JP6573117B2 - Aggregate elemental analysis method - Google Patents
Aggregate elemental analysis method Download PDFInfo
- Publication number
- JP6573117B2 JP6573117B2 JP2015254177A JP2015254177A JP6573117B2 JP 6573117 B2 JP6573117 B2 JP 6573117B2 JP 2015254177 A JP2015254177 A JP 2015254177A JP 2015254177 A JP2015254177 A JP 2015254177A JP 6573117 B2 JP6573117 B2 JP 6573117B2
- Authority
- JP
- Japan
- Prior art keywords
- aggregate
- acid
- elemental analysis
- mixed
- analysis method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Sampling And Sample Adjustment (AREA)
Description
本発明は、骨材の元素分析方法に関する。 The present invention relates to an elemental analysis method for aggregates.
従来、原子力発電所などの放射性物質を取り扱う施設においては、十分な強度を有するとともに放射線の遮蔽性に優れることから、構造躯体がコンクリートで構築されている。放射線に長期間曝されたコンクリートは放射化されるため、施設を解体する際には放射性廃棄物として処分及び管理する必要がある。 2. Description of the Related Art Conventionally, in a facility that handles radioactive substances such as a nuclear power plant, a structural frame is constructed of concrete because it has sufficient strength and excellent radiation shielding properties. Since concrete exposed to radiation for a long time is activated, it must be disposed and managed as radioactive waste when dismantling the facility.
放射化されたコンクリート中に含まれる放射性核種は、コンクリート材料の骨材中に含まれる微量元素の種類や濃度によって大きく変わる。放射化したコンクリートの処分や管理を計画的に行うために、骨材中に含まれる微量元素を予め分析しておくことが望ましい。 The radionuclide contained in the activated concrete varies greatly depending on the kind and concentration of the trace elements contained in the aggregate of the concrete material. In order to systematically dispose and manage the activated concrete, it is desirable to analyze in advance the trace elements contained in the aggregate.
通常、骨材を化学的に溶解する前処理を施した後、ICP−MSなどの機器を用いて測定することにより、骨材中に含まれる元素を分析する(例えば、非特許文献1)。しかしながら、従来の前処理を施した場合、放射化しうるユーロピウム等の希土類元素の検出精度が悪く、実際の含有量よりも1桁程度低い測定値となる問題がある。 Usually, after performing the pre-process which melt | dissolves an aggregate chemically, the element contained in an aggregate is analyzed by measuring using apparatuses, such as ICP-MS (for example, nonpatent literature 1). However, when the conventional pretreatment is performed, there is a problem that the detection accuracy of rare earth elements such as europium that can be activated is poor, and the measured value is about one digit lower than the actual content.
本発明は、上記事情に鑑みてなされたものであり、骨材中の希土類元素を含む種々の微量元素の含有量を高い精度で分析することが可能な、骨材の元素分析方法を提供する。 The present invention has been made in view of the above circumstances, and provides an aggregate element analysis method capable of analyzing the contents of various trace elements including rare earth elements in the aggregate with high accuracy. .
本発明者が従来方法における骨材の前処理を検討したところ、骨材に含まれる希土類元素の溶解が不十分であるために、希土類元素、アルカリ土類金属元素、銀及び鉛の検出精度が低下していることを見出した。すなわち、骨材をフッ酸に溶解すると、これらの元素がフッ化物の沈殿を生じるため、ICP−MSで検出することができない問題を見出した。
本発明者は上記問題を解決し、以下で説明する本発明を完成した。
The present inventor examined the pretreatment of the aggregate in the conventional method, and the detection accuracy of rare earth elements, alkaline earth metal elements, silver and lead was insufficient because of the insufficient dissolution of the rare earth elements contained in the aggregate. I found that it was falling. That is, when the aggregate is dissolved in hydrofluoric acid, these elements cause precipitation of fluoride, and therefore, a problem that cannot be detected by ICP-MS was found.
The inventor has solved the above problems and completed the present invention described below.
[1] 骨材とフッ酸及び硝酸を含む第一の混酸とを混合し、前記骨材を分解した後、前記第一の混酸の少なくとも一部を蒸発させることにより、前記骨材の分解物を得る分解工程と、前記分解物と過塩素酸を混合し、得られた混合液を加熱し、前記混合液から揮発成分の少なくとも一部を蒸発させることにより、前記混合液の濃縮物を得る濃縮工程と、前記濃縮物とホウ酸及び硝酸を含む第二の混酸とを混合し、前記濃縮物を溶解した溶解液を得る溶解工程と、前記溶解液に含まれる元素を分析する分析工程と、を有することを特徴とする骨材の元素分析方法。
[2] 前記溶解工程において、前記濃縮物に含まれるフッ化物を溶解することを特徴とする上記[1]に記載の骨材の元素分析方法。
[3] 前記フッ化物は、前記濃縮物中において固体成分であることを特徴とする上記[2]に記載の骨材の元素分析方法。
[4] 前記フッ化物は、アルカリ金属元素、アルカリ土類金属元素、希土類元素、及び遷移金属元素からなる群から選ばれる1以上のフッ化物であることを特徴とする上記[2]又は[3]に記載の骨材の元素分析方法。
[5] 前記第一の混酸と混合する前記骨材が予め粉砕されていることを特徴とする上記[1]〜[4]の何れか一項に記載の骨材の元素分析方法。
[6] 前記濃縮工程において、前記混合液から白煙が出るまで濃縮することを特徴とする上記[1]〜[5]の何れか一項に記載の骨材の元素分析方法。
[7] 前記溶解液をICP−MSで測定し、元素分析を行うことを特徴とする上記[1]〜[6]の何れか一項に記載の骨材の元素分析方法。
[1] The aggregate and the first mixed acid containing hydrofluoric acid and nitric acid are mixed, the aggregate is decomposed, and then at least a part of the first mixed acid is evaporated, thereby decomposing the aggregate. And obtaining a concentrate of the mixed solution by mixing the decomposed product and perchloric acid, heating the obtained mixed solution, and evaporating at least a part of volatile components from the mixed solution. A concentration step, a dissolution step of mixing the concentrate with a second mixed acid containing boric acid and nitric acid to obtain a solution in which the concentrate is dissolved, and an analysis step of analyzing elements contained in the solution. The elemental analysis method of the aggregate characterized by having.
[2] The aggregate elemental analysis method according to [1], wherein the fluoride contained in the concentrate is dissolved in the dissolution step.
[3] The aggregate elemental analysis method according to [2], wherein the fluoride is a solid component in the concentrate.
[4] The above [2] or [3], wherein the fluoride is one or more fluorides selected from the group consisting of alkali metal elements, alkaline earth metal elements, rare earth elements, and transition metal elements. ] The elemental analysis method of the aggregate as described in any one of the above.
[5] The aggregate elemental analysis method according to any one of [1] to [4], wherein the aggregate to be mixed with the first mixed acid is pulverized in advance.
[6] The aggregate elemental analysis method according to any one of [1] to [5], wherein in the concentration step, the mixture is concentrated until white smoke is emitted from the mixed solution.
[7] The aggregate elemental analysis method according to any one of [1] to [6], wherein the solution is measured by ICP-MS and elemental analysis is performed.
本発明の元素分析方法によれば、骨材中の希土類元素を含む種々の微量元素の含有量を高い精度で分析することができる。 According to the elemental analysis method of the present invention, the contents of various trace elements including rare earth elements in the aggregate can be analyzed with high accuracy.
本発明の骨材の元素分析方法の第一実施形態は、分解工程、濃縮工程、溶解工程、分析工程の4工程を少なくとも有する。以下に各工程の詳細を説明するが、これらの工程以外の工程又は処理を含んでいてもよい。 1st embodiment of the elemental analysis method of the aggregate of this invention has at least 4 process steps, a decomposition step, a concentration step, a dissolution step, and an analysis step. Details of each step will be described below, but steps or processes other than these steps may be included.
<分解工程>
本実施形態の分解工程は、骨材とフッ酸及び硝酸を含む第一の混酸とを混合し、前記骨材を分解した後、前記混酸の少なくとも一部を蒸発させることにより、前記骨材の分解物を得る工程である。
<Disassembly process>
In the decomposition step of the present embodiment, the aggregate is mixed with a first mixed acid containing hydrofluoric acid and nitric acid, and after the aggregate is decomposed, at least a part of the mixed acid is evaporated, This is a step of obtaining a decomposition product.
骨材の種類は特に限定されず、例えば、従来のコンクリート材料として使用される土砂、岩石等が挙げられる。後段の処理を円滑に進めるために、骨材は予め粉砕されていることが好ましい。 The kind of aggregate is not specifically limited, For example, the earth and sand, rocks, etc. which are used as a conventional concrete material are mentioned. The aggregate is preferably pulverized in advance in order to smoothly proceed with the subsequent processing.
第一の混酸に含まれるフッ酸と硝酸の混合比としては、例えば、質量比で、フッ酸:硝酸=1:10〜1:1が好ましく、フッ酸:硝酸=1:5〜1:1がより好ましく、フッ酸:硝酸=1:3〜1:1がさらに好ましい。上記範囲の混合比であると、骨材を短時間で分解することができる。 The mixing ratio of hydrofluoric acid and nitric acid contained in the first mixed acid is, for example, preferably hydrofluoric acid: nitric acid = 1: 10 to 1: 1 by mass ratio, and hydrofluoric acid: nitric acid = 1: 5 to 1: 1. Is more preferable, and hydrofluoric acid: nitric acid = 1: 3 to 1: 1 is more preferable. When the mixing ratio is in the above range, the aggregate can be decomposed in a short time.
第一の混酸中のフッ酸濃度は、容易に取り扱うことができるように、希釈水で調整することができる。上記フッ酸濃度は、第一の混酸の総質量に対して、例えば、4〜24質量%が好ましく、8〜24質量%がより好ましく、12〜24質量%がさらに好ましい。 The hydrofluoric acid concentration in the first mixed acid can be adjusted with dilution water so that it can be easily handled. The hydrofluoric acid concentration is, for example, preferably 4 to 24% by mass, more preferably 8 to 24% by mass, and still more preferably 12 to 24% by mass with respect to the total mass of the first mixed acid.
第一の混酸中の硝酸濃度は、容易に取り扱うことができるように、希釈水で調整することができる。上記硝酸濃度は、第一の混酸の総質量に対して、例えば、10〜45質量%が好ましく、20〜45質量%がより好ましく、30〜45質量%がさらに好ましい。 The concentration of nitric acid in the first mixed acid can be adjusted with dilution water so that it can be easily handled. The nitric acid concentration is, for example, preferably 10 to 45% by mass, more preferably 20 to 45% by mass, and still more preferably 30 to 45% by mass with respect to the total mass of the first mixed acid.
骨材と第一の混酸を混合する方法としては、例えば、耐酸性の樹脂製容器中で、骨材に第一の混酸を適量注ぐ方法が挙げられる。骨材と第一の混酸を混合してなる混合液を加熱することにより、骨材の分解を速めることが好ましい。骨材の固形分の殆どが分解して、大半が溶解したことを目視で確認した後、容器中に残った第一の混酸の少なくとも一部、好ましくは全部を蒸発させる。 Examples of the method of mixing the aggregate and the first mixed acid include a method of pouring an appropriate amount of the first mixed acid into the aggregate in an acid-resistant resin container. It is preferable to expedite the decomposition of the aggregate by heating a mixed solution obtained by mixing the aggregate and the first mixed acid. After visually confirming that most of the solid content of the aggregate is decomposed and most of the aggregate is dissolved, at least a part, preferably all, of the first mixed acid remaining in the container is evaporated.
第一の混酸を蒸発させる方法としては、例えば、加熱したり、減圧したりする等の公知方法が適用される。第一の混酸を全て蒸発させてもよいし、一部を蒸発させずに残してもよい。全てを蒸発した場合には、容器中に骨材の分解物である粉体が残る。一部を蒸発させずに残した場合には、第一の混酸中に骨材の分解物が沈殿、分散又は溶解した状態で存在する。 As a method of evaporating the first mixed acid, for example, a known method such as heating or decompressing is applied. All of the first mixed acid may be evaporated, or a part thereof may be left without being evaporated. When all is evaporated, powder which is a decomposition product of aggregate remains in the container. When a part is left without being evaporated, an aggregate decomposition product is present in the first mixed acid in a precipitated, dispersed or dissolved state.
<濃縮工程>
本実施形態の濃縮工程は、前記分解物と過塩素酸(HClO4)を混合し、得られた混合液を加熱し、前記混合液から揮発成分の少なくとも一部を蒸発させることにより、前記混合液の濃縮物を得る工程である。
<Concentration process>
The concentration step of the present embodiment is performed by mixing the decomposition product and perchloric acid (HClO 4 ), heating the obtained mixed solution, and evaporating at least a part of volatile components from the mixed solution, thereby mixing the mixture. In this step, a liquid concentrate is obtained.
前記分解物に混合する過塩素酸の濃度は、希釈水によって調整されることが好ましく、過塩素酸水溶液の総質量に対して、例えば、40〜70質量%が好ましく、50〜70質量%がより好ましく、60〜70質量%がさらに好ましい。上記濃度範囲であると、前記分解物に対して過塩素酸を充分に反応させることができる。 The concentration of perchloric acid mixed with the decomposition product is preferably adjusted with dilution water, and is preferably 40 to 70% by mass, for example, 50 to 70% by mass with respect to the total mass of the perchloric acid aqueous solution. More preferably, 60-70 mass% is further more preferable. When the concentration is within the above range, perchloric acid can be sufficiently reacted with the decomposition product.
前記分解物と過塩素酸を混合する方法としては、例えば、耐酸性の樹脂製容器中で、前記分解物に過塩素酸水溶液を適量注ぐ方法が挙げられる。前記分解物に少量の第一の混酸が残留している場合にも、過塩素酸水溶液を注いで構わない。 Examples of the method of mixing the decomposition product and perchloric acid include a method of pouring an appropriate amount of an aqueous solution of perchloric acid into the decomposition product in an acid-resistant resin container. Even when a small amount of the first mixed acid remains in the decomposition product, an aqueous perchloric acid solution may be poured.
前記分解物と過塩素酸水溶液を混合してなる混合液を加熱し、水分、過塩素酸等の揮発成分の少なくとも一部、好ましくは全部を蒸発させ、前記混合液の濃縮物を得る。
濃縮の目安としては、前記混合液から白煙が出るまで濃縮することが好ましい。過塩素酸の白煙が出ることは、過塩素酸を含む前記混合液が高濃度に濃縮されたことを示している。この濃縮の過程において、前記分解物の固形分の殆どが分解して、大半が溶解したことを目視で確認することができる。
A mixed solution obtained by mixing the decomposition product and perchloric acid aqueous solution is heated to evaporate at least a part, preferably all, of volatile components such as moisture and perchloric acid to obtain a concentrate of the mixed solution.
As a standard of concentration, it is preferable to concentrate until white smoke is emitted from the mixed solution. The appearance of white smoke of perchloric acid indicates that the mixture containing perchloric acid has been concentrated to a high concentration. In the process of concentration, it can be visually confirmed that most of the solid content of the decomposition product is decomposed and most of the decomposition is dissolved.
前記混合液中の揮発成分の全てを蒸発させた場合には、容器中に前記濃縮物である粉体が残る。揮発成分の一部を蒸発させずに残した場合には、前記混合液中に濃縮物が沈殿、分散又は溶解した状態で存在する。 When all of the volatile components in the liquid mixture are evaporated, the powder as the concentrate remains in the container. When a part of the volatile component is left without being evaporated, the concentrate is present in the mixed solution in a precipitated, dispersed or dissolved state.
<溶解工程>
本実施形態の溶解工程は、前記濃縮物とホウ酸及び硝酸を含む第二の混酸とを混合し、前記濃縮物を溶解する工程である。
<Dissolution process>
The dissolution step of the present embodiment is a step of mixing the concentrate and a second mixed acid containing boric acid and nitric acid to dissolve the concentrate.
第二の混酸に含まれるホウ酸と硝酸の混合比としては、例えば、質量比で、ホウ酸:硝酸=1:100〜1:6が好ましく、ホウ酸:硝酸=1:20〜1:6がより好ましく、ホウ酸:硝酸=1:10〜1:6がさらに好ましい。上記範囲の混合比であると、濃縮物に含まれる沈殿状のフッ化物を短時間で充分に溶解することができる。 As a mixing ratio of boric acid and nitric acid contained in the second mixed acid, for example, boric acid: nitric acid = 1: 100 to 1: 6 is preferable in terms of mass ratio, and boric acid: nitric acid = 1: 20 to 1: 6. Is more preferable, and boric acid: nitric acid = 1: 10 to 1: 6 is more preferable. When the mixing ratio is in the above range, the precipitated fluoride contained in the concentrate can be sufficiently dissolved in a short time.
第二の混酸中の硝酸濃度は、容易に取り扱うことができるように、希釈水で調整することができる。上記硝酸濃度は、第二の混酸の総質量に対して、例えば、1〜10質量%が好ましく、3〜10質量%がより好ましく、5〜10質量%がさらに好ましい。 The concentration of nitric acid in the second mixed acid can be adjusted with dilution water so that it can be easily handled. The nitric acid concentration is, for example, preferably 1 to 10% by mass, more preferably 3 to 10% by mass, and still more preferably 5 to 10% by mass with respect to the total mass of the second mixed acid.
第二の混酸中のホウ酸濃度は、前記濃縮物に含まれる沈殿状のフッ化物を充分に溶解する観点から、第二の混酸の総質量に対して、例えば、3〜15質量%が好ましく、5〜15質量%がより好ましく、10〜15質量%がさらに好ましい。 The boric acid concentration in the second mixed acid is preferably, for example, 3 to 15% by mass with respect to the total mass of the second mixed acid, from the viewpoint of sufficiently dissolving the precipitated fluoride contained in the concentrate. 5 to 15% by mass is more preferable, and 10 to 15% by mass is more preferable.
前記濃縮物と第二の混酸を混合する方法としては、例えば、耐酸性の樹脂製容器中で、前記濃縮物に第二の混酸を適量注ぐ方法が挙げられる。前記濃縮物に少量の過塩素酸水溶液が残留している場合にも、第二の混酸を注いで構わない。混合後、5〜60分程度で前記濃縮物が溶解したことを目視で確認することができる。前記濃縮物の溶解を速めるために、第二の混酸を加熱してもよい。 Examples of the method of mixing the concentrate and the second mixed acid include a method of pouring an appropriate amount of the second mixed acid into the concentrate in an acid-resistant resin container. Even when a small amount of perchloric acid aqueous solution remains in the concentrate, the second mixed acid may be poured. After mixing, it can be visually confirmed that the concentrate has dissolved in about 5 to 60 minutes. In order to accelerate dissolution of the concentrate, the second mixed acid may be heated.
前記濃縮工程で得られる濃縮物には、フッ化物が含まれる。このフッ化物としては、例えば、アルカリ金属元素、アルカリ土類金属元素、希土類元素、及び遷移金属元素からなる群から選ばれる1以上のフッ化物が挙げられる。
これらのフッ化物は、ホウ酸を含まないフッ酸や硝酸中においては難溶性の固形成分であり、沈殿し易いため、溶液試料を分析対象とするICP−MS分析においては検出できなかった。
本発明においては、前記溶解工程でホウ酸を含む第二の混酸を用いたことにより、これらのフッ化物が溶解されるので、ICP−MS分析によって上記の元素を高精度に分析することができる。
The concentrate obtained in the concentration step includes fluoride. Examples of the fluoride include one or more fluorides selected from the group consisting of alkali metal elements, alkaline earth metal elements, rare earth elements, and transition metal elements.
These fluorides are hardly soluble solid components in hydrofluoric acid and nitric acid not containing boric acid, and are easily precipitated, and thus could not be detected by ICP-MS analysis using a solution sample as an analysis target.
In the present invention, since these fluorides are dissolved by using the second mixed acid containing boric acid in the dissolving step, the above elements can be analyzed with high accuracy by ICP-MS analysis. .
<分析工程>
前記濃縮物を第二の混酸で溶解して得た溶解液は、骨材に含まれていた各種の元素を含む。この溶解液中の元素は、ICP−MSを用いた公知方法により分析することができる。また、ICP−MS測定以外の公知の元素分析方法を適用してもよい。
<Analysis process>
A solution obtained by dissolving the concentrate with the second mixed acid contains various elements contained in the aggregate. Elements in this solution can be analyzed by a known method using ICP-MS. Moreover, you may apply well-known elemental analysis methods other than ICP-MS measurement.
本実施形態の分析方法のフローチャートを図1に示す。予め粉砕した骨材試料をフッ酸・硝酸の混酸によって分解する(分解工程2)。続いて、得られた分解物に過塩素酸を添加して、白煙が出るまで濃縮する(濃縮工程4)。続いて、得られた濃縮物にホウ酸及び硝酸を含む混合溶液を添加して、前記濃縮物中に含まれていたフッ化物沈殿を溶解する(溶解工程6)。得られた溶液の体積を蒸留水や硝酸等で調整し、ICP−MSによって元素の濃度測定を行う(分析工程8)。 A flow chart of the analysis method of this embodiment is shown in FIG. The previously crushed aggregate sample is decomposed with a mixed acid of hydrofluoric acid and nitric acid (decomposition step 2). Subsequently, perchloric acid is added to the resulting decomposition product and concentrated until white smoke is produced (concentration step 4). Subsequently, a mixed solution containing boric acid and nitric acid is added to the obtained concentrate to dissolve the fluoride precipitate contained in the concentrate (dissolution step 6). The volume of the obtained solution is adjusted with distilled water, nitric acid or the like, and the concentration of the element is measured by ICP-MS (analysis step 8).
[比較例1]
種々の元素分析方法によって予め元素濃度が分かっている標準岩石JA-1を使用した。粉砕した標準岩石0.5gを、濃フッ酸5mLと濃硝酸5mLの混酸中で3時間、120℃で加温し、標準岩石の分解物を得た。上記の加温によって殆どの混酸は蒸発した。
上記分解物に濃過塩素酸5mLを添加し、白煙が出るまで230℃で加熱し、濃縮物を得た。上記の加熱によって殆どの過塩素酸は蒸発した。
上記濃縮物を少量の5%硝酸に投入して混合した後、5%硝酸を加えて100mLに調整し、ICP−MSで元素分析した。
[Comparative Example 1]
Standard rock JA-1 whose element concentration was previously known by various elemental analysis methods was used. 0.5 g of crushed standard rock was heated at 120 ° C for 3 hours in a mixed acid of 5 mL of concentrated hydrofluoric acid and 5 mL of concentrated nitric acid to obtain a decomposition product of standard rock. Most of the mixed acid evaporated by the above heating.
Concentrated perchloric acid (5 mL) was added to the decomposition product, and the mixture was heated at 230 ° C. until white smoke was emitted to obtain a concentrate. Most of the perchloric acid was evaporated by the above heating.
The above concentrate was put into a small amount of 5% nitric acid and mixed, then 5% nitric acid was added to adjust to 100 mL, and elemental analysis was performed by ICP-MS.
[実施例1]
比較例1と同じ方法により濃縮物を得た。
上記濃縮物及びホウ酸0.5gを5%硝酸10mLに投入して10分間混合した後、5%硝酸を適量加えて100mLに調整し、ICP−MSで元素分析した。
[Example 1]
A concentrate was obtained in the same manner as in Comparative Example 1.
The concentrate and 0.5 g of boric acid were added to 10 mL of 5% nitric acid, mixed for 10 minutes, adjusted to 100 mL by adding an appropriate amount of 5% nitric acid, and subjected to elemental analysis by ICP-MS.
比較例1及び実施例1の元素分析の結果を図2のグラフに示す。
グラフの横軸に種々の元素をとり、グラフの縦軸は各元素濃度の真の値に対する測定値の比(測定値/真の値)である。標準岩石の真の値と測定値が近いほど、その比は1に近づく。
図2の結果から明らかなように、本発明に係る実施例1の分析方法は、比較例1の分析方法に比べて、多くの元素、例えば、Sc,V,Cr,Mn,Fe,Co,Ni,Zn,Se,Rb,Sr,Sb,Cs,Ba,La,Ce,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Tm,Yb等について、高い精度で岩石中の含有量を分析することができた。
The results of elemental analysis of Comparative Example 1 and Example 1 are shown in the graph of FIG.
The horizontal axis of the graph represents various elements, and the vertical axis of the graph represents the ratio of the measured value to the true value of each element concentration (measured value / true value). The closer the true value of the standard rock is to the measured value, the closer the ratio is to 1.
As is clear from the results of FIG. 2, the analysis method of Example 1 according to the present invention has more elements than the analysis method of Comparative Example 1, for example, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Se, Rb, Sr, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, etc. We were able to.
以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、公知の構成の付加、省略、置換、およびその他の変更が可能である。 The configurations and combinations thereof in the embodiments described above are examples, and additions, omissions, substitutions, and other modifications of known configurations are possible without departing from the spirit of the present invention.
本発明は、放射化コンクリートを取り扱う分野に広く適用できる。 The present invention can be widely applied to the field of handling activated concrete.
2…分解工程、4…濃縮工程、6…溶解工程、8…分析工程 2 ... Decomposition process, 4 ... Concentration process, 6 ... Dissolution process, 8 ... Analysis process
Claims (7)
前記分解物と過塩素酸を混合し、得られた混合液を加熱し、前記混合液から揮発成分の少なくとも一部を蒸発させることにより、前記混合液の濃縮物を得る濃縮工程と、
前記濃縮物とホウ酸及び硝酸を含む第二の混酸とを混合し、前記濃縮物を溶解した溶解液を得る溶解工程と、
前記溶解液に含まれる元素を分析する分析工程と、
を有することを特徴とする骨材の元素分析方法。 Decomposing the aggregate by mixing the aggregate with a first mixed acid containing hydrofluoric acid and nitric acid, decomposing the aggregate, and evaporating at least a portion of the first mixed acid. Process,
A concentration step of mixing the decomposition product and perchloric acid, heating the obtained mixed solution, and evaporating at least a part of volatile components from the mixed solution to obtain a concentrate of the mixed solution;
Mixing the concentrate and a second mixed acid containing boric acid and nitric acid to obtain a solution in which the concentrate is dissolved;
An analysis step of analyzing elements contained in the solution;
An elemental analysis method for an aggregate characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015254177A JP6573117B2 (en) | 2015-12-25 | 2015-12-25 | Aggregate elemental analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015254177A JP6573117B2 (en) | 2015-12-25 | 2015-12-25 | Aggregate elemental analysis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017116467A JP2017116467A (en) | 2017-06-29 |
JP6573117B2 true JP6573117B2 (en) | 2019-09-11 |
Family
ID=59234319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015254177A Active JP6573117B2 (en) | 2015-12-25 | 2015-12-25 | Aggregate elemental analysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6573117B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110686954A (en) * | 2019-11-12 | 2020-01-14 | 兰州大学 | Pretreatment method for extracting plant fossil cuticle |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019191012A (en) * | 2018-04-25 | 2019-10-31 | 清水建設株式会社 | Element analysis method of inorganic sample |
CN112853097A (en) * | 2020-12-31 | 2021-05-28 | 广西国盛稀土新材料有限公司 | Method for recovering rare earth elements in lutetium yttrium silicate |
-
2015
- 2015-12-25 JP JP2015254177A patent/JP6573117B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110686954A (en) * | 2019-11-12 | 2020-01-14 | 兰州大学 | Pretreatment method for extracting plant fossil cuticle |
Also Published As
Publication number | Publication date |
---|---|
JP2017116467A (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Osmanlioglu | Decontamination of radioactive wastewater by two-staged chemical precipitation | |
Zhang et al. | Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples | |
JP6573117B2 (en) | Aggregate elemental analysis method | |
Vajda et al. | Determination of transuranium isotopes (Pu, Np, Am) by radiometric techniques: a review of analytical methodology | |
Gasser et al. | Process for lanthanides-Y leaching from phosphogypsum fertilizers using weak acids | |
Atkins et al. | The determination of tantalum and tungsten in rocks and meteorites by neutron activation analysis | |
Snow et al. | 135Cs/137Cs isotopic composition of environmental samples across Europe: environmental transport and source term emission applications | |
Labrecque et al. | Cloud point extraction of plutonium in environmental matrixes coupled to ICPMS and α spectrometry in highly acidic conditions | |
Saueia et al. | Availability of metals and radionuclides present in phosphogypsum and phosphate fertilizers used in Brazil | |
Guerin et al. | Determination of neptunium in environmental samples by extraction chromatography after valence adjustment | |
Kazi et al. | Effective separation of Am (III) and Cm (III) using a DGA resin via the selective oxidation of Am (III) to Am (V) | |
Nete et al. | Comparative study of tantalite dissolution using different fluoride salts as fluxes | |
Asmussen et al. | Getter Incorporation into Cast Stone and Solid State Characterizations | |
Dargie et al. | Optimized sample preparation procedures for the analysis of solid materials by total-reflection XRF | |
Trdin et al. | Fast decomposition procedure of solid samples by lithium borates fusion employing salicylic acid | |
Croudace et al. | A novel approach for the rapid decomposition of Actinide™ resin and its application to measurement of uranium and plutonium in natural waters | |
JP2019191012A (en) | Element analysis method of inorganic sample | |
JP2011214977A (en) | Method of analyzing metal element in resin material | |
Feidaki et al. | Studies on the separation of Ra (II), U (VI) and Eu (III) from aqueous solution using MnO 2-resin | |
Yang et al. | A rapid method for determining 90 Sr in leaching solution from cement solidification of low and intermediate level radioactive wastes | |
Hubley et al. | Rapid dissolution of surrogate nuclear debris using ammonium bifluoride fusion and indirect sonication dissolution methods | |
Reynolds et al. | Pitzer Model Anion–Anion and Ternary Interaction Parameters for the Na 2 C 2 O 4–NaOH–H 2 O and Na 2 C 2 O 4–NaNO 3–H 2 O Systems | |
JP2007271409A (en) | Analysis method of uranium and/or thorium in soil | |
Egorov et al. | Extraction of REE by using solutions of H2SO4 and NH4F | |
Muravyeva et al. | Determination of fluorine in aluminum production waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180615 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20181005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190731 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6573117 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |