JP6568425B2 - Deterioration degree determination method and metalworking member manufacturing method - Google Patents

Deterioration degree determination method and metalworking member manufacturing method Download PDF

Info

Publication number
JP6568425B2
JP6568425B2 JP2015159027A JP2015159027A JP6568425B2 JP 6568425 B2 JP6568425 B2 JP 6568425B2 JP 2015159027 A JP2015159027 A JP 2015159027A JP 2015159027 A JP2015159027 A JP 2015159027A JP 6568425 B2 JP6568425 B2 JP 6568425B2
Authority
JP
Japan
Prior art keywords
polymer
kinematic viscosity
aqueous
polymer solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015159027A
Other languages
Japanese (ja)
Other versions
JP2017037019A (en
Inventor
知朗 松宮
知朗 松宮
剛史 有川
剛史 有川
角王 飯沼
角王 飯沼
亮祐 今村
亮祐 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015159027A priority Critical patent/JP6568425B2/en
Publication of JP2017037019A publication Critical patent/JP2017037019A/en
Application granted granted Critical
Publication of JP6568425B2 publication Critical patent/JP6568425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、劣化度判定方法及び金属加工部材の製造方法に関する。   The present invention relates to a degradation degree determination method and a method of manufacturing a metal workpiece.

金属材料の焼入れ等の熱処理において、一般に焼割れの防止のために、水よりも冷却速度の遅い冷却液が使用される。近年では、高温操作に伴う火災の危険性を回避するため、冷却液としてポリマー水溶液が実用化されている。   In heat treatment such as quenching of a metal material, a cooling liquid having a cooling rate slower than that of water is generally used to prevent quench cracking. In recent years, an aqueous polymer solution has been put into practical use as a cooling liquid in order to avoid the risk of fire associated with high temperature operation.

このような冷却液は、使用し続けることにより劣化し冷却緩和能が低下するため、金属材料の焼割れが生じ易くなる。金属材料の焼割れが生じないようにするためには、冷却液がこのような状態になる前に新しい冷却液に交換する必要がある。交換するまでの期間が短いと冷却液の消費量が多くなり、金属材料の製造コストが増加する。そのため、冷却液の交換期間を長くすべく、冷却液の継続使用の可否を適切に判断できる管理指標の確立が要求されている。   Such a cooling liquid deteriorates and continues to be used, and the cooling relaxation ability is reduced, so that the metal material is easily cracked. In order to prevent the metal material from cracking, it is necessary to replace the coolant with a new coolant before such a state occurs. If the period until the replacement is short, the consumption of the cooling liquid increases and the manufacturing cost of the metal material increases. Therefore, in order to lengthen the replacement period of the coolant, it is required to establish a management index that can appropriately determine whether the coolant can be used continuously.

このような要求に対して、管理対象の冷却液に加熱した試験片を浸漬して試験片が所定の温度まで冷却される時間を計測し、この計測した冷却時間から、予め基準データとして求めておいた冷却時間と冷却液の濃度との関係を用いて管理対象の冷却液の濃度を推定する冷却液管理方法が提案されている(特開2014−167487号公報)。この冷却液管理方法は、冷却液の冷却時間から濃度を求め、冷却液の継続使用の可否を判断する管理指標としてその濃度を用いるものである。   In response to such a request, the time for which the test piece is cooled to a predetermined temperature by immersing the heated test piece in the coolant to be managed is measured, and the reference data is obtained in advance from the measured cooling time. A cooling liquid management method has been proposed in which the concentration of the cooling liquid to be managed is estimated using the relationship between the cooling time and the cooling liquid concentration (Japanese Patent Laid-Open No. 2014-167487). In this cooling liquid management method, the concentration is obtained from the cooling time of the cooling liquid, and the concentration is used as a management index for determining whether or not the cooling liquid can be continuously used.

しかし、上記冷却液管理方法では、加熱した試験片を管理対象の冷却液に浸漬し、その冷却時間を計測するという繁雑な作業が必要となる。   However, the cooling liquid management method requires a complicated operation of immersing the heated test piece in the cooling liquid to be managed and measuring the cooling time.

また、発明者らの既往の検討結果より、冷却液としてポリマー水溶液を用いる場合、使用に伴ってポリマーが低分子量化することがわかっている。そのため、例えば同じ濃度のポリマー水溶液であっても、使用時間の長いポリマー水溶液はポリマーの分子量が小さくなり、焼割れの生じ易さが異なってくると考えられる。従って、例えば劣化を抑制するために使用中のポリマー水溶液に新たなポリマー水溶液を継ぎ足しながら使用するような場合、上記冷却液管理方法のように冷却液の濃度のみで冷却液の継続使用の可否を判断することは困難と考えられる。   In addition, from the results of previous studies by the inventors, it is known that when an aqueous polymer solution is used as the cooling liquid, the molecular weight of the polymer decreases with use. Therefore, for example, even if the aqueous polymer solution has the same concentration, it is considered that the aqueous polymer solution having a long use time has a small molecular weight of the polymer, and the susceptibility to firing cracks is different. Therefore, for example, when a new polymer aqueous solution is added to the polymer aqueous solution that is being used to suppress deterioration, whether or not the coolant can be continuously used only by the coolant concentration as in the above-mentioned coolant management method. It is considered difficult to judge.

特開2014−167487号公報JP 2014-167487 A

本発明は、上述のような事情に基づいてなされたものであり、金属材料の熱処理の冷却液に用いるポリマー水溶液の継続使用の可否を容易かつ精度よく判断できる劣化度判定方法及び金属加工部材の製造方法の提供を目的とする。   The present invention has been made on the basis of the above-described circumstances, and a degradation degree determination method and a metal workpiece that can easily and accurately determine whether a polymer aqueous solution used for a cooling liquid for heat treatment of a metal material can be continuously used. The purpose is to provide a manufacturing method.

本発明者らは、ポリマー水溶液の継続使用の可否を判断できる管理指標を確立すべく、劣化度の異なる複数のポリマー水溶液の物性値を測定し検討を行った。その結果、本発明者らは、ポリマー濃度及び動粘度の組合せが上記管理指標として採用できることを見出した。具体的には、本発明者らは、劣化が進んだポリマー水溶液を水で希釈したときの動粘度と、その希釈したポリマー水溶液と同じポリマー濃度の劣化が進んでいないポリマー水溶液の動粘度とを比較したところ、劣化が進むに従って動粘度が低下することを見出した。これにより、本発明者らは、ポリマー濃度及び動粘度の組合せがポリマー水溶液の劣化度の判定に用いることができることを見出した。本発明者らは、この知見に基づき本願発明を完成するに至った。   In order to establish a management index that can determine whether or not the aqueous polymer solution can be used continuously, the present inventors have measured and examined physical property values of a plurality of aqueous polymer solutions having different degrees of deterioration. As a result, the present inventors have found that a combination of polymer concentration and kinematic viscosity can be adopted as the management index. Specifically, the present inventors determined the kinematic viscosity when diluting a polymer aqueous solution that has progressed with water and the kinematic viscosity of a polymer aqueous solution that has not progressed in the same polymer concentration as the diluted polymer aqueous solution. As a result of comparison, it was found that the kinematic viscosity decreases as the deterioration progresses. Thus, the inventors have found that a combination of polymer concentration and kinematic viscosity can be used to determine the degree of deterioration of an aqueous polymer solution. Based on this finding, the present inventors have completed the present invention.

すなわち、上記課題を解決するためになされた発明は、金属材料の熱処理の冷却液に用いるポリマー水溶液の劣化度判定方法であって、ポリマー水溶液の動粘度を測定する工程と、上記測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を取得する工程と、上記測定工程で得た動粘度及び上記取得工程で得たポリマー濃度に基づいてポリマー水溶液の劣化度を判定する工程とを備えることを特徴とする劣化度判定方法である。   That is, the invention made in order to solve the above problems is a method for determining the degree of deterioration of an aqueous polymer solution used for a cooling liquid for heat treatment of a metal material, comprising the steps of measuring the kinematic viscosity of the aqueous polymer solution, A step of obtaining the polymer concentration of the aqueous polymer solution at the time of measuring the kinematic viscosity, and a step of determining the degree of deterioration of the aqueous polymer solution based on the kinematic viscosity obtained in the measurement step and the polymer concentration obtained in the acquisition step. This is a characteristic deterioration degree determination method.

当該劣化度判定方法は、ポリマー水溶液の劣化度を判定するために、ポリマー水溶液の動粘度の測定、及び動粘度測定時のポリマー水溶液のポリマー濃度の取得を行なえばよく、試験材をポリマー水溶液に浸漬して冷却温度を測定するような繁雑な作業が必要ないので、容易にポリマー水溶液の継続使用の可否を判断できる。また、動粘度及びその動粘度に対応するポリマー濃度に基づいてポリマー水溶液の劣化度を判定するので、ポリマー水溶液の継続使用の可否を精度よく判断できる。   In order to determine the degree of deterioration of the aqueous polymer solution, the degradation degree determination method may be performed by measuring the kinematic viscosity of the aqueous polymer solution and obtaining the polymer concentration of the aqueous polymer solution at the time of measuring the kinematic viscosity. Since it is not necessary to perform a complicated operation such as immersion to measure the cooling temperature, it is possible to easily determine whether the aqueous polymer solution can be used continuously. Further, since the degree of deterioration of the aqueous polymer solution is determined based on the kinematic viscosity and the polymer concentration corresponding to the kinematic viscosity, it is possible to accurately determine whether the polymer aqueous solution can be used continuously.

上記判定工程で、上記動粘度及びポリマー濃度を軸とする座標系に上記ポリマー水溶液の継続使用の可否を示す閾値線を設定し、この閾値線より動粘度が大きい場合にポリマー水溶液の継続使用可能と判断するとよい。このように、ポリマー水溶液の継続使用の可否を示す閾値線を設定した動粘度及びポリマー濃度を軸とする座標系を用いてポリマー水溶液の継続使用の可否を判断することにより、ポリマー水溶液の劣化度をより容易に判断できる。   In the determination step, a threshold line indicating whether or not the polymer aqueous solution can be used continuously is set in the coordinate system with the kinematic viscosity and the polymer concentration as axes, and the polymer aqueous solution can be used continuously when the kinematic viscosity is larger than the threshold line. It is good to judge. In this way, the degree of deterioration of the aqueous polymer solution can be determined by determining whether the aqueous polymer solution can be used continuously by using a coordinate system with the kinematic viscosity and the polymer concentration as axes, which set a threshold line indicating whether the aqueous polymer solution can be used continuously. Can be determined more easily.

上記座標系を動粘度y及びポリマー濃度xを軸とする2軸直交座標系とし、上記閾値線をy=ax+b(aは正の定数、bは定数)の一次関数とし、上記判定工程で、下記式(1)の場合にポリマー水溶液の継続使用可能と判断し、下記式(2)の場合にポリマー水溶液の継続使用不可と判断するとよい。
y>ax+b ・・・(1)
y≦ax+b ・・・(2)
The coordinate system is a biaxial orthogonal coordinate system with kinematic viscosity y and polymer concentration x as axes, and the threshold line is a linear function of y = ax + b (a is a positive constant, b is a constant). In the case of the following formula (1), it may be determined that the aqueous polymer solution can be used continuously, and in the case of the following formula (2), it may be determined that the aqueous polymer solution cannot be used continuously.
y> ax + b (1)
y ≦ ax + b (2)

このように、動粘度y及びポリマー濃度xを軸とする2軸直交座標系の一次関数で上記閾値線を表すことで、上記継続使用の可否をより精度よく判断できると共に、対象とする動粘度及びポリマー水溶液と閾値線との差を把握し易い。   Thus, by expressing the threshold line with a linear function of a biaxial orthogonal coordinate system with the kinematic viscosity y and the polymer concentration x as axes, it is possible to more accurately determine whether or not the continuous use can be performed, and the target kinematic viscosity. It is easy to grasp the difference between the polymer aqueous solution and the threshold line.

上記取得工程で、上記測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を測定するとよい。このように、測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を測定することで、ポリマー水溶液の希釈等の作業なしで、動粘度及びポリマー濃度を測定するという簡易な作業のみで、ポリマー水溶液の継続使用の可否を判断できる。   In the acquisition step, the polymer concentration of the aqueous polymer solution at the time of measuring the kinematic viscosity in the measurement step may be measured. Thus, by measuring the polymer concentration of the aqueous polymer solution at the time of measuring the kinematic viscosity in the measurement process, the polymer can be measured only by a simple operation of measuring the kinematic viscosity and the polymer concentration without any work such as dilution of the aqueous polymer solution. Whether or not the aqueous solution can be used continuously can be determined.

上記測定工程前にポリマー水溶液を特定濃度に希釈する工程をさらに備え、上記測定工程で上記希釈工程後のポリマー水溶液の動粘度を測定し、上記取得工程で取得するポリマー濃度として上記希釈工程後の特定濃度を採用してもよい。このように、特定濃度に希釈後のポリマー水溶液の動粘度を測定すると共に希釈工程後の特定濃度を採用することで、動粘度のみに基づいてポリマー水溶液の継続使用の可否を判断できるので、より容易にポリマー水溶液の劣化度を判定できる。   The method further comprises a step of diluting the aqueous polymer solution to a specific concentration before the measurement step, measuring the kinematic viscosity of the aqueous polymer solution after the dilution step in the measurement step, and obtaining the polymer concentration obtained in the acquisition step after the dilution step. A specific concentration may be employed. In this way, by measuring the kinematic viscosity of the polymer aqueous solution after dilution to a specific concentration and adopting the specific concentration after the dilution step, it is possible to determine whether or not the polymer aqueous solution can be continuously used based on only the kinematic viscosity. The degree of deterioration of the polymer aqueous solution can be easily determined.

上記判定工程が、上記測定工程で得た動粘度及び上記取得工程で得たポリマー濃度に基づき上記金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率を同定する工程と、上記同定工程で得た平均熱伝達率が閾値より小さい場合にポリマー水溶液の継続使用可能と判断する工程とを有するとよい。ここで、200℃以上400℃以下は、経験則より焼割れが生じる温度域であるので、焼割れの発生に対する上記閾値の精度が高い。従って、このようにポリマー水溶液の動粘度及びポリマー濃度に基づいて上記温度域での平均熱伝達率を同定し、この平均熱伝達率と上記閾値との比較によりポリマー水溶液の継続使用の可否を判断するので、ポリマー水溶液の継続使用の可否の判断精度をより向上できる。   The step of determining the average heat transfer coefficient between 200 ° C. and 400 ° C. between the metal material and the polymer aqueous solution based on the kinematic viscosity obtained in the measurement step and the polymer concentration obtained in the acquisition step; It is preferable to include a step of determining that the aqueous polymer solution can be continuously used when the average heat transfer coefficient obtained in the identification step is smaller than the threshold value. Here, since the temperature range of 200 ° C. or more and 400 ° C. or less is a temperature range in which burning cracks are generated based on an empirical rule, the accuracy of the threshold for the occurrence of burning cracks is high. Therefore, the average heat transfer coefficient in the above temperature range is identified based on the kinematic viscosity and polymer concentration of the polymer aqueous solution in this way, and it is determined whether or not the polymer aqueous solution can be used continuously by comparing this average heat transfer coefficient with the above threshold value. Therefore, it is possible to further improve the accuracy of determining whether or not the aqueous polymer solution can be used continuously.

上記金属材料と同質の円柱状の試験片を加熱して閾値導出用のポリマー水溶液へ浸漬し、上記試験片の中心、上面、側面及び底面並びにポリマー水溶液の温度の経時変化を測定し、その経時的温度を下記式(3)に導入することで上記閾値を導出するとよい。
但し、式(3)中、tは試験片の上面から所定厚さの上部円柱状領域の重心、bは底面から上記所定厚さの底部円柱状領域の重心、sは側面から上記所定厚さの側部円筒状領域の上記側面から上記所定厚さの1/2の位置で試験片の高さの1/2の位置、cは上記上部、底部及び側部に囲まれる中央部円柱状領域の重心である。m(iはt、s、b)は上記上部、側部及び底部の質量[kg]である。Aは上記上部、側部及び底部と上記中央部との接触面積[m]である。Cpx(xはc、t、s、b)は上記中央部、上部、側部及び底部の比熱[J/kg・K]である。lは重心cから上面、側面及び底面までの距離[m]である。Tはc、t、s及びbで測定される温度[K]であり、Tbulkはポリマー水溶液の温度[K]である。hは上面、側面及び底面における熱伝達率[W/m・K]である。
A cylindrical test piece of the same quality as the metal material is heated and immersed in a polymer aqueous solution for deriving a threshold value, and the time-dependent changes in temperature of the center, top surface, side surface and bottom surface of the test piece and the aqueous polymer solution are measured. The threshold value may be derived by introducing the target temperature into the following formula (3).
In Equation (3), t is the center of gravity of the upper cylindrical region having a predetermined thickness from the top surface of the test piece, b is the center of gravity of the bottom cylindrical region having the predetermined thickness from the bottom surface, and s is the predetermined thickness from the side surface. A position of half the height of the test piece at a position 1/2 of the predetermined thickness from the side surface of the side cylindrical area of the side, c is a central columnar area surrounded by the top, bottom and sides Is the center of gravity. m i (i is t, s, b) is the mass [kg] of the top, side, and bottom. A i is a contact area [m 2 ] between the upper part, the side part and the bottom part and the central part. C px (x is c, t, s, b) is the specific heat [J / kg · K] of the center, top, side, and bottom. l i is the distance [m] from the center of gravity c to the top, side and bottom surfaces. T x is a temperature [K] measured by c, t, s, and b, and T bulk is a temperature [K] of the polymer aqueous solution. h i is the upper surface, a heat transfer coefficient on the side surface and the bottom surface [W / m 2 · K] .

このように、試験片の中心、上面、側面及び底面並びにポリマー水溶液の温度の経時変化を測定し、その経時的温度を上記式(3)に導入して上記閾値を導出することにより、焼割れの発生に対する閾値の精度をより高くでき、ポリマー水溶液の劣化度の判定精度をより向上できる。   Thus, by measuring the time-dependent changes in the center, top surface, side surface and bottom surface of the test piece and the temperature of the aqueous polymer solution, introducing the time-dependent temperature into the above equation (3) and deriving the above threshold, It is possible to increase the accuracy of the threshold value for the occurrence of the occurrence of water and improve the determination accuracy of the degree of deterioration of the aqueous polymer solution.

また、上記課題を解決するためになされた別の発明は、金属材料を加熱する工程と、ポリマー水溶液への浸漬により上記金属材料を冷却する工程と、上記劣化度判定方法によりポリマー水溶液の劣化度を判定する工程とを備える金属加工部材の製造方法である。   Further, another invention made to solve the above problems includes a step of heating the metal material, a step of cooling the metal material by immersion in the polymer aqueous solution, and a degree of deterioration of the polymer aqueous solution by the method of determining the degree of deterioration. It is a manufacturing method of the metal processing member provided with the process of determining.

当該金属加工部材の製造方法は、上記劣化度判定方法によりポリマー水溶液の劣化度を判定する工程を備えるので、金属材料の熱処理の冷却液に用いるポリマー水溶液の継続使用の可否を容易かつ精度よく判断できる。これにより、当該金属加工部材の製造方法は、焼割れが発生する状態により近い状態となるまでポリマー水溶液の継続使用を可能とし、ポリマー水溶液を交換するまでの使用時間を長くすることができるため、ポリマー水溶液の使用量を低減でき、金属加工部材の製造コストを低減できる。   Since the method of manufacturing the metal workpiece includes a step of determining the deterioration degree of the aqueous polymer solution by the deterioration degree determination method, it is easily and accurately determined whether or not the aqueous polymer solution used for the cooling liquid of the heat treatment of the metal material can be continuously used. it can. Thereby, since the manufacturing method of the said metal processing member enables continuous use of the polymer aqueous solution until it becomes a state closer to the state where burning cracks occur, and can increase the use time until the polymer aqueous solution is replaced, The amount of the polymer aqueous solution used can be reduced, and the manufacturing cost of the metal workpiece can be reduced.

以上説明したように、本発明の劣化度判定方法は、金属材料の熱処理の冷却液に用いるポリマー水溶液の継続使用の可否を容易かつ精度よく判断できる。また、本発明の金属加工部材の製造方法は、金属材料の熱処理の冷却液に用いるポリマー水溶液の継続使用の可否を容易かつ精度よく判断できるので、ポリマー水溶液を交換するまでの使用時間を長くすることができる。   As described above, the degradation degree determination method of the present invention can easily and accurately determine whether or not the polymer aqueous solution used for the cooling liquid for the heat treatment of the metal material can be used continuously. In addition, the method for producing a metal workpiece according to the present invention makes it possible to easily and accurately determine whether or not the polymer aqueous solution used for the cooling liquid for heat treatment of the metal material can be continuously used, and thus increases the use time until the polymer aqueous solution is replaced. be able to.

本発明の第一実施形態の劣化度判定方法におけるポリマー水溶液の継続使用の可否を判定する閾値線を示すグラフである。It is a graph which shows the threshold line which determines the propriety of continuous use of the polymer aqueous solution in the degradation degree determination method of 1st embodiment of this invention. 使用期間の異なるポリマー水溶液の動粘度の測定結果を示すグラフである。It is a graph which shows the measurement result of the kinematic viscosity of the polymer aqueous solution from which a use period differs. 使用期間の異なるポリマー水溶液を同じポリマー濃度に希釈した場合の動粘度の測定結果を示すグラフである。It is a graph which shows the measurement result of kinematic viscosity at the time of diluting the polymer aqueous solution from which a use period differs to the same polymer concentration. ポリマー濃度αにおける動粘度と金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率との関係を示すグラフである。It is a graph which shows the relationship between the kinematic viscosity in polymer concentration (alpha), and the average heat transfer coefficient of 200 to 400 degreeC between a metal material and polymer aqueous solution. ポリマー濃度1.2αにおける動粘度と金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率との関係を示すグラフである。It is a graph which shows the relationship between the kinematic viscosity in polymer concentration 1.2 (alpha), and the average heat transfer coefficient of 200 to 400 degreeC between a metal material and polymer aqueous solution. ポリマー濃度1.4αにおける動粘度と金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率との関係を示すグラフである。It is a graph which shows the relationship between kinematic viscosity in polymer concentration 1.4 (alpha), and the average heat transfer coefficient of 200 to 400 degreeC between a metal material and polymer aqueous solution. 平均熱伝達率の導出のために用いた試験材の模式的断面図である。It is a typical sectional view of a test material used for derivation of an average heat transfer coefficient. ポリマー濃度αにおける試験材上面での温度と金属材料及びポリマー水溶液間の熱伝達率との関係を示すグラフである。It is a graph which shows the relationship between the temperature on the test material upper surface in polymer concentration (alpha), and the heat transfer rate between a metal material and polymer aqueous solution. ポリマー濃度αにおける試験材側面での温度と金属材料及びポリマー水溶液間の熱伝達率との関係を示すグラフである。It is a graph which shows the relationship between the temperature by the side of a test material in polymer concentration (alpha), and the heat transfer rate between a metal material and polymer aqueous solution. ポリマー濃度αにおける試験材底面での温度と金属材料及びポリマー水溶液間の熱伝達率との関係を示すグラフである。It is a graph which shows the relationship between the temperature in the test material bottom face in polymer concentration (alpha), and the heat transfer rate between a metal material and polymer aqueous solution. 動粘度と金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率との近似直線の切片とポリマー濃度との関係を示すグラフである。It is a graph which shows the relationship between the intercept of the approximate line of kinematic viscosity and the average heat transfer coefficient of 200 to 400 degreeC between a metal material and polymer aqueous solution, and a polymer concentration.

以下、本発明に係る劣化度判定方法、及び金属加工部材の製造方法の実施形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a deterioration degree determination method and a metal workpiece manufacturing method according to the present invention will be described.

〔第一実施形態〕
[劣化度判定方法]
当該劣化度判定方法は、金属材料の熱処理の冷却液に用いるポリマー水溶液の劣化度判定方法である。当該劣化度判定方法は、ポリマー水溶液の動粘度を測定する工程(測定工程)と、上記測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を取得する工程(取得工程)と、上記測定工程で得た動粘度及び上記取得工程で得たポリマー濃度に基づいてポリマー水溶液の劣化度を判定する工程(判定工程)とを備える。
[First embodiment]
[Degradation method]
The degradation level determination method is a degradation level determination method for an aqueous polymer solution used as a cooling liquid for heat treatment of a metal material. The degradation degree determination method includes a step of measuring the kinematic viscosity of the polymer aqueous solution (measurement step), a step of acquiring the polymer concentration of the polymer aqueous solution at the time of measuring the kinematic viscosity in the measurement step (acquisition step), and the measurement step. And a step of determining the degree of deterioration of the aqueous polymer solution (determination step) based on the kinematic viscosity obtained in step 1 and the polymer concentration obtained in the acquisition step.

当該劣化度判定方法を適用する熱処理で対象とする金属材料として、例えば鋼、Ni基合金、Co基合金、アルミニウム合金、マグネシウム合金、銅合金等が挙げられる。   Examples of the metal material to be subjected to the heat treatment to which the degradation degree determination method is applied include steel, Ni-base alloy, Co-base alloy, aluminum alloy, magnesium alloy, and copper alloy.

上記ポリマー水溶液に用いるポリマーとしては、水に溶解するものであればよく、例えばポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリアルキレングリコール(PAG)などを用いることができる。   The polymer used in the polymer aqueous solution is not particularly limited as long as it is soluble in water. For example, polyethylene glycol (PEG), polypropylene glycol (PPG), polyalkylene glycol (PAG), and the like can be used.

上記ポリマー水溶液に用いるポリマーの数平均分子量の下限としては、4,000が好ましく、4,500がより好ましい。上記ポリマーの数平均分子量が上記下限に満たないと、必要な冷却緩和能を得るためにポリマー濃度を高くしなければならず、ポリマーの使用量が多くなり、製造コストが増加するおそれがある。   The lower limit of the number average molecular weight of the polymer used in the polymer aqueous solution is preferably 4,000, and more preferably 4,500. If the number average molecular weight of the polymer is less than the lower limit, the polymer concentration must be increased in order to obtain the necessary cooling relaxation ability, and the amount of the polymer used increases, which may increase the production cost.

上記ポリマー水溶液のポリマー濃度の下限としては、10体積%が好ましく、15体積%がより好ましい。一方、上記ポリマー濃度の上限としては、60体積%が好ましく、50体積%がより好ましい。上記ポリマー濃度が上記下限に満たないと、必要な冷却緩和能を得ることができないおそれがある。逆に、上記ポリマー濃度が上記上限を超えると、ポリマーの必要量が増加し、製造コストが増加するおそれがある。   The lower limit of the polymer concentration of the aqueous polymer solution is preferably 10% by volume, more preferably 15% by volume. On the other hand, the upper limit of the polymer concentration is preferably 60% by volume, more preferably 50% by volume. If the polymer concentration is less than the lower limit, the necessary cooling relaxation ability may not be obtained. Conversely, if the polymer concentration exceeds the upper limit, the required amount of polymer increases, which may increase the manufacturing cost.

上記ポリマー水溶液の熱伝導率の下限としては、0.40W/(m・K)が好ましく、0.45W/(m・K)がより好ましい。一方、上記ポリマー水溶液の熱伝導率の上限としては、0.65W/(m・K)が好ましく、0.60W/(m・K)がより好ましい。上記ポリマー水溶液の熱伝導率が上記下限に満たないと、金属材料の冷却速度が遅くなりすぎ、熱処理で期待される金属材料の所望の特性が得られないおそれがある。逆に、上記ポリマー水溶液の熱伝導率が上記上限を超えると、ポリマーによる冷却緩和効果が小さすぎ、焼割れ抑制効果が低下するおそれがある。   The lower limit of the thermal conductivity of the aqueous polymer solution is preferably 0.40 W / (m · K), more preferably 0.45 W / (m · K). On the other hand, the upper limit of the thermal conductivity of the aqueous polymer solution is preferably 0.65 W / (m · K), more preferably 0.60 W / (m · K). If the thermal conductivity of the aqueous polymer solution is less than the lower limit, the cooling rate of the metal material becomes too slow, and the desired characteristics of the metal material expected by the heat treatment may not be obtained. Conversely, if the thermal conductivity of the polymer aqueous solution exceeds the upper limit, the cooling relaxation effect by the polymer is too small, and the cracking suppression effect may be reduced.

<測定工程>
測定工程では、粘度計を用いてポリマー水溶液の動粘度を測定する。動粘度を測定する粘度計として、例えばウベローデ粘度計やキャノンフェンスケ粘度計を用いることができる。
<Measurement process>
In the measurement step, the kinematic viscosity of the aqueous polymer solution is measured using a viscometer. As a viscometer for measuring the kinematic viscosity, for example, an Ubbelohde viscometer or a Cannon Fenceke viscometer can be used.

<取得工程>
取得工程では、上記測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を測定する。このポリマー濃度は、例えば屈折率濃度計を用いることにより容易に測定することができる。
<Acquisition process>
In the acquisition step, the polymer concentration of the aqueous polymer solution at the time of measuring the kinematic viscosity in the measurement step is measured. This polymer concentration can be easily measured by using, for example, a refractive index densitometer.

<判定工程>
判定工程では、測定工程で測定した動粘度及び取得工程で測定したポリマー濃度に基づいてポリマー水溶液の劣化度を判定する。
<Judgment process>
In the determination step, the degree of deterioration of the aqueous polymer solution is determined based on the kinematic viscosity measured in the measurement step and the polymer concentration measured in the acquisition step.

上記判定工程では、具体的には、動粘度及びポリマー濃度を軸とする座標系にポリマー水溶液の継続使用の可否を示す閾値線を設定し、この閾値線より動粘度が大きい場合にポリマー水溶液の継続使用可能と判断し、動粘度がこの閾値線以下の場合にポリマー水溶液の継続使用不可と判断する。   Specifically, in the above determination step, a threshold line indicating whether or not the aqueous polymer solution can be used continuously is set in a coordinate system with the kinematic viscosity and the polymer concentration as axes. It is determined that continuous use is possible, and when the kinematic viscosity is below this threshold line, it is determined that the polymer aqueous solution cannot be used continuously.

さらに具体的には、上記判定工程では、例えば図1に示すように、上記座標系を動粘度y及びポリマー濃度xを軸とする2軸直交座標系とし、閾値線TLをy=ax+b(aは正の定数、bは定数)の一次関数とする。この判定工程では、この一次関数に上記測定した動粘度及びポリマー濃度を代入し、下記式(1)の場合にポリマー水溶液の継続使用可能と判断し、下記式(2)の場合にポリマー水溶液の継続使用不可と判断する。
y>ax+b ・・・(1)
y≦ax+b ・・・(2)
More specifically, in the determination step, as shown in FIG. 1, for example, the coordinate system is a biaxial orthogonal coordinate system with the kinematic viscosity y and the polymer concentration x as axes, and the threshold line TL is set to y = ax + b (a Is a positive constant and b is a constant). In this determination step, the measured kinematic viscosity and polymer concentration are substituted into this linear function, and in the case of the following formula (1), it is determined that the polymer aqueous solution can be used continuously. In the case of the following formula (2), the polymer aqueous solution Judged that continuous use is not possible.
y> ax + b (1)
y ≦ ax + b (2)

なお、上記閾値線TLは、例えば閾値線導出用のポリマー水溶液として、使用劣化により焼割れが発生し始める状態となったポリマー水溶液を用いて得ることができる。具体的には、異なるポリマー濃度となるよう上記閾値線導出用のポリマー水溶液の希釈により複数のポリマー水溶液を作成してこれらの動粘度を測定した後、例えば最小二乗法により、これらのポリマー水溶液の濃度及び動粘度の関係を一次近似して上記閾値線TLを得ることができる。なお、図1に示す各プロットは、上記閾値線導出用のポリマー水溶液の動粘度、及びこのポリマー水溶液に水を添加して複数のポリマー濃度に希釈したものの各動粘度を測定し、各ポリマー濃度に対する動粘度を示すものである。これらのプロットより、上述のように上記閾値線TLを求めることができる。   The threshold line TL can be obtained by using, for example, a polymer aqueous solution that is in a state where burning cracks start to occur due to use deterioration as a polymer aqueous solution for deriving a threshold line. Specifically, after preparing a plurality of polymer aqueous solutions by diluting the polymer aqueous solution for deriving the threshold line so as to have different polymer concentrations and measuring their kinematic viscosities, for example, by the least square method, The threshold line TL can be obtained by first-order approximation of the relationship between the concentration and the kinematic viscosity. Each plot shown in FIG. 1 shows the kinematic viscosity of the polymer aqueous solution for deriving the threshold line, and the kinematic viscosities of the polymer aqueous solution diluted by adding water to a plurality of polymer concentrations. The kinematic viscosity with respect to is shown. From these plots, the threshold line TL can be obtained as described above.

ここで、動粘度及びポリマー濃度に基づいてポリマー水溶液の劣化度を判定できる理由について説明するが、発明者らは、動粘度及びポリマー濃度がポリマー水溶液の継続使用の可否を判断できる管理指標として採用できることを見出す前に、これ以外の物性についても上記管理指標として採用できるか検討した。具体的には、発明者らは、まず分子量について検討し、その結果、測定毎のばらつき及び測定箇所によるばらつきが大きいため、分子量を上記管理指標として用いることは困難であることがわかった。次に、本発明者らは、ポリマー水溶液の熱伝導率と動粘度とのそれぞれについて検討したが、いずれもポリマー水溶液の劣化との相関が認められず、これらも上記管理指標として用いることは困難であることがわかった。次に、発明者らは、動粘度及びポリマー濃度の組合せについて検討した。   Here, the reason why the degree of deterioration of the aqueous polymer solution can be determined based on the kinematic viscosity and the polymer concentration will be described, but the inventors adopt the kinematic viscosity and the polymer concentration as a management index for determining whether or not the aqueous polymer solution can be used continuously. Before finding what could be done, we examined whether other physical properties could be adopted as the management index. Specifically, the inventors first examined the molecular weight, and as a result, it was found that it is difficult to use the molecular weight as the management index because of the large variation in each measurement and the variation depending on the measurement location. Next, the present inventors examined each of the thermal conductivity and kinematic viscosity of the aqueous polymer solution, but none of them was correlated with the deterioration of the aqueous polymer solution, and these were also difficult to use as the management index. I found out that Next, the inventors examined the combination of kinematic viscosity and polymer concentration.

発明者らは、まず表1に示す使用時間の異なるポリマー水溶液について動粘度を測定したところ、図2のような結果が得られた。表1中の新液Aは、熱処理に使用する前のポリマー水溶液であり、操業液B〜Eは、使用中の複数のポリマー水溶液である。各操業液B〜Eは、この順に使用時間が長いものである。表1では、ポリマー水溶液のポリマー濃度を濃度比で示している。この濃度比は、新液Aのポリマー濃度に対する各操業液B〜Eのポリマー濃度の割合(操業液のポリマー濃度[体積%]/新液Aのポリマー濃度[体積%])である。使用中のポリマー水溶液は、劣化を抑制するために新液Aを継ぎ足しながら使用するので、使用期間が長くなるほどポリマー濃度が高くなる。   The inventors first measured the kinematic viscosity of the polymer aqueous solutions having different use times shown in Table 1, and the results as shown in FIG. 2 were obtained. The new liquid A in Table 1 is a polymer aqueous solution before being used for heat treatment, and the operating liquids B to E are a plurality of polymer aqueous solutions in use. Each operation liquid B to E has a long use time in this order. In Table 1, the polymer concentration of the polymer aqueous solution is shown as a concentration ratio. This concentration ratio is the ratio of the polymer concentration of each of the operating liquids B to E to the polymer concentration of the new liquid A (the polymer concentration of the operating liquid [volume%] / the polymer concentration of the new liquid A [volume%]). Since the polymer aqueous solution in use is used while adding the new solution A in order to suppress deterioration, the polymer concentration increases as the period of use increases.

図2より、使用期間が長く劣化が進んでいると考えられるポリマー水溶液ほど動粘度が高いことがわかる。「動粘度が高い」ことは、通常「熱伝達率が低い」と予測されるので、「焼割れが発生し難い」と考えられる。しかし、図2はこのことと逆の結果となっている。従って、動粘度をポリマー水溶液の劣化度の管理指標として用いることはできない。   FIG. 2 shows that the kinematic viscosity is higher as the polymer aqueous solution is considered to have a longer period of use and the deterioration is progressing. “High kinematic viscosity” is usually predicted to be “low heat transfer coefficient”, and is considered to be “hard to cause cracking”. However, FIG. 2 shows the opposite result. Accordingly, the kinematic viscosity cannot be used as a management index for the degree of deterioration of the aqueous polymer solution.

そこで発明者らは、ポリマー濃度が新液Aのポリマー濃度αと同じとなるよう各操業液B〜Eを水で希釈し、同じポリマー濃度αとした各操業液B〜Eの動粘度を測定した。この測定結果を図3に示す。図3より、劣化が進んでいると考えられるポリマー水溶液ほど動粘度が低いことがわかる。これは、劣化が進んでいるポリマー水溶液ほど分子量が低下しているためと考えられる。このことより、所定の濃度における動粘度が、ポリマー水溶液の継続使用の可否を判断するための管理指標として使用できることがわかる。従って、ポリマー濃度毎にポリマー水溶液の継続使用の可否を判断するための閾値となる動粘度が定まるので、上述のように閾値線導出用のポリマー水溶液を用いることで、ポリマー濃度に対応する動粘度の閾値を示す上記閾値線TLが得られる。これにより、動粘度及びポリマー濃度から閾値線TLを用いてポリマー水溶液の継続使用の可否を判断できる。   Therefore, the inventors diluted each operating liquid B to E with water so that the polymer concentration was the same as the polymer concentration α of the new liquid A, and measured the kinematic viscosity of each operating liquid B to E with the same polymer concentration α. did. The measurement results are shown in FIG. FIG. 3 shows that the kinematic viscosity is lower as the polymer aqueous solution is considered to be more deteriorated. This is thought to be because the molecular weight of the polymer aqueous solution that has been deteriorated is lowered. From this, it can be seen that the kinematic viscosity at a predetermined concentration can be used as a management index for determining whether or not the polymer aqueous solution can be used continuously. Accordingly, the kinematic viscosity that becomes the threshold for determining whether or not the aqueous polymer solution can be used continuously is determined for each polymer concentration. Therefore, by using the polymer aqueous solution for deriving the threshold line as described above, the kinematic viscosity corresponding to the polymer concentration is determined. The threshold line TL indicating the threshold is obtained. Thereby, it is possible to determine whether or not the polymer aqueous solution can be continuously used from the kinematic viscosity and the polymer concentration using the threshold line TL.

当該劣化度判定方法は、試験材をポリマー水溶液に浸漬して冷却温度を測定する等の作業なしで、ポリマー水溶液のポリマー濃度及び動粘度を測定するという簡易な作業のみで、ポリマー水溶液の継続使用可否を判断できる。また、当該劣化度判定方法は、測定したポリマー濃度及び動粘度を閾値線TLと比較することで、ポリマー水溶液の継続使用可否を判断できるので、ポリマー水溶液の劣化度を判定し易い。   The degradation level is determined by the simple use of measuring the polymer concentration and kinematic viscosity of the aqueous polymer solution without immersing the test material in the aqueous polymer solution and measuring the cooling temperature. Whether it is possible can be determined. Moreover, since the degradation degree determination method can determine whether or not the aqueous polymer solution can be used continuously by comparing the measured polymer concentration and kinematic viscosity with the threshold line TL, it is easy to determine the degradation level of the aqueous polymer solution.

[金属加工部材の製造方法]
当該金属加工部材の製造方法は、金属材料を加熱する工程(加熱工程)と、ポリマー水溶液への浸漬により上記金属材料を冷却する工程(冷却工程)と、上記劣化度判定方法によりポリマー水溶液の劣化度を判定する工程(劣化度判定工程)とを主に備える。
[Method of manufacturing metal-worked member]
The manufacturing method of the metal workpiece includes a step of heating a metal material (heating step), a step of cooling the metal material by immersion in a polymer aqueous solution (cooling step), and a deterioration of the polymer aqueous solution by the deterioration degree determination method. And a step of determining the degree (degradation degree determination step).

上記加熱工程及び冷却工程は、金属材料に対する焼入れ処理や焼戻し処理などの熱処理において加熱及び冷却を行う工程である。例えば金属加工部材としてクランクシャフト等に用いる鍛鋼品用高強度鋼を製造する場合、上記工程以外に、溶製工程、鋳造工程、鍛造工程などを備える。さらに、このようにして製造した鍛鋼品用高強度鋼を機械加工工程により加工することで、例えば船舶用駆動源の伝達部材として用いられる中間軸、推進軸、連接棒、ラダーストック、ラダーホーン、クランクシャフト等が製造される。   The heating step and the cooling step are steps for heating and cooling in a heat treatment such as a quenching treatment and a tempering treatment for the metal material. For example, when manufacturing high-strength steel for forged steel used for a crankshaft or the like as a metal processed member, in addition to the above steps, a melting step, a casting step, a forging step, and the like are provided. Furthermore, by processing the high-strength steel for forged steel manufactured in this way by a machining process, for example, an intermediate shaft, a propulsion shaft, a connecting rod, a ladder stock, a ladder horn, used as a transmission member for a marine drive source, Crankshafts etc. are manufactured.

<加熱工程>
加熱工程では、所定の温度で所定時間、金属材料を加熱する。例えば鍛鋼品用高強度鋼の焼入れ処理における加熱工程では、焼入前処理工程で冷却された鋼材を800℃以上950℃以下程度まで昇温して1時間以上保持する。
<Heating process>
In the heating step, the metal material is heated at a predetermined temperature for a predetermined time. For example, in the heating process in the quenching process of high-strength steel for forged steel products, the steel material cooled in the pre-quenching process is heated to about 800 ° C. or higher and about 950 ° C. or lower and held for 1 hour or longer.

<冷却工程>
冷却工程では、上記加熱工程で加熱した金属材料をポリマー水溶液に浸漬することにより所定温度まで冷却する。例えば鍛鋼品用高強度鋼の焼入れ処理における冷却工程では、加熱工程で加熱された鋼材をポリマー水溶液に浸漬し、例えば平均冷却速度50℃/min程度で450℃以上530℃以下程度まで冷却する。
<Cooling process>
In the cooling step, the metal material heated in the heating step is cooled to a predetermined temperature by immersing it in the polymer aqueous solution. For example, in the cooling process in the quenching treatment of high strength steel for forged steel products, the steel material heated in the heating process is immersed in an aqueous polymer solution, and is cooled to, for example, about 450 ° C. or more and 530 ° C. or less at an average cooling rate of about 50 ° C./min.

<劣化度判定工程>
劣化度判定工程では、ポリマー水溶液のポリマー濃度及び動粘度を測定し、上記劣化度判定方法によりポリマー水溶液の継続使用可否を判断する。例えば劣化度判定方法として図1の座標系を用いる場合、劣化度判定工程では、測定したポリマー濃度x及び動粘度yが上記式(1)を満たすときは、そのポリマー水溶液を継続使用し、上記式(2)を満たすときは、そのポリマー水溶液の継続使用不可と判断して、新しいポリマー水溶液に交換する。
<Deterioration degree determination process>
In the deterioration degree determination step, the polymer concentration and kinematic viscosity of the aqueous polymer solution are measured, and whether or not the aqueous polymer solution can be continuously used is determined by the above deterioration degree determination method. For example, when the coordinate system of FIG. 1 is used as the deterioration degree determination method, in the deterioration degree determination step, when the measured polymer concentration x and kinematic viscosity y satisfy the above formula (1), the polymer aqueous solution is continuously used. When the formula (2) is satisfied, it is determined that the polymer aqueous solution cannot be used continuously, and is replaced with a new polymer aqueous solution.

なお、上記劣化度判定工程は、金属材料を冷却する毎に行ってもよいし、所定回数の金属材料の冷却が焼割れなく行えると見込めるような場合には、所定回数の冷却処理を行った後のみに行うようにしてもよい。   Note that the deterioration degree determination step may be performed every time the metal material is cooled, or when it is expected that the metal material can be cooled a predetermined number of times without burning cracks, the cooling process is performed a predetermined number of times. It may be performed only later.

このように当該金属加工部材の製造方法は、上記劣化度判定方法によりポリマー水溶液の劣化度を判定する工程を備えるので、金属材料の熱処理の冷却液に用いるポリマー水溶液の継続使用の可否を容易かつ精度よく判断でき、焼割れが発生する状態により近い状態となるまでポリマー水溶液の継続使用ができる。これにより、ポリマー水溶液を交換するまでの使用時間を長くすることができるため、ポリマー水溶液の使用量を低減でき、金属材料の製造コストを低減できる。   Thus, since the manufacturing method of the said metal processing member is equipped with the process of determining the deterioration degree of polymer aqueous solution by the said deterioration degree determination method, it is easy to determine the continuation use of the polymer aqueous solution used for the cooling liquid of the heat processing of a metal material, and The polymer aqueous solution can be used continuously until it can be judged with high accuracy and becomes closer to a state where burning cracks are generated. Thereby, since the use time until replacement | exchange of polymer aqueous solution can be lengthened, the usage-amount of polymer aqueous solution can be reduced and the manufacturing cost of a metal material can be reduced.

〔第二実施形態〕
[劣化度判定方法]
当該劣化度判定方法は、ポリマー水溶液を特定濃度に希釈する工程(希釈工程)と、希釈工程後のポリマー水溶液の動粘度を測定する工程(測定工程)と、測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を取得する工程(取得工程)と、上記測定工程で得た動粘度及び上記取得工程で得たポリマー濃度に基づいてポリマー水溶液の劣化度を判定する工程(判定工程)とを備える。上記取得工程は、具体的には、ポリマー水溶液のポリマー濃度として希釈工程後の特定濃度を採用する。
[Second Embodiment]
[Degradation method]
The degradation degree determination method includes a step of diluting the polymer aqueous solution to a specific concentration (dilution step), a step of measuring the kinematic viscosity of the polymer aqueous solution after the dilution step (measurement step), and a kinematic viscosity measurement in the measurement step. A step of acquiring the polymer concentration of the aqueous polymer solution (acquisition step), and a step of determining the degree of deterioration of the aqueous polymer solution based on the kinematic viscosity obtained in the measurement step and the polymer concentration obtained in the acquisition step (determination step). Prepare. Specifically, the acquisition step employs a specific concentration after the dilution step as the polymer concentration of the aqueous polymer solution.

<希釈工程>
希釈工程では、ポリマー水溶液に水を添加して特定濃度に希釈する。具体的には、希釈工程では、例えばポリマー水溶液のポリマー濃度を測定し、そのポリマー濃度から特定濃度に希釈するために必要な水の添加量を算出し、その算出した量の水をポリマー水溶液に添加する。
<Dilution process>
In the dilution step, water is added to the polymer aqueous solution to dilute to a specific concentration. Specifically, in the dilution step, for example, the polymer concentration of the aqueous polymer solution is measured, the amount of water added to dilute from the polymer concentration to a specific concentration is calculated, and the calculated amount of water is added to the aqueous polymer solution. Added.

ここで、上記ポリマー水溶液は、劣化を抑制するために適宜ポリマー水溶液の新液を継ぎ足して使用するので、使用中のポリマー水溶液のポリマー濃度は時間が経過するに伴って大きくなる。従って、上記特定濃度は、使用中のポリマー水溶液より低いポリマー濃度であればよく、例えばポリマー水溶液の新液のポリマー濃度とすることができる。   Here, since the polymer aqueous solution is used by appropriately adding a new solution of the polymer aqueous solution in order to suppress deterioration, the polymer concentration of the polymer aqueous solution in use increases with time. Therefore, the specific concentration may be a polymer concentration lower than that of the polymer aqueous solution in use, and can be, for example, the polymer concentration of a new solution of the polymer aqueous solution.

<測定工程>
測定工程では、粘度計を用いて、上記希釈工程後の特定濃度に希釈したポリマー水溶液の動粘度を測定する。
<Measurement process>
In the measurement step, the kinematic viscosity of the aqueous polymer solution diluted to a specific concentration after the dilution step is measured using a viscometer.

<取得工程>
取得工程では、ポリマー水溶液のポリマー濃度として希釈工程後の特定濃度を採用する。つまり、取得工程ではポリマー水溶液のポリマー濃度として上記特定濃度を取得する。
<Acquisition process>
In the acquisition step, the specific concentration after the dilution step is adopted as the polymer concentration of the aqueous polymer solution. That is, in the acquisition step, the specific concentration is acquired as the polymer concentration of the aqueous polymer solution.

<判定工程>
判定工程では、取得工程で取得した特定濃度における動粘度、すなわち測定工程で測定した動粘度に基づいてポリマー水溶液の劣化度を判定する。具体的には、判定工程では、測定した動粘度を閾値と比較し、測定した動粘度が閾値よりも大きい場合には、ポリマー水溶液の継続使用可能と判断する。
<Judgment process>
In the determination step, the degree of deterioration of the aqueous polymer solution is determined based on the kinematic viscosity at the specific concentration acquired in the acquisition step, that is, the kinematic viscosity measured in the measurement step. Specifically, in the determination step, the measured kinematic viscosity is compared with a threshold value, and when the measured kinematic viscosity is larger than the threshold value, it is determined that the polymer aqueous solution can be continuously used.

上記動粘度の閾値は、次のようにして求められる。つまり、図1に示すように、閾値線TLは、動粘度y及びポリマー濃度xを軸とする2軸直交座標系で一次関数として表される。従って、この閾値線TLより特定濃度に対する動粘度の閾値が求められる。例えば図1において上記特定濃度を25体積%とした場合、動粘度の閾値は6mm/sと求められる。 The threshold value of the kinematic viscosity is obtained as follows. That is, as shown in FIG. 1, the threshold line TL is expressed as a linear function in a biaxial orthogonal coordinate system with the kinematic viscosity y and the polymer concentration x as axes. Therefore, the threshold value of the kinematic viscosity for the specific concentration is obtained from the threshold line TL. For example, in FIG. 1, when the specific concentration is 25% by volume, the threshold value of kinematic viscosity is obtained as 6 mm 2 / s.

このように当該劣化度判定方法は、ポリマー水溶液を特定濃度に希釈することで、動粘度のみに基づいてポリマー水溶液の継続使用の可否を判断できるので、より容易にポリマー水溶液の劣化度を判定できる。   As described above, since the degradation degree determination method can determine whether or not the aqueous polymer solution can be used continuously based on only the kinematic viscosity by diluting the aqueous polymer solution to a specific concentration, the degradation level of the aqueous polymer solution can be more easily determined. .

〔第三実施形態〕
[劣化度判定方法]
当該劣化度判定方法は、ポリマー水溶液を特定濃度に希釈する工程(希釈工程)と、希釈工程後のポリマー水溶液の動粘度を測定する工程(測定工程)と、測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を取得する工程(取得工程)と、上記測定工程で得た動粘度及び上記取得工程で得たポリマー濃度に基づいてポリマー水溶液の劣化度を判定する工程(判定工程)とを備える。上記判定工程は、測定工程で得た動粘度及び取得工程で得たポリマー濃度に基づき金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率を同定する工程(同定工程)と、同定工程で得た平均熱伝達率が閾値より小さい場合にポリマー水溶液の継続使用可能と判断する工程(判断工程)とを有する。
[Third embodiment]
[Degradation method]
The degradation degree determination method includes a step of diluting the polymer aqueous solution to a specific concentration (dilution step), a step of measuring the kinematic viscosity of the polymer aqueous solution after the dilution step (measurement step), and a kinematic viscosity measurement in the measurement step. A step of acquiring the polymer concentration of the aqueous polymer solution (acquisition step), and a step of determining the degree of deterioration of the aqueous polymer solution based on the kinematic viscosity obtained in the measurement step and the polymer concentration obtained in the acquisition step (determination step). Prepare. The determination step is a step of identifying an average heat transfer coefficient between 200 ° C. and 400 ° C. between the metal material and the polymer aqueous solution based on the kinematic viscosity obtained in the measurement step and the polymer concentration obtained in the acquisition step (identification step), A step (determination step) for determining that the aqueous polymer solution can be continuously used when the average heat transfer coefficient obtained in the identification step is smaller than the threshold value.

当該劣化度判定方法は、判定工程が同定工程及び判断工程を有し、ポリマー水溶液の継続使用の可否を平均熱伝達率により判断する点が、上記第二実施形態の劣化度判定方法と異なる。以下に、上記第二実施形態と異なる判定工程について説明する。   The deterioration degree determination method is different from the deterioration degree determination method of the second embodiment in that the determination step includes an identification step and a determination step, and whether or not the aqueous polymer solution can be continuously used is determined based on the average heat transfer coefficient. Below, the determination process different from said 2nd embodiment is demonstrated.

<判定工程>
上述したように、判定工程は、同定工程及び判断工程を有する。なお、ここでは上記特定濃度をポリマー濃度αとする。従って、判定工程は、ポリマー濃度αに希釈されたポリマー水溶液の動粘度を測定工程から取得し、ポリマー濃度αという情報を取得工程から取得する。
<Judgment process>
As described above, the determination process includes an identification process and a determination process. Here, the specific concentration is defined as a polymer concentration α. Therefore, in the determination step, the kinematic viscosity of the polymer aqueous solution diluted to the polymer concentration α is acquired from the measurement step, and information on the polymer concentration α is acquired from the acquisition step.

(同定工程)
同定工程では、ポリマー濃度αに希釈されたポリマー水溶液の動粘度とポリマー濃度αとに基づき、金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率を同定する。この同定方法について、以下に具体的に説明する。
(Identification process)
In the identification step, an average heat transfer coefficient between 200 ° C. and 400 ° C. between the metal material and the polymer aqueous solution is identified based on the kinematic viscosity of the polymer aqueous solution diluted to the polymer concentration α and the polymer concentration α. This identification method will be specifically described below.

後述するように、発明者らは、ポリマー水溶液のポリマー濃度に対して、動粘度と金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率との間に相関があることを見出した。ここで、ポリマー濃度αのポリマー水溶液における動粘度と上記平均熱伝達率との関係を図4に示す。図4は、複数のポリマー水溶液のそれぞれに対してポリマー濃度αとなるよう水で希釈し、それらの希釈後のポリマー水溶液の動粘度の測定値及び上記平均熱伝達率の算出値を示したものである。図4の第1相関線CLは、動粘度及び上記平均熱伝達率の関係を一次近似した直線である。同定工程では、この動粘度と上記平均熱伝達率との相関を示す第1相関線CLを用いて、測定工程で得た動粘度から金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率を同定する。 As will be described later, the inventors have found that there is a correlation between the kinematic viscosity and the average heat transfer coefficient between 200 ° C. and 400 ° C. between the metal material and the polymer aqueous solution with respect to the polymer concentration of the polymer aqueous solution. It was. Here, FIG. 4 shows the relationship between the kinematic viscosity and the average heat transfer coefficient in a polymer aqueous solution having a polymer concentration α. FIG. 4 shows the measured value of the kinematic viscosity of the polymer aqueous solution after dilution with water so that each of a plurality of polymer aqueous solutions has a polymer concentration α and the calculated value of the average heat transfer coefficient. It is. First correlation line CL 1 of FIG. 4 is a straight line first approximation the relation kinematic viscosity and the average heat transfer coefficient. In the identification step, using the first correlation line CL 1 indicating the correlation between the kinematic viscosity and the average heat transfer coefficient, the kinematic viscosity obtained in the measurement step is between 200 ° C. and 400 ° C. between the metal material and the polymer aqueous solution. Identify the average heat transfer coefficient.

なお、図5は、図4と同様に希釈したポリマー水溶液に基づいて得たポリマー濃度αの1.2倍のポリマー濃度1.2αのポリマー水溶液における動粘度と上記平均熱伝達率との関係を示したものである。同様に、図6は、ポリマー濃度αの1.4倍のポリマー濃度1.4αのポリマー水溶液における動粘度と上記平均熱伝達率との関係を示したものである。図5の第2相関線CL及び図6の第3相関線CLは、それぞれポリマー濃度1.2α及びポリマー濃度1.4αにおける動粘度及び上記平均熱伝達率の関係を一次近似した直線である。図4〜図6に示すように、いずれのポリマー濃度においても、上記平均熱伝達率は動粘度と相関していることがわかる。 FIG. 5 shows the relationship between the kinematic viscosity and the average heat transfer coefficient in a polymer aqueous solution having a polymer concentration of 1.2α that is 1.2 times the polymer concentration α obtained based on the diluted polymer aqueous solution in the same manner as in FIG. It is shown. Similarly, FIG. 6 shows the relationship between the kinematic viscosity and the average heat transfer coefficient in a polymer aqueous solution having a polymer concentration of 1.4α that is 1.4 times the polymer concentration α. FIG third correlation line CL 3 of the second correlation line CL 2 and 6 5, the relationship between the kinematic viscosity and the average heat transfer coefficient in each polymer concentration 1.2α and polymer concentration 1.4α in straight lines first approximation is there. As shown in FIGS. 4 to 6, it can be seen that the average heat transfer coefficient correlates with kinematic viscosity at any polymer concentration.

(判断工程)
判断工程では、同定工程で得た平均熱伝達率が閾値より小さい場合にポリマー水溶液の継続使用可能と判断する。この判断方法について、以下に具体的に説明する。
(Judgment process)
In the determination step, it is determined that the polymer aqueous solution can be used continuously when the average heat transfer coefficient obtained in the identification step is smaller than the threshold value. This determination method will be specifically described below.

図4の第1閾値Pは、上記閾値導出用のポリマー水溶液をポリマー濃度αに希釈したポリマー水溶液における動粘度及び200℃以上400℃以下の平均熱伝達率を示したものである。判断工程では、この閾値導出用のポリマー水溶液の平均熱伝達率(第1閾値P)をポリマー水溶液の継続使用可否の判断用の閾値として用い、同定工程で得た平均熱伝達率の方が第1閾値Pより小さい場合に、ポリマー水溶液の継続使用可能と判断する。ここで、200℃以上400℃以下は、経験則より焼割れが生じる温度域であるので、200℃以上400℃以下の平均熱伝達率を示す上記第1閾値Pは、焼割れの発生に対する精度が高い。上記判断工程は、この精度の高い閾値を用いるので、ポリマー水溶液の継続使用の可否の判断精度が高い。 The first threshold value P 1 in FIG. 4 shows the kinematic viscosity and 200 ° C. or higher 400 ° C. or less of the average heat transfer coefficient in the polymer aqueous solution obtained by diluting the polymer solution for the threshold derived polymer concentration alpha. In the determination step, the average heat transfer coefficient (first threshold value P 1 ) of the aqueous polymer solution for deriving the threshold is used as a threshold for determining whether or not the aqueous polymer solution can be used continuously, and the average heat transfer coefficient obtained in the identification step is If the first threshold value P 1 is smaller than, determines that sustainable use of aqueous polymer solution. Here, since the temperature range of 200 ° C. or more and 400 ° C. or less is a temperature range where burning cracks are generated based on an empirical rule, the first threshold value P 1 indicating the average heat transfer coefficient of 200 ° C. or more and 400 ° C. or less is the occurrence of burning cracks. High accuracy. Since the determination step uses this highly accurate threshold value, the determination accuracy of whether or not the polymer aqueous solution can be continuously used is high.

なお、図5の第2閾値P及び図6の第3閾値Pは、それぞれ上記閾値導出用のポリマー水溶液をポリマー濃度1.2α及びポリマー濃度1.4αに希釈したポリマー水溶液における動粘度及び200℃以上400℃以下の平均熱伝達率を示したものである。上記測定工程で、ポリマー濃度1.2α又はポリマー濃度1.4αに希釈したポリマー水溶液の動粘度を測定する場合には、判断工程は、第2閾値P又は第3閾値Pを用いてポリマー水溶液の継続使用の可否を判断する。 The third threshold value P 3 of the second threshold value P 2 and 6 in FIG. 5, and kinematic viscosity respectively aqueous polymer solution for the threshold derivation in the polymer solution was diluted to a polymer concentration 1.2α and polymer concentration 1.4α The average heat transfer coefficient of 200 ° C. or higher and 400 ° C. or lower is shown. When the kinematic viscosity of the polymer aqueous solution diluted to the polymer concentration of 1.2α or the polymer concentration of 1.4α is measured in the measurement step, the determination step uses the second threshold value P 2 or the third threshold value P 3 to determine the polymer. Determine whether the aqueous solution can be used continuously.

(平均熱伝達率の閾値の導出方法)
平均熱伝達率の閾値は、例えば上記金属材料と同質の試験片を加熱して閾値導出用のポリマー水溶液へ浸漬し、上記試験片の中心、上面、側面及び底面並びにポリマー水溶液の温度の経時変化を測定し、その経時的温度を下記式(3)に導入することで導出できる。
但し、式(3)中、tは試験片の上面から所定厚さの上部円柱状領域の重心、bは底面から上記所定厚さの底部円柱状領域の重心、sは側面から上記所定厚さの側部円筒状領域の上記側面から上記所定厚さの1/2の位置で試験片の高さの1/2の位置、cは上記上部、底部及び側部に囲まれる中央部円柱状領域の重心である。m(iはt、s、b)は上記上部、側部及び底部の質量[kg]である。Aは上記上部、側部及び底部と上記中央部との接触面積[m]である。Cpx(xはc、t、s、b)は上記中央部、上部、側部及び底部の比熱[J/kg・K]である。lは重心cから上面、側面及び底面までの距離[m]である。Tはc、t、s及びbで測定される温度[K]であり、Tbulkはポリマー水溶液の温度[K]である。hは上面、側面及び底面における熱伝達率[W/m・K]である。
(Derivation method of threshold value for average heat transfer coefficient)
The threshold value of the average heat transfer coefficient is obtained by, for example, heating a test piece of the same quality as the above metal material and immersing it in a polymer aqueous solution for deriving the threshold value, and changing the temperature of the center, top, side and bottom surfaces of the test piece and the temperature of the aqueous polymer solution Can be derived by measuring the time course temperature and introducing the temperature over time into the following equation (3).
In Equation (3), t is the center of gravity of the upper cylindrical region having a predetermined thickness from the top surface of the test piece, b is the center of gravity of the bottom cylindrical region having the predetermined thickness from the bottom surface, and s is the predetermined thickness from the side surface. A position of half the height of the test piece at a position 1/2 of the predetermined thickness from the side surface of the side cylindrical area of the side, c is a central columnar area surrounded by the top, bottom and sides Is the center of gravity. m i (i is t, s, b) is the mass [kg] of the top, side, and bottom. A i is a contact area [m 2 ] between the upper part, the side part and the bottom part and the central part. C px (x is c, t, s, b) is the specific heat [J / kg · K] of the center, top, side, and bottom. l i is the distance [m] from the center of gravity c to the top, side and bottom surfaces. T x is a temperature [K] measured by c, t, s, and b, and T bulk is a temperature [K] of the polymer aqueous solution. h i is the upper surface, a heat transfer coefficient on the side surface and the bottom surface [W / m 2 · K] .

上記試験片の直径の下限としては、10mmが好ましく、15mmがより好ましい。一方、試験片の直径の上限としては、40mmが好ましく、30mmがより好ましい。試験片の直径が上記下限未満であると、試験材の中心及び外周間の温度差が小さくなりすぎ、導出される平均熱伝達率の精度が低下するおそれがある。逆に試験片の直径が上記上限を超えると、平均熱伝達率導出用の設備が不必要に大きくなるおそれがある。   As a minimum of the diameter of the above-mentioned specimen, 10 mm is preferred and 15 mm is more preferred. On the other hand, as an upper limit of the diameter of a test piece, 40 mm is preferable and 30 mm is more preferable. If the diameter of the test piece is less than the above lower limit, the temperature difference between the center and the outer periphery of the test material becomes too small, and the accuracy of the derived average heat transfer coefficient may be lowered. Conversely, if the diameter of the test piece exceeds the above upper limit, the facility for deriving the average heat transfer coefficient may be unnecessarily large.

上記試験片の高さの下限としては、30mmが好ましく、40mmがより好ましい。一方、試験片の高さの上限としては、120mmが好ましく、100mmがより好ましい。試験片の高さが上記下限未満であると、試験材の中心と上面及び下面との温度差が小さくなりすぎ、導出される平均熱伝達率の精度が低下するおそれがある。逆に試験片の高さが上記上限を超えると、試験片をポリマー水溶液へ浸漬させるための移動量が大きくなり、導出用設備のコストが増加するおそれがある。   As a minimum of the height of the above-mentioned test piece, 30 mm is preferred and 40 mm is more preferred. On the other hand, as an upper limit of the height of a test piece, 120 mm is preferable and 100 mm is more preferable. When the height of the test piece is less than the above lower limit, the temperature difference between the center of the test material and the upper surface and the lower surface becomes too small, and the accuracy of the derived average heat transfer coefficient may be lowered. On the other hand, if the height of the test piece exceeds the above upper limit, the amount of movement for immersing the test piece in the polymer aqueous solution increases, which may increase the cost of the derivation equipment.

仮想的な領域に区切るための試験材の表面からの上記所定厚さの下限としては、1mmが好ましく、2mmがより好ましい。一方、上記試験材の表面からの所定厚さの上限としては、5mmが好ましく、4mmがより好ましい。上記試験材の表面からの所定厚さが上記下限未満であると、正確な位置への熱電対の設定が困難となり、算出される熱伝達率の精度が低下するおそれがある。逆に、上記試験材の表面からの所定厚さが上記上限を超えると、算出される熱伝達率と表面における熱伝達率との差が大きくなるため、算出される熱伝達率の精度が低下するおそれがある。   The lower limit of the predetermined thickness from the surface of the test material for dividing into virtual regions is preferably 1 mm, and more preferably 2 mm. On the other hand, the upper limit of the predetermined thickness from the surface of the test material is preferably 5 mm, and more preferably 4 mm. If the predetermined thickness from the surface of the test material is less than the lower limit, it is difficult to set the thermocouple at an accurate position, and the accuracy of the calculated heat transfer coefficient may be reduced. On the other hand, if the predetermined thickness from the surface of the test material exceeds the upper limit, the difference between the calculated heat transfer coefficient and the heat transfer coefficient at the surface increases, and the accuracy of the calculated heat transfer coefficient decreases. There is a risk.

なお、上記閾値の導出は、金属材料の冷却毎に行う必要はなく、金属材料の種類毎に一度行えばよい。   Note that the derivation of the threshold value does not need to be performed every time the metal material is cooled, and may be performed once for each type of metal material.

次に、上記閾値の導出方法の具体例として、発明者らが行った導出方法について説明する。   Next, a derivation method performed by the inventors will be described as a specific example of the threshold derivation method.

上記閾値の導出は、加熱した円柱状の試験材をポリマー水溶液に浸漬し、試験材の経時的な温度変化を測定し、その温度変化から金属材料及びポリマー水溶液間の熱伝達率を算出して行った。具体的には、直径20mm、高さ60mmの丸棒(スペシャルメタルズ社の「インコネル600」)を用いた。また、ポリマー水溶液として、表1に示す各ポリマー水溶液を用いた。   The threshold value is derived by immersing a heated cylindrical test material in a polymer aqueous solution, measuring the temperature change of the test material over time, and calculating the heat transfer coefficient between the metal material and the polymer aqueous solution from the temperature change. went. Specifically, a round bar having a diameter of 20 mm and a height of 60 mm (“Inconel 600” manufactured by Special Metals) was used. Moreover, each polymer aqueous solution shown in Table 1 was used as polymer aqueous solution.

この試験材を表面から厚さ3mmで仮想的な領域に区切り、区切った領域ごとに熱伝達率を算出した。具体的には、図7の試験材の軸を通る模式的断面図において、上面から厚さ3mmの円柱状領域を上部R、底面から厚さ3mmの円柱状領域を底部R、外周側面から厚さ3mmの円筒状領域を側部R、上部R、底部R及びRに囲まれる円柱状領域を中央部Rとした。上部Rの重心をt、底部Rの重心をb、中央部Rの重心をc、側部Rの外周面から1.5mmの位置で高さ30mmの位置をsとし、これらのt、b、s、cの位置に熱電対を設置した。 This test material was divided into virtual regions with a thickness of 3 mm from the surface, and the heat transfer coefficient was calculated for each divided region. Specifically, in the schematic cross-sectional view passing through the axis of the test material of FIG. 7, a cylindrical region having a thickness of 3 mm from the top surface is an upper portion R t , a cylindrical region having a thickness of 3 mm from the bottom surface is a bottom portion R b , and an outer peripheral side surface. A cylindrical region having a thickness of 3 mm was defined as a central region R c and a cylindrical region surrounded by the side portion R s , the upper portion R t , the bottom portion R b, and R s . The center of gravity of the upper R t t, the center of gravity of the bottom R b b, the center of gravity of the central portion R c c, the position of height 30mm at a position 1.5mm from the outer peripheral surface of the side portion R s and s, these Thermocouples were installed at positions t, b, s, and c.

次に、上記試験材を900℃まで加熱し、ポリマー水溶液の入ったビーカー内に浸漬させ、試験材各部の温度変化及びポリマー水溶液の温度変化を測定した。ここで、試験材を浸漬する際のポリマー水溶液の温度は、湯煎により50℃とした。   Next, the test material was heated to 900 ° C. and immersed in a beaker containing a polymer aqueous solution, and the temperature change of each part of the test material and the temperature change of the polymer aqueous solution were measured. Here, the temperature of the polymer aqueous solution when the test material was immersed was set to 50 ° C. by hot water bath.

側部R、上部R及び底部Rの熱量変化は、ポリマー水溶液への放熱量と、中央部Rからの入熱量とによって決まるので、これらの関係を表す上記式(3)に、上記測定した各部の経時的温度変化を導入して、ポリマー水溶液と側部R、上部R及び底部Rとの間の各熱伝達率hを算出した。 Since the change in the amount of heat of the side portion R s , the upper portion R t and the bottom portion R b is determined by the amount of heat released to the polymer aqueous solution and the amount of heat input from the central portion R c , The temperature change with time of each part measured above was introduced, and each heat transfer coefficient h i between the polymer aqueous solution and the side part R s , the upper part R t and the bottom part R b was calculated.

経験則より焼割れが生じる温度域は200℃以上400℃以下であるが、上記各熱伝達率hを算出した結果、この温度域において各ポリマー水溶液の冷却特性に有意な差は認められなかった。 Although a temperature range from heuristics quenching crack occurs at 200 ° C. or higher 400 ° C. or less, a result of calculating each of the above heat transfer coefficient h i, significant difference in the cooling characteristics of each polymer solution at this temperature range is not observed It was.

次に、各操業液B〜Eを新液Aと同じポリマー濃度αとなるように水を添加して希釈し、上述した方法と同様の方法により、ポリマー水溶液と側部R、上部R及び底部Rとの間の各熱伝達率hを算出した。その結果、図8〜図10に示すように、200℃以上400℃以下の温度域において、使用時間が長く劣化が進んでいるほど熱伝達率が高くなることが確認できた。 Next, each of the operating liquids B to E is diluted by adding water so that the same polymer concentration α as that of the new liquid A is obtained. By the same method as described above, the aqueous polymer solution, the side portions R s , the upper portion R t and it was calculated each heat transfer coefficient h i between the bottom R b. As a result, as shown in FIG. 8 to FIG. 10, it was confirmed that in the temperature range of 200 ° C. or more and 400 ° C. or less, the heat transfer rate increases as the use time increases and the deterioration progresses.

次に、新液Aのポリマー濃度αに対して、各操業液B〜Eをポリマー濃度がα、1.2α、1.4αとなるよう希釈し、上述した方法と同様の方法により、ポリマー水溶液と側部R、上部R及び底部Rとの間の各熱伝達率hを算出した。図4〜図6は、この算出結果を用いて、各ポリマー濃度ごとの動粘度と200℃以上400℃以下の平均熱伝達率との関係を示したグラフである。図4〜図6より、所定濃度において、動粘度と200℃以上400℃以下の平均熱伝達率との間に相関があることがわかる。従って、動粘度及びポリマー濃度がわかれば、200℃以上400℃以下の平均熱伝達率を同定することができる。 Next, with respect to the polymer concentration α of the new solution A, each of the operation liquids B to E is diluted so that the polymer concentration becomes α, 1.2α, and 1.4α, and a polymer aqueous solution is obtained by the same method as described above. the side R s, were calculated the heat transfer coefficient h i between the top R t and bottom R b. 4 to 6 are graphs showing the relationship between the kinematic viscosity for each polymer concentration and the average heat transfer coefficient of 200 ° C. or higher and 400 ° C. or lower using this calculation result. 4 to 6, it can be seen that there is a correlation between the kinematic viscosity and the average heat transfer coefficient of 200 ° C. or more and 400 ° C. or less at a predetermined concentration. Therefore, if the kinematic viscosity and the polymer concentration are known, an average heat transfer coefficient of 200 ° C. or higher and 400 ° C. or lower can be identified.

なお、図4〜図6より、動粘度と200℃以上400℃以下の平均熱伝達率との間の相関を一次式で近似したときの傾きがほぼ等しいことがわかる。図11は、これらの一次式の切片とポリマー濃度との関係を示しており、切片の値がポリマー濃度と相関していることがわかる。従って、図11より任意のポリマー濃度における動粘度と200℃以上400℃以下の平均熱伝達率との相関を示す一次式を求めることができる。これにより、任意のポリマー濃度のポリマー水溶液について、動粘度を測定することで200℃以上400℃以下の平均熱伝達率を同定することができる。   4 to 6, it can be seen that the slopes when the correlation between the kinematic viscosity and the average heat transfer coefficient of 200 ° C. or more and 400 ° C. or less is approximated by a linear expression are substantially equal. FIG. 11 shows the relationship between the intercept of these linear equations and the polymer concentration, and it can be seen that the value of the intercept correlates with the polymer concentration. Therefore, from FIG. 11, a linear equation showing the correlation between the kinematic viscosity at an arbitrary polymer concentration and the average heat transfer coefficient of 200 ° C. or more and 400 ° C. or less can be obtained. Thereby, about the polymer aqueous solution of arbitrary polymer density | concentrations, an average heat transfer rate of 200 to 400 degreeC can be identified by measuring kinematic viscosity.

なお、上記判定工程では、ポリマー濃度αに希釈した後のポリマー水溶液の動粘度及びポリマー濃度に基づいてポリマー水溶液の継続使用の可否を判断したが、希釈前のポリマー水溶液の動粘度及びポリマー濃度に基づいてポリマー水溶液の継続使用の可否を判断してもよい。この場合、上記劣化度判定方法において、希釈工程は省略できる。   In the above determination step, it was determined whether or not the polymer aqueous solution could be used continuously based on the kinematic viscosity and polymer concentration of the polymer aqueous solution after dilution to the polymer concentration α, but the kinematic viscosity and polymer concentration of the polymer aqueous solution before dilution were determined. Based on this, it may be determined whether the polymer aqueous solution can be used continuously. In this case, the dilution step can be omitted in the deterioration degree determination method.

[その他の実施形態]
当該劣化度判定方法及び金属加工部材の製造方法は上記実施形態に限定されるものではない。
[Other Embodiments]
The degradation degree determination method and the metal workpiece manufacturing method are not limited to the above embodiment.

つまり、上記第一実施形態では、ポリマー水溶液の継続使用の可否を示す閾値線を設定する座標系として、動粘度及びポリマー濃度を軸とする2軸直交座標系を用いることとしたが、2軸直交座標系以外の座標系を用いてもよい。例えば、さらに他のパラメータを追加して3軸以上の座標系を用いてもよい。   That is, in the first embodiment, a biaxial orthogonal coordinate system with kinematic viscosity and polymer concentration as axes is used as a coordinate system for setting a threshold line indicating whether or not the aqueous polymer solution can be used continuously. A coordinate system other than the orthogonal coordinate system may be used. For example, a coordinate system having three or more axes may be used by adding other parameters.

また、上記第二実施形態では、ポリマー水溶液を希釈するために、まずポリマー水溶液のポリマー濃度を測定し、そのポリマー濃度から特定濃度に希釈するために算出した量の水を添加することとしたが、例えば希釈する前のポリマー水溶液のポリマー濃度を測定せずに希釈を行ってもよい。つまり、ポリマー水溶液に水を添加しつつポリマー濃度を測定し、ポリマー濃度が特定濃度まで低下した時点で水の添加を停止するようにしてもよい。   In the second embodiment, in order to dilute the polymer aqueous solution, the polymer concentration of the polymer aqueous solution is first measured, and the amount of water calculated to dilute from the polymer concentration to a specific concentration is added. For example, dilution may be performed without measuring the polymer concentration of the aqueous polymer solution before dilution. That is, the polymer concentration may be measured while adding water to the polymer aqueous solution, and the addition of water may be stopped when the polymer concentration is reduced to a specific concentration.

また、上記第一実施形態では、動粘度及びポリマー濃度を軸とする座標系に設定した閾値線を用いてポリマー濃度に対する動粘度によりポリマー水溶液の継続使用の可否を判断した。一方、上記第三実施形態では、金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率を同定し、この平均熱伝達率によりポリマー水溶液の継続使用の可否を判断したが、これらの両方の判断を組み合わせてポリマー水溶液の継続使用の可否を判断してもよい。つまり、動粘度及び上記平均熱伝達率の両方で、ポリマー水溶液の継続使用の可否を判断してもよい。このようにすることで、ポリマー水溶液の継続使用の可否をより精度よく判断することができる。   In the first embodiment, whether or not the aqueous polymer solution can be continuously used is determined based on the kinematic viscosity with respect to the polymer concentration using a threshold line set in a coordinate system with the kinematic viscosity and the polymer concentration as axes. On the other hand, in the third embodiment, the average heat transfer coefficient between 200 ° C. and 400 ° C. between the metal material and the polymer aqueous solution is identified, and it is determined whether or not the polymer aqueous solution can be continuously used based on the average heat transfer coefficient. It is also possible to determine whether or not the aqueous polymer solution can be used continuously by combining both of these determinations. That is, whether or not the polymer aqueous solution can be continuously used may be determined based on both the kinematic viscosity and the average heat transfer coefficient. By doing in this way, it can be judged more accurately whether the polymer aqueous solution can be used continuously.

以上説明したように、本発明の劣化度判定方法及び金属加工部材の製造方法は、金属材料の熱処理の冷却液に用いるポリマー水溶液の継続使用の可否を容易かつ精度よく判断できるので、熱処理の冷却液にポリマー水溶液を用いる金属材料の製造等に好適に用いることができる。   As described above, the degradation degree determination method and the metal workpiece manufacturing method of the present invention can easily and accurately determine whether or not the aqueous polymer solution used for the cooling liquid for the heat treatment of the metal material can be used. It can be suitably used for the production of metal materials using a polymer aqueous solution as the liquid.

b 試験片の底部円柱状領域の重心
c 試験片の上部、底部及び側部に囲まれる中央部円柱状領域の重心
t 試験片の円柱状領域の重心
s 試験片の側部円筒状領域の側面から所定厚さの1/2の位置で試験片の高さの1/2の位置
底部
中央部
上部
側部
TL 閾値線
CL 第1相関線
CL 第2相関線
CL 第3相関線
第1閾値
第2閾値
第3閾値
b Center of gravity of the bottom cylindrical region of the test piece c Center of gravity of the central cylindrical region surrounded by the top, bottom and sides of the test piece t Center of gravity of the cylindrical region of the test piece s Side of the cylindrical region of the side of the test piece predetermined thickness test piece at the position of half the height of the half position R b bottom R c central R t top R s side TL threshold line CL 1 first correlation line CL 2 second correlation from Line CL 3 3rd correlation line P 1 1st threshold value P 2 2nd threshold value P 3 3rd threshold value

Claims (9)

金属材料の熱処理の冷却液に用いるポリマー水溶液の劣化度判定方法であって、
ポリマー水溶液の動粘度を測定する工程と、
上記測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を取得する工程と、
上記測定工程で得た動粘度及び上記取得工程で得たポリマー濃度に基づいてポリマー水溶液の劣化度を判定する工程と
を備え
上記判定工程で、上記動粘度及びポリマー濃度を軸とする座標系に上記ポリマー水溶液の継続使用の可否を示す閾値線を設定し、この閾値線より動粘度が大きい場合にポリマー水溶液の継続使用可能と判断することを特徴とする劣化度判定方法。
A method for determining the degree of deterioration of an aqueous polymer solution used as a cooling liquid for heat treatment of a metal material,
Measuring the kinematic viscosity of the aqueous polymer solution;
A step of obtaining the polymer concentration of the aqueous polymer solution at the time of measuring the kinematic viscosity in the measurement step;
A step of determining the degree of deterioration of the aqueous polymer solution based on the kinematic viscosity obtained in the measurement step and the polymer concentration obtained in the acquisition step, and
In the determination step, a threshold line indicating whether or not the polymer aqueous solution can be used continuously is set in the coordinate system with the kinematic viscosity and the polymer concentration as axes, and the polymer aqueous solution can be used continuously when the kinematic viscosity is larger than the threshold line. deterioration degree determination method characterized by determining the.
上記座標系を動粘度y[mm/s]及びポリマー濃度x[体積%]を軸とする2軸直交座標系とし、上記閾値線をy=ax+b(aは正の定数、bは定数)の一次関数とし、
上記判定工程で、下記式(1)の場合にポリマー水溶液の継続使用可能と判断し、下記式(2)の場合にポリマー水溶液の継続使用不可と判断する請求項に記載の劣化度判定方法。
y>ax+b ・・・(1)
y≦ax+b ・・・(2)
The coordinate system is a biaxial orthogonal coordinate system with kinematic viscosity y [mm 2 / s] and polymer concentration x [volume%] as axes, and the threshold line is y = ax + b (a is a positive constant, b is a constant) And a linear function
The deterioration determination method according to claim 1 , wherein in the determination step, it is determined that the aqueous polymer solution can be used continuously in the case of the following formula (1), and the continuous use of the aqueous polymer solution is determined in the case of the following formula (2). .
y> ax + b (1)
y ≦ ax + b (2)
上記取得工程で、上記測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を測定する請求項1又は請求項2に記載の劣化度判定方法。 The degradation determination method according to claim 1 or 2 , wherein in the acquisition step, the polymer concentration of the aqueous polymer solution at the time of measuring the kinematic viscosity in the measurement step is measured. 金属材料の熱処理の冷却液に用いるポリマー水溶液の劣化度判定方法であって、A method for determining the degree of deterioration of an aqueous polymer solution used as a cooling liquid for heat treatment of a metal material,
ポリマー水溶液の動粘度を測定する工程と、Measuring the kinematic viscosity of the aqueous polymer solution;
上記測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を取得する工程と、A step of obtaining the polymer concentration of the aqueous polymer solution at the time of measuring the kinematic viscosity in the measurement step;
上記測定工程で得た動粘度及び上記取得工程で得たポリマー濃度に基づいてポリマー水溶液の劣化度を判定する工程とDetermining the degree of deterioration of the aqueous polymer solution based on the kinematic viscosity obtained in the measurement step and the polymer concentration obtained in the acquisition step;
を備え、With
上記測定工程前にポリマー水溶液を特定濃度に希釈する工程をさらに備え、Further comprising a step of diluting the aqueous polymer solution to a specific concentration before the measurement step,
上記測定工程で上記希釈工程後のポリマー水溶液の動粘度を測定し、Measure the kinematic viscosity of the aqueous polymer solution after the dilution step in the measurement step,
上記取得工程で取得するポリマー濃度として上記希釈工程後の特定濃度を採用することを特徴とする劣化度判定方法。A deterioration degree determination method, wherein a specific concentration after the dilution step is adopted as the polymer concentration acquired in the acquisition step.
上記判定工程で、上記動粘度及びポリマー濃度を軸とする座標系に上記ポリマー水溶液の継続使用の可否を示す閾値線を設定し、この閾値線より動粘度が大きい場合にポリマー水溶液の継続使用可能と判断する請求項4に記載の劣化度判定方法。In the determination step, a threshold line indicating whether or not the polymer aqueous solution can be used continuously is set in the coordinate system with the kinematic viscosity and the polymer concentration as axes, and the polymer aqueous solution can be used continuously when the kinematic viscosity is larger than the threshold line. The deterioration degree determination method according to claim 4, wherein the deterioration degree determination method is determined. 上記座標系を動粘度y[mmThe above coordinate system is kinematic viscosity y [mm 2 /s]及びポリマー濃度x[体積%]を軸とする2軸直交座標系とし、上記閾値線をy=ax+b(aは正の定数、bは定数)の一次関数とし、/ S] and polymer concentration x [volume%] as axes, and the threshold line is a linear function of y = ax + b (a is a positive constant, b is a constant),
上記判定工程で、下記式(1)の場合にポリマー水溶液の継続使用可能と判断し、下記式(2)の場合にポリマー水溶液の継続使用不可と判断する請求項5に記載の劣化度判定方法。6. The deterioration degree determination method according to claim 5, wherein in the determination step, it is determined that the aqueous polymer solution can be used continuously in the case of the following formula (1), and the continuous use of the aqueous polymer solution is determined in the case of the following formula (2). .
y>ax+b ・・・(1)y> ax + b (1)
y≦ax+b ・・・(2)y ≦ ax + b (2)
金属材料の熱処理の冷却液に用いるポリマー水溶液の劣化度判定方法であって、A method for determining the degree of deterioration of an aqueous polymer solution used as a cooling liquid for heat treatment of a metal material,
ポリマー水溶液の動粘度を測定する工程と、Measuring the kinematic viscosity of the aqueous polymer solution;
上記測定工程での動粘度測定時のポリマー水溶液のポリマー濃度を取得する工程と、A step of obtaining the polymer concentration of the aqueous polymer solution at the time of measuring the kinematic viscosity in the measurement step;
上記測定工程で得た動粘度及び上記取得工程で得たポリマー濃度に基づいてポリマー水溶液の劣化度を判定する工程とDetermining the degree of deterioration of the aqueous polymer solution based on the kinematic viscosity obtained in the measurement step and the polymer concentration obtained in the acquisition step;
を備え、With
上記判定工程が、The determination step is
上記測定工程で得た動粘度及び上記取得工程で得たポリマー濃度に基づき上記金属材料及びポリマー水溶液間の200℃以上400℃以下の平均熱伝達率を同定する工程と、Identifying the average heat transfer coefficient between 200 ° C. and 400 ° C. between the metal material and the aqueous polymer solution based on the kinematic viscosity obtained in the measurement step and the polymer concentration obtained in the acquisition step;
上記同定工程で得た平均熱伝達率が閾値より小さい場合にポリマー水溶液の継続使用可能と判断する工程とA step of determining that the aqueous polymer solution can be used continuously when the average heat transfer coefficient obtained in the identification step is smaller than a threshold;
を有することを特徴とする劣化度判定方法。A degradation degree determination method characterized by comprising:
上記金属材料と同質の円柱状の試験片を加熱して閾値導出用のポリマー水溶液へ浸漬し、上記試験片の中心、上面、側面及び底面並びにポリマー水溶液の温度の経時変化を測定し、その経時的温度を下記式(3)に導入することで上記閾値を導出する請求項に記載のポリマー水溶液の劣化度判定方法。
但し、式(3)中、tは試験片の上面から所定厚さの上部円柱状領域の重心、bは底面から上記所定厚さの底部円柱状領域の重心、sは側面から上記所定厚さの側部円筒状領域の上記側面から上記所定厚さの1/2の位置で試験片の高さの1/2の位置、cは上記上部、底部及び側部に囲まれる中央部円柱状領域の重心である。m(iはt、s、b)は上記上部、側部及び底部の質量[kg]である。Aは上記上部、側部及び底部と上記中央部との接触面積[m]である。Cpx(xはc、t、s、b)は上記中央部、上部、側部及び底部の比熱[J/kg・K]である。lは重心cから上面、側面及び底面までの距離[m]である。Tはc、t、s及びbで測定される温度[K]であり、Tbulkはポリマー水溶液の温度[K]である。hは上面、側面及び底面における熱伝達率[W/m・K]である。
A cylindrical test piece of the same quality as the metal material is heated and immersed in a polymer aqueous solution for deriving a threshold value, and the time-dependent changes in temperature of the center, top surface, side surface and bottom surface of the test piece and the aqueous polymer solution are measured. The method for determining the degree of deterioration of an aqueous polymer solution according to claim 7 , wherein the threshold value is derived by introducing a target temperature into the following formula (3).
In Equation (3), t is the center of gravity of the upper cylindrical region having a predetermined thickness from the top surface of the test piece, b is the center of gravity of the bottom cylindrical region having the predetermined thickness from the bottom surface, and s is the predetermined thickness from the side surface. A position of half the height of the test piece at a position 1/2 of the predetermined thickness from the side surface of the side cylindrical area of the side, c is a central columnar area surrounded by the top, bottom and sides Is the center of gravity. m i (i is t, s, b) is the mass [kg] of the top, side, and bottom. A i is a contact area [m 2 ] between the upper part, the side part and the bottom part and the central part. C px (x is c, t, s, b) is the specific heat [J / kg · K] of the center, top, side, and bottom. l i is the distance [m] from the center of gravity c to the top, side and bottom surfaces. T x is a temperature [K] measured by c, t, s, and b, and T bulk is a temperature [K] of the polymer aqueous solution. h i is the upper surface, a heat transfer coefficient on the side surface and the bottom surface [W / m 2 · K] .
金属材料を加熱する工程と、
ポリマー水溶液への浸漬により上記金属材料を冷却する工程と、
請求項1から請求項のいずれか1項に記載の劣化度判定方法によりポリマー水溶液の劣化度を判定する工程と
を備える金属加工部材の製造方法。
Heating the metal material;
Cooling the metal material by immersion in an aqueous polymer solution;
A method for producing a metal workpiece, comprising: a step of determining a degree of deterioration of an aqueous polymer solution by the method for determining a degree of deterioration according to any one of claims 1 to 8 .
JP2015159027A 2015-08-11 2015-08-11 Deterioration degree determination method and metalworking member manufacturing method Expired - Fee Related JP6568425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015159027A JP6568425B2 (en) 2015-08-11 2015-08-11 Deterioration degree determination method and metalworking member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159027A JP6568425B2 (en) 2015-08-11 2015-08-11 Deterioration degree determination method and metalworking member manufacturing method

Publications (2)

Publication Number Publication Date
JP2017037019A JP2017037019A (en) 2017-02-16
JP6568425B2 true JP6568425B2 (en) 2019-08-28

Family

ID=58047276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159027A Expired - Fee Related JP6568425B2 (en) 2015-08-11 2015-08-11 Deterioration degree determination method and metalworking member manufacturing method

Country Status (1)

Country Link
JP (1) JP6568425B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722611A (en) * 1986-03-13 1988-02-02 Union Carbide Corporation Apparatus and process for monitoring the cooling properties of liquid quenchants and restoring used quenchants
JPH07146264A (en) * 1993-11-25 1995-06-06 Idemitsu Kosan Co Ltd Evaluation method for heat transfer capacity of liquid and heat treatment evaluation method using the same
JP3824695B2 (en) * 1996-02-15 2006-09-20 出光興産株式会社 Method for recovering cooling characteristics of water-soluble quenching agent and water-soluble quenching agent with improved cooling characteristics
JP2003055713A (en) * 2001-08-10 2003-02-26 Denki Kogyo Co Ltd Induction heat treatment method for thin-walled hollow component
JP2014167487A (en) * 2014-05-07 2014-09-11 Neturen Co Ltd Cooling liquid management method

Also Published As

Publication number Publication date
JP2017037019A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
CA2786930C (en) A method of manufacturing a stainless steel product
Kukhar et al. Shape indexes for dieless forming of the elongated forgings with sharpened end by tensile drawing with rupture
Ghiotti et al. Tribological behavior of high thermal conductivity steels for hot stamping tools
BR112017007273B1 (en) cold rolled and annealed, recrystallized flat steel product and method for manufacturing a formed flat steel product
CN109072390A (en) The improved method of titanium products for finishing through squeezing out
KR101078816B1 (en) A manufacturing method for titanium alloy bolting of use production equipment of titanium alloy bolt
JP6568425B2 (en) Deterioration degree determination method and metalworking member manufacturing method
Lim et al. Reduction of residual stress and improvement of dimensional accuracy by uphill quenching for Al6061 tube
Lorenzino et al. Grain size effects on notch sensitivity
Anderson et al. Identifying the dominant failure mode in the hot extrusion tooling used to forge nickel based superalloy
Wen et al. Investigations on the interfacial heat transfer coefficient during hot stamping of ultra-high strength steel with Al-Si coating
JP6741634B2 (en) Degradation method
Yukawa et al. Modeling of heat transfer coefficient of oxide scale in hot forging
CN104498692A (en) Cold-drawn steel pipe mandrel and preparation method thereof
Mohammed et al. Thermal fatigue model of aluminium alloy die casting H-13 dies under thermo-mechanical cycle
KR101090785B1 (en) A production equipment of titanium alloy bolt
Schumacher et al. Calculation of the fatigue limit of high‐strength steel specimens at different loading conditions based on inclusion sizes
WO2018155588A1 (en) Method for manufacturing bearing component
JPWO2016013197A1 (en) Test method for sulfide stress corrosion cracking of steel
Steinheimer et al. Thermal influences during rotary draw bending of tubes from stainless steel
Tran et al. Numerical simulation of the heat treatment process for 100Cr6 steel
Zotov et al. DETERMINATION OF THE COEFFICIENT OF HEAT TRANSFER DURING COOLING OF SILVER THERMO PROBES, TAKING INTO ACCOUNT THE EFFECTS OF TEMPERATURE-TIME DELAY
Kotkunde et al. Analysis of Forming Limit Diagram for Ti-6Al-4 V Alloy
Shvets et al. Deformation of aluminum alloys in isothermal conditions.
JP5071025B2 (en) Method for evaluating high temperature embrittlement of continuous cast slab and continuous casting method of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190802

R150 Certificate of patent or registration of utility model

Ref document number: 6568425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees