in the activated carbon mixed paper is preferably 0.2 to 0.7 g / cm 3 . If the supported amount of activated carbon is less than 0.2 g / cm 3 , the adsorbed amount is not sufficient. Further, even if the activated carbon is supported above 0.7 g / cm 3 , the adsorbed amount is not sufficiently large, and the strength of the activated carbon mixed paper is not preferable.

本発明のシリカゲル混抄紙は通常の湿式抄紙法により製造できる。例えば、シリカゲルと天然パルプを水に添加し、水スラリーを作成する。そのスラリーを攪拌しながら所定の固形分濃度に調整し、得られた凝集体水分散液を抄紙機を使い湿式抄紙法によりシート化し、乾燥処理を行ないシリカゲル混抄紙を得る。このシリカゲル混抄紙にヒートプレス機を用いてプレス加工を施す。このシリカゲル混抄紙をコルゲート加工機を用いハニカム形状に加工しフィルターの形状にする。フィルターの開口率を、ヒートプレス機を用いたプレス加工による紙厚、およびコルゲート加工機によるコルゲートの山高さと、コルゲート間隔(ピッチ)から65〜80%の範囲にするのが好ましい。   The silica gel mixed paper of the present invention can be produced by a usual wet paper making method. For example, silica gel and natural pulp are added to water to create a water slurry. The slurry is adjusted to a predetermined solid content concentration while stirring, and the obtained aggregate aqueous dispersion is formed into a sheet by a wet papermaking method using a paper machine and dried to obtain a silica gel mixed paper. This silica gel mixed paper is pressed using a heat press. This silica gel mixed paper is processed into a honeycomb shape using a corrugating machine to obtain a filter shape. The aperture ratio of the filter is preferably in the range of 65 to 80% from the paper thickness by press working using a heat press, the peak height of the corrugated by the corrugating machine, and the corrugated interval (pitch).

このシリカゲル混抄紙によるハニカムフィルターはシリカゲルの強い吸着力によってガスの吸着体の役割をなすものである。本発明に使用するシリカゲルとしては、特に限定されない。また、このシリカゲル混抄紙に使用する繊維は天然パルプ、ポリオレフィン及びアクリル繊維などのフィブリル化繊維を用いればよい。   The honeycomb filter made of this silica gel mixed paper serves as a gas adsorbent by the strong adsorption force of silica gel. The silica gel used in the present invention is not particularly limited. The fibers used in the silica gel mixed paper may be fibrillated fibers such as natural pulp, polyolefin and acrylic fibers.

シリカゲル混抄紙におけるシリカゲルの担持量は、0.3〜1.2g/cm担持させるのが好ましい。0.3g/cmを下回るシリカゲルの担持量では、十分な吸着量とならない。また、1.2g/cmを上回ってシリカゲルを担持させても、十分に大きな吸着量とはならず、シリカゲル混抄紙の強度も得られず好ましくない。 The amount of silica gel supported on the silica gel mixed paper is preferably 0.3 to 1.2 g / cm 3 . If the amount of silica gel supported is less than 0.3 g / cm 3 , the amount of adsorption is not sufficient. Further, even if the silica gel is supported above 1.2 g / cm 3 , the adsorbed amount is not sufficiently large, and the strength of the silica gel mixed paper cannot be obtained.

本発明のアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去フィルターに用いられる層状複水酸化物としては、ハイドロタルサイト、マナセアイト、パイロオウライトから選ばれる1種または複数の層状複水酸化物が好ましい。層状複水酸化物は結晶構造が層状であり、そのひとつひとつの結晶片は葉片状または鱗状となっています。そして、粒径が1nm〜50nmの範囲の層状複水酸化物は、空気中のアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガスを効率的に取り込み吸着除去することができる。粒径が1nm未満では徒に材料コストがかかりコストに見合わない、また、50nmを越えると吸着性が劣る恐れがあり好ましくない。 The layered double hydroxide used in the ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter of the present invention is preferably one or more layered double hydroxides selected from hydrotalcite, manaceite and pyroaulite. . The layered double hydroxide has a layered crystal structure, and each piece of crystal is leaf-like or scaly. And the layered double hydroxide having a particle size in the range of 1 nm to 50 nm can efficiently take in and remove ammonia gas, sulfur dioxide gas and nitrogen dioxide gas in the air. If the particle size is less than 1 nm, the material cost is undesirably high and the cost is not met.

また、層状複水酸化物の活性炭及び/又はシリカゲル混抄紙への坦持量は、活性炭及び/又はシリカゲル混抄紙1g当たり5mg〜100mgが好ましい。5mgを下回ると除去効性能の低下を招き、100mgを越えると活性炭及び/又はシリカゲルの細孔を塞いでしまい物理吸着性能を低下させてしまうおそれがあるので好ましくない。さらに好ましくは10mg〜50mgである。   The amount of the layered double hydroxide supported on the activated carbon and / or silica gel mixed paper is preferably 5 mg to 100 mg per 1 g of the activated carbon and / or silica gel mixed paper. If the amount is less than 5 mg, the removal effect performance is deteriorated, and if it exceeds 100 mg, the pores of the activated carbon and / or silica gel may be blocked and the physical adsorption performance may be deteriorated. More preferably, it is 10 mg-50 mg.

また、活性炭及び/又はシリカゲル混抄紙に層状複水酸化物を坦持するには、活性炭及び/又はシリカゲル混抄紙を製造段階で、活性炭及び/又はシリカゲルと天然パルプと層状複水酸化物とバインダー樹脂とを水に添加した水スラリーを作成することで坦持してもよいし、混抄紙に後からスプレー法やコーティング法、浸漬法で層状複水酸化物を付与し坦持させればよい。   In addition, in order to carry the layered double hydroxide on the activated carbon and / or silica gel mixed paper, activated carbon and / or silica gel, natural pulp, layered double hydroxide and binder in the production stage of the activated carbon and / or silica gel mixed paper. It may be supported by creating a water slurry in which resin is added to water, or it may be supported by applying layered double hydroxide to the mixed paper afterwards by spraying, coating, or dipping methods. .

混抄紙を製造段階で、層状複水酸化物を坦持させるには、活性炭及び/又はシリカゲルと天然パルプとに加え、バインダー樹脂として例えば、エチレン−酢酸ビニル共重合体を活性炭及び/又はシリカゲルに対して5質量%〜30質量%を、そして層状複水酸化物を水に加えてスラリーを作成する。   In order to support the layered double hydroxide at the production stage of the mixed paper, in addition to activated carbon and / or silica gel and natural pulp, as a binder resin, for example, ethylene-vinyl acetate copolymer is activated carbon and / or silica gel. The slurry is made by adding 5% to 30% by weight and layered double hydroxide to water.

前記バインダー樹脂としては、特に限定されないが、例えば、エチレン−酢酸ビニル共重合、ポリビニルアルコール、ウレタン樹脂、アクリル樹脂を挙げることできる。なかでも活性炭及び/又はシリカゲルの細孔を被覆し難い点からエチレン−酢酸ビニル共重合が好ましい。   Although it does not specifically limit as said binder resin, For example, ethylene-vinyl acetate copolymer, polyvinyl alcohol, a urethane resin, and an acrylic resin can be mentioned. Of these, ethylene-vinyl acetate copolymer is preferred because it is difficult to coat the pores of activated carbon and / or silica gel.

また、活性炭及び/又はシリカゲル混抄紙に後から層状複水酸化物を坦持するには、あらかじめ層状複水酸化物を水に均一に分散させた水分散液からなる処理液を調合する。前記処理液には、分散剤や増粘剤などの各種添加剤を、各種特性向上のため配合してもよい。前記処理液を活性炭及び/又はシリカゲル混抄紙にスプレーやコーティングなどの方法を用いて付与し坦持してもよいし、活性炭及び/又はシリカゲル混抄紙を前記処理液に浸漬することで前記処理液を付与し坦持してもよい。   In order to carry the layered double hydroxide later on the activated carbon and / or silica gel mixed paper, a treatment liquid composed of an aqueous dispersion in which the layered double hydroxide is uniformly dispersed in water is prepared in advance. Various additives such as a dispersant and a thickener may be added to the treatment liquid in order to improve various characteristics. The treatment liquid may be applied to and supported on activated carbon and / or silica gel mixed paper using a method such as spraying or coating, or the treatment liquid may be immersed in activated carbon and / or silica gel mixed paper in the treatment liquid. May be given and carried.

上記のように、処理液を付与した後に乾燥させるが、乾燥手段としては、加熱処理する方法が乾燥効率から好ましい。加熱処理温度は、100〜180℃とするのが好ましい。   As described above, the treatment liquid is applied and then dried. As a drying means, a heat treatment method is preferable from the viewpoint of drying efficiency. The heat treatment temperature is preferably 100 to 180 ° C.

次ぎに実施例により、本発明を具体的に説明するが、本発明はこれらの実施例のものに特に限定されるものではない。なお、層状複水酸化物の坦持量を表1に示す。また、アンモニア、硫黄酸化物、窒素酸化物の除去性能試験結果を表2に示す。   EXAMPLES Next, the present invention will be specifically described by way of examples. However, the present invention is not particularly limited to these examples. In addition, Table 1 shows the carrying amount of the layered double hydroxide. Table 2 shows the results of the performance test for removing ammonia, sulfur oxides and nitrogen oxides.

<実施例1>
パルプ40質量部、シリカゲル45質量部、エチレン−酢酸ビニル共重合体13質量部、粒径が10nmのハイドロタルサイト2質量部を水100質量部に分散させたスラリーを作成する。得られたスラリーを抄紙機を用いて湿式抄紙法によりシート化し、乾燥処理を施した。次に、このシリカゲル混抄紙にヒートプレス機を用いてプレス加工を施し、目付量100g/mの混抄紙を得た。前記混抄紙をコルゲート加工機を用いて波形形状に加工した。コルゲートの山高さは2.8mm、コルゲート間隔(ピッチ)は4.3mmであり、厚さ8mmであった。この波形形状の混抄紙と混抄紙をエチレン−酢酸ビニル共合体からなる接着剤で接着し積層することで、縦400mm×横250mm×厚8mmのハニカム形状(セル密度が100セル/inch)の空気清浄機用消臭フィルター材を得た。ハイドロタルサイトの混抄紙への担持量は、20mg/1gであった。アンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去能力試験により測定をおこなった。初期性能試験の結果は、二酸化硫黄の除去率が95%、二酸化窒素の除去率が97%、アンモニアの除去率が92%であった。また、耐久性能試験の結果は、二酸化硫黄の除去率が91%、二酸化窒素の除去率が94%、アンモニアの除去率が87%であり、いずれも評価は「◎」で合格であった。なお、各構成と坦持量を表1に、アンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去能力試験の結果を表2に示す。
<Example 1>
A slurry is prepared by dispersing 40 parts by mass of pulp, 45 parts by mass of silica gel, 13 parts by mass of an ethylene-vinyl acetate copolymer, and 2 parts by mass of hydrotalcite having a particle size of 10 nm in 100 parts by mass of water. The obtained slurry was formed into a sheet by a wet paper making method using a paper machine and dried. Next, this silica gel mixed paper was pressed using a heat press machine to obtain a mixed paper having a basis weight of 100 g / m 2 . The mixed paper was processed into a corrugated shape using a corrugating machine. The corrugated peak height was 2.8 mm, the corrugated spacing (pitch) was 4.3 mm, and the thickness was 8 mm. By bonding and laminating the corrugated mixed paper and the mixed paper with an adhesive made of an ethylene-vinyl acetate copolymer, a honeycomb shape (cell density is 100 cells / inch 2 ) having a length of 400 mm × width of 250 mm × thickness of 8 mm. A deodorizing filter material for an air cleaner was obtained. The amount of hydrotalcite supported on the mixed paper was 20 mg / 1 g. Measurements were made by an ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal ability test. As a result of the initial performance test, the removal rate of sulfur dioxide was 95%, the removal rate of nitrogen dioxide was 97%, and the removal rate of ammonia was 92%. In addition, as a result of the durability performance test, the removal rate of sulfur dioxide was 91%, the removal rate of nitrogen dioxide was 94%, and the removal rate of ammonia was 87%. In addition, each structure and the carrying amount are shown in Table 1, and the results of the ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal ability test are shown in Table 2.

<実施例2>
実施例1において、パルプ26.3質量部、活性炭を60質量部、エチレン−酢酸ビニル共重合体13質量部、粒径が10nmのハイドロタルサイト0.7質量部を水100質量部に分散させたスラリーから作成した活性炭混抄紙を用いた以外は実施例1と同様にして空気清浄機用消臭フィルター材を得た。
<Example 2>
In Example 1, 26.3 parts by mass of pulp, 60 parts by mass of activated carbon, 13 parts by mass of an ethylene-vinyl acetate copolymer, and 0.7 parts by mass of hydrotalcite having a particle size of 10 nm are dispersed in 100 parts by mass of water. A deodorizing filter material for an air purifier was obtained in the same manner as in Example 1 except that the activated carbon mixed paper made from the slurry was used.

<実施例3>
実施例1において、パルプ35質量部、シリカゲル20質量部、活性炭を30質量部、エチレン−酢酸ビニル共重合体13質量部、粒径が2nmのマナセアイト2質量部を水100質量部に分散させたスラリーから作成した活性炭とシリカゲルとの混抄紙を用いた以外は実施例1と同様にして空気清浄機用消臭フィルター材を得た。
<Example 3>
In Example 1, 35 parts by mass of pulp, 20 parts by mass of silica gel, 30 parts by mass of activated carbon, 13 parts by mass of an ethylene-vinyl acetate copolymer, and 2 parts by mass of manaceite having a particle size of 2 nm were dispersed in 100 parts by mass of water. A deodorizing filter material for an air cleaner was obtained in the same manner as in Example 1 except that a mixed paper of activated carbon and silica gel prepared from the slurry was used.

<実施例4>
実施例1において、粒径が10nmのハイドロタルサイトに替えて粒径が45nmのハイドロタルサイトを用いた以外は実施例1と同様にして空気清浄機用消臭フィルター材を得た。
<Example 4>
A deodorizing filter material for an air cleaner was obtained in the same manner as in Example 1 except that hydrotalcite having a particle size of 45 nm was used instead of hydrotalcite having a particle size of 10 nm.

<実施例5>
実施例1において、パルプ33質量部、シリカゲル45質量部、エチレン−酢酸ビニル共重合体13質量部、粒径が10nmのパイロオウライト9質量部を水100質量部に分散させたスラリーから作成したシリカゲル混抄紙を用いた以外は実施例1と同様にして空気清浄機用消臭フィルター材を得た。
<Example 5>
In Example 1, it was prepared from a slurry in which 33 parts by mass of pulp, 45 parts by mass of silica gel, 13 parts by mass of an ethylene-vinyl acetate copolymer, and 9 parts by mass of pyroolite having a particle size of 10 nm were dispersed in 100 parts by mass of water. A deodorizing filter material for an air purifier was obtained in the same manner as in Example 1 except that silica gel mixed paper was used.

<比較例1>
実施例1において、混抄紙に替えて活性炭とシリカゲルのいずれも含まない抄紙を用い、ハイドロタルサイトを坦持させなかった、すなわち、パルプ87質量部、エチレン−酢酸ビニル共重合体13質量部を水100質量部に分散させたスラリーから作成した抄紙を用いた以外は実施例1と同様にしてフィルター材を得た。
<Comparative Example 1>
In Example 1, paper made of neither activated carbon nor silica gel was used in place of the mixed paper, and hydrotalcite was not carried, that is, 87 parts by weight of pulp and 13 parts by weight of ethylene-vinyl acetate copolymer. A filter material was obtained in the same manner as in Example 1 except that paper made from a slurry dispersed in 100 parts by mass of water was used.

<比較例2>
実施例1において、ハイドロタルサイトを坦持させなかった、すなわち、パルプ42質量部、シリカゲル45質量部、エチレン−酢酸ビニル共重合体13質量部を水100質量部に分散させたスラリーから作成したシリカゲル混抄紙を用いた以外は実施例1と同様にしてフィルター材を得た。
<Comparative example 2>
In Example 1, hydrotalcite was not supported, that is, prepared from a slurry in which 42 parts by mass of pulp, 45 parts by mass of silica gel, and 13 parts by mass of an ethylene-vinyl acetate copolymer were dispersed in 100 parts by mass of water. A filter material was obtained in the same manner as in Example 1 except that silica gel mixed paper was used.

<比較例3>
実施例1において、混抄紙に替えて活性炭とシリカゲルのいずれも含まない抄紙を用いた、すなわち、パルプ85質量部、エチレン−酢酸ビニル共重合体13質量部、粒径が10nmのハイドロタルサイト2質量部を水100質量部に分散させたスラリーから作成した抄紙を用いた以外は実施例1と同様にしてフィルター材を得た。
<Comparative Example 3>
In Example 1, paper made of neither activated carbon nor silica gel was used in place of mixed paper, that is, 85 parts by weight of pulp, 13 parts by weight of ethylene-vinyl acetate copolymer, and hydrotalcite 2 having a particle size of 10 nm. A filter material was obtained in the same manner as in Example 1 except that paper made from a slurry in which 100 parts by mass of water was dispersed in 100 parts by mass of water was used.

<比較例4>
実施例2において、粒径が10nmのハイドロタルサイトに替えて粒径が70nmのハイドロタルサイトを用いた、すなわち、パルプ26.3質量部、活性炭60質量部、エチレン−酢酸ビニル共重合体13質量部、粒径が70nmのハイドロタルサイト0.7質量部を水100質量部に分散させたスラリーから作成した活性炭混抄紙を用いた以外は実施例2と同様にしてフィルター材を得た。
<Comparative example 4>
In Example 2, hydrotalcite having a particle size of 70 nm was used instead of hydrotalcite having a particle size of 10 nm, that is, 26.3 parts by mass of pulp, 60 parts by mass of activated carbon, and ethylene-vinyl acetate copolymer 13 A filter material was obtained in the same manner as in Example 2 except that an activated carbon mixed paper prepared from a slurry in which 0.7 parts by mass of hydrotalcite having a particle size of 70 nm was dispersed in 100 parts by mass of water was used.

アンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去能力試験方法>
(初期性能試験)
前記フィルター材を空気清浄機にセットし、容積1mのアクリルボックス内に入れた。次に初期濃度約10ppmの各ガス(アンモニア、二酸化硫黄、二酸化窒素)をそれぞれ単一ガスで投入し、風量を7m/分の条件で運転させた。運転開始から5分後のガス濃度を測定し、除去率90%以上のものを「◎」、除去率80%以上90%未満のものを「○」、80%未満のものを「×」とした。なお、「○」以上を合格とした。
< Ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal ability test method>
(Initial performance test)
The filter material was set in an air purifier and placed in an acrylic box having a volume of 1 m 3 . Then the gas in the initial concentration of about 10ppm was charged with each single gas (ammonia, sulfur dioxide, nitrogen dioxide) and allowed to operate the air volume at 7m 3 / min conditions. The gas concentration after 5 minutes from the start of operation is measured, and “◎” indicates that the removal rate is 90% or more, “◯” indicates that the removal rate is 80% or more and less than 90%, and “×” indicates that the removal rate is less than 80%. did. In addition, "○" or more was set as the pass.

(耐久性能試験)
前記フィルター材の縦30×横30×厚さ8mmにカットし、ワンパス型消臭試験装置に装着した。入口側濃度を約10ppmの各ガス(アンモニア、二酸化硫黄、二酸化窒素)を、面風速が50mm/秒の条件にて30分間連続通気させ、30分後のワンパス除去率を測定し、除去率85%以上のものを「◎」、70%以上85%未満のものを「○」、70%未満のものを「×」とした。なお、「○」以上を合格とした。
(Durability test)
The filter material was cut into a length 30 × width 30 × thickness 8 mm and mounted on a one-pass deodorization test apparatus. Each gas of about 10ppm inlet side concentration (ammonia, sulfur dioxide, nitrogen dioxide) for 30 min face velocity is under conditions of 50 mm / sec is continuously vented to measure the one-pass removal rate after 30 minutes, removal rate 85% or more was rated as “◎”, 70% or more and less than 85% as “◯”, and less than 70% as “x”. In addition, "○" or more was set as the pass.

表2から明らかなように、本発明のフィルターは、アンモニアガス、二酸化硫黄ガス及び二酸化窒素ガスの全てのガスに対して優れた除去性能を発揮するフィルターであった。 As apparent from Table 2, the filter of the present invention, ammonia gas was filter for excellent removal performance for all gas of sulfur dioxide gas and nitrogen dioxide gas.

一方、比較例のフィルターは、初期性能と耐久性能のいずれの除去性能においてもかなり劣るフィルターであった。   On the other hand, the filter of the comparative example was a filter inferior in both removal performance of the initial performance and the durability performance.

本発明の技術はアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガスの全てを除去できるフィルターに関する技術で、家庭用または業務用のエアコン、空気清浄機等のフィルターとして広く利用される。

The technology of the present invention is a technology related to a filter that can remove all of ammonia gas, sulfur dioxide gas, and nitrogen dioxide gas, and is widely used as a filter for home or commercial air conditioners, air purifiers, and the like.

Claims (3)

活性炭及び/又はシリカゲル混抄紙に、粒径が1nm〜50nmの範囲の層状複水酸化物を坦持したことに特徴のあるアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去フィルター。 A filter for removing ammonia gas, sulfur dioxide gas and nitrogen dioxide gas, characterized in that a layered double hydroxide having a particle size in the range of 1 nm to 50 nm is supported on activated carbon and / or silica gel mixed paper. 前記層状複水酸化物が、ハイドロタルサイト、マナセアイト、パイロオウライトから選ばれる1種または複数の層状複水酸化物である請求項1に記載のアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去フィルター。 The ammonia gas, sulfur dioxide gas, and nitrogen dioxide gas removal filter according to claim 1, wherein the layered double hydroxide is one or more layered double hydroxides selected from hydrotalcite, manaceite, and pyroaulite. . 前記層状複水酸化物を混抄紙1g当たり5mg〜100mg担持させた請求項1または2に記載のアンモニアガス、二酸化硫黄ガス及び二酸化窒素ガス除去フィルター。 The ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter according to claim 1 or 2, wherein the layered double hydroxide is supported at 5 mg to 100 mg per 1 g of mixed paper.
JP2015105858A 2015-05-25 2015-05-25 Ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter Active JP6575993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015105858A JP6575993B2 (en) 2015-05-25 2015-05-25 Ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015105858A JP6575993B2 (en) 2015-05-25 2015-05-25 Ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter

Publications (2)

Publication Number Publication Date
JP2016215168A JP2016215168A (en) 2016-12-22
JP6575993B2 true JP6575993B2 (en) 2019-09-18

Family

ID=57579893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015105858A Active JP6575993B2 (en) 2015-05-25 2015-05-25 Ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter

Country Status (1)

Country Link
JP (1) JP6575993B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567205B (en) * 2017-10-06 2021-06-23 Siemens Plc Uses of an absorbent, and methods and apparatuses relating thereto
CN108993507B (en) * 2018-08-16 2021-03-23 华东交通大学 Carbon aluminum core shell @ SiO2@ Cu-Fe bimetal hydroxide microsphere ammonia nitrogen degrading material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214338A (en) * 1982-06-04 1983-12-13 Kyowa Chem Ind Co Ltd Composite adsorbent
JPH10165489A (en) * 1996-12-12 1998-06-23 Toagosei Co Ltd Deodorant and deodorant fiber
JP2000342668A (en) * 1999-06-07 2000-12-12 Toagosei Co Ltd Deodorant sheet
TWI324049B (en) * 2002-01-08 2010-05-01 Japan Tobacco Inc Smoking filter and smoking article
JP4932320B2 (en) * 2006-05-11 2012-05-16 富士電機株式会社 Adsorbing member with excellent adsorption / desorption performance and manufacturing method thereof
JP2011025118A (en) * 2009-07-23 2011-02-10 Suminoe Textile Co Ltd Deodorizing filter for toilet
CN102561105A (en) * 2012-01-17 2012-07-11 盱眙中源新材料科技有限公司 Cationic paper-making composite retention aid, as well as preparation method and application method thereof
JP6445448B2 (en) * 2013-10-17 2018-12-26 東亞合成株式会社 Deodorant filter

Also Published As

Publication number Publication date
JP2016215168A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP7294755B2 (en) Surface-modified carbon and adsorbents for improved efficiency in removing gaseous pollutants
US9662637B2 (en) Nano-structured composite absorber for air detoxing and deodoring
CN102389773B (en) Manufacture method of molecular sieve honeycomb body for absorbing volatile organic compounds
JP4911706B2 (en) Deodorant filter
JP6070850B2 (en) Gas adsorbent, gas adsorbing sheet and air filter
JP2011233381A (en) Filter unit for fuel battery
JP6575993B2 (en) Ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter
CN115243780A (en) Filter material
JP6066176B2 (en) Cigarette odor deodorant filter
JP2017176936A (en) Chemical filter
WO2022186086A1 (en) Filtering medium for filter, and filter
JP2009241070A (en) Ozone filter
JP7165669B2 (en) filter
JP2016154640A (en) Deodorant filter
JP2007179868A (en) Filter unit for fuel cell
JP2006326537A (en) Filter material for air filter, and air filter
CN209752416U (en) air purification filter screen and air purification device
JP2017127812A (en) Sheet, and filter using the same
JP6898634B2 (en) VOC removal filter and method for manufacturing the VOC removal filter
CN111841498B (en) Guanidine salt modified activated carbon for removing aldehyde, preparation method thereof, composite filter screen comprising guanidine salt modified activated carbon and air purification device
KR20220085594A (en) Manufacturing Method of filter medium coated with Activated and Mask with the same
JP2005200784A (en) Wallpaper for removing indoor air contaminant
JP2002079083A (en) Gas adsorbing sheet and air cleaning filter
JP2018029878A (en) Deodorizing filter
JP2016179111A (en) Aldehyde removal filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6575993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250