JP6573473B2 - Power split gear unit - Google Patents

Power split gear unit Download PDF

Info

Publication number
JP6573473B2
JP6573473B2 JP2015082315A JP2015082315A JP6573473B2 JP 6573473 B2 JP6573473 B2 JP 6573473B2 JP 2015082315 A JP2015082315 A JP 2015082315A JP 2015082315 A JP2015082315 A JP 2015082315A JP 6573473 B2 JP6573473 B2 JP 6573473B2
Authority
JP
Japan
Prior art keywords
planetary
shaft
power split
gear device
split gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015082315A
Other languages
Japanese (ja)
Other versions
JP2015203501A (en
Inventor
ブルクハルト・ピンネカンプ
Original Assignee
レンク・アクティエンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レンク・アクティエンゲゼルシャフト filed Critical レンク・アクティエンゲゼルシャフト
Publication of JP2015203501A publication Critical patent/JP2015203501A/en
Application granted granted Critical
Publication of JP6573473B2 publication Critical patent/JP6573473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/22Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/22Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H1/227Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts comprising two or more gearwheels in mesh with the same internally toothed wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Retarders (AREA)
  • Structure Of Transmissions (AREA)

Description

本発明は動力分割歯車装置に関する。   The present invention relates to a power split gear device.

特許文献1から特に風力発電所において用いられる動力分割歯車装置が知られている。特許文献1から知られている動力分割歯車装置は、回転可能に支承されるとともに駆動歯部を有する駆動側の軸と、回転可能に支承されるとともに被動歯部を有する被動側の軸とを有しており、被動側の軸は駆動側の軸に対して同軸的に配置されている。当該動力分割歯車装置はさらに、複数の第一の遊星軸と、複数の第二の遊星軸とを有しており、前記第一の遊星軸の個々の遊星軸に、それぞれ第一の遊星歯部が成形されており、軸方向にずらされた状態で第二の遊星歯部が成形されており、前記第二の遊星軸の個々の遊星軸に、それぞれ第三の遊星歯部が成形されており、軸方向にずらされた状態で第四の遊星歯部が成形されている。特許文献1によれば第一の遊星軸の第一の遊星歯部は駆動側の軸の駆動歯部と噛み合っており、第二の遊星軸の第三の遊星歯部は第一の遊星軸の第二の遊星歯部と噛み合っている。特許文献1の動力分割歯車装置は全体で4個の第一の遊星軸を有しており、当該第一の遊星軸の第一の遊星歯部は、駆動側の軸の駆動歯部と噛み合っている。このような動力分割歯車装置によりすでに、大きな動力が高い変速比で伝達され得る。しかしながら変速比がさらに増大すると、動力分割歯車装置に対する構成空間が増大する結果となり、それにより、従来技術から知られている動力分割歯車装置に対する変速比の増大は、直接的には可能でない。   From Patent Document 1, a power split gear device used in a wind power plant is known. The power split gear device known from Patent Document 1 includes a drive-side shaft that is rotatably supported and has a drive tooth portion, and a driven-side shaft that is rotatably supported and has a driven tooth portion. And the driven shaft is arranged coaxially with the drive shaft. The power split gear device further includes a plurality of first planetary shafts and a plurality of second planetary shafts, and each planetary shaft of the first planetary shaft has a first planetary tooth. The second planetary tooth portion is formed in a state of being offset in the axial direction, and a third planetary tooth portion is formed on each planetary shaft of the second planetary shaft. The fourth planetary tooth portion is formed while being shifted in the axial direction. According to Patent Document 1, the first planetary tooth portion of the first planetary shaft meshes with the drive tooth portion of the drive-side shaft, and the third planetary tooth portion of the second planetary shaft is the first planetary shaft. Meshes with the second planetary tooth. The power split gear device of Patent Document 1 has four first planetary shafts as a whole, and the first planetary tooth portion of the first planetary shaft meshes with the drive tooth portion of the drive-side shaft. ing. With such a power split gear device, large power can already be transmitted with a high gear ratio. However, further increases in the transmission ratio result in an increase in the configuration space for the power split gear device, so that an increase in the gear ratio for the power split gear device known from the prior art is not directly possible.

従って、構成空間がスペースの点で最適化された状態で、変速比の増大を可能にする動力分割歯車装置が求められている。   Accordingly, there is a need for a power split gear device that allows an increase in gear ratio while the configuration space is optimized in terms of space.

独国特許出願公開第102010041474号明細書German Patent Application No. 102010041474

上記の点に鑑み、本発明は新式の動力分割歯車装置を創出することを課題とする。   In view of the above points, an object of the present invention is to create a new power split gear device.

上記の課題は請求項1に記載の動力分割歯車装置によって解決される。本発明に係る動力分割歯車装置では、第一の遊星軸の第一の遊星歯部は駆動歯部と噛み合っており、第二の遊星軸の第四の遊星歯部は、被動歯部と噛み合っており、第一の遊星軸の第二の遊星歯部は第二の遊星軸の第三の遊星歯部と噛み合っており、第一の遊星軸は不均一な角度分割によって円周にわたって配分されている。第一の遊星軸に対する不均一な角度分割により、第一の遊星軸と第二の遊星軸の位置はスペースの点で最適化された状態で選択され得る。特に構成空間がスペースの点で最適化された状態で、全体的に高い変速比が提供され得る。   The above problem is solved by the power split gear device according to claim 1. In the power split gear device according to the present invention, the first planetary tooth portion of the first planetary shaft meshes with the drive tooth portion, and the fourth planetary tooth portion of the second planetary shaft meshes with the driven tooth portion. The second planetary tooth portion of the first planetary shaft meshes with the third planetary tooth portion of the second planetary shaft, and the first planetary shaft is distributed over the circumference by non-uniform angular division. ing. Due to the non-uniform angular division with respect to the first planet axis, the positions of the first planet axis and the second planet axis can be selected optimized in terms of space. In particular, a high transmission ratio can be provided overall, with the configuration space being optimized in terms of space.

有利な発展的構成によれば、第一の遊星軸は不均一な角度分割によって円周にわたって配分されており、それにより第一の遊星軸のうちの一つが均一な角度分割の位置に対して正のオフセット角の分だけずらされていることと、第一の遊星軸のうちの一つが均一な角度分割の位置に対して負のオフセット角の分だけずらされていることが交互に行われ、これにより隣接する第一の遊星軸は交互に、比較的大きな角度間隔と比較的小さな角度間隔を有している。第二の遊星軸であって、当該第二の遊星軸の数は好適に第一の遊星軸の半分に相当する第二の遊星軸は、周方向においてそれぞれ、二つの第一の遊星軸の間に、比較的大きな角度間隔を有して設けられている。当該構成は、できる限り小さな構成空間で、全体的に高い変速比を確保するために特に好適である。   According to an advantageous development, the first planet axis is distributed over the circumference by non-uniform angular division, so that one of the first planet axes is relative to the position of the uniform angular division. It is alternately performed that the first offset is shifted by a positive offset angle and that one of the first planetary axes is shifted by a negative offset angle with respect to the uniform angle division position. Thereby, adjacent first planetary axes alternately have a relatively large angular spacing and a relatively small angular spacing. A second planetary axis, the number of the second planetary axis preferably corresponding to half of the first planetary axis, each of the two first planetary axes in the circumferential direction; In between, they are provided with a relatively large angular spacing. This configuration is particularly suitable in order to ensure a high gear ratio in the smallest possible configuration space.

オフセット角Δαの値に関しては好適に以下の式、すなわちΔα:1°≦Δα≦k360°/N1が当てはまる。当該式においてN1は第一の遊星軸の第一の数であり、kは増倍定数であり、0.3≦k≦0.5である。オフセット角の値に関しては特に以下の式、すなわちΔα:ku360°/N1≦Δα≦ko360°/N1が当てはまり、当該式においてN1は第一の遊星軸の第一の数であり、kuおよびkoは増倍定数であり、kuは0.05であり、koは0.3である。オフセット角に対するこれらの設計は特に好適である。 As for the value of the offset angle Δα, the following formula is preferably applied: Δα: 1 ° ≦ Δα ≦ k * 360 ° / N1. In the formula, N1 is the first number of the first planetary axis, k is a multiplication constant, and 0.3 ≦ k ≦ 0.5. With regard to the value of the offset angle, in particular, the following formula applies: Δα: ku * 360 ° / N1 ≦ Δα ≦ ko * 360 ° / N1, where N1 is the first number of the first planetary axis, ku and ko are multiplication constants, ku is 0.05, and ko is 0.3. These designs for the offset angle are particularly suitable.

本発明の好適な発展的構成は従属請求項と、以下の詳細な説明に記載されている。本発明の実施の形態を図面に基づいてより詳しく説明するが、本発明は当該実施の形態に限定されるものではない。図面に示されるのは以下の通りである。   Preferred developments of the invention are described in the dependent claims and in the following detailed description. Embodiments of the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to the embodiments. Shown in the drawings is the following.

本発明に係る動力分割歯車装置の概略的な軸方向断面を示す図である。It is a figure which shows the schematic axial cross section of the power division gear apparatus which concerns on this invention. 図1の動力分割歯車装置の被動側端部を概略的かつ斜視的に示す図である。It is a figure which shows the driven side edge part of the power split gear apparatus of FIG. 1 roughly and perspectively. 図1の動力分割歯車装置の駆動側端部を概略的かつ斜視的に示す図である。It is a figure which shows the drive side edge part of the power split gear apparatus of FIG. 1 roughly and perspectively.

本発明は、特に風力発電所において応用するための動力分割歯車装置に関する。図1から図3は本発明に係る動力分割歯車装置10の一の実施の形態を示している。動力分割歯車装置10は回転可能に支承されている駆動側の軸11であって、当該駆動側の軸に駆動歯部12が成形されている駆動側の軸を有しており、当該実施の形態において駆動歯部12は輪歯車25の内歯として形成されている。図1と図2の動力分割歯車装置10はさらに、回転可能に支承されている被動側の軸13であって、当該被動側の軸に被動歯部14が成形されている被動側の軸を有しており、図1の実施の形態において被動歯部14は太陽歯車26の外歯として形成されている。   The present invention relates to a power split gear device for application in a wind power plant in particular. 1 to 3 show an embodiment of a power split gear device 10 according to the present invention. The power split gear device 10 is a drive-side shaft 11 that is rotatably supported, and has a drive-side shaft in which a drive tooth portion 12 is formed on the drive-side shaft. In the embodiment, the drive tooth portion 12 is formed as an internal tooth of the ring gear 25. The power split gear device 10 shown in FIGS. 1 and 2 further includes a driven shaft 13 that is rotatably supported, and a driven shaft in which a driven tooth portion 14 is formed on the driven shaft. The driven tooth portion 14 is formed as an external tooth of the sun gear 26 in the embodiment of FIG.

動力分割歯車装置10はさらに複数の第一の遊星軸15と、複数の第二の遊星軸16とを有している。第一の遊星軸15の個々の遊星軸に、それぞれ第一の遊星歯部17が成形されており、軸方向にずらされた状態で第二の遊星歯部18が成形されており、当該実施の形態において第一の遊星軸15の第一の遊星歯部17は、第一の遊星歯車19によって提供され、軸方向にずらされた第二の遊星歯部18は軸方向にずらされた第二の遊星歯車20によって提供される。第二の遊星軸16の個々の遊星軸は、第三の遊星歯部21と第四の遊星歯部22とを有しており、当該第四の遊星歯部は個々の第三の遊星歯部21に対して軸方向にずらされており、第二の遊星軸16の個々の第三の遊星歯部21は図に示す実施の形態において、第三の遊星歯車23によって提供されており、第二の遊星軸16の第四の遊星歯部22は、第二の遊星軸の軸方向にずらされた第四の遊星歯車24によって提供されている。   The power split gear device 10 further includes a plurality of first planetary shafts 15 and a plurality of second planetary shafts 16. Each planetary shaft of the first planetary shaft 15 is formed with a first planetary tooth portion 17 and a second planetary tooth portion 18 is formed in a state shifted in the axial direction. In the embodiment, the first planetary tooth portion 17 of the first planetary shaft 15 is provided by a first planetary gear 19, and the second planetary tooth portion 18 shifted in the axial direction is shifted in the axial direction. Provided by the second planetary gear 20. Each planetary axis of the second planetary shaft 16 has a third planetary tooth portion 21 and a fourth planetary tooth portion 22, and the fourth planetary tooth portion is an individual third planetary tooth. Each third planetary tooth 21 of the second planetary shaft 16 is provided by a third planetary gear 23 in the illustrated embodiment, The fourth planetary tooth portion 22 of the second planetary shaft 16 is provided by a fourth planetary gear 24 that is shifted in the axial direction of the second planetary shaft.

第一の遊星歯車19によって提供されている、第一の遊星軸15の第一の遊星歯部17は駆動歯部12と噛み合っており、当該駆動歯部は上述の通り、平歯であり、実施されている形態では輪歯車25の内歯である。   The first planetary tooth portion 17 of the first planetary shaft 15 provided by the first planetary gear 19 meshes with the drive tooth portion 12, and the drive tooth portion is a spur tooth as described above. In the embodiment implemented, it is an internal tooth of the ring gear 25.

第四の遊星歯車24によって提供されている、第二の遊星軸16の第四の遊星歯部22は被動歯部14と噛み合っており、当該被動歯部は太陽歯車26の外歯として形成されている。   The fourth planetary tooth portion 22 of the second planetary shaft 16 provided by the fourth planetary gear 24 meshes with the driven tooth portion 14, and the driven tooth portion is formed as an external tooth of the sun gear 26. ing.

さらに第二の遊星歯車20によって提供されている、第一の遊星軸15の第二の遊星歯部18と、第三の遊星歯車23によって提供されている第二の遊星軸16の第三の遊星歯部21は互いに噛み合っている。   In addition, the second planetary tooth 18 of the first planetary shaft 15 provided by the second planetary gear 20 and the third of the second planetary shaft 16 provided by the third planetary gear 23 are provided. The planetary tooth portions 21 mesh with each other.

第一の遊星軸15は不均一な角度分割によって円周にわたって配分されており、第二の遊星軸16は好適に、1°より小さい許容誤差を除いて均一な角度分割によって円周にわたって配分されている。これにより動力分割歯車装置の全体的な変速比が所望のように高い状態で、遊星軸15,16もしくは遊星歯車の最適な構成が可能であり、それにより最適化された構成空間において動力分割歯車装置10の全体的に高い変速比が提供され得る。   The first planetary axis 15 is distributed over the circumference by non-uniform angular division, and the second planetary axis 16 is preferably distributed over the circumference by uniform angular division except for a tolerance of less than 1 °. ing. As a result, the planetary shafts 15 and 16 or the planetary gear can be optimally configured in a state where the overall gear ratio of the power split gear device is as high as desired, so that the power split gear is optimized in the optimized configuration space. An overall high gear ratio of the device 10 can be provided.

第一の遊星軸15の第一の数は偶数であるとともに、第二の遊星軸16の第二の数よりも大きい。第二の遊星軸16の第二の数は偶数または奇数である。図に示す実施の形態において動力分割歯車装置10は、6個の第一の遊星軸15と3個の第二の遊星軸16を含んでいる。しかしながら図1から図3において示されている第一の遊星軸15と第二の遊星軸16の数は純粋に例示的な性質を有している。図1から図3において示されているものとは異なり、動力分割歯車装置10が、8個の第一の遊星軸15と4個の第二の遊星軸16を有することも可能である。第一の遊星軸15と第二の遊星軸16の他の数も可能であるが、第一の遊星軸15の数は偶数であるとともに、第二の遊星軸16の数は好ましくは第一の遊星軸15の数の半分に相当する。   The first number of the first planetary axes 15 is an even number and larger than the second number of the second planetary axes 16. The second number of the second planetary shaft 16 is an even number or an odd number. In the embodiment shown in the figure, the power split gear device 10 includes six first planetary shafts 15 and three second planetary shafts 16. However, the numbers of the first planetary shaft 15 and the second planetary shaft 16 shown in FIGS. 1 to 3 are purely exemplary in nature. Unlike what is shown in FIGS. 1 to 3, the power split gear device 10 may have eight first planetary shafts 15 and four second planetary shafts 16. Other numbers of first planet axes 15 and second planet axes 16 are possible, but the number of first planet axes 15 is an even number and the number of second planet axes 16 is preferably the first. This corresponds to half of the number of planetary shafts 15.

第一の遊星軸15は不均一な角度分割によって円周にわたって配分されており、それにより第一の遊星軸15のうちの一つが均一な角度分割の位置に対して正のオフセット角+Δαの分だけずらされていることと、第一の遊星軸15のうちの一つが均一な角度分割の位置に対して負のオフセット角−Δαの分だけずらされていることが交互に行われる。このとき正のオフセット角は、個々の第一の遊星軸15の時計回りの方向におけるずれに相当し、負のオフセット角は、個々の第一の遊星軸15の時計回りの方向と逆のずれに相当する。   The first planetary axis 15 is distributed over the circumference by non-uniform angular division, so that one of the first planetary axes 15 is a positive offset angle + Δα relative to the position of the uniform angular division. It is alternately performed that one of the first planetary axes 15 is shifted by a negative offset angle −Δα with respect to the position of the uniform angle division. At this time, the positive offset angle corresponds to a deviation in the clockwise direction of each of the first planetary axes 15, and the negative offset angle is a deviation opposite to the clockwise direction of each of the first planetary axes 15. It corresponds to.

このように第一の遊星軸15を、正のオフセット角の分だけ、および負のオフセット角の分だけ、時計回りの方向に、および時計回りの方向と反対に交互にずらすことにより、図3から分かるように、比較的大きな角度間隔β1を有して互いに隣接して配置される第一の遊星軸15の対と、比較的小さな角度間隔β2を有して互いに隣接して配置される第一の遊星軸15の対が交互に成立する。従って角β1,β2は以下の式、すなわちβ1=β+Δα,β2=β−Δαのように計算される。当該式においてβ=360°/N1であり、N1は第一の遊星軸15の第一の数である。   In this way, by alternately shifting the first planetary shaft 15 by the positive offset angle and by the negative offset angle in the clockwise direction and opposite to the clockwise direction, FIG. As can be seen, the pair of first planetary shafts 15 arranged adjacent to each other with a relatively large angular interval β1 and the first pair arranged adjacent to each other with a relatively small angular interval β2. A pair of planetary axes 15 is alternately formed. Accordingly, the angles β1 and β2 are calculated as follows: β1 = β + Δα, β2 = β−Δα. In this equation, β = 360 ° / N1, and N1 is the first number of the first planetary shaft 15.

オフセット角Δαの値については式1°≦Δα≦k360°/N1が当てはまり、当該式においてN1は第一の遊星軸の第一の数であり、kは増倍定数である。当該増倍定数kは好ましくは0.4である。 For the value of the offset angle Δα, the formula 1 ° ≦ Δα ≦ k * 360 ° / N1 applies, where N1 is the first number of the first planetary axis and k is a multiplication constant. The multiplication constant k is preferably 0.4.

Δαについては特に式ku360°/N1≦Δα≦ko360°/N1が該当し、当該式においてN1は第一の遊星軸の第一の数であり、kuおよびkoは増倍定数であり、kuは0.05であり、koは0.3である。 For Δα, the formula ku * 360 ° / N1 ≦ Δα ≦ ko * 360 ° / N1 applies, where N1 is the first number of the first planetary axis and ku and ko are multiplication constants. Yes, ku is 0.05, and ko is 0.3.

周方向において、好適に均一な角度分割によって円周にわたって配分されている第二の遊星軸16は好適に、比較的大きな角度間隔β1を有する二つの第一の遊星軸19の間に設けられており、特に好ましくは比較的大きな角度間隔β1を有するそれぞれ二つの第一の遊星軸15の間の中心に設けられている。   In the circumferential direction, the second planetary axis 16 distributed over the circumference, preferably by uniform angular division, is preferably provided between two first planetary axes 19 having a relatively large angular spacing β1. And is particularly preferably provided in the center between two first planetary shafts 15 each having a relatively large angular spacing β1.

10 動力分割歯車装置
11 駆動側の軸
12 駆動歯部
13 被動側の軸
14 被動歯部
15 第一の遊星軸
16 第二の遊星軸
17 第一の遊星歯部
18 第二の遊星歯部
19 第一の遊星歯車
20 第二の遊星歯車
21 第三の遊星歯部
22 第四の遊星歯部
23 第三の遊星歯車
24 第四の遊星歯車
25 輪歯車
26 太陽歯車
DESCRIPTION OF SYMBOLS 10 Power split gear apparatus 11 Drive side shaft 12 Drive tooth part 13 Driven side shaft 14 Driven tooth part 15 First planetary axis 16 Second planetary axis 17 First planetary tooth part 18 Second planetary tooth part 19 1st planetary gear 20 2nd planetary gear 21 3rd planetary tooth part 22 4th planetary tooth part 23 3rd planetary gear 24 4th planetary gear 25 ring gear 26 sun gear

Claims (9)

回転可能に支承されている駆動側の軸(11)であって、当該駆動側の軸に駆動歯部(12)が成形されている駆動側の軸と、
回転可能に支承されている被動側の軸(13)であって、当該被動側の軸に被動歯部(14)が成形されている被動側の軸と、
第一の数の第一の遊星軸(15)であって、当該第一の遊星軸(15)の個々の遊星軸に、それぞれ第一の遊星歯部(17)が成形されており、軸方向にずらされた状態で第二の遊星歯部(18)が成形されている第一の数の第一の遊星軸と、
第二の数の第二の遊星軸(16)であって、当該第二の遊星軸(16)の個々の遊星軸に、それぞれ第三の遊星歯部(21)が成形されており、軸方向にずらされた状態で第四の遊星歯部(22)が成形されている、第二の数の第二の遊星軸と、
を有する動力分割歯車装置(10)であり、
前記第一の遊星軸(15)の前記第一の遊星歯部(17)は、前記駆動歯部(12)と噛み合っており、前記第二の遊星軸(16)の前記第四の遊星歯部(22)は、前記被動歯部(14)と噛み合っており、
前記第一の遊星軸(15)の前記第二の遊星歯部(18)は前記第二の遊星軸(16)の前記第三の遊星歯部(21)と噛み合っており、
前記第一の遊星軸(15)は不均一な角度分割によって円周にわたって配分されており、
前記第二の遊星(16)は均一な角度分割によって円周にわたって配分されており、
前記第二の遊星軸(16)は周方向においてそれぞれ、互いに比較的大きな角度間隔で設けられている二つの隣接する第一の遊星軸(15)の間に配置されている、動力分割歯車装置。
A drive-side shaft (11) rotatably supported, the drive-side shaft having a drive tooth portion (12) formed on the drive-side shaft;
A driven shaft (13) that is rotatably supported, and a driven shaft in which a driven tooth portion (14) is formed on the driven shaft;
The first planetary shafts (15) of the first number, each planetary shaft of the first planetary shaft (15) is formed with a first planetary tooth portion (17), respectively. A first number of first planetary shafts, wherein the second planetary teeth (18) are shaped in a displaced state;
A second planetary shaft (16) of the second number, each planetary shaft of the second planetary shaft (16) being formed with a third planetary tooth portion (21), respectively, A second number of second planetary shafts, wherein the fourth planetary teeth (22) are shaped in a displaced state;
A power split gear device (10) having
The first planetary tooth portion (17) of the first planetary shaft (15) meshes with the drive tooth portion (12), and the fourth planetary tooth of the second planetary shaft (16). Part (22) meshes with said driven tooth part (14),
The second planetary tooth (18) of the first planetary shaft (15) meshes with the third planetary tooth (21) of the second planetary shaft (16);
Said first planetary axis (15) is distributed over the circumference by non-uniform angular division;
Said second planetary axis (16) is distributed over the circumference by a uniform angular division ;
Each of the second planetary shafts (16) is disposed between two adjacent first planetary shafts (15) that are provided at relatively large angular intervals in the circumferential direction. .
第一の遊星軸(15)の前記第一の数は第二の遊星軸(16)の前記第二の数よりも大きく、第一の遊星軸(15)の前記第一の数は偶数であり、第二の遊星軸(16)の前記第二の数は偶数または奇数であることを特徴とする、請求項1に記載の動力分割歯車装置。   The first number of first planetary axes (15) is greater than the second number of second planetary axes (16), and the first number of first planetary axes (15) is an even number. 2. The power split gear device according to claim 1, wherein the second number of the second planetary shafts is even or odd. 前記第一の遊星軸(15)は不均一な角度分割によって円周にわたって配分されており、それにより前記第一の遊星軸(15)のうちの一つが均一な角度分割の位置に対して正のオフセット角の分だけずらされていることと、前記第一の遊星軸(15)のうちの一つが均一な角度分割の位置に対して負のオフセット角の分だけずらされていることが交互に行われることを特徴とする、請求項1または2に記載の動力分割歯車装置。   The first planet axis (15) is distributed over the circumference by non-uniform angular division, so that one of the first planet axes (15) is positive with respect to the position of the uniform angular division. Alternately offset by one offset angle and one of the first planetary axes (15) being shifted by a negative offset angle with respect to the uniform angular division position. The power split gear device according to claim 1, wherein the power split gear device is performed. 前記オフセット角Δαの値に関して式1°≦ Δα≦k*360°/N1が該当し、当該式においてN1は第一の遊星軸の前記第一の数であり、kは増倍定数であることを特徴とする、請求項3に記載の動力分割歯車装置。   With respect to the value of the offset angle Δα, the formula 1 ° ≦ Δα ≦ k * 360 ° / N1 is applicable, where N1 is the first number of the first planetary axis and k is a multiplication constant. The power split gear device according to claim 3, wherein: 前記増倍定数kの値は0.4であることを特徴とする請求項4に記載の動力分割歯車装置。   5. The power split gear device according to claim 4, wherein a value of the multiplication constant k is 0.4. 前記オフセット角Δαの値に関して式ku*360°/N1≦ Δα≦ko*360°/N1が該当し、当該式においてN1は第一の遊星軸の前記第一の数であり、kuおよびkoは増倍定数であることを特徴とする、請求項3に記載の動力分割歯車装置。   For the value of the offset angle Δα, the formula ku * 360 ° / N1 ≦ Δα ≦ ko * 360 ° / N1 applies, where N1 is the first number of the first planetary axis, and ku and ko are The power split gear device according to claim 3, wherein the power split gear device is a multiplication constant. 前記増倍定数のkuの値は0.05であり、前記増倍定数のkoの値は0.3であることを特徴とする、請求項6に記載の動力分割歯車装置。   The power split gear device according to claim 6, wherein the multiplication constant ku has a value of 0.05, and the multiplication constant KO has a value of 0.3. 個々の第二の遊星軸(16)は周方向においてそれぞれ、互いに比較的大きな角度間隔で設けられている二つの第一の遊星軸(15)の間の中心に配置されていることを特徴とする、請求項1から7のいずれか一項に記載の動力分割歯車装置。 The individual second planetary shafts (16) are respectively arranged in the center between two first planetary shafts (15) provided at relatively large angular intervals in the circumferential direction. The power split gear device according to any one of claims 1 to 7 . 第一の遊星軸(15)の前記第一の数は第二の遊星軸(16)の前記第二の数の2倍の大きさであることを特徴とする、請求項1からのいずれか一項に記載の動力分割歯車装置。 Wherein the first number of the first planetary shaft (15) is twice the magnitude of the second number of the second planetary shaft (16), one of claims 1 8 The power split gear device according to claim 1.
JP2015082315A 2014-04-15 2015-04-14 Power split gear unit Expired - Fee Related JP6573473B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014005517.5 2014-04-15
DE102014005517.5A DE102014005517A1 (en) 2014-04-15 2014-04-15 Power split transmission

Publications (2)

Publication Number Publication Date
JP2015203501A JP2015203501A (en) 2015-11-16
JP6573473B2 true JP6573473B2 (en) 2019-09-11

Family

ID=54147614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015082315A Expired - Fee Related JP6573473B2 (en) 2014-04-15 2015-04-14 Power split gear unit

Country Status (6)

Country Link
JP (1) JP6573473B2 (en)
KR (1) KR20150118906A (en)
CN (1) CN105020342B (en)
DE (1) DE102014005517A1 (en)
ES (1) ES2546563B2 (en)
FI (1) FI127075B (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1351318A (en) * 1918-01-09 1920-08-31 Alquist Karl Gearing
US2389557A (en) * 1942-08-19 1945-11-20 Richardsons Westgarth & Compan Gearing
US2911845A (en) * 1958-01-29 1959-11-10 Henry W North Gear reduction unit
DE3809577A1 (en) * 1988-03-22 1989-10-12 Messerschmitt Boelkow Blohm MECHANICAL TRANSMISSION
DE19756966A1 (en) * 1997-12-20 1999-06-24 Zahnradfabrik Friedrichshafen Planetary gear with sun wheel on central shaft
FR2804727B1 (en) * 1999-12-24 2002-09-20 Jean Pierre Tromelin HIGH EFFICIENCY TORQUE TRANSMISSION DEVICE, ESPECIALLY FOR A WIND TURBINE
DE10358114A1 (en) * 2002-12-23 2004-07-01 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Power-branched gearbox with continuously adjustable ratio has at least two ratio ranges that differ only in conversion ratio between input shaft of parallel discrete gearbox and output shaft
DE102004036005A1 (en) * 2004-07-23 2006-02-16 Schäfer, Wilhelm, Dr.-Ing. Wind turbine gearboxes
JP4821208B2 (en) * 2005-08-08 2011-11-24 日産自動車株式会社 Vehicle driving force distribution device
DE102010041474B4 (en) 2010-09-27 2018-08-09 Renk Aktiengesellschaft Power split transmission
CN202545697U (en) * 2012-04-11 2012-11-21 慈溪市鱼乐渔具有限公司 Gear transmission device for simultaneously realizing autorotation and up-down swing of reels

Also Published As

Publication number Publication date
CN105020342A (en) 2015-11-04
ES2546563B2 (en) 2016-04-14
ES2546563A1 (en) 2015-09-24
CN105020342B (en) 2019-11-19
FI20155257A (en) 2015-10-16
JP2015203501A (en) 2015-11-16
FI127075B (en) 2017-10-31
DE102014005517A1 (en) 2015-10-15
KR20150118906A (en) 2015-10-23

Similar Documents

Publication Publication Date Title
JP4948479B2 (en) Compound wave gear reducer
JP5925387B2 (en) Wave generator and wave gear device
WO2015001974A1 (en) Strain wave gear device
US20160025203A1 (en) Wave generator of strain wave gearing
DK2256343T3 (en) Planetary gear transmission unit
JP6486904B2 (en) Abduction cycloid gear train
RU2012132333A (en) PLANETARY MECHANISM AND THE RELATED METHOD OF PRODUCTION
JP2017119462A5 (en)
JP2016023746A5 (en)
WO2017064549A3 (en) Internally meshed transmission mechanism
JP2017044246A (en) Wave gear transmission device
JP2018204694A5 (en)
MX2019012344A (en) Multi-speed transmission for motor.
RU2017133005A (en) REDUCING NUMBER WITH AN INTERMEDIATE TRANSMISSION LINE
JP6573473B2 (en) Power split gear unit
JP2011231842A (en) Planetary gear mechanism
KR102040385B1 (en) Transmission device
RU2016140939A (en) NON-SYNCHRONOUS CLUTCHING OF GEARS IN DIFFERENTIALS WITH LIMITED SLIP
JP6645891B2 (en) Magnetic gear device
EP2988024A3 (en) Large-ratio strain wave gearing speed changing apparatus
JP6461332B2 (en) Planetary gear unit series
KR101779103B1 (en) Planetary gear train
TWI551791B (en) Harmonic generator and harmonic gear device
WO2016027324A1 (en) Facing-type strain wave gearing
JP2009092217A (en) Gear transmission mechanism and gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190813

R150 Certificate of patent or registration of utility model

Ref document number: 6573473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees