JP6572790B2 - Wafer double-side polishing method - Google Patents

Wafer double-side polishing method Download PDF

Info

Publication number
JP6572790B2
JP6572790B2 JP2016017771A JP2016017771A JP6572790B2 JP 6572790 B2 JP6572790 B2 JP 6572790B2 JP 2016017771 A JP2016017771 A JP 2016017771A JP 2016017771 A JP2016017771 A JP 2016017771A JP 6572790 B2 JP6572790 B2 JP 6572790B2
Authority
JP
Japan
Prior art keywords
compression
wafer
polishing
polishing cloth
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016017771A
Other languages
Japanese (ja)
Other versions
JP2017136653A (en
Inventor
俊介 御厨
俊介 御厨
三浦 友紀
友紀 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2016017771A priority Critical patent/JP6572790B2/en
Priority to PCT/JP2016/085701 priority patent/WO2017134914A1/en
Priority to TW105140592A priority patent/TWI637812B/en
Publication of JP2017136653A publication Critical patent/JP2017136653A/en
Application granted granted Critical
Publication of JP6572790B2 publication Critical patent/JP6572790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/12Lapping plates for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Description

本発明は、ウェーハの表裏面を同時に研磨する両面研磨方法に関し、特に、ウェーハの全面形状において優れた平坦度が得られるとともに、ウェーハ外周におけるダレを十分に抑制することができるウェーハの両面研磨方法に関するものである。   The present invention relates to a double-side polishing method for simultaneously polishing the front and back surfaces of a wafer, and in particular, a double-side polishing method for a wafer capable of obtaining excellent flatness in the overall shape of the wafer and sufficiently suppressing sagging on the outer periphery of the wafer. It is about.

例えばシリコン単結晶をスライスして得られたシリコンウェーハ等の半導体ウェーハの製造工程では、ウェーハ形状の平坦化や表面粗さを改善する等の目的から、ウェーハの表裏面を同時に研磨する両面研磨が一般的に採用されている。   For example, in the manufacturing process of a semiconductor wafer such as a silicon wafer obtained by slicing a silicon single crystal, double-side polishing that simultaneously polishes the front and back surfaces of the wafer is performed for the purpose of improving the flatness of the wafer shape and the surface roughness. Generally adopted.

両面研磨は、一般に、研磨布が貼付された上定盤と下定盤でウェーハを狭圧し、ウェーハにスラリーを供給しながら、上定盤及び下定盤を回転駆動させて、ウェーハの表裏面を同時に研磨する方法である。図12は、一般的な両面研磨工程において、研磨時間が図12(a)〜図12(e)の順に経過する際に、その経過に従ってウェーハの形状が変化していく様子を表した図である。なお、図12には、図12(a)〜図12(e)の各時点におけるウェーハの厚さとキャリアプレートの厚さの大小関係も示している。図12(a)〜図12(e)において、縦軸はウェーハの厚みを示しており、横軸はウェーハの半径をRとしたときのウェーハ中心からの位置を示している。即ち、これらの図は、それぞれウェーハの鉛直方向における断面形状の様子を、ウェーハ中心からの各位置における厚さによって表したものであり、右拡大図はそのウェーハ外周(エッジ部)の一端を拡大したものである。   In both-side polishing, generally, the upper and lower surface plates with a polishing cloth are applied to narrow the wafer, and while supplying slurry to the wafer, the upper and lower surface plates are rotated to move the front and back surfaces of the wafer simultaneously. This is a polishing method. FIG. 12 is a diagram showing how the shape of the wafer changes as the polishing time elapses in the order of FIGS. 12A to 12E in a general double-side polishing process. is there. FIG. 12 also shows the magnitude relationship between the thickness of the wafer and the thickness of the carrier plate at each time point in FIGS. 12 (a) to 12 (e). 12A to 12E, the vertical axis indicates the thickness of the wafer, and the horizontal axis indicates the position from the wafer center when the radius of the wafer is R. In other words, these figures show the state of the cross-sectional shape in the vertical direction of the wafer by the thickness at each position from the center of the wafer, and the right enlarged view enlarges one end of the wafer outer periphery (edge part). It is a thing.

図12に示すように、両面研磨では、上定盤及び下定盤に貼付された研磨布でウェーハの表裏面が同時に研磨され、研磨時間の経過とともに、図12(a)〜図12(e)のように形状が変化していく。図12(a)に示す研磨工程の初期段階では、ウェーハ全面形状(グローバル形状)は、中心付近の厚みが大きい凸形状となっており、ウェーハ外周にも大きなダレ(Roll off)がみられる。また、この初期段階では、ウェーハの厚みはキャリアプレートの厚みより十分に厚くなっている。続く図12(b)の段階では、ウェーハの全面形状は、上述の凸形状よりも若干平坦な形状に近づくものの、初期段階でみられたウェーハ外周のダレは残っている。更に研磨が進行し、図12(c)の段階になると、ウェーハの厚みとキャリアプレートの厚みは、ほぼ等しくなり、ウェーハの全面形状は、ほぼ平坦な形状となる。また、研磨布は弾性体であり、一定の圧力を掛けて研磨することから、特に図12(a)、図12(b)の段階では、研磨中に研磨布が一定量沈み込むことで、ウェーハ外周には中心付近に比べて大きな応力が掛かっている。一方、ウェーハの厚みとキャリアプレートの厚みがほぼ等しくなると、ウェーハ外周に掛かる研磨布からの応力がキャリアプレートに分散され、当該応力が低減される。このため、図12(c)の段階では、ウェーハ外周にみられたダレ量も小さくなっている。   As shown in FIG. 12, in the double-side polishing, the front and back surfaces of the wafer are simultaneously polished with the polishing cloth affixed to the upper surface plate and the lower surface plate, and as the polishing time elapses, FIGS. 12 (a) to 12 (e). The shape changes like this. In the initial stage of the polishing step shown in FIG. 12A, the wafer whole surface shape (global shape) is a convex shape with a large thickness near the center, and a large sag (Roll off) is also seen on the outer periphery of the wafer. In this initial stage, the thickness of the wafer is sufficiently thicker than the thickness of the carrier plate. In the subsequent stage of FIG. 12B, the overall shape of the wafer approaches a flat shape rather than the above-mentioned convex shape, but the sagging of the wafer outer periphery seen in the initial stage remains. When the polishing further proceeds and the stage of FIG. 12C is reached, the thickness of the wafer and the thickness of the carrier plate are substantially equal, and the entire surface shape of the wafer becomes a substantially flat shape. In addition, since the polishing cloth is an elastic body and is polished by applying a certain pressure, the polishing cloth sinks a certain amount during polishing, particularly at the stage of FIGS. 12 (a) and 12 (b). A greater stress is applied to the outer periphery of the wafer than in the vicinity of the center. On the other hand, when the thickness of the wafer and the thickness of the carrier plate are substantially equal, the stress from the polishing cloth applied to the outer periphery of the wafer is distributed to the carrier plate, and the stress is reduced. For this reason, at the stage of FIG. 12C, the sagging amount seen on the wafer outer periphery is also small.

その後、図12(d)の段階まで研磨が進行すると、ウェーハ中心付近が凹んだ形状となり、ウェーハ外周が切上がり形状となる。この段階から、更に研磨が進行して、図12(e)の段階になると、図12(d)の段階における形状から、ウェーハ中心付近が更に凹んだ形状となり、ウェーハ外周の切上がり量も更に大きくなる。また、ウェーハの厚みも、キャリアプレートの厚みに対して更に薄くなっている。   Thereafter, when the polishing proceeds to the stage of FIG. 12D, the shape near the center of the wafer is recessed, and the periphery of the wafer is rounded up. From this stage, the polishing further progresses to the stage shown in FIG. 12 (e). The shape in the stage shown in FIG. 12 (d) is further recessed near the center of the wafer, and the round-up amount on the outer periphery of the wafer is further increased. growing. Further, the thickness of the wafer is further reduced with respect to the thickness of the carrier plate.

以上のことから、平坦度が高く、ウェーハ外周のダレが少ないウェーハを得るためには、ウェーハの厚みがキャリアプレートの厚みとほぼ同等になるように制御して研磨を行うのが一般的であり、この制御は、従来、研磨時間の調整により行っていた。   From the above, in order to obtain a wafer with high flatness and little sagging on the outer periphery of the wafer, it is common to perform polishing while controlling the thickness of the wafer to be approximately equal to the thickness of the carrier plate. This control is conventionally performed by adjusting the polishing time.

しかし、研磨時間の調整による制御では、装置を停止するタイミングのずれや研磨環境の影響等を受けることで、正確に制御することが困難であった。また、近年のマイクロエレクトロニクスデバイス構造の微細化や半導体ウェーハの大口径化等に伴い、製造されるウェーハ形状、特に平坦度やナノトポロジー等のより高度な制御が求められている。このため、より良好な平坦度やナノトポロジーを有するウェーハを得るために、研磨工程おける様々な改良の試みが検討されている。   However, in the control by adjusting the polishing time, it is difficult to control accurately due to the shift of the timing of stopping the apparatus and the influence of the polishing environment. Further, with the recent miniaturization of microelectronic device structures and the increase in the diameter of semiconductor wafers, higher control of the shape of the manufactured wafer, particularly flatness and nanotopology, is required. For this reason, in order to obtain a wafer having better flatness and nanotopology, various attempts for improvement in the polishing process have been studied.

例えば、研磨時にウェーハ表面に掛かる研磨布からの圧力が、ウェーハ面内で不均一に分布すると、研磨速度及び研磨量もウェーハ面内において不均一となり、ウェーハが平坦に研磨されなくなる。このような問題を解消する方法として、定盤に貼付される研磨布を、定盤に貼付する前に、研磨装置とは別の装置を使用して研磨時の使用温度よりも高い温度及び/又は研磨時の圧力と同じかそれ以上の圧力で圧縮させる方法が開示されている(例えば、特許文献1参照。)。粘弾性体である研磨布は、荷重を加えた直後は急激に、その後は緩慢に変形が進行する。また、荷重を加えた時の研磨布の変位量(厚さの減少量)は、荷重を加えている時間に大きく依存するが、研磨布の位置により、研磨荷重の存在時間が不均一になることがある。研磨布の位置によって研磨荷重の存在時間が不均一であると、研磨布の変位量も研磨布の各位置で均一とはならず、研磨されるウェーハの平坦度も損なわれる。上記特許文献1の方法では、研磨装置以外の装置を用いて、定盤に貼付する前の研磨布を高温、高圧条件にて圧縮させ、研磨直後に急激に進行する研磨布の変形を出し切らせることで、研磨中に起こる研磨布のクリープ変形を抑制し、これによりウェーハの平坦度等を高めている。   For example, when the pressure from the polishing cloth applied to the wafer surface during polishing is unevenly distributed in the wafer surface, the polishing rate and the polishing amount are also uneven in the wafer surface, and the wafer is not polished flatly. As a method for solving such a problem, before the polishing cloth to be attached to the surface plate is attached to the surface plate, using a device different from the polishing device, a temperature higher than the use temperature at the time of polishing and / or Or the method of compressing with the pressure more than the pressure at the time of grinding | polishing or more is disclosed (for example, refer patent document 1). The polishing cloth, which is a viscoelastic body, undergoes a rapid deformation immediately after the load is applied, and then slowly deforms thereafter. Moreover, the displacement amount (thickness reduction amount) of the polishing cloth when a load is applied largely depends on the time during which the load is applied, but the polishing load existence time becomes non-uniform depending on the position of the polishing cloth. Sometimes. If the presence time of the polishing load is not uniform depending on the position of the polishing cloth, the amount of displacement of the polishing cloth is not uniform at each position of the polishing cloth, and the flatness of the wafer to be polished is impaired. In the method of Patent Document 1, the polishing cloth before being attached to the surface plate is compressed under high temperature and high pressure conditions using an apparatus other than the polishing apparatus, and the deformation of the polishing cloth that proceeds rapidly immediately after polishing is completely removed. Thus, creep deformation of the polishing cloth that occurs during polishing is suppressed, thereby improving the flatness of the wafer.

特開平11−267978号公報(請求項2、段落[0006]〜段落[0008]、段落[0022])JP-A-11-267978 (Claim 2, paragraphs [0006] to [0008], paragraph [0022])

しかしながら、上記特許文献1に示された研磨方法では、ウェーハの全面形状における平坦度は高められるものの、特に、ウェーハ外周のダレを抑制する効果までは十分な検討がなされていない。また、上述の研磨時間を調整して、ウェーハの厚みとキャリアプレートの厚みを同等になるように制御する一般的な方法では、これらが同等の厚みになっている状態でも、研磨時の加圧により弾性体である研磨布がキャリアプレートとウェーハの隙間に入り込むことで、ウェーハ外周に掛かる応力がキャリアプレートに十分に分散されず、当該応力が低減されない場合がある。そのため、この両者間の関係を制御して研磨を行うという通常の方法のみでは、例えば研磨時間をより精度良く調整しても、ウェーハ外周のダレを抑制する効果が十分に得られない場合がある。このように、従来の方法では、特にウェーハ外周のダレを十分に抑制できないことから、ウェーハ外周における平坦度とウェーハの全面形状における平坦度を両立させて研磨を行うのが難しく、近年の要求に十分に対応することが困難であった。   However, in the polishing method disclosed in Patent Document 1, although the flatness of the entire shape of the wafer can be increased, sufficient investigation has not been made to the effect of suppressing the sagging of the outer periphery of the wafer. In addition, in the general method of adjusting the above polishing time and controlling the thickness of the wafer and the thickness of the carrier plate to be equal, the pressure applied during polishing even when these are equal in thickness As a result, the polishing cloth, which is an elastic body, enters the gap between the carrier plate and the wafer, so that the stress applied to the outer periphery of the wafer is not sufficiently distributed to the carrier plate, and the stress may not be reduced. For this reason, there is a case in which the effect of suppressing sagging of the outer periphery of the wafer may not be sufficiently obtained even by adjusting the polishing time more accurately, for example, only by the usual method of controlling the relationship between the two and performing polishing. . As described above, since the conventional method cannot sufficiently suppress the sagging of the outer periphery of the wafer, it is difficult to perform polishing while achieving both the flatness of the outer periphery of the wafer and the flatness of the entire shape of the wafer. It was difficult to respond adequately.

本発明の目的は、ウェーハの全面形状において優れた平坦度が得られるとともに、ウェーハ外周におけるダレを十分に抑制することができるウェーハの両面研磨方法を提供することにある。   An object of the present invention is to provide a double-side polishing method for a wafer which can obtain excellent flatness in the entire shape of the wafer and can sufficiently suppress sagging on the outer periphery of the wafer.

本発明の第1の観点は、中央部に中央孔をそれぞれ有し、研磨面に研磨布がそれぞれ貼付されたドーナツ形状の上定盤及び下定盤でウェーハを狭圧して、スラリー供給孔からウェーハにスラリーを供給しながら、上定盤と下定盤を回転駆動させることにより、ウェーハの両面を研磨する両面研磨方法において、上定盤及び下定盤にそれぞれ貼付された研磨布の双方に、当該研磨布の外周又は内周を研磨布圧縮治具を用いて鉛直方向に圧縮して成型した外周側圧縮部又は内周側圧縮部のいずれか一方或いは双方が設けられ、外周側圧縮部の水平方向における圧縮幅をA、内周側圧縮部の水平方向における圧縮幅をB、ウェーハの直径をDとするとき、前記圧縮幅Aが0.15×D≦A≦0.25×Dを満たし、前記圧縮幅Bが0.15×D≦B≦0.25×Dを満たすことを特徴とする。 According to a first aspect of the present invention, a wafer is narrowed by a doughnut-shaped upper and lower surface plates each having a central hole at the center and a polishing cloth affixed to the polishing surface. In the double-side polishing method for polishing both surfaces of the wafer by rotating the upper and lower surface plates while supplying the slurry to the polishing plate, the polishing is applied to both the upper and lower surface polishing cloths. Either or both of the outer peripheral side compression part and the inner peripheral side compression part, which are formed by compressing the outer periphery or inner periphery of the cloth in the vertical direction using an abrasive cloth compression jig, are provided, and the horizontal direction of the outer peripheral side compression part When the compression width in A is A, the compression width in the horizontal direction of the inner circumferential side compression portion is B, and the diameter of the wafer is D, the compression width A satisfies 0.15 × D ≦ A ≦ 0.25 × D , It said compression width B is 0.15 × D ≦ B ≦ And satisfies the .25 × D.

本発明の第の観点は、第1の観点に基づく発明であって、更に内周側圧縮部及び外周側圧縮部の鉛直方向における圧縮量が、研磨布の圧縮前の厚さの0.77%以上であることを特徴とする。 The second aspect of the present invention is an invention based on the first aspect , wherein the compression amount in the vertical direction of the inner peripheral side compression portion and the outer peripheral side compression portion is 0. 0 of the thickness of the polishing pad before compression. It is characterized by being 77% or more.

本発明の第の観点は、第1又は第2の観点に基づく発明であって、更に上定盤及び下定盤にそれぞれ貼付された研磨布の双方に、外周側圧縮部及び内周側圧縮部の双方が設けられていることを特徴とする。 A third aspect of the present invention is an invention based on the first or second aspect , and further includes an outer peripheral side compression portion and an inner peripheral side compression on both of the polishing cloths attached to the upper surface plate and the lower surface plate, respectively. Both parts are provided.

本発明の第の観点は、第1ないし第3の観点に基づく発明であって、更に研磨布が不織布系研磨布、ポリウレタン研磨布又はスウェード系研磨布であることを特徴とする。 A fourth aspect of the present invention is an invention based on the first to third aspects, and is characterized in that the polishing cloth is a non-woven cloth polishing cloth, a polyurethane polishing cloth or a suede polishing cloth.

本発明の第の観点は、第1ないし第4の観点に基づく発明であって、更に研磨布圧縮治具が、1つのパーツから構成されたリング形状の治具であるか、若しくは結合によって1つのリング形状となる2以上のパーツから構成された治具であることを特徴とする。 A fifth aspect of the present invention is an invention based on the first to fourth aspects, wherein the abrasive cloth compression jig is a ring-shaped jig composed of one part, or by coupling. The jig is composed of two or more parts having one ring shape.

本発明の第の観点は、第1ないし第5の観点に基づく発明であって、更に研磨布圧縮治具は厚さが0.3mm以上であって、無機材料で形成された治具又は樹脂製の治具であることを特徴とする。 A sixth aspect of the present invention is an invention based on the first to fifth aspects, wherein the polishing cloth compression jig has a thickness of 0.3 mm or more and is a jig formed of an inorganic material or It is a resin jig.

本発明の第1の観点の両面研磨方法は、中央部に中央孔をそれぞれ有し、研磨面に研磨布がそれぞれ貼付されたドーナツ形状の上定盤及び下定盤でウェーハを狭圧して、スラリー供給孔からウェーハにスラリーを供給しながら、上定盤と下定盤を回転駆動させることにより、ウェーハの両面を研磨する両面研磨方法であり、上定盤及び下定盤にそれぞれ貼付された研磨布の双方に、当該研磨布の外周又は内周を研磨布圧縮治具を用いて鉛直方向に圧縮して成型した外周側圧縮部又は内周側圧縮部のいずれか一方或いは双方を形成しておく。その際、外周側圧縮部の水平方向における圧縮幅をA、内周側圧縮部の水平方向における圧縮幅Bを、ウェーハの直径Dに対して、所定の条件である0.15×D≦A≦0.25×D及び0.15×D≦B≦0.25×Dの条件を満たすように制御する。このように、水平方向における圧縮幅を適正に制御して、研磨布の一部を圧縮して研磨を行うことにより、研磨中に研磨布が一定量沈み込んでも、ウェーハ外周には、中心付近の応力に比べて大きな応力が掛かるのを抑制することができる。これにより、研磨後のウェーハにおいてウェーハ外周における平坦度とウェーハの全面形状における平坦度を両立させることができる。 In the double-side polishing method according to the first aspect of the present invention, the wafer is narrowed with a doughnut-shaped upper surface plate and lower surface plate each having a central hole at the center and a polishing cloth affixed to the polishing surface. This is a double-sided polishing method that polishes both sides of the wafer by rotating the upper and lower surface plates while supplying slurry to the wafer from the supply holes. The polishing cloths attached to the upper and lower surface plates respectively. Either one or both of an outer peripheral side compression part and an inner peripheral side compression part formed by compressing and molding the outer periphery or inner periphery of the polishing cloth in the vertical direction using an abrasive cloth compression jig is formed. At that time, the compression width in the horizontal direction of the outer peripheral side compression portion is A, and the compression width B in the horizontal direction of the inner periphery side compression portion is 0.15 × D ≦ A, which is a predetermined condition with respect to the diameter D of the wafer. Control is performed to satisfy the conditions of ≦ 0.25 × D and 0.15 × D ≦ B ≦ 0.25 × D. In this way, by properly controlling the compression width in the horizontal direction and compressing a part of the polishing cloth for polishing, even if the polishing cloth sinks a certain amount during polishing, the outer periphery of the wafer is near the center It is possible to suppress the application of a large stress compared to the above stress. Thereby, the flatness in the wafer outer periphery and the flatness in the whole surface shape of the wafer can be made compatible in the polished wafer.

本発明の第の観点の両面研磨方法では、内周側圧縮部及び外周側圧縮部の鉛直方向における圧縮量を、研磨布の圧縮前の厚さに対して所定の割合になるように制御する。これにより、研磨中にウェーハ外周に掛かる応力とウェーハ中心付近に掛かる応力をより均一にしやすくできる。 In the double-side polishing method according to the second aspect of the present invention, the compression amount in the vertical direction of the inner peripheral side compression portion and the outer peripheral side compression portion is controlled to be a predetermined ratio with respect to the thickness of the polishing cloth before compression. To do. This makes it easier to make the stress applied to the outer periphery of the wafer during polishing and the stress applied to the vicinity of the center of the wafer more uniform.

本発明の第の観点の両面研磨方法では、上定盤及び下定盤にそれぞれ貼付された研磨布の双方に、外周側圧縮部及び内周側圧縮部の双方を形成しておくため、研磨中に大きな応力がウェーハ外周に掛かるのを抑制する効果がより高められる。 In the double-side polishing method of the third aspect of the present invention, both the outer peripheral side compression portion and the inner peripheral side compression portion are formed on both of the polishing cloths attached to the upper surface plate and the lower surface plate, respectively. The effect of suppressing a large stress on the outer periphery of the wafer is further enhanced.

本発明の第の観点の両面研磨方法では、研磨布として、不織布系研磨布等の所定の研磨布を用いるため、圧縮幅を形成する際、水平方向の圧縮幅や鉛直方向の圧縮量を正確に調整して形成しやすい。また、圧縮部が研磨中等に復元しにくく、表面粗さにも優れる。 In the double-side polishing method of the fourth aspect of the present invention, since a predetermined polishing cloth such as a non-woven cloth polishing cloth is used as the polishing cloth, when forming the compression width, the horizontal compression width and the vertical compression amount are set. Easy to adjust and form. Further, the compressed portion is difficult to be restored during polishing and the like, and the surface roughness is excellent.

本発明の第の観点の両面研磨方法では、上記内周側圧縮部及び外側圧縮部の形成に使用する研磨布圧縮治具として、1又は2以上のパーツから構成されたリング形状の治具を使用する。このように、リング形状の治具を使用することで、他の装置を使用することなく、研磨布を上定盤又は下定盤に貼付した状態で当該治具を狭圧するという簡単な方法により、精度良く研磨布に圧縮部を形成することができる。 In the double-side polishing method according to the fifth aspect of the present invention, a ring-shaped jig composed of one or more parts is used as the polishing cloth compression jig used for forming the inner peripheral compression section and the outer compression section. Is used. In this way, by using a ring-shaped jig, by using a simple method of narrowing the jig with the polishing cloth stuck to the upper or lower surface plate without using another device, The compression part can be formed on the polishing cloth with high accuracy.

本発明の第の観点の両面研磨方法では、研磨布圧縮治具を所定値以上の厚さとすることで、研磨布の鉛直方向における圧縮量を所望の量に、かつ正確に制御しやすくすることができる。また、研磨布圧縮治具として、所望の材料で製造された治具を使用することで、研磨布圧縮治具の製造に使用された材料によって研磨中のウェーハが汚染されるのを防止することができる。
In the double-side polishing method of the sixth aspect of the present invention, the polishing cloth compression jig is made to have a thickness equal to or greater than a predetermined value, so that the amount of compression of the polishing cloth in the vertical direction can be controlled to a desired amount and accurately. be able to. In addition, by using a jig made of a desired material as the polishing cloth compression jig, it is possible to prevent the wafer being polished from being contaminated by the material used to manufacture the polishing cloth compression jig. Can do.

本発明実施形態の方法で使用される研磨装置の一例を示した概略断面図である。It is the schematic sectional drawing which showed an example of the grinding | polishing apparatus used with the method of embodiment of this invention. 本発明実施形態の方法によりウェーハの研磨が行われている状態を上面からみた概略図である。It is the schematic which looked at the state in which grinding | polishing of the wafer is performed by the method of this invention embodiment from the upper surface. 図2におけるA−A線断面図である。It is the sectional view on the AA line in FIG. ウェーハ外周に掛かる応力が従来法に比べて低減される原理を模式的に示した説明図である。It is explanatory drawing which showed typically the principle by which the stress concerning a wafer outer periphery is reduced compared with the conventional method. 本発明実施形態で使用される研磨布圧縮治具の一例を示した模式図である。It is the schematic diagram which showed an example of the polishing cloth compression jig | tool used by this invention embodiment. 図5におけるX−Y線断面図である。It is the XY sectional view taken on the line in FIG. 実施例1における試験結果を示したグラフである。2 is a graph showing test results in Example 1. FIG. 実施例2における試験結果を示したグラフである。6 is a graph showing test results in Example 2. 実施例3における試験結果を示したグラフである。10 is a graph showing test results in Example 3. 実施例4における外周形状比較に関する評価結果を示したグラフである。It is the graph which showed the evaluation result regarding the outer periphery shape comparison in Example 4. FIG. 実施例で使用した研磨布の鉛直方向における圧縮量と、圧縮面圧及び圧縮部形成後の放置時間との関係を示したグラフである。It is the graph which showed the relationship between the compression amount in the perpendicular direction of the polishing cloth used in the Example, compression surface pressure, and the leaving time after compression part formation. 一般的な両面研磨工程において研磨時間の経過に従ってウェーハ形状が変化していく様子を表した図である。It is a figure showing a mode that a wafer shape changes as progress of polish time in a general double-side polish process.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

本発明は、中央部に中央孔をそれぞれ有し、研磨面に研磨布がそれぞれ貼付されたドーナツ形状の上定盤及び下定盤でウェーハを狭圧して、スラリー供給孔からウェーハにスラリーを供給しながら、上定盤と下定盤を回転駆動させることにより、ウェーハの両面を同時に研磨する両面研磨方法の改良である。   The present invention supplies the slurry to the wafer from the slurry supply hole by narrowing the wafer with a doughnut-shaped upper and lower platen each having a central hole at the center and a polishing cloth affixed to the polishing surface. However, this is an improvement of the double-side polishing method in which the upper surface plate and the lower surface plate are rotationally driven to simultaneously polish both surfaces of the wafer.

本発明の両面研磨方法を実施するに際して用いられる装置は、後述する研磨布の構成を除いて特に限定されず、一般的な両面研磨装置を用いることができる。例えば、図1に示す装置10は、本発明実施形態で用いられる両面研磨装置の一例を示した概略図であり、この装置10では、研磨布11の構成以外は、一般的な両面研磨装置と同様の構成により構成される。なお、図1〜図3において同一符号は同一部品又は部材を示す。   The apparatus used for carrying out the double-side polishing method of the present invention is not particularly limited except for the structure of the polishing cloth described later, and a general double-side polishing apparatus can be used. For example, the apparatus 10 shown in FIG. 1 is a schematic view showing an example of a double-side polishing apparatus used in the embodiment of the present invention. In this apparatus 10, except for the configuration of the polishing cloth 11, a general double-side polishing apparatus and It is comprised by the same structure. 1 to 3 indicate the same parts or members.

装置10は、図1に示すように、研磨面に研磨布11がそれぞれ貼付され、中央部に中央孔がそれぞれ設けられたドーナツ形状の上定盤12及び下定盤13からなる2つの定盤を備える。なお、上定盤12と下定盤13の間の中心部にはサンギア21が、周縁部にはインターナルギア22が設けられている。このインターナルギア22の内径は、上定盤12又は下定盤13の外径よりも大きい。研磨布11が貼付された下定盤13上には、両定盤12、13で挟まれるようにキャリアプレート14が設置され、キャリアプレート14の保持孔内には被研磨体としてのウェーハ16が配置される。   As shown in FIG. 1, the apparatus 10 has two surface plates composed of a doughnut-shaped upper surface plate 12 and a lower surface plate 13 each having a polishing cloth 11 affixed to the polishing surface and a central hole provided in the center. Prepare. A sun gear 21 is provided at the center between the upper surface plate 12 and the lower surface plate 13, and an internal gear 22 is provided at the periphery. The inner diameter of the internal gear 22 is larger than the outer diameter of the upper surface plate 12 or the lower surface plate 13. On the lower surface plate 13 to which the polishing cloth 11 is attached, a carrier plate 14 is installed so as to be sandwiched between both surface plates 12 and 13, and a wafer 16 as an object to be polished is disposed in a holding hole of the carrier plate 14. Is done.

一方、上定盤12には、スラリー(研磨液)17を供給するスラリー供給孔18が設けられ、供給孔18の上方には供給管19が設けられており、供給管19から供給されたスラリー17は供給孔18を通じてウェーハ16へ供給される。上定盤12は、上定盤12に貼付された研磨布11がウェーハ16の表側表面に接するように下定盤13に相対向して設置され、上定盤12を加圧することにより、キャリアプレート14内のウェーハ16が両定盤12、13により狭圧される。   On the other hand, the upper platen 12 is provided with a slurry supply hole 18 for supplying a slurry (polishing liquid) 17, and a supply pipe 19 is provided above the supply hole 18, and the slurry supplied from the supply pipe 19 17 is supplied to the wafer 16 through the supply hole 18. The upper surface plate 12 is placed opposite to the lower surface plate 13 so that the polishing cloth 11 affixed to the upper surface plate 12 is in contact with the front surface of the wafer 16, and pressurizes the upper surface plate 12. The wafer 16 in 14 is narrowed by both surface plates 12 and 13.

キャリアプレート14の外周には、サンギア21及びインターナルギア22に噛合する外周歯が設けられる。また、両定盤12、13の中央孔には軸20が設けられ、上定盤12と下定盤13が、図示しない動力源により回転駆動するに伴い、キャリアプレート14は自転しながらサンギア21を中心に公転する。このとき、ウェーハ16はキャリアプレート14の自転により、図1又は図2に示すようにキャリアプレート14内を移動する。   On the outer periphery of the carrier plate 14, outer peripheral teeth that mesh with the sun gear 21 and the internal gear 22 are provided. In addition, a shaft 20 is provided in the center hole of both the surface plates 12, 13, and the carrier plate 14 rotates while the sun plate 21 rotates while the upper surface plate 12 and the lower surface plate 13 are rotated by a power source (not shown). Revolve to the center. At this time, the wafer 16 moves in the carrier plate 14 by the rotation of the carrier plate 14 as shown in FIG.

本発明は、このような装置を用いた両面研磨方法の改良であり、その特徴ある構成は、上定盤12及び下定盤13にそれぞれ貼付された研磨布11の双方に、研磨布11の外周又は内周を研磨布圧縮治具を用いて鉛直方向に圧縮して成形した外周側圧縮部11a又は内周側圧縮部11bのいずれか一方或いは双方が、所定の圧縮幅で設けられることにある。   The present invention is an improvement of the double-side polishing method using such an apparatus, and its characteristic configuration is that the outer periphery of the polishing cloth 11 is attached to both the polishing cloth 11 affixed to the upper surface plate 12 and the lower surface plate 13, respectively. Alternatively, either one or both of the outer peripheral side compression portion 11a and the inner peripheral side compression portion 11b formed by compressing and molding the inner periphery in the vertical direction using a polishing cloth compression jig is provided with a predetermined compression width. .

このように、水平方向における圧縮幅を適正に制御して、研磨布の一部を圧縮して研磨を行うことにより、圧縮部を形成しない場合に比べてウェーハ外周に掛かる応力を低減させることができる。圧縮部が形成していない状態で、ウェーハを上定盤及び下定盤で狭圧すると、弾性体である研磨布にウェーハが押し付けられて研磨布が一定量沈み込む。このため、図4(a)に示すように、ウェーハ16外周には、ウェーハ16中心付近に比べて研磨布11から大きな応力が掛かる。一方、図4(b)に示すように、適正な圧縮幅で外周側圧縮部11a又は内周側圧縮部11bを形成することにより、ウェーハ16外周に、ウェーハ16中心付近に比べて大きな応力が掛かるのが抑制される。これにより、研磨中、ウェーハ16中心付近とウェーハ16外周に掛かる応力が面内で略均一化される。これにより、ウェーハ全面において良好な平坦度が得られるとともに、ウェーハ16外周のダレが抑制される。一般に、ウェーハ16の全面形状における平坦度を表す指標としては、後述のGBIRが用いられ、またウェーハ16外周における平坦度を表す指標としてSFQR又はESFQRが用いられる。即ち、本発明の両面研磨方法では、研磨後のウェーハ16において、GBIRとSFQR又はESFQRとを両立させることができる。   In this way, by controlling the compression width in the horizontal direction and compressing a part of the polishing cloth for polishing, the stress applied to the outer periphery of the wafer can be reduced as compared with the case where the compression part is not formed. it can. When the wafer is narrowed by the upper and lower surface plates in a state where the compression portion is not formed, the wafer is pressed against the polishing cloth which is an elastic body, and the polishing cloth sinks a certain amount. For this reason, as shown in FIG. 4A, a greater stress is applied to the outer periphery of the wafer 16 from the polishing pad 11 than in the vicinity of the center of the wafer 16. On the other hand, as shown in FIG. 4B, by forming the outer peripheral side compression portion 11a or the inner peripheral side compression portion 11b with an appropriate compression width, a larger stress is applied to the outer periphery of the wafer 16 than in the vicinity of the center of the wafer 16. It is suppressed from hanging. Thereby, during polishing, the stress applied to the vicinity of the center of the wafer 16 and the outer periphery of the wafer 16 is substantially uniform in the plane. As a result, good flatness is obtained on the entire wafer surface, and sagging of the outer periphery of the wafer 16 is suppressed. In general, GBIR, which will be described later, is used as an index representing the flatness of the entire shape of the wafer 16, and SFQR or ESFQR is used as an index representing the flatness of the outer periphery of the wafer 16. That is, in the double-side polishing method of the present invention, GBIR and SFQR or ESFQR can be made compatible in the polished wafer 16.

ここで、圧縮幅は、外周側圧縮部11aの水平方向における圧縮幅をA、内周側圧縮部11bの水平方向における圧縮幅をB、ウェーハ16の直径をDとするとき、圧縮幅Aは0.05×D≦Aを満たし、圧縮幅Bは0.30×D≧Bを満たすように制御する。研磨中、ウェーハ16は、図2に示す軌道により、研磨布11の最内外周部まで走行する。圧縮部を上述のように制御することによって、研磨中に、ウェーハ16の外周部分が研磨布11に形成された外周側圧縮部11a又は内周側圧縮部11bを通過することになり、これによりウェーハ16外周に掛かる応力が低減される。圧縮幅A及び圧縮幅Bをこのように制御したのは、ウェーハ16の直径Dに対して圧縮幅Aが小さすぎると、研磨中に、ウェーハ16外周において外周側圧縮部11aを通過する部分が少なくなり、ウェーハ外周に掛かる大きな応力を低減させる効果が十分に得られないからである。一方、ウェーハ16の直径Dに対して圧縮幅Bが大きすぎると、ウェーハ16との接触面が小さくなることに起因して、研磨布11からの応力が研磨布11の圧縮されていない部分に集中し、当該部分から強い応力がウェーハ16に掛かる。そのため、ウェーハ16の全面形状における平坦度が損なわれ、GBIRを悪化させる。また、GBIRが悪化すると、ウェーハ16外周の平坦度も損なわれ、ESFQRの評価においても数nm程度の影響を及ぼす。このうち、圧縮幅Aは好ましくは0.05×D≦A≦0.30×D、更に好ましくは0.15×D≦A≦0.25×Dを満たすように、圧縮幅Bは好ましくは0.05×D≦B≦0.30×D、更に好ましくは0.15×D≦B≦0.25×Dを満たすように制御する。なお、研磨中にウェーハ16が研磨布11の最内外周部まで走行する場合の上記圧縮幅A又は圧縮幅Bとは、図3に示すように、研磨布11の最外周部又は最内周部をそれぞれ起点として測定される外周側圧縮部11a又は内周側圧縮部11bの水平方向における幅である。即ち、この場合の圧縮幅A及び圧縮幅Bとは、外周側圧縮部11a又は内周側圧縮部11bの水平方向における実際の幅と一致する。但し、研磨中にウェーハ16が研磨布11の最外周部又は最内周部まで走行しない場合の上記圧縮幅A及び圧縮幅Bとは、図1に示すように、研磨中にウェーハ16が到達する研磨布16の最も外周側の地点又は最も内周側の地点をそれぞれ起点として測定される外周側圧縮部11a又は内周側圧縮部11bの水平方向における幅をいう。即ち、この場合の圧縮幅A及び圧縮幅Bとは、外周側圧縮部11a又は内周側圧縮部11bの水平方向における実際の幅から、研磨中にウェーハ16が走行しない未走行部分の水平方向における幅を差し引いた値である。   Here, when the compression width in the horizontal direction of the outer peripheral compression portion 11a is A, the compression width in the horizontal direction of the inner peripheral compression portion 11b is B, and the diameter of the wafer 16 is D, the compression width A is: 0.05 × D ≦ A is satisfied, and the compression width B is controlled to satisfy 0.30 × D ≧ B. During polishing, the wafer 16 travels to the innermost and outer peripheral portion of the polishing pad 11 along the track shown in FIG. By controlling the compression portion as described above, the outer peripheral portion of the wafer 16 passes through the outer peripheral side compression portion 11a or the inner peripheral side compression portion 11b formed on the polishing cloth 11 during polishing. The stress applied to the outer periphery of the wafer 16 is reduced. The reason why the compression width A and the compression width B are controlled in this way is that when the compression width A is too small with respect to the diameter D of the wafer 16, a portion passing through the outer peripheral compression portion 11 a on the outer periphery of the wafer 16 is polished during polishing. This is because the effect of reducing the large stress applied to the outer periphery of the wafer is not sufficiently obtained. On the other hand, if the compression width B is too large with respect to the diameter D of the wafer 16, the stress from the polishing pad 11 is applied to the uncompressed portion of the polishing pad 11 due to the contact surface with the wafer 16 becoming small. Concentrated and a strong stress is applied to the wafer 16 from the portion. Therefore, the flatness of the entire shape of the wafer 16 is impaired, and GBIR is deteriorated. Further, when GBIR deteriorates, the flatness of the outer periphery of the wafer 16 is also impaired, and an influence of about several nm is exerted in ESFQR evaluation. Of these, the compression width B is preferably 0.05 × D ≦ A ≦ 0.30 × D, and more preferably 0.15 × D ≦ A ≦ 0.25 × D. Control is performed so as to satisfy 0.05 × D ≦ B ≦ 0.30 × D, more preferably 0.15 × D ≦ B ≦ 0.25 × D. Note that the compression width A or the compression width B when the wafer 16 travels to the innermost peripheral portion of the polishing pad 11 during polishing is the outermost peripheral portion or the innermost peripheral portion of the polishing pad 11, as shown in FIG. It is the width in the horizontal direction of the outer peripheral side compression part 11a or the inner peripheral side compression part 11b measured from the respective parts. That is, the compression width A and the compression width B in this case coincide with the actual width in the horizontal direction of the outer peripheral side compression portion 11a or the inner peripheral side compression portion 11b. However, the compression width A and the compression width B in the case where the wafer 16 does not travel to the outermost or innermost peripheral portion of the polishing pad 11 during polishing are as follows. The width in the horizontal direction of the outer peripheral side compression part 11a or the inner peripheral side compression part 11b, which is measured starting from the point on the outermost peripheral side or the point on the innermost peripheral side of the polishing cloth 16 to be performed. That is, the compression width A and the compression width B in this case are the horizontal direction of the non-running portion where the wafer 16 does not travel during polishing from the actual width in the horizontal direction of the outer peripheral side compression portion 11a or the inner peripheral side compression portion 11b. The value obtained by subtracting the width at.

また、研磨布11に形成される外周側圧縮部11a及び内周側圧縮部11bの鉛直方向における圧縮量は、研磨布11の圧縮前の厚さの0.77%以上とするのが好ましい。鉛直方向における圧縮量がこれより小さすぎると、研磨中に研磨布が沈み込んだ際にウェーハ外周に掛かる大きな応力を低減させる効果が得られにくい場合があるからである。このうち、鉛直方向における圧縮量は、研磨布の圧縮前の厚さの0.90%以上とするのが特に好ましい。また、外周側圧縮部11a及び内周側圧縮部11bの断面形状は、図3に示すように、研磨布11中心からの圧縮開始位置から内周又は外周へ向かって傾斜するように形成された形状のほか、傾斜させずに圧縮部の圧縮面が水平になるように形成された形状であっても良い。なお、外周側圧縮部11a及び内周側圧縮部11bを、研磨布11の内周又は外周へ向かって傾斜するように形成する場合の上記鉛直方向における圧縮量とは、当該圧縮部において圧縮量が最も大きい箇所で測定した値をいう。   Moreover, it is preferable that the compression amount in the vertical direction of the outer peripheral side compression portion 11a and the inner peripheral side compression portion 11b formed on the polishing pad 11 is 0.77% or more of the thickness of the polishing pad 11 before compression. This is because if the amount of compression in the vertical direction is too small, it may be difficult to obtain an effect of reducing a large stress applied to the outer periphery of the wafer when the polishing cloth sinks during polishing. Of these, the amount of compression in the vertical direction is particularly preferably 0.90% or more of the thickness of the polishing pad before compression. Moreover, the cross-sectional shape of the outer peripheral side compression part 11a and the inner peripheral side compression part 11b was formed so that it might incline toward the inner periphery or outer periphery from the compression start position from the center of polishing cloth 11, as shown in FIG. In addition to the shape, the shape may be such that the compression surface of the compression portion is horizontal without being inclined. In addition, the compression amount in the said vertical direction in the case of forming the outer peripheral side compression part 11a and the inner peripheral side compression part 11b so that it may incline toward the inner periphery or outer periphery of the polishing pad 11 is a compression amount in the said compression part. The value measured at the point where is the largest.

また、上記圧縮部は、一枚の研磨布11に対して外周側圧縮部11a及び内周側圧縮部11bのいずれか一方を形成しても良いが、上述の効果を十分に発現させるという観点から、外周側圧縮部11a及び内周側圧縮部11bの双方を形成するのが好ましい。   Moreover, although the said compression part may form any one of the outer peripheral side compression part 11a and the inner peripheral side compression part 11b with respect to the polishing cloth 11 of 1 sheet, the viewpoint that the above-mentioned effect is fully expressed. Therefore, it is preferable to form both the outer peripheral side compression part 11a and the inner peripheral side compression part 11b.

上記外周側圧縮部11a及び内周側圧縮部11bは、例えば図5及び図6に示すようなリング形状の研磨布圧縮治具31を用いて形成することができる。具体的には、例えば上定盤12及び下定盤13の研磨面に研磨布11を貼付した後、下定盤13に貼付した研磨布11の外周又は内周に、図5に示す外周側の研磨布圧縮治具31a又は内周側の研磨布圧縮治具31bを配置し、所定の条件でこれらを上定盤12及び下定盤13にて狭圧する。これにより、上述した所望の圧縮部を研磨布11の外周又は内周に容易に形成することができる。このときの圧縮条件は、例えば圧縮部分が研磨中に一部復元して寸法が変動するのを防止するため、圧縮温度20〜30℃、圧縮時間1時間以上、面圧500g/cm2に制御するのが好ましい。 The outer peripheral side compression portion 11a and the inner peripheral side compression portion 11b can be formed using, for example, a ring-shaped polishing cloth compression jig 31 as shown in FIGS. Specifically, for example, after the polishing cloth 11 is affixed to the polishing surfaces of the upper surface plate 12 and the lower surface plate 13, the outer peripheral side polishing shown in FIG. The cloth compression jig 31a or the inner peripheral polishing cloth compression jig 31b is arranged, and these are narrowed by the upper surface plate 12 and the lower surface plate 13 under predetermined conditions. Thereby, the desired compression part mentioned above can be easily formed in the outer periphery or inner periphery of the polishing pad 11. The compression conditions at this time are controlled to a compression temperature of 20 to 30 ° C., a compression time of 1 hour or more, and a surface pressure of 500 g / cm 2 , for example, in order to prevent the compressed portion from partially recovering during polishing and changing dimensions. It is preferable to do this.

上記研磨布圧縮治具31は、図5に示すように1つのパーツから構成されたリング形状の治具であっても良いが、例えば結合によって1つのリング形状となる2以上のパーツから構成された治具であっても良い。研磨布圧縮治具31の断面形状は、特に限定されず、形成する圧縮部の断面形状に応じて、例えば図6(a)に示す形状や図6(b)に示す形状とすることができる。   The polishing cloth compression jig 31 may be a ring-shaped jig composed of one part as shown in FIG. 5, but is composed of, for example, two or more parts that are combined into a single ring shape. It may be a jig. The cross-sectional shape of the polishing cloth compression jig 31 is not particularly limited, and can be, for example, the shape shown in FIG. 6A or the shape shown in FIG. 6B according to the cross-sectional shape of the compression part to be formed. .

また、研磨布圧縮治具31は、ステンレスやチタン等を用いて製造されたもので有っても良いが、治具の製造に使用された材料によって研磨中のウェーハが汚染されるのを防止するという観点から、無機材料で形成された治具又は樹脂製の治具であることが好ましい。無機材料としては、例えば窒化ケイ素やジルコニア等が挙げられる。また、樹脂としては、ポリ塩化ビニル(PVC)やポリテトラフルオロエチレンポリ四フッ化エチレン等が挙げられる。また、研磨布圧縮治具31の厚さは、外周側圧縮部11a又は内周側圧縮部11bの鉛直方向における圧縮量を上述の所望の圧縮量に制御するため、0.3mm以上であることが好ましい。   The polishing cloth compression jig 31 may be manufactured using stainless steel, titanium, or the like, but prevents the wafer being polished from being contaminated by the material used for manufacturing the jig. From the viewpoint of doing, it is preferably a jig made of an inorganic material or a resin jig. Examples of the inorganic material include silicon nitride and zirconia. Examples of the resin include polyvinyl chloride (PVC) and polytetrafluoroethylene polytetrafluoroethylene. Further, the thickness of the polishing cloth compression jig 31 is 0.3 mm or more in order to control the compression amount in the vertical direction of the outer peripheral side compression portion 11a or the inner peripheral side compression portion 11b to the above-described desired compression amount. Is preferred.

また、上定盤12及び下定盤13に貼付される研磨布11は、特に限定されないが、圧縮部を形成しやすいこと、圧縮部が元の厚さに復元しにくいこと、表面粗さに優れること等から、不織布系研磨布、ポリウレタン研磨布又はスウェード系研磨布を使用するのが好ましい。   Further, the polishing cloth 11 attached to the upper surface plate 12 and the lower surface plate 13 is not particularly limited, but it is easy to form a compressed portion, the compressed portion is difficult to restore to the original thickness, and has excellent surface roughness. In view of the above, it is preferable to use a non-woven polishing cloth, a polyurethane polishing cloth or a suede polishing cloth.

なお、本発明の研磨方法では、上述した研磨布の構成以外の、研磨を実施するときの具体的な手順やその他の条件については、特に限定されず、周知の条件で行うことができる。以上、本発明の両面研磨方法では、研磨後のウェーハにおいてウェーハの全面形状において優れた平坦度が得られるとともに、ウェーハ外周におけるダレを十分に抑制することができる。   In the polishing method of the present invention, the specific procedure and other conditions when performing polishing other than the configuration of the polishing cloth described above are not particularly limited, and can be performed under well-known conditions. As described above, in the double-side polishing method of the present invention, excellent flatness can be obtained in the entire shape of the wafer in the polished wafer, and sagging on the outer periphery of the wafer can be sufficiently suppressed.

次に本発明の実施例について詳しく説明する。   Next, examples of the present invention will be described in detail.

<実施例1>
図1に示す両面研磨装置10を用い、研磨布11の外周側圧縮部11a及び内周側圧縮部11bの圧縮幅A及び圧縮幅Bを各試験例ごとに変更してウェーハの両面研磨を行い、圧縮幅の変量による平坦度の推移を検証した。その結果を以下の表1及び図7に示す。なお、この実施例1における試験例2〜9では、いずれも、表1に示すように、圧縮幅A=圧縮幅Bの条件で圧縮幅A及び圧縮幅B変更させた。また、試験例1は、圧縮部を形成せずにウェーハの両面研磨を行った。
<Example 1>
The double-side polishing apparatus 10 shown in FIG. 1 is used to perform double-side polishing of the wafer by changing the compression width A and compression width B of the outer peripheral side compression portion 11a and the inner peripheral side compression portion 11b of the polishing pad 11 for each test example. Then, the transition of the flatness due to the variable of the compression width was verified. The results are shown in Table 1 below and FIG. In Test Examples 2 to 9 in Example 1, as shown in Table 1, the compression width A and the compression width B were changed under the condition of compression width A = compression width B. In Test Example 1, double-side polishing of the wafer was performed without forming the compression part.

具体的には、先ず、研磨布11として、研磨布厚みが1.3mm、硬度(AskerC)が83、圧縮率が3.3%である不織布系研磨布(ニッタ・ハース社製 商品名:suba800)を用意し、装置10が備える両定盤12、13の研磨面に上記研磨布11をそれぞれ貼布した。その後、下定盤13に貼付した研磨布11の外周及び内周に、図5に示す2つの研磨布圧縮治具31a、31bをそれぞれ配置し、圧縮温度25℃、面圧500g/cm2、圧縮時間1時間の条件で狭圧した。これにより、両定盤12、13の研磨面に貼付された研磨布11の双方に、外周側圧縮部11a及び内周側圧縮部11bを形成した。なお、研磨布圧縮治具31a、31bには、断面が、図6(a)に示す断面形状のPVC製の治具をそれぞれ使用した。 Specifically, first, as the polishing cloth 11, a non-woven polishing cloth having a polishing cloth thickness of 1.3 mm, a hardness (AskerC) of 83, and a compression ratio of 3.3% (trade name: suba800 manufactured by Nittah Haas) ), And the polishing cloth 11 was applied to the polishing surfaces of both surface plates 12 and 13 included in the apparatus 10. Thereafter, two polishing cloth compression jigs 31a and 31b shown in FIG. 5 are arranged on the outer periphery and inner periphery of the polishing cloth 11 affixed to the lower surface plate 13, respectively, and the compression temperature is 25 ° C., the surface pressure is 500 g / cm 2 , and the compression is performed. The pressure was reduced under the condition of 1 hour. Thereby, the outer peripheral side compression part 11a and the inner peripheral side compression part 11b were formed in both of the polishing cloth 11 stuck on the polishing surface of both the surface plates 12 and 13. FIG. As the polishing cloth compression jigs 31a and 31b, PVC jigs having a cross-sectional shape shown in FIG.

次に、上記外周側圧縮部11a及び内周側圧縮部11bが形成された下定盤13側の研磨布11上に、厚さが778μmのキャリアプレート14を載置し、更に当該キャリアプレート14の保持孔に、直径が300mm、厚さ790μmのシリコンウェーハを被研磨体(ウェーハ16)として設置した。次いで、キャリアプレート14の保持孔に設置された上記ウェーハ16を、キャリアプレート14とともに、加工面圧300g/cm2の条件で狭圧して、スラリー供給孔18からスラリー(ニッタ・ハース社製 商品名:nalco2350)17を供給しながら上定盤12と下定盤13を回転駆動させ、ウェーハ16の両面研磨を行った。なお、このときの狙い厚みは780μmとした。 Next, a carrier plate 14 having a thickness of 778 μm is placed on the polishing cloth 11 on the lower surface plate 13 side on which the outer peripheral side compression portion 11a and the inner peripheral side compression portion 11b are formed. A silicon wafer having a diameter of 300 mm and a thickness of 790 μm was placed in the holding hole as an object to be polished (wafer 16). Next, the wafer 16 placed in the holding hole of the carrier plate 14 is narrowed together with the carrier plate 14 under the condition of a processing surface pressure of 300 g / cm 2 , and the slurry is supplied from the slurry supply hole 18 (trade name, manufactured by Nitta Haas) : Nalco2350) 17, the upper surface plate 12 and the lower surface plate 13 were rotated and the wafer 16 was polished on both sides. The target thickness at this time was 780 μm.

両面研磨後のウェーハの平坦度については、測定装置(KLA Tencor社製 型名:Wafer Sight2)を用いてGBIR及びSFQRmaxを測定することにより評価した。このときの測定条件は、測定範囲を、ウェーハの外周2mmを除外した296mmとした。なお、表1及び図7に示すGBIR及びSFQRmaxの値は、上述の条件で圧縮部を形成した1組の研磨布につき、それぞれ10枚ずつ、同一条件で両面研磨を行い、それらを平均した値である。また、表1及び図7に示す係数αとは、圧縮幅A又は圧縮幅Bをそれぞれウェーハ直径Dに対する長さ、即ちA=α×D又はB=α×Dで表したときの係数αである。GBIR(Grobal Backside Ideal focalplane Range)とは、ウェーハの全面形状の平坦度を示す指標として用いられる値である。このGBIRは、ウェーハの裏面を完全に吸着したと仮定した場合におけるウェーハの裏面を基準として、ウェーハ全体の最大厚みと最小厚みとの差を算出することにより求められる。   About the flatness of the wafer after double-side polishing, it evaluated by measuring GBIR and SFQRmax using the measuring apparatus (KLA Tencor company name: Wafer Sight2). The measurement conditions at this time were set to 296 mm excluding the wafer outer periphery of 2 mm. In addition, the values of GBIR and SFQRmax shown in Table 1 and FIG. 7 are values obtained by performing double-side polishing on the same condition for each pair of polishing cloths on which the compression part is formed under the above-described conditions, and averaging them. It is. The coefficient α shown in Table 1 and FIG. 7 is a coefficient α when the compression width A or the compression width B is expressed as a length with respect to the wafer diameter D, that is, A = α × D or B = α × D, respectively. is there. GBIR (Grobal Backside Ideal focal plane Range) is a value used as an index indicating the flatness of the entire shape of the wafer. This GBIR is obtained by calculating the difference between the maximum thickness and the minimum thickness of the entire wafer on the basis of the back surface of the wafer when it is assumed that the back surface of the wafer is completely adsorbed.

また、SFQR(Site Front least sQuares Randge)とは、SEMI規格にかかる、ウェーハの局所的な平坦度を示す指標である。このSFQRは、表面基準のサイト内の各点の表面位置を示す全データから、最小二乗法によりサイト内の基準平面を計算し、この平面からのずれの最大値と最小値の和をとったものであり、SFQRmaxはウェーハ内全サイトのSFQRの最大値を示す。   SFQR (Site Front least Quares Randge) is an index indicating the local flatness of a wafer according to the SEMI standard. This SFQR calculates the reference plane in the site by the least square method from all the data indicating the surface position of each point in the surface reference site, and takes the sum of the maximum value and the minimum value of the deviation from this plane. SFQRmax indicates the maximum value of SFQR at all sites in the wafer.

Figure 0006572790
Figure 0006572790

表1及び図7から明らかなように、係数αが所定の条件を満たすように圧縮幅A及び圧縮幅Bを増加させた場合には、GBIRはほぼ変化せず、SFQRmaxが良好な値を示した(試験例2〜試験例7)。また、特に、係数αが0.20のときに最も良好な結果が得られた(試験例5)。一方、係数αが0.30を超えた時点から平坦度が悪化し、係数αが0.35の試験例8では、圧縮幅を形成していない試験例1と同様にSFQRmaxが悪い値を示し、また、係数αが0.40の試験例9では、GBIR及びSFQRmaxがいずれも試験例1よりも大幅に悪い値を示した。これらの結果から、圧縮幅は、係数αが所定の条件を満たすように制御することが研磨表面の平坦度を向上させる上で好適であることが確認された。   As is clear from Table 1 and FIG. 7, when the compression width A and the compression width B are increased so that the coefficient α satisfies the predetermined condition, GBIR does not substantially change and SFQRmax shows a good value. (Test Example 2 to Test Example 7). In particular, the best results were obtained when the coefficient α was 0.20 (Test Example 5). On the other hand, the flatness deteriorates from the time when the coefficient α exceeds 0.30. In Test Example 8 in which the coefficient α is 0.35, SFQRmax shows a bad value as in Test Example 1 in which the compression width is not formed. Moreover, in Test Example 9 where the coefficient α was 0.40, both GBIR and SFQRmax showed significantly worse values than Test Example 1. From these results, it was confirmed that the compression width is preferably controlled so that the coefficient α satisfies the predetermined condition in order to improve the flatness of the polished surface.

<実施例2>
以下の表2に示すように、研磨布に設けられる外周側圧縮部及び内周側圧縮部の圧縮幅A及び圧縮幅Bを、圧縮幅A≠圧縮幅Bの条件で各試験例ごとに変更し、ウェーハの両面研磨を行うことによって、圧縮幅の変量による平坦度の推移を検証した。この結果を以下の表2及び図8に示す。なお、この実施例2の各試験例における圧縮幅以外の他の条件及び評価方法は、上述の実施例1と同様に行った。
<Example 2>
As shown in Table 2 below, the compression width A and compression width B of the outer peripheral side compression portion and inner peripheral side compression portion provided on the polishing cloth are changed for each test example under the condition of compression width A ≠ compression width B. Then, by performing double-side polishing of the wafer, the transition of the flatness due to the variable compression width was verified. The results are shown in Table 2 below and FIG. The conditions other than the compression width and the evaluation method in each test example of Example 2 were performed in the same manner as in Example 1 described above.

Figure 0006572790
Figure 0006572790

表2及び図8から明らかなように、係数αが所定の範囲内になるように制御すれば、圧縮幅A及び圧縮幅Bを同じ圧縮幅に形成しなくても、研磨表面の平坦度を向上させることができることが確認された。   As is apparent from Table 2 and FIG. 8, if the coefficient α is controlled so as to be within a predetermined range, the flatness of the polished surface can be improved without forming the compression width A and the compression width B to the same compression width. It was confirmed that it can be improved.

<実施例3>
研磨布の外周又は内周のいずれか一方のみに圧縮部を形成し、この圧縮幅を、以下の表3に示す範囲で変更してウェーハの両面研磨を行い、平坦度の推移を検証した。この結果を以下の表3及び図9に示す。なお、この実施例3の各試験例における圧縮幅以外の他の条件及び評価方法については、上述の実施例1と同様に行った。
<Example 3>
The compression part was formed only on either the outer periphery or the inner periphery of the polishing cloth, and the compression width was changed within the range shown in Table 3 below, and the wafer was subjected to double-side polishing, and the transition of the flatness was verified. The results are shown in Table 3 below and FIG. In addition, about conditions other than the compression width | variety and evaluation method in each test example of this Example 3, it carried out similarly to the above-mentioned Example 1. FIG.

Figure 0006572790
Figure 0006572790

表3及び図9から明らかなように、研磨布の外周又は内周のいずれか一方のみに圧縮部を形成し、その圧縮幅を、係数αが所定の条件を満たすように制御した場合でも、若干平坦度は落ちるケースもみられるものの、試験例2〜試験例7等と同様に、研磨表面の平坦度の改善効果は十分に得られることが確認された。   As apparent from Table 3 and FIG. 9, even when the compression part is formed only on either the outer periphery or the inner periphery of the polishing cloth and the compression width is controlled so that the coefficient α satisfies the predetermined condition, Although some cases in which the flatness is slightly reduced are observed, it was confirmed that the effect of improving the flatness of the polished surface can be sufficiently obtained as in Test Examples 2 to 7.

<実施例4>
上述の実施例1の結果から、係数αが0.20である試験例5において最も高い評価が得られたことから、再度、試験例5の条件と同条件でウェーハの両面研磨を実施し、外周ダレ量の評価を行った。この結果を以下の表4及び図10に示す。なお、表4及び図10に示す結果は、各試験例ごとに25枚ずつ、同一条件で両面研磨を行い、それらを平均した値である。
<Example 4>
From the results of Example 1 described above, the highest evaluation was obtained in Test Example 5 in which the coefficient α was 0.20. Therefore, double-side polishing of the wafer was performed again under the same conditions as in Test Example 5, The amount of outer peripheral sag was evaluated. The results are shown in Table 4 below and FIG. In addition, the result shown in Table 4 and FIG. 10 is a value obtained by performing double-side polishing under the same conditions for 25 sheets for each test example and averaging them.

表4中、試験例24は、上述の実施例1における試験例1と同様、研磨布に圧縮部を形成せずにウェーハの両面研磨を実施した例であり、試験例25は、上述の実施例1における試験例5と同様の条件で圧縮部を形成し、ウェーハの両面研磨を実施した例である。研磨時の条件及びGBIR、SFQRmaxの評価方法については、試験例24、試験例25ともに、実施例1における各試験例と同様に行った。外周ダレ量の評価についても、上述の測定装置(KLA Tencor社製 型名:Wafer Sight2)を用いて測定した。   In Table 4, Test Example 24 is an example in which double-side polishing of the wafer was performed without forming a compression portion on the polishing cloth, as in Test Example 1 in Example 1 described above, and Test Example 25 was performed as described above. In this example, the compression part is formed under the same conditions as in Test Example 5 in Example 1, and the wafer is subjected to double-side polishing. About the conditions at the time of grinding | polishing and the evaluation method of GBIR and SFQRmax, both Test Example 24 and Test Example 25 were performed similarly to each test example in Example 1. The evaluation of the amount of peripheral sag was also performed using the above-described measuring device (model name: Wafer Sight2 manufactured by KLA Tencor).

Figure 0006572790
Figure 0006572790

表4から明らかなように、GBIRの値については、試験例24と試験例25とでほぼ同等の結果が得られた。一方、SFQRmaxは、数値が小さい程、平坦度が高いことを示していることから、研磨布に所望の圧縮部を形成した試験例25の方が、試験例24よりも平坦度が改善されていることが判る。図10はウェーハの外周部分の形状を示す。研磨布に所望の圧縮部を形成することにより、ウェーハ外周におけるダレ量が改善されることが確認された。   As is apparent from Table 4, with respect to the value of GBIR, almost the same results were obtained in Test Example 24 and Test Example 25. On the other hand, SFQRmax indicates that the flatness is higher as the numerical value is smaller. Therefore, the flatness is improved in Test Example 25 in which a desired compression portion is formed on the polishing cloth than in Test Example 24. I know that. FIG. 10 shows the shape of the outer peripheral portion of the wafer. It was confirmed that the sagging amount on the outer periphery of the wafer was improved by forming a desired compression portion on the polishing cloth.

<実施例5>
実施例1〜3の各試験例で使用した研磨布と同じ研磨布を用いて、この研磨布に圧縮部を形成するときの鉛直方向における圧縮量と、圧縮面圧及び圧縮部を形成してから両面研磨を開始するまでの放置時間との関係について試験した。この結果を図11に示す。図11には、圧縮面圧を100〜1000g/cm2とし、圧縮部を形成してから両面研磨を開始するまでの放置時間を10分間〜6時間としたときの結果を示している。なお、放置時間が6時間を超えても、6時間放置したときの圧縮量から変化はみられなかった(図示せず)。また、実施例1〜3の各試験例と同様、圧縮部を形成する時の圧縮時間はいずれも1時間とし、圧縮温度はいずれも25℃(室温)とした。
<Example 5>
Using the same polishing cloth as the polishing cloth used in each test example of Examples 1 to 3, the compression amount in the vertical direction when forming the compression portion on the polishing cloth, the compression surface pressure, and the compression portion were formed. And the relationship with the standing time from the start to the double-side polishing. The result is shown in FIG. FIG. 11 shows the results when the compression surface pressure is 100 to 1000 g / cm 2 and the standing time from the formation of the compression portion to the start of double-side polishing is 10 minutes to 6 hours. Even when the standing time exceeded 6 hours, there was no change in the amount of compression when left standing for 6 hours (not shown). Further, as in each of the test examples of Examples 1 to 3, the compression time when forming the compression part was 1 hour, and the compression temperature was 25 ° C. (room temperature).

上述の実施例1〜3の各試験例において、ウェーハ形状における平坦度の改善効果がみられた試験例では、圧縮面圧を500g/cm2とし、圧縮部を形成した後、最短の試験例で10分(圧縮量17μm=圧縮率1.3%)、最長の試験例で6時間(圧縮量10μm=圧縮率0.77%)放置した状態で両面研磨を実施した。図11に示す結果によれば、これらの試験例では、研磨布の鉛直方向における圧縮量はいずれも10μm以上であり、その値から圧縮前の研磨布の厚さ(100%)に対する圧縮量を算出すると、いずれも研磨布の鉛直方向における圧縮量は、圧縮前の研磨布の厚さに対して0.77%以上であった。このことから、圧縮部の鉛直方向における圧縮量は、圧縮前の研磨布の厚さに対して0.77%以上とすることが好ましいことが確認された。 In each of the test examples of Examples 1 to 3 described above, in the test example in which the effect of improving the flatness in the wafer shape was observed, the compression surface pressure was set to 500 g / cm 2 and the compression part was formed. Double-side polishing was carried out for 10 minutes (compression amount 17 μm = compression rate 1.3%) and for 6 hours (compression amount 10 μm = compression rate 0.77%) in the longest test example. According to the results shown in FIG. 11, in these test examples, the amount of compression of the polishing cloth in the vertical direction is 10 μm or more, and the amount of compression with respect to the thickness (100%) of the polishing cloth before compression is determined from the value. When calculated, the amount of compression of the polishing cloth in the vertical direction was 0.77% or more with respect to the thickness of the polishing cloth before compression. From this, it was confirmed that the compression amount in the vertical direction of the compression part is preferably 0.77% or more with respect to the thickness of the polishing pad before compression.

本発明は、例えばシリコンウェーハに代表される半導体ウェーハの製造工程において、ウェーハの平坦度を得るためのウェーハの両面研磨に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for double-side polishing of a wafer for obtaining wafer flatness, for example, in a semiconductor wafer manufacturing process represented by a silicon wafer.

11 研磨布
11a 外周側圧縮部
11b 内周側圧縮部
12 上定盤
13 下定盤
14 キャリアプレート
16 ウェーハ
17 スラリー
18 スラリー供給孔
DESCRIPTION OF SYMBOLS 11 Polishing cloth 11a Outer peripheral side compression part 11b Inner peripheral side compression part 12 Upper surface plate 13 Lower surface plate 14 Carrier plate 16 Wafer 17 Slurry 18 Slurry supply hole

Claims (6)

中央部に中央孔をそれぞれ有し、研磨面に研磨布がそれぞれ貼付されたドーナツ形状の上定盤及び下定盤でウェーハを狭圧して、スラリー供給孔から前記ウェーハにスラリーを供給しながら、前記上定盤と前記下定盤を回転駆動させることにより、前記ウェーハの両面を研磨する両面研磨方法において、
前記上定盤及び前記下定盤にそれぞれ貼付された前記研磨布の双方に、前記研磨布の外周又は内周を研磨布圧縮治具を用いて鉛直方向に圧縮して成形した外周側圧縮部又は内周側圧縮部のいずれか一方或いは双方が設けられ、
前記外周側圧縮部の水平方向における幅を圧縮幅A、前記内周側圧縮部の水平方向における幅を圧縮幅B、前記ウェーハの直径をDとするとき、前記圧縮幅Aが0.15×D≦A≦0.25×Dを満たし、前記圧縮幅Bが0.15×D≦B≦0.25×Dを満たす
ことを特徴とするウェーハの両面研磨方法。
While narrowing the wafer with a doughnut-shaped upper surface plate and lower surface plate each having a central hole in the center and a polishing cloth affixed to the polishing surface, while supplying the slurry to the wafer from the slurry supply hole, In the double-side polishing method for polishing both surfaces of the wafer by rotating and driving the upper surface plate and the lower surface plate,
An outer peripheral side compression portion formed by compressing the outer periphery or inner periphery of the polishing cloth in the vertical direction using an abrasive cloth compression jig on both the polishing cloths attached to the upper surface plate and the lower surface plate, respectively. Either one or both of the inner peripheral side compression sections are provided,
When the width in the horizontal direction of the outer peripheral side compression portion is the compression width A, the width in the horizontal direction of the inner peripheral compression portion is the compression width B, and the diameter of the wafer is D, the compression width A is 0.15 ×. A double-side polishing method for a wafer, wherein D ≦ A ≦ 0.25 × D is satisfied, and the compression width B satisfies 0.15 × D ≦ B ≦ 0.25 × D.
前記内周側圧縮部及び前記外周側圧縮部の鉛直方向における圧縮量が、前記研磨布の圧縮前の厚さの0.77%以上であることを特徴とする請求項1記載のウェーハの両面研磨方法。 Compression amount in the vertical direction of the inner peripheral side compression portion and the outer peripheral-side compression section, of the wafer of claim 1 Symbol mounting, characterized in that said at least 0.77% of the thickness before compression of the polishing cloth Double-side polishing method. 前記上定盤及び下定盤にそれぞれ貼付された前記研磨布の双方に、前記外周側圧縮部及び内周側圧縮部の双方が設けられていることを特徴とする請求項1又は2記載のウェーハの両面研磨方法。 To both the polishing cloth affixed respectively to the upper platen and lower platen, No possible mounting according to claim 1 or 2 SL, characterized in that both of the outer peripheral side compression portion and an inner peripheral side compression portion is provided Wafer double-side polishing method. 前記研磨布が不織布系研磨布、ポリウレタン研磨布又はスウェード系研磨布であることを特徴とする請求項1ないしいずれか1項に記載のウェーハの両面研磨方法。 The polishing cloth nonwoven based polishing cloth double-side polishing method for a wafer according to any one of claims 1 to 3, characterized in that a polyurethane polishing cloth or a suede type polishing cloth. 前記研磨布圧縮治具が、1つのパーツから構成されたリング形状の治具であるか、若しくは結合によって1つのリング形状となる2以上のパーツから構成された治具であることを特徴とする請求項1ないしいずれか1項に記載のウェーハの両面研磨方法。 The polishing cloth compressing jig is a ring-shaped jig composed of one part, or a jig composed of two or more parts that are combined into a single ring shape. The method for polishing a wafer on both sides according to any one of claims 1 to 4 . 前記研磨布圧縮治具は厚さが0.3mm以上であって、無機材料で形成された治具又は樹脂製の治具であることを特徴とする請求項1ないしいずれか1項に記載のウェーハの両面研磨方法。 The polishing cloth compression jig is a at the 0.3mm or more thickness, claims 1, characterized in that it is formed of an inorganic material jig or resin jig according to 5 any one Wafer double-side polishing method.
JP2016017771A 2016-02-02 2016-02-02 Wafer double-side polishing method Active JP6572790B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016017771A JP6572790B2 (en) 2016-02-02 2016-02-02 Wafer double-side polishing method
PCT/JP2016/085701 WO2017134914A1 (en) 2016-02-02 2016-12-01 Method for polishing both surfaces of wafer
TW105140592A TWI637812B (en) 2016-02-02 2016-12-08 A double-side polishing method for wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017771A JP6572790B2 (en) 2016-02-02 2016-02-02 Wafer double-side polishing method

Publications (2)

Publication Number Publication Date
JP2017136653A JP2017136653A (en) 2017-08-10
JP6572790B2 true JP6572790B2 (en) 2019-09-11

Family

ID=59499492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017771A Active JP6572790B2 (en) 2016-02-02 2016-02-02 Wafer double-side polishing method

Country Status (3)

Country Link
JP (1) JP6572790B2 (en)
TW (1) TWI637812B (en)
WO (1) WO2017134914A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435772A (en) * 1993-04-30 1995-07-25 Motorola, Inc. Method of polishing a semiconductor substrate
JP3779104B2 (en) * 1998-12-28 2006-05-24 株式会社Sumco Wafer polishing equipment
JP4749700B2 (en) * 2004-11-17 2011-08-17 Sumco Techxiv株式会社 Polishing cloth, wafer polishing apparatus and wafer manufacturing method
JP4681304B2 (en) * 2005-01-17 2011-05-11 東洋ゴム工業株式会社 Laminated polishing pad
JP2007331036A (en) * 2006-06-12 2007-12-27 Epson Toyocom Corp Double-side grinding machine
JP2010253580A (en) * 2009-04-22 2010-11-11 Sumco Corp Abrasive cloth with grooves, and method and device for polishing wafer
US8647174B2 (en) * 2009-05-08 2014-02-11 Sumco Corporation Semiconductor wafer polishing method and polishing pad shaping jig
JP5917236B2 (en) * 2012-03-30 2016-05-11 富士紡ホールディングス株式会社 Polishing pad sheet and manufacturing method thereof, polishing pad and manufacturing method thereof, and polishing method
JP6268432B2 (en) * 2014-01-29 2018-01-31 富士紡ホールディングス株式会社 Polishing pad and polishing pad manufacturing method

Also Published As

Publication number Publication date
TW201733737A (en) 2017-10-01
WO2017134914A1 (en) 2017-08-10
JP2017136653A (en) 2017-08-10
TWI637812B (en) 2018-10-11

Similar Documents

Publication Publication Date Title
JP6244962B2 (en) Manufacturing method of semiconductor wafer
KR100818683B1 (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
KR101436482B1 (en) Semiconductor wafer, and method for producing same
WO2013187441A1 (en) Semiconductor wafer manufacturing method
WO2016038800A1 (en) Method for processing semiconductor wafer, method for manufacturing bonded wafer, and method for manufacturing epitaxial wafer
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
TWI727490B (en) Wafer manufacturing method and wafer
JP2010045279A (en) Method for polishing both surface of semiconductor substrate
TWI608897B (en) Monolithic lapping method for semiconductor wafer and monolithic lapping device for semiconductor wafer
JP6491812B2 (en) Membrane, polishing head, workpiece polishing apparatus and method, and silicon wafer
JP3637594B2 (en) Manufacturing method of semiconductor wafer
JP6566112B2 (en) Double-side polishing method and double-side polishing apparatus
WO2018168426A1 (en) Wafer manufacturing method
JP2007266068A (en) Polishing method and device
JP6572790B2 (en) Wafer double-side polishing method
JP2021132102A (en) Manufacturing method for semiconductor wafer
Park et al. Effect of contact angle between retaining ring and polishing pad on material removal uniformity in CMP process
JP2011143477A (en) Carrier for double-sided polishing device, double-sided polishing device using the same, and double-sided polishing method
JP6589762B2 (en) Double-side polishing equipment
WO2017098696A1 (en) Polishing method
CN105291287B (en) Intermediate in sapphire wafer processing method and its processing technology
JP2022097206A (en) Wafer polishing method and wafer manufacturing method
KR20220082036A (en) Wafer polishing method and silicon wafer
JP2014220318A (en) Semiconductor wafer polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R150 Certificate of patent or registration of utility model

Ref document number: 6572790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250