JP6575452B2 - Gas concentration detector - Google Patents

Gas concentration detector Download PDF

Info

Publication number
JP6575452B2
JP6575452B2 JP2016146019A JP2016146019A JP6575452B2 JP 6575452 B2 JP6575452 B2 JP 6575452B2 JP 2016146019 A JP2016146019 A JP 2016146019A JP 2016146019 A JP2016146019 A JP 2016146019A JP 6575452 B2 JP6575452 B2 JP 6575452B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
detection
rich
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016146019A
Other languages
Japanese (ja)
Other versions
JP2018017535A (en
Inventor
直人 小澤
直人 小澤
欣二 宝平
欣二 宝平
翔太郎 森
翔太郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016146019A priority Critical patent/JP6575452B2/en
Priority to PCT/JP2017/019955 priority patent/WO2018020814A1/en
Publication of JP2018017535A publication Critical patent/JP2018017535A/en
Application granted granted Critical
Publication of JP6575452B2 publication Critical patent/JP6575452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、排ガスの空燃比を検出するガス濃度検出装置に関する。   The present invention relates to a gas concentration detection device that detects an air-fuel ratio of exhaust gas.

ガスセンサには、内燃機関から排気される排ガスの酸素濃度を検出する用途、排ガスの空燃比(排ガスから求められる燃焼時の空燃比)を求める用途、NOx等の特定ガス成分を検出する用途等がある。空燃比の検出を行う空燃比センサは、空燃比の略全域、例えば、空燃比A/Fが10〜20以上(大気)の広範囲において、排ガス中の空気と未燃ガスとの割合に応じてリニヤに検出できるようにしている。一方、酸素濃度の検出を行う酸素センサは、理論空燃比に比較した空燃比が、燃料が多い側であるリッチ側にあるか、空気が多い側であるリーン側にあるかを検出する。   Gas sensors include applications that detect the oxygen concentration of exhaust gas exhausted from an internal combustion engine, applications that determine the air-fuel ratio of exhaust gas (the air-fuel ratio during combustion determined from exhaust gas), and applications that detect specific gas components such as NOx. is there. The air-fuel ratio sensor that detects the air-fuel ratio is in accordance with the ratio of air to unburned gas in the exhaust gas in substantially the entire air-fuel ratio, for example, in a wide range where the air-fuel ratio A / F is 10 to 20 or more (atmosphere). It can be detected by linear. On the other hand, the oxygen sensor that detects the oxygen concentration detects whether the air-fuel ratio compared to the stoichiometric air-fuel ratio is on the rich side that is the fuel-rich side or the lean side that is the air-rich side.

空燃比センサにおいては、固体電解質体に設けられ、排ガスに晒される検出電極の表面を、多孔質のセラミックスからなる拡散抵抗層によって覆っている。拡散抵抗層によって検出電極への排ガスの流量が律速され、大気に晒される基準電極と検出電極との間に電圧を印加するときには、限界電流特性として、基準電極と検出電極との間に流れる電流は一定の値で飽和する。また、リッチ領域においては、基準電極から検出電極へ酸素をポンピングするよう電圧を印加し、リーン領域においては、検出電極から基準電極へ酸素をポンピングするよう電圧を印加している。そして、検出電極と基準電極との間に流れる飽和電流と空燃比との間には、正の相関があり、リッチ領域及びリーン領域における空燃比を、電流の大きさ及び向きに基づいてリニヤに検出している。   In the air-fuel ratio sensor, the surface of the detection electrode provided on the solid electrolyte body and exposed to the exhaust gas is covered with a diffusion resistance layer made of porous ceramics. When a voltage is applied between the reference electrode and the detection electrode exposed to the atmosphere, the flow of exhaust gas to the detection electrode is controlled by the diffusion resistance layer, the current flowing between the reference electrode and the detection electrode is the limiting current characteristic. Saturates at a constant value. In the rich region, a voltage is applied to pump oxygen from the reference electrode to the detection electrode. In the lean region, a voltage is applied to pump oxygen from the detection electrode to the reference electrode. There is a positive correlation between the saturation current flowing between the detection electrode and the reference electrode and the air-fuel ratio, and the air-fuel ratio in the rich region and the lean region is linearly changed based on the magnitude and direction of the current. Detected.

例えば、特許文献1の空燃比センサにおいては、基準電極と検出電極との間の出力電流値を、検出精度及び応答性の観点から適切な値にするために、検出電極を覆う拡散抵抗層の厚みを200〜800μmとし、その気孔率を3〜5%にすることが開示されている。   For example, in the air-fuel ratio sensor of Patent Document 1, in order to set the output current value between the reference electrode and the detection electrode to an appropriate value from the viewpoint of detection accuracy and responsiveness, a diffusion resistance layer covering the detection electrode is used. It is disclosed that the thickness is 200 to 800 μm and the porosity is 3 to 5%.

また、酸素センサにおいては、空燃比がリーン側からリッチ側に変化するとき、あるいはリッチ側にあるときには、検出電極における白金等の触媒作用により、検出電極に到達する排ガス中の一酸化炭素、炭化水素等の未燃ガス成分が二酸化炭素、水等に変換される。このとき、基準電極と検出電極との間に大きな起電力が生じることを利用して、空燃比がリッチ側にあるかリーン側にあるかを検出している。   Further, in the oxygen sensor, when the air-fuel ratio changes from the lean side to the rich side, or when it is on the rich side, carbon monoxide or carbonization in the exhaust gas reaching the detection electrode is caused by catalytic action of platinum or the like in the detection electrode. Unburned gas components such as hydrogen are converted into carbon dioxide, water, and the like. At this time, it is detected whether the air-fuel ratio is on the rich side or the lean side by utilizing the fact that a large electromotive force is generated between the reference electrode and the detection electrode.

特開平7−198673号公報Japanese Unexamined Patent Publication No. 7-198673

空燃比センサにおいては、内燃機関の燃焼状態に応じて空燃比が大きく変動することを想定して、空燃比の検出範囲を広範囲に設定するために、拡散抵抗層の厚みを大きくしている。拡散抵抗層の厚みを大きくする理由は、検出電極に到達する排ガスの量を制限して、特に、空燃比がリッチ側に大きく振れた場合の検出精度を確保するためにある。
しかし、拡散抵抗層の厚みが大きいと、排ガスが拡散抵抗層を通過して検出電極に到達するまでの時間が長くなり、空燃比センサの検出の応答性が悪化する。
In the air-fuel ratio sensor, the thickness of the diffusion resistance layer is increased in order to set the air-fuel ratio detection range in a wide range, assuming that the air-fuel ratio varies greatly according to the combustion state of the internal combustion engine. The reason for increasing the thickness of the diffusion resistance layer is to limit the amount of exhaust gas that reaches the detection electrode, and in particular to ensure detection accuracy when the air-fuel ratio fluctuates greatly to the rich side.
However, if the thickness of the diffusion resistance layer is large, the time until the exhaust gas passes through the diffusion resistance layer and reaches the detection electrode becomes long, and the detection response of the air-fuel ratio sensor deteriorates.

また、拡散抵抗層の厚みが小さいと、より多くの排ガスが短時間で拡散抵抗層を通過して検出電極に到達することになる。そのため、空燃比がリッチ側に大きく振れた場合には、大量の未燃ガスが検出電極に到達し、この未燃ガスを酸化させて二酸化炭素、水等に変換するために、基準電極から検出電極へ大量の酸素を急激に供給する必要が生じる。一方、空燃比がリーン側に大きく振れた場合には、大量の酸素が検出電極に到達し、この酸素を検出電極から基準電極へ急激に排出する必要が生じる。
酸素の移動流量には限界があり、固体電解質体と、固体電解質体の内部に配置されるヒータとのクリアランス等によって酸素の移動流量が制限される。従って、空燃比センサの検出の応答性を向上させるためには限界があった。
In addition, when the thickness of the diffusion resistance layer is small, more exhaust gas passes through the diffusion resistance layer in a short time and reaches the detection electrode. Therefore, when the air-fuel ratio fluctuates greatly toward the rich side, a large amount of unburned gas reaches the detection electrode and is detected from the reference electrode to oxidize the unburned gas and convert it into carbon dioxide, water, etc. A large amount of oxygen needs to be rapidly supplied to the electrode. On the other hand, when the air-fuel ratio fluctuates greatly toward the lean side, a large amount of oxygen reaches the detection electrode, and it is necessary to rapidly discharge this oxygen from the detection electrode to the reference electrode.
There is a limit to the oxygen transfer flow rate, and the oxygen transfer flow rate is limited by the clearance between the solid electrolyte body and the heater disposed inside the solid electrolyte body. Therefore, there is a limit to improve the response of detection by the air-fuel ratio sensor.

一方、酸素センサにおいては、空燃比を、電流の大きさに応じてリニヤに検出する必要がない。そのため、拡散抵抗層の厚みを大きくして、検出電極に到達する排ガスの量を制限する必要がほとんどない。
本願発明者らは、前述した空燃比センサと酸素センサとに必要な条件を整理し、従来の空燃比センサの応答性が改善される、全く新しいタイプのガスセンサを見出すに至った。
On the other hand, in the oxygen sensor, it is not necessary to detect the air-fuel ratio linearly according to the magnitude of the current. Therefore, there is almost no need to limit the amount of exhaust gas reaching the detection electrode by increasing the thickness of the diffusion resistance layer.
The present inventors have arranged the necessary conditions for the air-fuel ratio sensor and the oxygen sensor described above, and have come to find a completely new type of gas sensor in which the response of the conventional air-fuel ratio sensor is improved.

本発明は、かかる課題に鑑みてなされたもので、空燃比の検出の応答性を高く維持することができ、排ガスの空燃比に応じて、ガスセンサを空燃比センサの用途と酸素センサの用途とに使い分けることができるガス濃度検出装置を提供しようとして得られたものである。   The present invention has been made in view of such a problem, and can maintain a high responsiveness in detecting the air-fuel ratio. According to the air-fuel ratio of the exhaust gas, the gas sensor is used as an air-fuel ratio sensor and an oxygen sensor. It was obtained in an attempt to provide a gas concentration detection device that can be used properly.

本発明の一態様は、酸素イオン伝導性を有する固体電解質体(21)、前記固体電解質体における、検出ガスに晒される表面に設けられた検出電極(22)、前記固体電解質体における、基準ガスに晒される表面に設けられた基準電極(23)、及び前記検出電極を覆う多孔質のセラミックスからなる拡散抵抗層(24)を有するガスセンサ(2)と、
該ガスセンサに電気的に接続されて、該ガスセンサの動作を制御する制御装置(5)と、を備え、
前記制御装置は、
内燃機関から排気される前記検出ガスとしての排ガス(G)の空燃比が、理論空燃比の近傍におけるリッチ側の下限値(R1)と理論空燃比の近傍におけるリーン側の上限値(R2)との間のストイキ範囲(R)内にあるか、前記ストイキ範囲外にあるかを判定する判定部(53)と、
前記判定部による判定が前記ストイキ範囲内にある場合に、前記空燃比を検出する空燃比検出部(51)と、
前記判定部による判定が前記ストイキ範囲外にある場合に、前記空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出するリッチ・リーン検出部(52)と、を有する、ガス濃度検出装置(1)にある。
One aspect of the present invention includes a solid electrolyte body (21) having oxygen ion conductivity, a detection electrode (22) provided on a surface of the solid electrolyte body exposed to a detection gas, and a reference gas in the solid electrolyte body A gas sensor (2) having a reference electrode (23) provided on the surface exposed to the surface and a diffusion resistance layer (24) made of porous ceramics covering the detection electrode;
A control device (5) electrically connected to the gas sensor and controlling the operation of the gas sensor,
The control device includes:
The air-fuel ratio of the exhaust gas (G) as the detection gas exhausted from the internal combustion engine has a rich-side lower limit (R1) near the stoichiometric air-fuel ratio and a lean-side upper limit (R2) near the stoichiometric air-fuel ratio. A determination unit (53) for determining whether the value is within the stoichiometric range (R) or outside the stoichiometric range,
An air-fuel ratio detection unit (51) for detecting the air-fuel ratio when the determination by the determination unit is within the stoichiometric range ;
A rich / lean detection unit (52) for detecting whether the air-fuel ratio is on the rich side or the lean side of the stoichiometric air-fuel ratio when the determination by the determination unit is outside the stoichiometric range; It is in the gas concentration detector (1).

前記ガス濃度検出装置の制御装置においては、空燃比検出部とリッチ・リーン検出部とが構築されている。そして、制御装置は、排ガスの空燃比が、理論空燃比の近傍におけるリッチ側の下限値と理論空燃比の近傍におけるリーン側の上限値との間のストイキ範囲内にある場合に空燃比検出部を動作させ、排ガスの空燃比がストイキ範囲外にある場合には、リッチ・リーン検出部と動作させる。   In the control device for the gas concentration detection device, an air-fuel ratio detection unit and a rich / lean detection unit are constructed. When the air-fuel ratio of the exhaust gas is within the stoichiometric range between the rich-side lower limit value near the stoichiometric air-fuel ratio and the lean-side upper limit value near the stoichiometric air-fuel ratio, the air-fuel ratio detection unit When the air-fuel ratio of the exhaust gas is outside the stoichiometric range, the rich / lean detection unit is operated.

これにより、空燃比が理論空燃比の近傍にあり、大量の未燃ガス又は酸素を含む排ガスが検出電極に到達する可能性がない状態においては、空燃比検出部によって、ガスセンサを空燃比センサとして動作させることができる。また、空燃比が理論空燃比の近傍から離れ、大量の未燃ガス又は酸素を含む排ガスが検出電極に到達する可能性がある状態においては、リッチ・リーン検出部によって、ガスセンサを酸素センサとして動作させることができる。   As a result, when the air-fuel ratio is in the vicinity of the stoichiometric air-fuel ratio and there is no possibility that a large amount of unburned gas or exhaust gas containing oxygen will reach the detection electrode, the air-fuel ratio detection unit uses the gas sensor as the air-fuel ratio sensor. It can be operated. When the air-fuel ratio is far from the stoichiometric air-fuel ratio and there is a possibility that a large amount of unburned gas or exhaust gas containing oxygen may reach the detection electrode, the rich / lean detection unit operates the gas sensor as an oxygen sensor. Can be made.

従って、ガスセンサの検出電極を覆う拡散抵抗層の厚みを小さくすることが可能になり、排ガスが拡散抵抗層を通過して検出電極へ到達する時間を短くすることができる。そして、空燃比検出部によって、ガスセンサを空燃比センサとして動作させる場合における、空燃比の検出の応答性を高く維持することができる。   Therefore, the thickness of the diffusion resistance layer covering the detection electrode of the gas sensor can be reduced, and the time for exhaust gas to pass through the diffusion resistance layer and reach the detection electrode can be shortened. The air-fuel ratio detection unit can maintain high air-fuel ratio responsiveness when the gas sensor is operated as an air-fuel ratio sensor.

それ故、前記ガス濃度検出装置によれば、空燃比の検出の応答性を高く維持することができ、排ガスの空燃比に応じて、ガスセンサを空燃比センサの用途と酸素センサの用途とに使い分けることができる。
「排ガスの空燃比」とは、排ガスを排気した内燃機関における混合気の燃焼時の空燃比のことを意味する。
Therefore, according to the gas concentration detection device, the responsiveness of air-fuel ratio detection can be maintained high, and the gas sensor is selectively used for the use of the air-fuel ratio sensor and the use of the oxygen sensor according to the air-fuel ratio of the exhaust gas. be able to.
The “air-fuel ratio of exhaust gas” means the air-fuel ratio at the time of combustion of the air-fuel mixture in the internal combustion engine that exhausted the exhaust gas.

なお、本発明の一態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。   Note that the reference numerals in parentheses of the constituent elements shown in one embodiment of the present invention indicate the correspondence with the reference numerals in the drawings in the embodiment, but the constituent elements are not limited only to the contents of the embodiments.

実施形態1にかかる、ガス濃度検出装置を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a gas concentration detection device according to a first embodiment. 実施形態1にかかる、印加電圧とセンサ出力電流との関係を示すグラフ。The graph which shows the relationship between the applied voltage and sensor output current concerning Embodiment 1. FIG. 実施形態1にかかる、空燃比と浄化率との関係を示すグラフ。The graph which shows the relationship between the air fuel ratio and purification rate concerning Embodiment 1. FIG. 実施形態1にかかる、ガスセンサを示す説明図。FIG. 3 is an explanatory diagram showing a gas sensor according to the first embodiment. 実施形態1にかかる、拡散抵抗層の厚みと空燃比の検出可能範囲との関係を示すグラフ。3 is a graph showing the relationship between the thickness of the diffusion resistance layer and the detectable range of the air-fuel ratio according to the first embodiment. 実施形態1にかかる、拡散抵抗層の厚みとリッチ・リーン検出の応答時間との関係を示すグラフ。6 is a graph showing the relationship between the thickness of the diffusion resistance layer and the response time for rich / lean detection according to the first embodiment. 実施形態1にかかる、拡散抵抗層の厚みと空燃比検出の応答時間との関係を示すグラフ。3 is a graph showing the relationship between the thickness of the diffusion resistance layer and the response time of air-fuel ratio detection according to the first embodiment. 実施形態1にかかる、従来の空燃比センサによる空燃比制御の応答性を示すグラフ。6 is a graph showing the responsiveness of air-fuel ratio control by the conventional air-fuel ratio sensor according to the first embodiment. 実施形態1にかかる、ガスセンサによる空燃比制御の応答性を示すグラフ。3 is a graph showing the responsiveness of air-fuel ratio control by a gas sensor according to the first embodiment. 実施形態1にかかる、印加電圧とセンサ出力電流との関係を、気孔率をパラメータとして示すグラフ。The graph which shows the relationship between the applied voltage and sensor output current concerning Embodiment 1 by using a porosity as a parameter. 実施形態1にかかる、空燃比検出とリッチ・リーン検出との切換えを行う動作を示すフローチャート。3 is a flowchart showing an operation of switching between air-fuel ratio detection and rich / lean detection according to the first embodiment. 実施形態2にかかる、空燃比検出とリッチ・リーン検出との切換えを行う動作を示すフローチャート。9 is a flowchart showing an operation of switching between air-fuel ratio detection and rich / lean detection according to the second embodiment. 実施形態3にかかる、空燃比検出とリッチ・リーン検出との切換えを行う動作を示すフローチャート。10 is a flowchart showing an operation of switching between air-fuel ratio detection and rich / lean detection according to the third embodiment.

前述したガス濃度検出装置にかかる好ましい実施形態について、図面を参照して説明する。
本形態のガス濃度検出装置1は、図1に示すように、ガスセンサ2及び制御装置5を備え、制御装置5は、空燃比検出部51及びリッチ・リーン検出部52を有する。
ガスセンサ2は、酸素イオン伝導性を有する固体電解質体21と、固体電解質体21における、検出ガスに晒される表面に設けられた検出電極22と、固体電解質体21における、基準ガスAとしての大気に晒される表面に設けられた基準電極23と、検出電極22を覆う多孔質のセラミックスからなる拡散抵抗層24とを有する。制御装置5は、ガスセンサ2に電気的に接続されており、ガスセンサ2の動作を制御する。
A preferred embodiment of the above-described gas concentration detection device will be described with reference to the drawings.
As shown in FIG. 1, the gas concentration detection device 1 of this embodiment includes a gas sensor 2 and a control device 5, and the control device 5 includes an air-fuel ratio detection unit 51 and a rich / lean detection unit 52.
The gas sensor 2 includes a solid electrolyte body 21 having oxygen ion conductivity, a detection electrode 22 provided on the surface of the solid electrolyte body 21 that is exposed to the detection gas, and the atmosphere as the reference gas A in the solid electrolyte body 21. A reference electrode 23 provided on the exposed surface and a diffusion resistance layer 24 made of porous ceramics covering the detection electrode 22 are provided. The control device 5 is electrically connected to the gas sensor 2 and controls the operation of the gas sensor 2.

図2に示すように、空燃比検出部51は、内燃機関から排気される検出ガスとしての排ガスGの空燃比が、理論空燃比の近傍におけるリッチ側の下限値R1と理論空燃比の近傍におけるリーン側の上限値R2との間のストイキ範囲R内にある場合に、空燃比を検出電極22と基準電極23との間に流れる電流の大きさ及び正逆方向に基づいて検出する。リッチ・リーン検出部52は、排ガスGの空燃比がストイキ範囲R外にある場合に、検出電極22と基準電極23との間を流れる電流の正逆方向に基づいて、空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出する。   As shown in FIG. 2, the air-fuel ratio detection unit 51 has an air-fuel ratio of the exhaust gas G as a detection gas exhausted from the internal combustion engine in the vicinity of the lower limit value R1 on the rich side near the stoichiometric air-fuel ratio and the stoichiometric air-fuel ratio. When it is within the stoichiometric range R between the lean upper limit R2, the air-fuel ratio is detected based on the magnitude and forward / reverse direction of the current flowing between the detection electrode 22 and the reference electrode 23. When the air-fuel ratio of the exhaust gas G is outside the stoichiometric range R, the rich / lean detection unit 52 determines that the air-fuel ratio is the stoichiometric air-fuel ratio based on the forward and reverse directions of the current flowing between the detection electrode 22 and the reference electrode 23. It detects whether it is on the rich side or the lean side.

以下、本形態のガス濃度検出装置1について詳説する。
ガス濃度検出装置1は、車両の内燃機関(エンジン)の排気管を流れる排ガスGの空燃比を検出するものである。ガス濃度検出装置1は、内燃機関における空燃比を、排気管内に配置された三元触媒の触媒活性が効果的に維持される浄化ウィンドウの近傍にするために用いられる。図3に示すように、浄化ウィンドウは、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)の浄化率が高い空燃比の範囲を示す。本形態の浄化ウィンドウは、理論空燃比の近傍、具体的には、理論空燃比を14.5としたとき、空燃比(A/F)が14.3〜14.7の範囲として示される。本形態の浄化ウィンドウはストイキ範囲Rと同じであるとする。
ガスセンサ2は、排気管内に配置され、三元触媒の配置位置よりも上流側及び下流側のいずれに配置することもできる。
Hereinafter, the gas concentration detection apparatus 1 of this embodiment will be described in detail.
The gas concentration detection device 1 detects an air-fuel ratio of exhaust gas G flowing through an exhaust pipe of an internal combustion engine (engine) of a vehicle. The gas concentration detection device 1 is used for setting the air-fuel ratio in an internal combustion engine in the vicinity of a purification window in which the catalytic activity of a three-way catalyst disposed in an exhaust pipe is effectively maintained. As shown in FIG. 3, the purification window indicates an air-fuel ratio range in which the purification rate of carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) is high. The purification window of this embodiment is shown in the vicinity of the theoretical air-fuel ratio, specifically, when the theoretical air-fuel ratio is 14.5, the air-fuel ratio (A / F) is in the range of 14.3 to 14.7. The purification window of this embodiment is assumed to be the same as the stoichiometric range R.
The gas sensor 2 is disposed in the exhaust pipe, and can be disposed either upstream or downstream of the three-way catalyst.

図1、図4に示すように、ガスセンサ2においては、各電極22,23及び拡散抵抗層24が設けられた固体電解質体21によってセンサ素子20が形成されている。ガスセンサ2は、センサ素子20以外に、センサ素子20の内部に配置されたヒータ31、センサ素子20を保持するハウジング32、ハウジング32に取り付けられ、センサ素子20を覆う保護カバー33、各電極22,23のリード部及びヒータ31の通電部に接続されるリード線34、ハウジング32に取り付けられ、ブッシュ36を介してリード線34を保持する保持カバー35等を備える。   As shown in FIGS. 1 and 4, in the gas sensor 2, a sensor element 20 is formed by a solid electrolyte body 21 provided with electrodes 22 and 23 and a diffusion resistance layer 24. In addition to the sensor element 20, the gas sensor 2 includes a heater 31 disposed inside the sensor element 20, a housing 32 that holds the sensor element 20, a protective cover 33 that is attached to the housing 32 and covers the sensor element 20, each electrode 22, 23, a lead wire 34 connected to the lead portion 23 and the energization portion of the heater 31, a holding cover 35 attached to the housing 32 and holding the lead wire 34 via a bush 36, and the like.

図1に示すように、固体電解質体21は、有底円筒形状に形成されている。検出電極22は、固体電解質体21の外側面211に設けられており、基準電極23は、固体電解質体21の内側面212に設けられている。固体電解質体21は、ジルコニアを主成分とする固体電解質によって形成される。本形態の固体電解質体21は、イットリア安定化ジルコニア又はイットリア部分安定化ジルコニアからなる。検出電極22及び基準電極23は、貴金属成分としての白金と、固体電解質体21と同質の固体電解質とを含有する。検出電極22においては、排ガスGと貴金属成分と固体電解質との三相界面が形成される。   As shown in FIG. 1, the solid electrolyte body 21 is formed in a bottomed cylindrical shape. The detection electrode 22 is provided on the outer surface 211 of the solid electrolyte body 21, and the reference electrode 23 is provided on the inner surface 212 of the solid electrolyte body 21. The solid electrolyte body 21 is formed of a solid electrolyte mainly composed of zirconia. The solid electrolyte body 21 of this embodiment is made of yttria stabilized zirconia or yttria partially stabilized zirconia. The detection electrode 22 and the reference electrode 23 contain platinum as a noble metal component and a solid electrolyte that is the same as the solid electrolyte body 21. In the detection electrode 22, a three-phase interface of the exhaust gas G, the noble metal component, and the solid electrolyte is formed.

ヒータ31は、セラミックスの基材と、基体に設けられた発熱体とを有し、固体電解質体21の内部に配置されている。制御装置5によってヒータ31の発熱体に通電が行われると、発熱体が発熱し、固体電解質体21及び各電極22,23が、酸素イオン伝導性を発現する活性温度に昇温される。   The heater 31 has a ceramic substrate and a heating element provided on the substrate, and is disposed inside the solid electrolyte body 21. When the control device 5 energizes the heating element of the heater 31, the heating element generates heat, and the solid electrolyte body 21 and the electrodes 22 and 23 are heated to an activation temperature that expresses oxygen ion conductivity.

図1に示すように、拡散抵抗層24は、アルミナを主成分として形成され、排ガスGを所定の拡散抵抗下において透過させる性質を有する。拡散抵抗層24の厚みtは、100〜200μmの範囲内にある。拡散抵抗層24は、アルミナ等のセラミックスのスラリーを、固体電解質体21の検出電極22の表面にプラズマ溶射し、スラリーを乾燥及び焼結させて形成したものである。拡散抵抗層24は、その厚みtが均一になるように形成されている。ただし、拡散抵抗層24の厚みtが部分的に変化している場合には、拡散抵抗層24の平均厚みが100〜200μmの範囲内になるようにする。この平均厚みは、拡散抵抗層24の複数個所の厚みtを測定し、その平均値として求められる。   As shown in FIG. 1, the diffusion resistance layer 24 is formed with alumina as a main component, and has a property of transmitting the exhaust gas G under a predetermined diffusion resistance. The thickness t of the diffusion resistance layer 24 is in the range of 100 to 200 μm. The diffusion resistance layer 24 is formed by plasma spraying a ceramic slurry such as alumina on the surface of the detection electrode 22 of the solid electrolyte body 21 and drying and sintering the slurry. The diffusion resistance layer 24 is formed so that its thickness t is uniform. However, when the thickness t of the diffusion resistance layer 24 is partially changed, the average thickness of the diffusion resistance layer 24 is set in the range of 100 to 200 μm. The average thickness is obtained as an average value obtained by measuring the thickness t at a plurality of locations of the diffusion resistance layer 24.

拡散抵抗層24の厚みtとは、固体電解質体21及び各電極22,23の厚み方向Tに沿った方向の厚みのことをいう。固体電解質体21及び各電極22,23の厚み方向Tとは、検出電極22と基準電極23とが固体電解質体21を介して対向する方向のことをいう。   The thickness t of the diffusion resistance layer 24 refers to the thickness in the direction along the thickness direction T of the solid electrolyte body 21 and the electrodes 22 and 23. The thickness direction T of the solid electrolyte body 21 and the electrodes 22 and 23 refers to a direction in which the detection electrode 22 and the reference electrode 23 face each other with the solid electrolyte body 21 interposed therebetween.

拡散抵抗層24の厚みtが100μm未満である場合には、空燃比検出部51によって空燃比を検出できる範囲が狭くなり過ぎるおそれがある。
図5には、拡散抵抗層24の厚みt(μm)と、空燃比を、検出電極22と基準電極23との間に流れる電流の大きさに応じてリニヤに検出できる範囲(A/F)との関係を示す。拡散抵抗層24の厚みtが100μmであるときに、燃料に対する空気の比率である空燃比(A/F)の検出可能範囲は、14.3〜14.7の範囲となる。そして、拡散抵抗層24の厚みtが100μm未満になると、空燃比の検出可能範囲は、さらに狭くなり、理論空燃比(ストイキ)である14.5の近傍付近のみとなる。
When the thickness t of the diffusion resistance layer 24 is less than 100 μm, the range in which the air-fuel ratio can be detected by the air-fuel ratio detection unit 51 may become too narrow.
FIG. 5 shows a range (A / F) in which the thickness t (μm) of the diffusion resistance layer 24 and the air-fuel ratio can be detected linearly according to the magnitude of the current flowing between the detection electrode 22 and the reference electrode 23. Shows the relationship. When the thickness t of the diffusion resistance layer 24 is 100 μm, the detectable range of the air-fuel ratio (A / F), which is the ratio of air to fuel, is in the range of 14.3 to 14.7. When the thickness t of the diffusion resistance layer 24 is less than 100 μm, the detectable range of the air-fuel ratio becomes even narrower and only near the vicinity of 14.5 which is the stoichiometric air-fuel ratio (stoichiometric).

空燃比の検出可能範囲は、空燃比検出部51によって空燃比を検出するための理論空燃比の近傍の範囲であるストイキ範囲Rを決定するための範囲となる。そして、ストイキ範囲Rを14.3〜14.7の範囲よりも広くするために、拡散抵抗層24の厚みtは100μm以上とする。なお、ストイキ範囲Rは、拡散抵抗層24の厚みtが200μmであるときの空燃比の範囲として14.2〜14.8とすることもできる。
また、ストイキ範囲Rは、三元触媒による浄化率を高く維持するための浄化ウィンドウを決定する範囲となる。
The detectable range of the air-fuel ratio is a range for determining the stoichiometric range R that is a range in the vicinity of the theoretical air-fuel ratio for detecting the air-fuel ratio by the air-fuel ratio detector 51. In order to make the stoichiometric range R wider than the range of 14.3 to 14.7, the thickness t of the diffusion resistance layer 24 is set to 100 μm or more. The stoichiometric range R may be 14.2 to 14.8 as the air-fuel ratio range when the thickness t of the diffusion resistance layer 24 is 200 μm.
The stoichiometric range R is a range for determining a purification window for maintaining a high purification rate by the three-way catalyst.

拡散抵抗層24の厚みtが200μm超過である場合には、リッチ・リーン検出部52による、空燃比がリッチ側にあるかリーン側にあるかのリッチ・リーン検出の応答時間が長くなるおそれがある。リッチ・リーン検出の応答時間は、排ガスGが拡散抵抗層24を通過して検出電極22に到達するまでの時間に起因する。
図6には、拡散抵抗層24の厚みt(μm)と、リッチ・リーン検出の応答時間(ms)との関係を示す。拡散抵抗層24の厚みtが200μmであるときには、リッチ・リーン検出の応答時間は200msとなる。この応答時間は、拡散抵抗層24の表面にある排ガスGが拡散抵抗層24を通過して検出電極22まで到達する時間とする。ガスセンサ2を、リッチ・リーン検出を行う酸素センサとして用いる場合に、ガスセンサ2に要求される応答時間は、200ms以下である。従って、ガスセンサ2の応答性を確保するために、拡散抵抗層24の厚みtは200μm以下とする。
When the thickness t of the diffusion resistance layer 24 exceeds 200 μm, there is a possibility that the response time of rich / lean detection by the rich / lean detection unit 52 for detecting whether the air-fuel ratio is on the rich side or the lean side is long. is there. The response time of the rich / lean detection is caused by the time until the exhaust gas G passes through the diffusion resistance layer 24 and reaches the detection electrode 22.
FIG. 6 shows the relationship between the thickness t (μm) of the diffusion resistance layer 24 and the response time (ms) for rich / lean detection. When the thickness t of the diffusion resistance layer 24 is 200 μm, the response time for rich / lean detection is 200 ms. This response time is a time for the exhaust gas G on the surface of the diffusion resistance layer 24 to reach the detection electrode 22 through the diffusion resistance layer 24. When the gas sensor 2 is used as an oxygen sensor that performs rich / lean detection, the response time required for the gas sensor 2 is 200 ms or less. Therefore, in order to ensure the responsiveness of the gas sensor 2, the thickness t of the diffusion resistance layer 24 is set to 200 μm or less.

本形態の拡散抵抗層24の厚みtは、従来の空燃比センサにおける拡散抵抗層の厚みに比べて極めて小さい。
図7には、拡散抵抗層の厚み(μm)と空燃比検出の応答時間(ms)との関係を示す。従来の空燃比センサにおける拡散抵抗層の厚みは、空燃比の検出範囲を広範囲に設定するために、650〜800μm程度としている。このとき、空燃比を検出する際の応答時間は、630〜770ms程度となる。この応答時間は、拡散抵抗層24の表面にある排ガスGが拡散抵抗層24を通過して検出電極22まで到達する時間とする。一方、本形態のガスセンサ2における拡散抵抗層24の厚みは、従来に比べて極めて小さく、100〜200μmとしている。このとき、空燃比を検出する際の応答時間は、100〜200msとなる。
The thickness t of the diffusion resistance layer 24 of this embodiment is extremely small compared to the thickness of the diffusion resistance layer in the conventional air-fuel ratio sensor.
FIG. 7 shows the relationship between the thickness (μm) of the diffusion resistance layer and the response time (ms) for air-fuel ratio detection. The diffusion resistance layer in the conventional air-fuel ratio sensor has a thickness of about 650 to 800 μm in order to set the air-fuel ratio detection range in a wide range. At this time, the response time when detecting the air-fuel ratio is about 630 to 770 ms. This response time is a time for the exhaust gas G on the surface of the diffusion resistance layer 24 to reach the detection electrode 22 through the diffusion resistance layer 24. On the other hand, the thickness of the diffusion resistance layer 24 in the gas sensor 2 of the present embodiment is extremely small compared to the conventional case, and is 100 to 200 μm. At this time, the response time when detecting the air-fuel ratio is 100 to 200 ms.

従来の空燃比センサにおいては、空燃比検出の応答時間が長く、図8に示すように、エンジン制御ユニット5Bによって空燃比の制御を行う際には、空燃比が目標空燃比になるまでに長い時間を要した。一方、本形態のガスセンサ2においては、空燃比検出の応答時間が短縮され、図9に示すように、エンジン制御ユニット5Bによって空燃比の制御を行う際に、空燃比が目標空燃比になるまでに要する時間を短縮することができる。これにより、本形態のガス濃度検出装置1の空燃比検出部51による空燃比の検出を行う際には、エミッション(大気汚染物質)の低減に貢献することができる。   In the conventional air-fuel ratio sensor, the response time of air-fuel ratio detection is long, and as shown in FIG. 8, when the air-fuel ratio is controlled by the engine control unit 5B, it is long until the air-fuel ratio becomes the target air-fuel ratio. It took time. On the other hand, in the gas sensor 2 of the present embodiment, the response time of air-fuel ratio detection is shortened, and when the air-fuel ratio is controlled by the engine control unit 5B as shown in FIG. 9, the air-fuel ratio becomes the target air-fuel ratio. Can be shortened. Thereby, when detecting the air fuel ratio by the air fuel ratio detection part 51 of the gas concentration detection apparatus 1 of this form, it can contribute to reduction of an emission (air pollutant).

拡散抵抗層24の気孔率は、4〜9%の範囲内にある。拡散抵抗層24の気孔率は、拡散抵抗層24の外形全体の容積における気孔の容積の割合とする。拡散抵抗層24の外形全体の容積には、気孔の容積も含まれる。気孔には、拡散抵抗層24の表面に現れる開気孔と、拡散抵抗層24の内部に配置された閉気孔とが存在する。
気孔率は、水銀ポロシメータとして、気孔に水銀等の液体が充填される前と、気孔に水銀等の液体が充填された後との質量変化に基づいて求めることができる。また、気孔率は、拡散抵抗層24の複数の断面を、走査電子顕微鏡(SEM)を用いて観察することによって求めることもできる。
The porosity of the diffusion resistance layer 24 is in the range of 4 to 9%. The porosity of the diffusion resistance layer 24 is the ratio of the volume of the pores to the overall volume of the diffusion resistance layer 24. The volume of the entire outer shape of the diffusion resistance layer 24 includes the volume of pores. The pores include open pores that appear on the surface of the diffusion resistance layer 24 and closed pores that are disposed inside the diffusion resistance layer 24.
The porosity can be obtained as a mercury porosimeter based on the mass change between before the pores are filled with a liquid such as mercury and after the pores are filled with a liquid such as mercury. The porosity can also be obtained by observing a plurality of cross sections of the diffusion resistance layer 24 using a scanning electron microscope (SEM).

拡散抵抗層24の気孔率が4%未満である場合には、排ガスGが拡散抵抗層24を通過しにくくなり過ぎ、検出電極22と基準電極23との間に流れる電流であるセンサ出力電流が小さくなり、空燃比の検出精度が低下するおそれがある。
図10には、空燃比が14.7である場合において、検出電極22と基準電極23との間に印加する電圧(V)と、センサ出力電流(mA)との関係を示す。センサ出力電流は、ガスセンサ2の検出精度を維持するためには、0.5mA以上であることが好ましい。センサ出力電流が小さくなると、電流検出誤差の割合が大きくなり、空燃比の検出精度が低下する。拡散抵抗層24の気孔率が4%であるときにセンサ出力電流は0.5mAとなり、気孔率が4%未満になると、センサ出力電流がさらに小さくなる。従って、必要な大きさのセンサ出力電流を確保するために、気孔率を4%以上とする。
When the porosity of the diffusion resistance layer 24 is less than 4%, the exhaust gas G becomes too difficult to pass through the diffusion resistance layer 24, and a sensor output current that is a current flowing between the detection electrode 22 and the reference electrode 23 is There is a possibility that the detection accuracy of the air-fuel ratio may be reduced.
FIG. 10 shows the relationship between the voltage (V) applied between the detection electrode 22 and the reference electrode 23 and the sensor output current (mA) when the air-fuel ratio is 14.7. In order to maintain the detection accuracy of the gas sensor 2, the sensor output current is preferably 0.5 mA or more. As the sensor output current decreases, the ratio of current detection error increases and the air-fuel ratio detection accuracy decreases. The sensor output current is 0.5 mA when the porosity of the diffusion resistance layer 24 is 4%, and the sensor output current is further reduced when the porosity is less than 4%. Accordingly, the porosity is set to 4% or more in order to secure a sensor output current having a necessary magnitude.

拡散抵抗層24の気孔率が9%超過である場合には、排ガスGが拡散抵抗層24を通過しやすくなり過ぎ、検出電極22と基準電極23との間に印加する電圧が変化してもセンサ出力電流が変化しない限界電流特性を得にくくなり、空燃比の検出精度が低下するおそれがある。
限界電流特性は、検出電極22と基準電極23との間に電圧が印加される際に、拡散抵抗層24による排ガスGの流量の律速を受けて、検出電極22に到達する排ガスGの流量が制限されるため、電圧が変化してもセンサ出力電流が変化しない関係として得られる。しかし、気孔率が9%超過になるまで大きくなると、拡散抵抗層24が排ガスGの流量の律速として機能にしなくなり、限界電流特性が得られないおそれがある。この場合、センサ出力電流にばらつきが生じやすくなり、空燃比の検出精度が低下するおそれがある。
When the porosity of the diffusion resistance layer 24 exceeds 9%, the exhaust gas G becomes too easy to pass through the diffusion resistance layer 24, and the voltage applied between the detection electrode 22 and the reference electrode 23 changes. It may be difficult to obtain a limit current characteristic in which the sensor output current does not change, and the air-fuel ratio detection accuracy may be reduced.
The limiting current characteristic is that when the voltage is applied between the detection electrode 22 and the reference electrode 23, the flow rate of the exhaust gas G reaching the detection electrode 22 is determined by the rate limiting of the flow rate of the exhaust gas G by the diffusion resistance layer 24. Therefore, the sensor output current does not change even when the voltage changes. However, if the porosity increases until it exceeds 9%, the diffusion resistance layer 24 may not function as a rate-limiting function of the flow rate of the exhaust gas G, and the limit current characteristics may not be obtained. In this case, the sensor output current is likely to vary, and the air-fuel ratio detection accuracy may be reduced.

図10において、気孔率が9%以下である場合には、限界電流特性が得られる一方、気孔率が9%超過、例えば10%になると、限界電流特性が得られないおそれがある。従って、限界電流特性が得られるようにするために、気孔率は9%以下とする。   In FIG. 10, when the porosity is 9% or less, the limit current characteristic is obtained. On the other hand, when the porosity exceeds 9%, for example, 10%, the limit current characteristic may not be obtained. Accordingly, the porosity is set to 9% or less in order to obtain the limit current characteristics.

図1に示すように、制御装置5は、検出電極22と基準電極23との間に電圧を印加する電圧印加手段61、検出電極22と基準電極23との間に流れる電流を検出する電流検出手段62、ヒータ31の発熱体に通電を行う通電手段63等を備えている。これらの手段61,62,63は、制御装置5としてのセンサ制御ユニット(SCU)5Aにおいて形成されている。   As shown in FIG. 1, the control device 5 includes a voltage application unit 61 that applies a voltage between the detection electrode 22 and the reference electrode 23, and a current detection that detects a current that flows between the detection electrode 22 and the reference electrode 23. Means 62, energizing means 63 for energizing the heating element of the heater 31, and the like are provided. These means 61, 62 and 63 are formed in a sensor control unit (SCU) 5 </ b> A as the control device 5.

電圧印加手段61は、検出電極22から基準電極23へ酸素イオンが移動するよう、基準電極23がプラス側の電極になるよう電圧を印加する。
空燃比検出部51によって検出される空燃比がリーン領域にある場合には、基準電極23から検出電極22へ電流が流れる。一方、空燃比検出部51によって検出される空燃比がリッチ領域にある場合には、固体電解質体21を介する検出電極22と基準電極23との間に発生する起電力により、空燃比がリーン領域にある場合とは逆方向である、検出電極22から基準電極23へ電流が流れる。
The voltage application means 61 applies a voltage so that the reference electrode 23 becomes a positive electrode so that oxygen ions move from the detection electrode 22 to the reference electrode 23.
When the air-fuel ratio detected by the air-fuel ratio detection unit 51 is in the lean region, current flows from the reference electrode 23 to the detection electrode 22. On the other hand, when the air-fuel ratio detected by the air-fuel ratio detection unit 51 is in the rich region, the air-fuel ratio is in the lean region due to the electromotive force generated between the detection electrode 22 and the reference electrode 23 via the solid electrolyte body 21. The current flows from the detection electrode 22 to the reference electrode 23 in the opposite direction to that in the case of.

図1に示すように、空燃比検出部51及びリッチ・リーン検出部52は、センサ制御ユニット5Aよりも上位にある制御装置5としてのエンジン制御ユニット(ECU)5Bのコンピュータ内に構築されている。
図2に示すように、空燃比検出部51においては、正方向及び逆方向への印加電圧(V)と、センサ出力電流(mA)との関係が記憶されている。そして、空燃比検出部51においては、センサ出力電流の大きさの変化及びセンサ出力電流の正逆方向に基づき、理論空燃比の近傍における弱リッチ領域及び弱リーン領域の空燃比を検出する。
As shown in FIG. 1, the air-fuel ratio detection unit 51 and the rich / lean detection unit 52 are constructed in a computer of an engine control unit (ECU) 5B serving as a control device 5 higher than the sensor control unit 5A. .
As shown in FIG. 2, the air-fuel ratio detection unit 51 stores the relationship between the applied voltage (V) in the forward direction and the reverse direction and the sensor output current (mA). Then, the air-fuel ratio detection unit 51 detects the air-fuel ratio in the weak rich region and the weak lean region in the vicinity of the theoretical air-fuel ratio based on the change in the magnitude of the sensor output current and the forward / reverse direction of the sensor output current.

本形態の電圧印加手段61は、空燃比検出部51及びリッチ・リーン検出部52のいずれが動作する場合においても、検出電極22と基準電極23との間に電圧を継続して印加する。
本形態のリッチ・リーン検出部52は、検出電極22と基準電極23との間に流れる電流の正逆方向を確認することによって極めて簡単に、空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出することができる。
The voltage application unit 61 of this embodiment continuously applies a voltage between the detection electrode 22 and the reference electrode 23 regardless of which of the air-fuel ratio detection unit 51 and the rich / lean detection unit 52 operates.
The rich / lean detection unit 52 of the present embodiment confirms whether the air-fuel ratio is on the rich side of the stoichiometric air-fuel ratio by checking the forward / reverse direction of the current flowing between the detection electrode 22 and the reference electrode 23. Whether it is on the lean side can be detected.

制御装置5は、電流検出手段62によって検出するセンサ出力電流が、ストイキ範囲R(浄化ウィンドウの範囲)の下限値R1に対応した下限閾値と、上限値R2に対応した上限閾値との間にあるか否かを判定する判定部53を有する。そして、判定部53の動作によって、ガス濃度検出装置1によって、空燃比検出とリッチ・リーン検出とのいずれを行うかの切換えが行われる。   In the control device 5, the sensor output current detected by the current detection means 62 is between the lower limit threshold value corresponding to the lower limit value R1 of the stoichiometric range R (purification window range) and the upper limit threshold value corresponding to the upper limit value R2. It has the determination part 53 which determines whether it is. Then, by the operation of the determination unit 53, the gas concentration detection device 1 switches between air-fuel ratio detection and rich / lean detection.

図11には、本形態のガス濃度検出装置1の制御装置5による空燃比検出とリッチ・リーン検出との切換えを行う動作をフローチャートによって示す。
制御装置5は、電流検出手段62によって、所定の測定時間間隔で検出電極22と基準電極23との間に流れるセンサ出力電流を検出する(ステップS11)。次いで、制御装置5の判定部53は、このセンサ出力電流が、下限閾値と上限閾値との間にあるか否かを判定する(S12)。そして、センサ出力電流が下限閾値と上限閾値との間にある場合には、制御装置5の空燃比検出部51によって空燃比検出を行う(S13)。一方、センサ出力電流が下限閾値と上限閾値との間にない場合には、制御装置5のリッチ・リーン検出部52によってリッチ・リーン検出を行う(S14)。
FIG. 11 is a flowchart showing an operation of switching between air-fuel ratio detection and rich / lean detection by the control device 5 of the gas concentration detection device 1 of the present embodiment.
The control device 5 detects the sensor output current flowing between the detection electrode 22 and the reference electrode 23 at a predetermined measurement time interval by the current detection means 62 (step S11). Next, the determination unit 53 of the control device 5 determines whether or not the sensor output current is between the lower limit threshold and the upper limit threshold (S12). If the sensor output current is between the lower limit threshold and the upper limit threshold, the air / fuel ratio is detected by the air / fuel ratio detector 51 of the control device 5 (S13). On the other hand, if the sensor output current is not between the lower limit threshold value and the upper limit threshold value, rich / lean detection is performed by the rich / lean detection unit 52 of the control device 5 (S14).

ガス濃度検出装置1が搭載された車両が加速時及び減速時以外の定常走行時にあるときには、エンジン制御ユニット5Bにより、エンジンの空燃比が、理論空燃比の近傍である浄化ウィンドウの範囲内に維持されるよう制御される。このとき、制御装置5は、空燃比検出部51を動作させて、空燃比を精密に検出し、検出した空燃比をエンジン制御ユニット5Bへフィードバックする。   When the vehicle on which the gas concentration detection device 1 is mounted is in steady running other than during acceleration and deceleration, the engine control unit 5B maintains the air-fuel ratio of the engine within the purification window range near the stoichiometric air-fuel ratio. To be controlled. At this time, the control device 5 operates the air-fuel ratio detection unit 51 to accurately detect the air-fuel ratio, and feeds back the detected air-fuel ratio to the engine control unit 5B.

車両が加速時にあるときには、空燃比が理論空燃比よりもリッチ側に制御される。このとき、エンジンの空燃比は、浄化ウィンドウの範囲をリッチ側に外れることになる。また、制御装置5はリッチ・リーン検出部52を動作させ、リッチ・リーン検出部52は、センサ出力電流が基準電極23から検出電極22へ流れる逆方向の電流を検知することになる。そして、制御装置5は、検出した空燃比がリッチ側にあることをエンジン制御ユニット5Bへフィードバックする。   When the vehicle is in acceleration, the air / fuel ratio is controlled to be richer than the stoichiometric air / fuel ratio. At this time, the air-fuel ratio of the engine deviates from the purification window range to the rich side. Further, the control device 5 operates the rich / lean detection unit 52, and the rich / lean detection unit 52 detects the reverse current in which the sensor output current flows from the reference electrode 23 to the detection electrode 22. Then, the control device 5 feeds back to the engine control unit 5B that the detected air-fuel ratio is on the rich side.

車両が減速時にあるときには、空燃比が理論空燃比よりもリーン側に制御される。このとき、エンジンの空燃比は、浄化ウィンドウの範囲をリーン側に外れることになる。また、制御装置5はリッチ・リーン検出部52を動作させ、リッチ・リーン検出部52は、センサ出力電流が検出電極22から基準電極23へ流れる正方向の電流を検知することになる。そして、制御装置5は、検出した空燃比がリーン側にあることをエンジン制御ユニット5Bへフィードバックする。   When the vehicle is decelerating, the air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio. At this time, the air-fuel ratio of the engine deviates from the purification window range to the lean side. Further, the control device 5 operates the rich / lean detection unit 52, and the rich / lean detection unit 52 detects a positive current in which the sensor output current flows from the detection electrode 22 to the reference electrode 23. Then, the control device 5 feeds back to the engine control unit 5B that the detected air-fuel ratio is on the lean side.

本形態の制御装置5は、排ガスGの空燃比が、理論空燃比の近傍におけるリッチ側の下限値R1と理論空燃比の近傍におけるリーン側の上限値R2との間のストイキ範囲R内にある場合に空燃比検出部51を動作させ、排ガスGの空燃比がストイキ範囲R外にある場合には、リッチ・リーン検出部52を動作させる。
これにより、空燃比が理論空燃比の近傍である14.3〜14.7の範囲内にあり、大量の未燃ガス又は酸素を含む排ガスGが検出電極22に到達する可能性がない状態においては、空燃比検出部51によって、ガスセンサ2を空燃比センサとして動作させることができる。また、空燃比が理論空燃比の近傍から離れ、リッチ領域における大量の未燃ガス又はリーン領域における大量の空気を含む排ガスGが検出電極22に到達する可能性がある状態においては、リッチ・リーン検出部52によって、ガスセンサ2を酸素センサとして動作させることができる。
In the control device 5 of the present embodiment, the air-fuel ratio of the exhaust gas G is within the stoichiometric range R between the rich-side lower limit value R1 near the stoichiometric air-fuel ratio and the lean-side upper limit value R2 near the stoichiometric air-fuel ratio. If the air-fuel ratio of the exhaust gas G is outside the stoichiometric range R, the rich / lean detector 52 is operated.
As a result, the air-fuel ratio is in the range of 14.3 to 14.7, which is close to the stoichiometric air-fuel ratio, and there is no possibility that the exhaust gas G containing a large amount of unburned gas or oxygen will reach the detection electrode 22. The air-fuel ratio detection unit 51 can operate the gas sensor 2 as an air-fuel ratio sensor. Further, in a state where the air-fuel ratio is far from the vicinity of the stoichiometric air-fuel ratio and there is a possibility that the exhaust gas G containing a large amount of unburned gas in the rich region or a large amount of air in the lean region may reach the detection electrode 22, rich lean The detector 52 can operate the gas sensor 2 as an oxygen sensor.

従って、ガスセンサ2の検出電極22を覆う拡散抵抗層24の厚みtを100〜200μmの範囲内に小さくすることが可能になり、排ガスGが拡散抵抗層24を通過して検出電極22へ到達する時間を短くすることができる。そして、空燃比検出部51によって、ガスセンサ2を空燃比センサとして動作させる場合における、空燃比の検出の応答性を高く維持することができる。   Accordingly, the thickness t of the diffusion resistance layer 24 covering the detection electrode 22 of the gas sensor 2 can be reduced within the range of 100 to 200 μm, and the exhaust gas G reaches the detection electrode 22 through the diffusion resistance layer 24. Time can be shortened. The air-fuel ratio detection unit 51 can maintain high responsiveness in detecting the air-fuel ratio when the gas sensor 2 is operated as an air-fuel ratio sensor.

それ故、本形態のガス濃度検出装置1によれば、空燃比の検出の応答性を高く維持することができ、排ガスGの空燃比に応じて、ガスセンサ2を空燃比センサの用途と酸素センサの用途とに使い分けることができる。   Therefore, according to the gas concentration detection device 1 of the present embodiment, the responsiveness of air-fuel ratio detection can be maintained high, and the gas sensor 2 can be used as an air-fuel ratio sensor and an oxygen sensor according to the air-fuel ratio of the exhaust gas G. Can be used for different purposes.

(実施形態2)
本形態のガス濃度検出装置1の制御装置5における電圧印加手段61は、空燃比検出部51が動作する場合に、検出電極22と基準電極23との間に電圧を印加し、リッチ・リーン検出部52が動作する場合には、検出電極22と基準電極23との間に電圧を印加しない。
本形態の制御装置5としてのエンジン制御ユニット5Bは、図1に示すように、電圧印加手段61による電圧の印加を行う状態と、電圧印加手段61による電圧の印加を停止する状態とを形成可能な切換部54を有する。切換部54は、電圧の印加をオン・オフする構成とする。
(Embodiment 2)
The voltage application means 61 in the control device 5 of the gas concentration detection apparatus 1 according to the present embodiment applies a voltage between the detection electrode 22 and the reference electrode 23 when the air-fuel ratio detection unit 51 operates, thereby performing rich / lean detection. When the unit 52 operates, no voltage is applied between the detection electrode 22 and the reference electrode 23.
As shown in FIG. 1, the engine control unit 5 </ b> B as the control device 5 of the present embodiment can form a state in which voltage is applied by the voltage application unit 61 and a state in which application of voltage by the voltage application unit 61 is stopped. A switching unit 54 is provided. The switching unit 54 is configured to turn on / off voltage application.

空燃比検出部51による動作は、実施形態1の場合と同様である。本形態のリッチ・リーン検出部52は、電圧印加手段61による電圧の印加がない状態において、検出電極22と基準電極23との間に生じる起電力を検出して、空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出する。
本形態のガス濃度検出装置1においても、その他の構成は、実施形態1の場合と同様である。
The operation by the air-fuel ratio detection unit 51 is the same as that in the first embodiment. The rich / lean detection unit 52 of the present embodiment detects an electromotive force generated between the detection electrode 22 and the reference electrode 23 in a state where no voltage is applied by the voltage application unit 61, and the air-fuel ratio is greater than the stoichiometric air-fuel ratio. Is also detected on the rich side or the lean side.
Also in the gas concentration detection apparatus 1 of this embodiment, the other configurations are the same as those in the first embodiment.

図12には、本形態のガス濃度検出装置1の制御装置5による空燃比検出とリッチ・リーン検出との切換えを行う動作をフローチャートによって示す。
制御装置5は、電流検出手段62によって、所定の測定時間間隔で検出電極22と基準電極23との間に流れるセンサ出力電流を検出する(ステップS21)。次いで、制御装置5の判定部53は、このセンサ出力電流が、下限閾値と上限閾値との間にあるか否かを判定する(S22)。そして、センサ出力電流が下限閾値と上限閾値との間にある場合には、制御装置5の空燃比検出部51によって空燃比検出を行う(S23)。このとき、電圧印加手段61によって検出電極22と基準電極23との間には電圧が印加される状態が継続される。
FIG. 12 is a flowchart showing an operation of switching between air-fuel ratio detection and rich / lean detection by the control device 5 of the gas concentration detection device 1 of the present embodiment.
The control device 5 detects the sensor output current flowing between the detection electrode 22 and the reference electrode 23 at a predetermined measurement time interval by the current detection means 62 (step S21). Next, the determination unit 53 of the control device 5 determines whether or not the sensor output current is between the lower limit threshold and the upper limit threshold (S22). If the sensor output current is between the lower limit threshold and the upper limit threshold, the air / fuel ratio is detected by the air / fuel ratio detector 51 of the control device 5 (S23). At this time, the voltage application unit 61 continues to apply a voltage between the detection electrode 22 and the reference electrode 23.

一方、センサ出力電流が下限閾値と上限閾値との間にない場合には、制御装置5は、電圧印加手段61による検出電極22と基準電極23との間への電圧の印加を停止する(S24)。次いで、制御装置5のリッチ・リーン検出部52によってリッチ・リーン検出を行う(S25)。その後、制御装置5によって、電圧印加手段61による検出電極22と基準電極23との間への電圧の印加が再開される(S26)。   On the other hand, when the sensor output current is not between the lower limit threshold and the upper limit threshold, the control device 5 stops the application of the voltage between the detection electrode 22 and the reference electrode 23 by the voltage application unit 61 (S24). ). Next, rich / lean detection is performed by the rich / lean detection unit 52 of the control device 5 (S25). Thereafter, the application of voltage between the detection electrode 22 and the reference electrode 23 by the voltage application means 61 is resumed by the control device 5 (S26).

本形態においても、実施形態1に示した符号と同一の符号が示す構成要素等は、実施形態1における構成要素等と同様である。本形態においても、実施形態1と同様の作用効果を得ることができる。   Also in this embodiment, the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effect as that of the first embodiment can be obtained.

(実施形態3)
本形態のガス濃度検出装置1の制御装置5は、判定部53の代わりに、車両が定常走行時であるか否かの検出をする走行判定部を有している。そして、走行判定部の動作によって、ガス濃度検出装置1によって、空燃比検出とリッチ・リーン検出とのいずれを行うかの切換えを行ってもよい。この場合、車両には、車両が加減速をしているか否かを検出する加速度センサを設ける。
(Embodiment 3)
The control device 5 of the gas concentration detection device 1 of this embodiment has a travel determination unit that detects whether or not the vehicle is in steady travel, instead of the determination unit 53. The gas concentration detection device 1 may switch between air-fuel ratio detection and rich / lean detection by the operation of the travel determination unit. In this case, the vehicle is provided with an acceleration sensor that detects whether the vehicle is accelerating or decelerating.

図13には、制御装置5の走行検出部による空燃比検出とリッチ・リーン検出との切換えを行う動作をフローチャートによって示す。
制御装置5は、加速度センサによって、所定の測定時間間隔で車両の加速度又は減速度を検出する(ステップS31)。次いで、制御装置5の走行判定部は、車両が加減速時(加速時、減速時)にあるのか、又はこれら以外の定常走行時にあるのかを判定する(ステップS32)。そして、車両が定常走行時にある場合には、制御装置5の空燃比検出部51によって空燃比検出を行う(S33)。一方、車両が加減速時にある場合には、制御装置5のリッチ・リーン検出部52によってリッチ・リーン検出を行う(S34)。この場合にも、判定部53を用いる場合と同様の作用効果が得られる。
FIG. 13 is a flowchart showing an operation of switching between air-fuel ratio detection and rich / lean detection by the travel detection unit of the control device 5.
The control device 5 detects the acceleration or deceleration of the vehicle at predetermined measurement time intervals using the acceleration sensor (step S31). Next, the travel determination unit of the control device 5 determines whether the vehicle is in acceleration / deceleration (acceleration, deceleration) or other steady travel (step S32). When the vehicle is in steady running, the air-fuel ratio is detected by the air-fuel ratio detector 51 of the control device 5 (S33). On the other hand, when the vehicle is in acceleration / deceleration, rich / lean detection is performed by the rich / lean detection unit 52 of the control device 5 (S34). In this case, the same effect as that obtained when the determination unit 53 is used can be obtained.

本形態においても、実施形態1に示した符号と同一の符号が示す構成要素等は、実施形態1における構成要素等と同様である。本形態においても、実施形態1と同様の作用効果を得ることができる。   Also in this embodiment, the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effect as that of the first embodiment can be obtained.

実施形態1,2において、ガスセンサ2は、空燃比センサを構成するものとし、空燃比センサの使用方法を拡張して、酸素センサとしても利用できるようにすることができる。この場合、空燃比センサは、定常時には、ストイキ範囲R(浄化ウィンドウの範囲)において空燃比検出を行うために使用され、ストイキ範囲Rを外れた場合にのみリッチ・リーン検出を行うために使用される。そして、拡散抵抗層24の厚みtが100〜200μmと小さい、従来にない空燃比センサを構成することができる。   In the first and second embodiments, the gas sensor 2 constitutes an air-fuel ratio sensor, and the usage method of the air-fuel ratio sensor can be expanded to be used as an oxygen sensor. In this case, the air-fuel ratio sensor is used to perform air-fuel ratio detection in the stoichiometric range R (purification window range) during steady state, and is used to perform rich / lean detection only when the stoichiometric range R is exceeded. The An unprecedented air-fuel ratio sensor in which the thickness t of the diffusion resistance layer 24 is as small as 100 to 200 μm can be configured.

本発明は、各実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態に適用することが可能である。   The present invention is not limited to each embodiment, and can be applied to further different embodiments without departing from the scope of the invention.

1 ガス濃度検出装置
2 ガスセンサ
21 固体電解質体
22 検出電極
23 基準電極
24 拡散抵抗層
5 制御装置
51 空燃比検出部
52 リッチ・リーン検出部
R ストイキ範囲
DESCRIPTION OF SYMBOLS 1 Gas concentration detection apparatus 2 Gas sensor 21 Solid electrolyte body 22 Detection electrode 23 Reference electrode 24 Diffusion resistance layer 5 Control apparatus 51 Air-fuel ratio detection part 52 Rich / lean detection part R Stoke range

Claims (7)

酸素イオン伝導性を有する固体電解質体(21)、前記固体電解質体における、検出ガスに晒される表面に設けられた検出電極(22)、前記固体電解質体における、基準ガスに晒される表面に設けられた基準電極(23)、及び前記検出電極を覆う多孔質のセラミックスからなる拡散抵抗層(24)を有するガスセンサ(2)と、
該ガスセンサに電気的に接続されて、該ガスセンサの動作を制御する制御装置(5)と、を備え、
前記制御装置は、
内燃機関から排気される前記検出ガスとしての排ガス(G)の空燃比が、理論空燃比の近傍におけるリッチ側の下限値(R1)と理論空燃比の近傍におけるリーン側の上限値(R2)との間のストイキ範囲(R)内にあるか、前記ストイキ範囲外にあるかを判定する判定部(53)と、
前記判定部による判定が前記ストイキ範囲内にある場合に、前記空燃比を検出する空燃比検出部(51)と、
前記判定部による判定が前記ストイキ範囲外にある場合に、前記空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出するリッチ・リーン検出部(52)と、を有する、ガス濃度検出装置(1)。
A solid electrolyte body (21) having oxygen ion conductivity; a detection electrode (22) provided on a surface of the solid electrolyte body exposed to a detection gas; and a surface of the solid electrolyte body exposed to a reference gas. A gas sensor (2) having a diffusion resistance layer (24) made of porous ceramics covering the reference electrode (23) and the detection electrode;
A control device (5) electrically connected to the gas sensor and controlling the operation of the gas sensor,
The control device includes:
The air-fuel ratio of the exhaust gas (G) as the detection gas exhausted from the internal combustion engine has a rich-side lower limit (R1) near the stoichiometric air-fuel ratio and a lean-side upper limit (R2) near the stoichiometric air-fuel ratio. A determination unit (53) for determining whether the value is within the stoichiometric range (R) or outside the stoichiometric range,
An air-fuel ratio detection unit (51) for detecting the air-fuel ratio when the determination by the determination unit is within the stoichiometric range ;
A rich / lean detection unit (52) for detecting whether the air-fuel ratio is on the rich side or the lean side of the stoichiometric air-fuel ratio when the determination by the determination unit is outside the stoichiometric range; Gas concentration detector (1).
前記空燃比検出部は、前記検出電極と前記基準電極との間に流れる電流の大きさ及び正逆方向に基づいて前記空燃比を検出するよう構成されており、
前記リッチ・リーン検出部は、前記検出電極と前記基準電極との間に生じる電流又は起電力に基づいて、前記空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出するよう構成されている、請求項1に記載のガス濃度検出装置。
The air-fuel ratio detection unit is configured to detect the air-fuel ratio based on the magnitude and forward / reverse direction of the current flowing between the detection electrode and the reference electrode,
The rich / lean detection unit detects whether the air-fuel ratio is on the rich side or the lean side of the stoichiometric air-fuel ratio based on a current or an electromotive force generated between the detection electrode and the reference electrode. The gas concentration detection device according to claim 1, configured as described above.
前記制御装置は、前記空燃比検出部及び前記リッチ・リーン検出部のいずれが動作する場合においても、前記検出電極と前記基準電極との間に電圧を印加する電圧印加手段(61)を有し、
前記リッチ・リーン検出部は、前記検出電極と前記基準電極との間に流れる電流の正逆方向に基づいて、前記空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出する、請求項2に記載のガス濃度検出装置。
The control device includes a voltage applying unit (61) for applying a voltage between the detection electrode and the reference electrode, regardless of which of the air-fuel ratio detection unit and the rich / lean detection unit operates. ,
The rich / lean detection unit detects whether the air-fuel ratio is on the rich side or on the lean side of the stoichiometric air-fuel ratio based on the forward and reverse directions of the current flowing between the detection electrode and the reference electrode. The gas concentration detection device according to claim 2.
前記制御装置は、前記空燃比検出部が動作する場合において、前記検出電極と前記基準電極との間に電圧を印加する電圧印加手段(61)を有し、
前記リッチ・リーン検出部は、前記検出電極と前記基準電極との間に生じる起電力を検出して、前記空燃比が理論空燃比よりもリッチ側にあるかリーン側にあるかを検出する、請求項2に記載のガス濃度検出装置。
The control device includes a voltage application unit (61) for applying a voltage between the detection electrode and the reference electrode when the air-fuel ratio detection unit operates.
The rich / lean detection unit detects an electromotive force generated between the detection electrode and the reference electrode, and detects whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio. The gas concentration detection apparatus according to claim 2.
前記拡散抵抗層の厚み(t)は、100〜200μmの範囲内にある、請求項1〜4のいずれか1項に記載のガス濃度検出装置。   5. The gas concentration detection device according to claim 1, wherein a thickness (t) of the diffusion resistance layer is in a range of 100 to 200 μm. 前記拡散抵抗層の気孔率は、4〜9%の範囲内にある、請求項5に記載のガス濃度検出装置。   The gas concentration detection device according to claim 5, wherein the porosity of the diffusion resistance layer is in a range of 4 to 9%. 前記固体電解質体は、有底円筒形状に形成されており、
前記検出電極は、前記固体電解質体の外側面(211)に設けられており、前記基準電極は、前記固体電解質体の内側面(212)に設けられている、請求項1〜6のいずれか1項に記載のガス濃度検出装置。
The solid electrolyte body is formed in a bottomed cylindrical shape,
The detection electrode is provided on an outer surface (211) of the solid electrolyte body, and the reference electrode is provided on an inner surface (212) of the solid electrolyte body. The gas concentration detection device according to item 1.
JP2016146019A 2016-07-26 2016-07-26 Gas concentration detector Active JP6575452B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016146019A JP6575452B2 (en) 2016-07-26 2016-07-26 Gas concentration detector
PCT/JP2017/019955 WO2018020814A1 (en) 2016-07-26 2017-05-29 Gas concentration detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146019A JP6575452B2 (en) 2016-07-26 2016-07-26 Gas concentration detector

Publications (2)

Publication Number Publication Date
JP2018017535A JP2018017535A (en) 2018-02-01
JP6575452B2 true JP6575452B2 (en) 2019-09-18

Family

ID=61017020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146019A Active JP6575452B2 (en) 2016-07-26 2016-07-26 Gas concentration detector

Country Status (2)

Country Link
JP (1) JP6575452B2 (en)
WO (1) WO2018020814A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063168B2 (en) * 2018-07-27 2022-05-09 株式会社デンソー Gas sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179351A (en) * 1982-04-15 1983-10-20 Nippon Denso Co Ltd Detecting method of concentration of oxygen
JPH0961397A (en) * 1995-08-30 1997-03-07 Denso Corp Air-fuel ratio detecting device
JPH10246139A (en) * 1997-03-04 1998-09-14 Unisia Jecs Corp Air-fuel ratio control device for internal combustion engine
JP2000206083A (en) * 1999-01-18 2000-07-28 Ngk Spark Plug Co Ltd Gas detector and air/fuel ratio measuring method
JP2000214131A (en) * 1999-01-27 2000-08-04 Ngk Spark Plug Co Ltd Apparatus for controlling air-fuel ratio and method for measuring the same
JP2004069547A (en) * 2002-08-07 2004-03-04 Toyota Motor Corp Control device of air/fuel ratio sensor
JP2008076410A (en) * 2003-01-30 2008-04-03 Denso Corp Gas concentration detector

Also Published As

Publication number Publication date
JP2018017535A (en) 2018-02-01
WO2018020814A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP4788707B2 (en) Air-fuel ratio sensor and control device for internal combustion engine
JP2004069547A (en) Control device of air/fuel ratio sensor
WO2014112315A1 (en) Sox concentration detecting device
RU2143679C1 (en) Method measuring concentration of gases in gas mixture and electrochemical sensitive element determining gas concentration
JP3623065B2 (en) Nitrogen oxide sensor
JP2020008558A (en) Gas sensor
US20220113280A1 (en) Gas sensor
JP3664558B2 (en) Gas sensor
CN105765377B (en) Oxygen sensor devices
JP3481344B2 (en) Method for detecting deterioration of exhaust gas purifying catalyst and system therefor
WO2020145042A1 (en) Gas concentration detection device
JP3487161B2 (en) Control device for gas concentration sensor
JP6575452B2 (en) Gas concentration detector
JP2019203838A (en) Ammonia concentration detector
JP2009243942A (en) Hydrocarbon concentration measuring sensor element and hydrocarbon concentration measuring method
JP3420932B2 (en) Method for detecting element resistance of gas concentration sensor
JP6562047B2 (en) Exhaust gas purification device for internal combustion engine
JP2006133039A (en) Nitrogen oxide sensor
JP5785583B2 (en) Hydrocarbon gas sensor
JP5858030B2 (en) Control device for exhaust gas sensor containing self-healing ceramic material
JP4784445B2 (en) Exhaust temperature measuring device and exhaust temperature measuring method
JP6733648B2 (en) Catalyst deterioration detector
JP6455389B2 (en) Sensor control device
JPH0245819B2 (en)
JP6442920B2 (en) Gas sensor control device and air-fuel ratio detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190805

R151 Written notification of patent or utility model registration

Ref document number: 6575452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250