JP6573434B2 - Haptic interface - Google Patents

Haptic interface Download PDF

Info

Publication number
JP6573434B2
JP6573434B2 JP2015104374A JP2015104374A JP6573434B2 JP 6573434 B2 JP6573434 B2 JP 6573434B2 JP 2015104374 A JP2015104374 A JP 2015104374A JP 2015104374 A JP2015104374 A JP 2015104374A JP 6573434 B2 JP6573434 B2 JP 6573434B2
Authority
JP
Japan
Prior art keywords
force
iron core
mre
viscoelastic body
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015104374A
Other languages
Japanese (ja)
Other versions
JP2016218831A (en
Inventor
小松崎 俊彦
俊彦 小松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2015104374A priority Critical patent/JP6573434B2/en
Publication of JP2016218831A publication Critical patent/JP2016218831A/en
Application granted granted Critical
Publication of JP6573434B2 publication Critical patent/JP6573434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • User Interface Of Digital Computer (AREA)

Description

本発明は、可変剛性機能性材料を利用したハプティックインタフェースに関する。   The present invention relates to a haptic interface using a variable stiffness functional material.

磁気粘弾性体(Magneto-rheological Elastomer)は外部磁場に応じて見かけ剛性が変化する機能性材料であり、例えば特許文献1に提案されている。
近年、電子機器の分野では利用者に皮膚感覚フィードバック信号を与えるハプティックインタフェース技術が検討されている。
そこで本発明者らは、この磁気粘弾性体(MRE)をハプティックインタフェースに利用できないか検討し本発明に至った。
A magnetic viscoelastic body (Magneto-rheological Elastomer) is a functional material whose apparent stiffness changes according to an external magnetic field, and is proposed in, for example, Patent Document 1.
In recent years, in the field of electronic devices, haptic interface technology for giving a skin sensation feedback signal to a user has been studied.
Therefore, the present inventors have examined whether this magnetic viscoelastic body (MRE) can be used for a haptic interface, and have reached the present invention.

特開2013−181090号公報JP 2013-181090 A

本発明は、外部磁場に応じて見かけ剛性を可変できるMREを用いた新規ハプティックインタフェースの提案を目的とする。   An object of the present invention is to propose a novel haptic interface using an MRE that can change the apparent rigidity according to an external magnetic field.

本発明に係るハプティックインタフェースは、外部磁場に応じて見かけ剛性が変化する磁気粘弾性体と、前記磁気粘弾性体への変位力の負荷を伴う機器の操作入力手段と、前記磁気粘弾性体の変位に抗して外部磁場の印加量を可変及び制御する磁場制御手段と、を有することを特徴とする。
ここで、前記磁気粘弾性体に負荷される変位力は、剪断力、圧縮力、引張力及びねじり力のうちいずれか1つ又はそれらの複合力であってよい。
A haptic interface according to the present invention includes a magnetic viscoelastic body whose apparent stiffness changes according to an external magnetic field, an operation input unit of a device that involves a load of displacement force on the magnetic viscoelastic body, and a magnetic viscoelastic body. Magnetic field control means for varying and controlling the applied amount of the external magnetic field against displacement.
Here, the displacement force applied to the magnetic viscoelastic body may be any one of a shear force, a compressive force, a tensile force, and a torsion force, or a combined force thereof.

本発明において磁気粘弾性体は、外部磁場に応じて見かけ剛性が変化する機能性材料であれば各種材料を使用することができる。
例えば、特許文献1に記載の磁性粒子複合粘弾性体を利用することができる。
また、鉄粉等の磁性粒子をシリコンゴム等のエラストマーと複合化したもののみならず、各種ゲル基剤と複合化したものも利用できる。
In the present invention, various materials can be used as the magnetic viscoelastic body as long as it is a functional material whose apparent rigidity changes according to an external magnetic field.
For example, the magnetic particle composite viscoelastic body described in Patent Document 1 can be used.
Further, not only those obtained by combining magnetic particles such as iron powder with an elastomer such as silicon rubber, but also those obtained by combining with various gel bases can be used.

本発明において、操作入力手段とは各種機器の利用者が、その機器を操作するための入力手段であって、その入力操作に伴ってMREに変化を与えるものをいう。
例えばジョイステックのようなレバー方式、押圧操作するプッシュ方式等の各種方式が例として挙げられる。
In the present invention, the operation input means is an input means for a user of various devices to operate the device, and changes the MRE in accordance with the input operation.
For example, various methods such as a lever method such as a joystick and a push method for pressing operation can be given.

本発明において磁場制御手段とは、見かけ剛性の可変を目的にMREに付与する磁力の発生及びその磁力を制御する手段をいう。
例えば、電流を印加制御する鉄心型コイル等が例として挙げられる。
In the present invention, the magnetic field control means means a means for generating a magnetic force to be applied to the MRE and controlling the magnetic force for the purpose of changing the apparent rigidity.
For example, an iron core type coil for applying and controlling a current can be cited as an example.

本発明に係るハプティックインタフェースは、機器の利用者への皮膚感覚フィードバック方法としてMREの見かけ剛性変化による操作力に対する抵抗力可変によるので、簡易的でかつ任意的に設定できる。   The haptic interface according to the present invention is a simple and arbitrary setting because it is based on a variable resistance force to an operating force due to a change in the apparent stiffness of the MRE as a skin sensation feedback method to the user of the device.

MREの応答性の評価に用いた試験装置を示す。(a)は斜視図、(b)は平面図、(c)は正面図を示す。The test apparatus used for the evaluation of MRE responsiveness is shown. (A) is a perspective view, (b) is a plan view, and (c) is a front view. MRE応答性評価システムの例を示す。An example of an MRE responsiveness evaluation system is shown. (a)〜(d)は電流出力パターンに対する抵抗力変化のグラフを示す。(A)-(d) shows the graph of the resistance change with respect to an electric current output pattern. MREユニットの構造例を示す。An example of the structure of the MRE unit is shown. 圧縮変位型操作ユニットの例を示す。An example of a compression displacement type operation unit is shown. 圧縮変位型操作ユニットの第2の例を示す。The 2nd example of a compression displacement type operation unit is shown. ねじれ変位型操作ユニットの例を示す。An example of a twist displacement type operation unit is shown.

図1に示すMRE応答性評価試験機を用いて実験評価したので以下、説明する。
試験機は鉄心13aと鉄心13bとをコ字形状に連結した鉄心13aにコイル14を巻設し、磁気粘弾性体(MRE)12a,12bの間にプレート状の連結部材15を挟持した状態で、このMREの両側と鉄心13bの端部とを鉄心13cにて連結した。
これによりコイルに電流を印加すると、鉄心内に磁気的閉回路が形成され、MREに外部磁場が印加される。
連結部材15はスティック11とリンク連結され、スティックノブ11aを前後に操作すると、図1(b)に矢印で示すように連結部材15が前後に移動しMREに剪断力が加わる。
スティック11と連結部材15とのリンク連結はスティック11の前後傾斜操作を連結部材の前後水平移動に伝達するのが目的である。
図1に示した試験機では、ベース部材10から支持部16aを一対立設し、その間に回転軸16を介して回動自在にサブフレーム15bを一対形成し、このサブフレーム間に連結部材15の一端をシャフト15aで軸着した。
また、スティック11はスプリング17aにより、元の状態に復帰するようになっている。
The experimental evaluation using the MRE responsiveness evaluation tester shown in FIG. 1 will be described below.
In the test machine, a coil 14 is wound around an iron core 13a in which an iron core 13a and an iron core 13b are connected in a U-shape, and a plate-like connecting member 15 is sandwiched between magnetic viscoelastic bodies (MRE) 12a and 12b. The both sides of the MRE and the end of the iron core 13b were connected by the iron core 13c.
Thus, when a current is applied to the coil, a magnetic closed circuit is formed in the iron core, and an external magnetic field is applied to the MRE.
The connecting member 15 is linked to the stick 11, and when the stick knob 11a is operated back and forth, the connecting member 15 moves back and forth as indicated by arrows in FIG. 1B, and shear force is applied to the MRE.
The purpose of link connection between the stick 11 and the connecting member 15 is to transmit the forward / backward tilting operation of the stick 11 to the horizontal movement of the connecting member.
In the testing machine shown in FIG. 1, a support portion 16a is provided oppositely from the base member 10, and a pair of sub-frames 15b are formed between the sub-frames so as to be rotatable via a rotation shaft 16. One end of the shaft was fixed by a shaft 15a.
The stick 11 is returned to its original state by a spring 17a.

図1に示した試験機を用いて図2に示すような評価システムを構築した。
コイルに対して所定のパターンに合せて電流を印加した状態でスティック11を、リニアアクチュエーター等を用いて一定の速度で傾け、そのときの抵抗力変化を解析した。
図3(a)〜(d)に電流の出力パターン1〜4に対する抵抗力変化を測定したグラフを示す。
(a)パターン1は、スティックの傾斜開始後0.2〜0.3秒の間に6A通電した。
(b)パターン2は、間に約0.3秒間6A通電した。
(c)パターン3は、始めに0.1秒間6A通電し、その後0.3秒間通電停止、0.2秒間6A通電した。
(d)パターン4は、0.1秒間隔で3回のパルス通電をした。
いずれの通電パターンにおいても、そのパルスに合せて抵抗力の変化が出現しており、MREをハプティックインタフェースに適用できることが確認できた。
An evaluation system as shown in FIG. 2 was constructed using the testing machine shown in FIG.
The stick 11 was tilted at a constant speed using a linear actuator or the like while a current was applied to the coil in accordance with a predetermined pattern, and the resistance change at that time was analyzed.
FIGS. 3A to 3D are graphs showing changes in resistance against current output patterns 1 to 4.
(A) In pattern 1, 6 A was energized between 0.2 and 0.3 seconds after the start of tilting of the stick.
(B) The pattern 2 was energized with 6 A for about 0.3 seconds.
(C) Pattern 3 was initially energized with 6 A for 0.1 seconds, then stopped for 0.3 seconds, and energized with 6 A for 0.2 seconds.
(D) Pattern 4 was pulsed three times at 0.1 second intervals.
In any energization pattern, a change in the resistance force appeared in accordance with the pulse, and it was confirmed that MRE can be applied to the haptic interface.

MREの変位応答性は剪断力のみならず、圧縮変位やねじり変位にも現れる。
図4にMREユニット20として製作した例を示す。
スティック21に連結した鉄心23の上部と下部とにリング状のMRE22a,22bを固定する。
鉄心23の廻りにはコイル24を配設する。
また、MRE22a,22bの外周部は第二の鉄心23a,23bで連結した。
本実施例ではハウジング25及び蓋体25a,25bを用いて内部に収容した例になっている。
このようなMREユニット20は、スティック21を左右前後に傾ける操作、下方に押し操作、さらにはスティック21を軸廻りに廻すねじり操作に対して、MREに外部磁場を印加すると圧縮変位、引張変位、ねじり変位応答が抵抗力変化として出現した。
このMREユニットの適用例を図5〜7に示す。
The displacement response of MRE appears not only in shearing force but also in compressive displacement and torsional displacement.
FIG. 4 shows an example manufactured as the MRE unit 20.
Ring-shaped MREs 22 a and 22 b are fixed to the upper and lower portions of the iron core 23 connected to the stick 21.
A coil 24 is disposed around the iron core 23.
Moreover, the outer peripheral part of MRE22a, 22b was connected with 2nd iron core 23a, 23b.
In this embodiment, the housing 25 and the lids 25a and 25b are used to house the inside.
Such an MRE unit 20 has an operation of tilting the stick 21 left and right, back and forth, an operation of pushing the stick 21 downward, and a twisting operation of turning the stick 21 around its axis. The torsional displacement response appeared as a resistance force change.
Application examples of this MRE unit are shown in FIGS.

図5はスティック31の下端に十字形状のプレート体31aを連結し、このプレート体31aの各端部4ヶ所の下面側にMREユニット20をそれぞれ配置した例である。
プレート体31aは、スティック31の傾斜方向に合せて傾くようにベース部材30に設けた球面台座32と球体部32aとの球面関節構造になっている。
図6は図5と同様に圧縮型になっているが、スティック31が摺動台座33,34にてX−Y軸方向に傾くようになっており、その変位角をポテンションメータ40で検出するとともにシャフト41を介して作用杆37の両端の上下変位を、MREユニット20のスティック21に伝達する例である。
なお、シャフト41は支持部材35,36を介してポテンションメータ40と連結されている。
図7はシャフト41の回転をMREユニット20のスティック21のねじり変位として、直接的に連結した例である。
FIG. 5 shows an example in which a cross-shaped plate body 31a is connected to the lower end of the stick 31, and the MRE units 20 are respectively arranged on the lower surface side of each end portion of the plate body 31a.
The plate body 31a has a spherical joint structure of a spherical base 32 and a spherical body portion 32a provided on the base member 30 so as to be inclined in accordance with the inclination direction of the stick 31.
FIG. 6 is a compression type similar to FIG. 5, but the stick 31 is inclined in the XY axis direction by the slide bases 33 and 34, and the displacement angle is detected by the potentiometer 40. In this example, the vertical displacement at both ends of the working rod 37 is transmitted to the stick 21 of the MRE unit 20 via the shaft 41.
The shaft 41 is connected to the potentiometer 40 via support members 35 and 36.
FIG. 7 shows an example in which the rotation of the shaft 41 is directly connected as the torsional displacement of the stick 21 of the MRE unit 20.

10 ベース部材
11 スティック
11a ノブ
12a MRE
12b MRE
13 鉄心
14 コイル
15 連結部材
15a 連結軸
16 回転軸
20 MREユニット
22a MRE
22b MRE
23 鉄心
24 コイル
25 ハウジング
10 Base member 11 Stick 11a Knob 12a MRE
12b MRE
13 Iron core 14 Coil 15 Connecting member 15a Connecting shaft 16 Rotating shaft 20 MRE unit 22a MRE
22b MRE
23 Iron core 24 Coil 25 Housing

Claims (2)

外部磁場に応じて見かけ剛性が変化する磁気粘弾性体と、
前記磁気粘弾性体への変位力の負荷を伴う機器の操作入力手段と、
前記磁気粘弾性体の変位に抗して外部磁場の印加量を可変及び制御する磁場制御手段と、を有し、
前記操作入力手段としてのスティックに鉄心を連結してあり、
前記鉄心の上部と下部の2ヶ所にリング状の磁気粘弾性体を固定してあり、
前記磁場制御手段として、前記鉄心の廻りにコイルを配設してあるとともに、前記上部と下部のリング状の磁気粘弾性体の外周部を第二の鉄心で連結してあることを特徴とするハプティックインタフェース。
A magnetic viscoelastic body whose apparent stiffness changes according to an external magnetic field;
Operation input means for equipment with load of displacement force on the magnetic viscoelastic body,
Have a, and a magnetic field control means for variably and control the application amount of the external magnetic field against the displacement of the magnetic viscoelastic body,
An iron core is connected to the stick as the operation input means,
A ring-shaped magnetic viscoelastic body is fixed to the upper part and the lower part of the iron core,
As the magnetic field control means, a coil is disposed around the iron core, and an outer peripheral portion of the upper and lower ring-shaped magnetic viscoelastic bodies is connected by a second iron core. Haptic interface.
前記磁気粘弾性体に負荷される変位力は、剪断力、圧縮力、引張力及びねじり力のうちいずれか1つ又はそれらの複合力であることを特徴とする請求項1記載のハプティックインタフェース。   The haptic interface according to claim 1, wherein the displacement force applied to the magnetic viscoelastic body is any one of a shear force, a compressive force, a tensile force, and a torsion force, or a combined force thereof.
JP2015104374A 2015-05-22 2015-05-22 Haptic interface Active JP6573434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015104374A JP6573434B2 (en) 2015-05-22 2015-05-22 Haptic interface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015104374A JP6573434B2 (en) 2015-05-22 2015-05-22 Haptic interface

Publications (2)

Publication Number Publication Date
JP2016218831A JP2016218831A (en) 2016-12-22
JP6573434B2 true JP6573434B2 (en) 2019-09-11

Family

ID=57578504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015104374A Active JP6573434B2 (en) 2015-05-22 2015-05-22 Haptic interface

Country Status (1)

Country Link
JP (1) JP6573434B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019213554A1 (en) * 2019-09-06 2021-03-11 Zf Friedrichshafen Ag Operating device for a vehicle and method for setting an actuation characteristic of an operating device
CN111015740B (en) * 2019-12-12 2022-05-13 中国科学院重庆绿色智能技术研究院 Touch and slide sensation sensor, flexible finger grabbing system and grabbing method thereof
CN114295465B (en) * 2021-11-22 2024-06-07 北京机电工程研究所 Modal test preload applying device, modal test system and preload applying method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373465B2 (en) * 1998-11-10 2002-04-16 Lord Corporation Magnetically-controllable, semi-active haptic interface system and apparatus
FR2930655B1 (en) * 2008-04-29 2013-02-08 Commissariat Energie Atomique EFFORT RETURN INTERFACE WITH ENHANCED SENSATION
KR101153447B1 (en) * 2010-05-27 2012-06-05 한국과학기술원 Stiffness Generation Apparatus Using Magnetorheological Fluid on Reaction upon External Force and Apparatus Providing Passive Haptic Feedback Using the Same
FR3010547B1 (en) * 2013-09-09 2016-12-23 Dav HAPTIC RETURN CONTROL INTERFACE
JP6331710B2 (en) * 2014-05-30 2018-05-30 日亜化学工業株式会社 Light emitting device manufacturing method and light emitting device
US9535550B2 (en) * 2014-11-25 2017-01-03 Immersion Corporation Systems and methods for deformation-based haptic effects

Also Published As

Publication number Publication date
JP2016218831A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6573434B2 (en) Haptic interface
Liu et al. Development of an MR-brake-based haptic device
Najmaei et al. Design and performance evaluation of a prototype MRF-based haptic interface for medical applications
US10001804B2 (en) Force-feedback device and method
Najmaei et al. Suitability of small-scale magnetorheological fluid-based clutches in haptic interfaces for improved performance
JPWO2014203446A1 (en) Sensor device
Gonenc et al. Virtual needle insertion with haptic feedback using a hybrid actuator with DC servomotor and MR-brake with Hall-effect sensor
Rossa et al. Design and control of a dual unidirectional brake hybrid actuation system for haptic devices
KR20150035634A (en) Apparatus and method for providing complex haptic stimulation
JPWO2019017306A1 (en) Input device, input device control method, and control program
KR20150129921A (en) A force-controllable actuator module for a wearable hand exoskeleton and a hand exoskeleton system using the module
Liu et al. Single cell magnetorheological fluid based tactile display
Kikuchi et al. Compact MR fluid clutch device for human-friendly actuator
Ahmadkhanlou et al. The development of variably compliant haptic systems using magnetorheological fluids
JP2008157678A (en) Load system for performance evaluation of steering device
US20150301553A1 (en) Actuator with hybrid actuation for a force feedback interface
Sharifi et al. Patient-robot-therapist collaboration using resistive impedance controlled tele-robotic systems subjected to time delays
Vitrani et al. Torque control of electrorheological fluidic resistive actuators for haptic vehicular instrument controls
JP2013156040A (en) Shift operation device for evaluating shift feeling of manual transmission
Yamamoto et al. Verification of device modes of a strength training machine using an electrorheological fluid brake
JP6679369B2 (en) Operating device
Gil et al. Haptic performance using voltage-mode motor control
Ahmed et al. Modeling of magneto rheological fluid actuator enabling safe human-robot interaction
Nakano et al. Active loading machine using MR fluid clutch for leg rehabilitation system
KR20030072802A (en) Dynamometer for Performance Evaluation of the Linear Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190812

R150 Certificate of patent or registration of utility model

Ref document number: 6573434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250