JP6567014B2 - Discharge battery discharge treatment method and waste battery discharge treatment apparatus - Google Patents

Discharge battery discharge treatment method and waste battery discharge treatment apparatus Download PDF

Info

Publication number
JP6567014B2
JP6567014B2 JP2017195427A JP2017195427A JP6567014B2 JP 6567014 B2 JP6567014 B2 JP 6567014B2 JP 2017195427 A JP2017195427 A JP 2017195427A JP 2017195427 A JP2017195427 A JP 2017195427A JP 6567014 B2 JP6567014 B2 JP 6567014B2
Authority
JP
Japan
Prior art keywords
waste
battery
discharge
waste unit
unit batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017195427A
Other languages
Japanese (ja)
Other versions
JP2019071701A (en
Inventor
均 近藤
均 近藤
英己 河野
英己 河野
昭彦 柏崎
昭彦 柏崎
Original Assignee
東芝環境ソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝環境ソリューション株式会社 filed Critical 東芝環境ソリューション株式会社
Priority to JP2017195427A priority Critical patent/JP6567014B2/en
Publication of JP2019071701A publication Critical patent/JP2019071701A/en
Application granted granted Critical
Publication of JP6567014B2 publication Critical patent/JP6567014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

本発明は、廃棄電池の放電処理方法および廃棄電池の放電処理装置に関するものである。   The present invention relates to a discharge treatment method for a waste battery and a discharge treatment apparatus for a waste battery.

リチウムイオン電池を代表とする二次電池は、電気自動車や電力貯蔵をはじめとして多くの製品に使用されている。将来、さらに多くの商品に使用され、多量の電池が廃棄処分されると予想される。二次電池の廃棄処理方法として、廃棄する二次電池を解体処理して材料毎にリサイクルする第一の方法と、廃棄する二次電池をそのまま焙焼して金属等をリサイクルする第二の方法とに大別することができる。二次電池は充放電して使用する電池であることから廃棄する時に電気量が残存していることが多く、そのままの状態で廃棄処理を行なうと、第一の方法では、解体時の感電事故や処理工程中での短絡による発火事故が生じる恐れがあり、第二の方法では、廃棄する二次電池を焙焼炉まで運ぶ時の感電事故や意図しない短絡による発火事故が生じる恐れがある。したがって、安全性を考えると、二次電池を廃棄処理する場合、その二次電池に残存する電気量を事前に放電させる必要がある。   Secondary batteries such as lithium ion batteries are used in many products including electric vehicles and power storage. In the future, it will be used for more products and a large number of batteries are expected to be disposed of. As a secondary battery disposal method, the first method is to disassemble the secondary battery to be discarded and recycle it for each material, and the second method to recycle the secondary battery by firing the secondary battery as it is. And can be broadly divided. Secondary batteries are charged and discharged for use, so there are many cases where the amount of electricity remains at the time of disposal, and if the disposal method is performed as it is, the first method is an electric shock accident at the time of disassembly. There is a risk of a fire accident due to a short circuit in the treatment process, and in the second method, there is a risk of an electric shock accident when transporting the secondary battery to be discarded to the roasting furnace or a fire accident due to an unintended short circuit. Therefore, in view of safety, when the secondary battery is discarded, it is necessary to discharge in advance the amount of electricity remaining in the secondary battery.

廃棄する二次電池を放電させる際に、効率よく放電させる技術として、複数の廃棄二次電池を直列接続した状態でまとめて放電させる廃棄電池の放電処理装置および放電処理方法が知られている。このタイプの従来の廃棄二次電池の放電処理装置および放電処理方法では、一部の廃棄二次電池で残存電気量が無くなり(または比較的少なくなり)過放電による転極状態になると、放電電流は減少し、残存電気量が比較的多い他の廃棄二次電池の放電が滞ってしまう。   As a technique for efficiently discharging a secondary battery to be discarded, a discharge processing apparatus and a discharge processing method for a waste battery in which a plurality of discarded secondary batteries are discharged together in a series connection are known. In this type of conventional waste secondary battery discharge treatment apparatus and discharge treatment method, when some of the secondary secondary batteries have no residual electricity (or become relatively small) and become in a reversal state due to overdischarge, And the discharge of other discarded secondary batteries having a relatively large amount of remaining electricity is delayed.

特許第4003689号公報Japanese Patent No. 4003689

本発明が解決しようとする課題は、複数の廃棄単位電池を直列接続した状態でまとめて放電させる際、一部の廃棄単位電池が過放電による転極状態になった場合でも、転極状態になっていない他の廃棄単位電池を継続して放電させることができる廃棄電池の放電処理方法および廃棄電池の放電処理装置を提供することである。   The problem to be solved by the present invention is that when a plurality of waste unit batteries are discharged together in a state of being connected in series, even if some of the waste unit batteries are in a reversal state due to overdischarge, Another object of the present invention is to provide a waste battery discharge treatment method and a waste battery discharge treatment apparatus capable of continuously discharging other waste unit batteries that are not yet formed.

上記課題を達成するために、実施形態の廃棄電池の放電処理方法は、直列接続された複数の廃棄単位電池の一端の正極と他端の負極の間に主回路抵抗を接続し、前記複数の廃棄単位電池各々の正極と負極の間に各々副回路抵抗および開閉器を直列接続することにより、前記複数の廃棄単位電池を放電処理する廃棄電池の放電処理方法であって、前記複数の廃棄単位電池の起電力で生じる放電電流を前記主回路抵抗に流すことにより、前記複数の廃棄単位電池の残存電気量を放電させる通常時の放電工程と、この通常時の放電工程中に、前記複数の廃棄単位電池の一部が過放電による転極状態になった場合、その転極状態になった廃棄単位電位に接続された開閉器を閉じることにより、前記副回路抵抗を接続し、転極状態になっていない廃棄単位電池を継続して放電させる転極時の放電工程とを有し、前記複数の廃棄単位電池の残存電気量を放電させる。   In order to achieve the above object, according to an embodiment of the present invention, there is provided a discharge method for waste batteries, wherein a main circuit resistor is connected between a positive electrode at one end and a negative electrode at the other end of a plurality of waste unit batteries connected in series. A waste battery discharge treatment method for discharging a plurality of waste unit batteries by connecting a sub-circuit resistor and a switch in series between a positive electrode and a negative electrode of each waste unit battery, wherein the plurality of waste units In the normal discharge step of discharging the remaining amount of electricity of the plurality of waste unit batteries by flowing a discharge current generated by the electromotive force of the battery through the main circuit resistor, and during the normal discharge step, When a part of the waste unit battery is in a reversal state due to overdischarge, the sub-circuit resistance is connected by closing the switch connected to the waste unit potential in the reversal state, and the reversal state Disposal unit that is not And a discharge step during polarity reversal to discharge continuously the battery discharges the residual electric quantity of the plurality of waste unit batteries.

また、実施形態の廃棄電池の放電処理装置は、直列接続された複数の廃棄単位電池の一端の正極と他端の負極の間に接続される主回路抵抗と、前記複数の廃棄単位電池各々の正極と負極の間に各々接続され、通常は開いている副回路スイッチと、前記複数の廃棄単位電池各々の正極と負極の間に、前記副回路スイッチと共に各々直列接続される副回路抵抗と、前記複数の廃棄単位電池各々の電圧を測定する電圧測定手段と、この電圧測定手段により測定した前記電圧の値をもとに、前記複数の廃棄単位電池の一部が過放電による転極状態になった場合、その転極状態になった廃棄単位電池を特定し、その廃棄単位電池に接続された開閉器を閉じる制御手段とを有し、前記複数の廃棄単位電池の残存電気量を放電させる。   Further, the discharge treatment apparatus for waste batteries according to the embodiment includes a main circuit resistor connected between a positive electrode at one end and a negative electrode at the other end of the plurality of waste unit batteries connected in series, and each of the plurality of waste unit batteries. A subcircuit switch that is connected between the positive electrode and the negative electrode and is normally open; a subcircuit resistor that is connected in series with the subcircuit switch between the positive electrode and the negative electrode of each of the plurality of waste unit batteries; Based on the voltage measuring means for measuring the voltage of each of the plurality of discarded unit batteries and the value of the voltage measured by the voltage measuring means, some of the plurality of discarded unit batteries are in a reversal state due to overdischarge. And a control unit that closes a switch connected to the discarded unit battery, and discharges the remaining amount of electricity of the plurality of discarded unit batteries. .

第1の実施形態による廃棄電池の放電処理方法(準備段階)を示す全体図。The whole figure which shows the discharge processing method (preparation stage) of the waste battery by 1st Embodiment. 第1の実施形態による廃棄電池の放電処理方法(通常時の放電工程)を示す全体図。The whole figure which shows the discharge processing method (normal discharge process) of the waste battery by 1st Embodiment. 廃棄電池の放電処理方法(転極時)を示す全体図。The whole figure which shows the discharge processing method (at the time of reversal) of a waste battery. 廃棄電池の放電処理において、転極時に対処しなかった場合の各電圧、各電流の変化を示すグラフ。The graph which shows the change of each voltage and each electric current when not dealing with at the time of inversion in the discharge process of a waste battery. 第1の実施形態による廃棄電池の放電処理方法(転極時の放電工程)を示す全体図。The whole figure which shows the discharge processing method (discharge process at the time of inversion) of the waste battery by 1st Embodiment. 第1の実施形態による廃棄電池の放電処理方法(転極時の放電工程)の各電圧、各電流の変化を示すグラフ。The graph which shows the change of each voltage and each electric current of the discharge processing method (discharge process at the time of inversion) of the waste battery by 1st Embodiment. 第1の実施形態による廃棄電池の放電処理方法(転極時の放電工程)において、転極した廃棄単位電池の逆極電圧を副回路抵抗が抑える仕組みを示す図。The figure which shows the mechanism in which a subcircuit resistance suppresses the reverse polarity voltage of the waste unit battery which reversed in the discharge processing method (discharge process at the time of reversal) of the waste battery by 1st Embodiment. 第1の実施形態による廃棄電池の放電処理装置の構成図。The block diagram of the discharge processing apparatus of the waste battery by 1st Embodiment. 第2の実施形態による廃棄電池の放電処理方法および放電処理装置を示す図。The figure which shows the discharge processing method and discharge processing apparatus of a waste battery by 2nd Embodiment. 第2の実施形態による廃棄電池の放電処理において、各電圧の変化を示すグラフ。The graph which shows the change of each voltage in the discharge process of the waste battery by 2nd Embodiment. 第2の実施形態による廃棄電池の放電処理(転極時の放電工程)において、転極した廃棄単位電池の逆極電圧を副回路抵抗が抑える仕組みを示す図。The figure which shows the mechanism in which a subcircuit resistance suppresses the reverse polarity voltage of the waste unit battery which reversed in the discharge process (discharge process at the time of a reversal) of the waste battery by 2nd Embodiment. 第2の実施形態による廃棄電池の放電処理装置の構成図。The block diagram of the discharge processing apparatus of the waste battery by 2nd Embodiment.

以下、発明の実施形態の廃棄電池の放電処理方法および廃棄電池の放電処理装置について、図面を用いて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a waste battery discharge treatment method and a waste battery discharge treatment apparatus according to embodiments of the invention will be described with reference to the drawings.

(第1の実施形態)
以下に、第1の実施形態による廃棄電池の放電処理方法について図1乃至図7を用いて説明し、廃棄電池の放電処理装置について図8を用いて説明する。
(First embodiment)
Hereinafter, the discharge processing method for the waste battery according to the first embodiment will be described with reference to FIGS. 1 to 7, and the discharge processing apparatus for the waste battery will be described with reference to FIG.

図1は、第1の実施形態による廃棄電池の放電処理方法(準備段階)を示す図である。不要となり廃棄処理される複数個の廃棄単位電池を直列接続した状態でまとめて放電させる。この実施形態では、放電対象である公称電気容量20Ahの廃棄単位電池1が5個直列接続された状態で装着される。廃棄単位電池1は、二次電池であるリチウムイオン電池である。直列接続された5個の廃棄単位電池1の一端の正極と他端の負極の間に電気的に直列接続される主回路抵抗3および主回路スイッチ8を有する主回路2と、廃棄単位電池1の各々の正極と負極の間に設けた副回路抵抗5および副回路スイッチ9を有する副回路4と、廃棄単位電池1の各々の正極と負極の間に電気的に接続される短絡用スイッチ6を有する短絡回路7とがある。主回路2では、主回路抵抗3は、直列接続した全ての廃棄単位電池の残存電気量を放電する電気抵抗であり、廃棄単位電池1の直列個数や設定する放電電流値にもとづきその抵抗値を決定する。本実施例では2.5Ωとした。   FIG. 1 is a diagram illustrating a discharge processing method (preparation stage) for a discarded battery according to the first embodiment. A plurality of waste unit batteries that are no longer necessary and are disposed of are discharged together in series. In this embodiment, five disposal unit batteries 1 having a nominal electric capacity of 20 Ah to be discharged are mounted in a state of being connected in series. The disposal unit battery 1 is a lithium ion battery that is a secondary battery. A main circuit 2 having a main circuit resistor 3 and a main circuit switch 8 that are electrically connected in series between a positive electrode at one end and a negative electrode at the other end of five waste unit batteries 1 connected in series; Sub-circuit 4 having sub-circuit resistance 5 and sub-circuit switch 9 provided between each positive electrode and negative electrode, and short-circuit switch 6 electrically connected between each positive electrode and negative electrode of waste unit battery 1 And a short circuit 7 having In the main circuit 2, the main circuit resistor 3 is an electric resistance that discharges the remaining amount of electricity of all the waste unit batteries connected in series. The resistance value is determined based on the number of waste unit batteries 1 in series and the set discharge current value. decide. In this embodiment, it is 2.5Ω.

次に、図2は、第1の実施形態による廃棄電池の放電処理方法(通常時の放電工程)を示す全体図である。廃棄単位電池1の残存電気量の放電処理を開始するために、主回路スイッチ8を閉とし、副回路4に設けられた副回路スイッチ9は全て開とする。主回路2において、放電電流が廃棄単位電池の正極から負極に向かい、主回路抵抗3に流れ始める。副回路4については、全て開いた状態であるため、電流は流れない。尚、図中の電流を示す矢印の大きさは電流の大きさを示すものではない。   Next, FIG. 2 is an overall view showing a discharge treatment method (ordinary discharge process) of the discarded battery according to the first embodiment. In order to start the discharge process of the remaining electricity amount of the waste unit battery 1, the main circuit switch 8 is closed and all the sub circuit switches 9 provided in the sub circuit 4 are opened. In the main circuit 2, the discharge current starts flowing from the positive electrode to the negative electrode of the waste unit battery and flows into the main circuit resistor 3. Since all the subcircuits 4 are in an open state, no current flows. In addition, the magnitude | size of the arrow which shows the electric current in a figure does not show the magnitude | size of an electric current.

図3は、廃棄電池の放電処理方法(転極時)を示す全体図である。図2の状態で放電が進むと、比較的残存電気量の少ない廃棄単位電池1(電池(1))は、電圧がゼロまたは転極状態となり、電池内部抵抗が上昇し、逆極充電が加速する。このような状態となった電池(1)の逆極電圧は非常に大きくなるため、この状態を放置すると転極している廃棄単位電池(電池(1))の逆極電圧が他の廃棄単位電池の電圧と相殺されるため、全体の電圧はゼロに近くなり、放電電流が流れなくなる。また、大きな逆極電圧を廃棄単位電池にかけ続けることで電池の発熱、膨張、ガス噴出に繋がり危険である。   FIG. 3 is an overall view showing a discharge treatment method (at the time of reversal) of a discarded battery. When the discharge progresses in the state of FIG. 2, the waste unit battery 1 (battery (1)) with a relatively small amount of remaining electricity becomes zero or in a reversal state, the battery internal resistance increases, and the reverse charge is accelerated. To do. Since the reverse voltage of the battery (1) in this state becomes very large, the reverse polarity voltage of the discarded unit battery (battery (1)) that has been reversed if this state is left as it is is another waste unit. Since it cancels out with the voltage of the battery, the overall voltage becomes close to zero and the discharge current does not flow. Further, if a large reverse polarity voltage is continuously applied to the waste unit battery, it may lead to battery heat generation, expansion, and gas ejection, which is dangerous.

一般に、二次電池では、安全に放電を行うことができる放電電圧の最低値が定められており、「放電終止電圧」と呼ばれる。放電終止電圧は、リチウムイオン電池やニッケル水素電池など電池の種類によって決まっており、放電終止電圧を下回る電圧まで放電する状態は「過放電」と呼ばれ、電池の性能を大きく劣化させる原因となる。一般的なリチウムイオン電池では、機器側や電池側に過放電を防ぐための安全回路が設けられているが、過放電を行ってしまった場合には、正極のコバルトや負極の集電体の銅が溶出してしまい、二次電池として機能しなくなる恐れがある。   In general, in a secondary battery, a minimum value of a discharge voltage at which discharge can be performed safely is determined, which is referred to as “discharge end voltage”. The end-of-discharge voltage is determined by the type of battery, such as a lithium-ion battery or a nickel-metal hydride battery, and the state of discharging to a voltage lower than the end-of-discharge voltage is called “overdischarge” and causes a significant deterioration in battery performance. . In general lithium ion batteries, safety circuits are provided on the device side and battery side to prevent overdischarge. However, if overdischarge occurs, the positive electrode cobalt or negative electrode current collector Copper may elute and may not function as a secondary battery.

また、複数の電池を直列接続して放電させると、各電池の残存電気量のばらつきにより、比較的残存電気量が多い電池が比較的残存電気量の少ない電池に強制的に放電電流を印加することから、比較的残存電気量が少ない電池は過放電の状態となる。この過放電が進むとやがて「転極」が生じる。転極とは、本来の正極と負極の電位関係が逆転する現象であり、転極の状態となった電池電圧は0V以下(マイナス電圧)となる。転極の状態となった電池では、その内部抵抗は大きく上昇し、電流が極めて流れ難い状態となる。   In addition, when a plurality of batteries are connected in series and discharged, a battery with a relatively large amount of remaining electricity forcibly applies a discharge current to a battery with a relatively small amount of remaining electricity due to variations in the amount of remaining electricity of each battery. For this reason, a battery with a relatively small amount of remaining electricity is in an overdischarged state. As this overdischarge progresses, “inversion” will eventually occur. Inversion is a phenomenon in which the original potential relationship between the positive electrode and the negative electrode is reversed, and the battery voltage in the inversion state is 0 V or less (minus voltage). In a battery that is in a state of inversion, its internal resistance is greatly increased, and it becomes difficult for current to flow.

図4は、図3における各電圧、各電流の変化を示すグラフである。電池(1)が転極状態になっても対処せずそのままとした場合、その内部抵抗は大きく上昇し、電流が極めて流れ難い状態となり、主回路電流の流れが滞り、放電が進まなくなる。電池(1)〜(5)の各電圧は0V近辺に至らず、各電池の残存電気量を無くすことができない。   FIG. 4 is a graph showing changes in each voltage and current in FIG. If the battery (1) is not dealt with even if it is in a reversal state, its internal resistance greatly increases, the current becomes extremely difficult to flow, the flow of the main circuit current is delayed, and the discharge does not proceed. The voltages of the batteries (1) to (5) do not reach around 0V, and the remaining electricity of each battery cannot be eliminated.

図5は、第1の実施形態による廃棄電池の放電処理方法(転極時の放電工程)を示す全体図である。電池(1)が転極状態となった以降、転極した廃棄単位電池に対応する副回路スイッチ9を閉として対処する。残存電気量のある廃棄単位電池1は、主回路2に放電電流を強制的に流そうとするが、転極した廃棄単位電池(電池(1))に接続された副回路抵抗5を含む副回路4にバイパスされることにより、転極した廃棄単位電池(電池(1))の逆極電圧は下降し、全体の放電は継続される。つまり、一部の廃棄単位電池が過放電による転極状態になった場合でも、転極状態になっていない他の廃棄単位電池を継続して放電させることができる。また、放電電流が副回路4にバイパスされることで転極した廃棄単位電池の逆極電圧が下降し、電池の発熱、膨張、ガス噴出の危険が抑制される。   FIG. 5 is an overall view showing a discharge treatment method (discharge process at the time of reversal) of the discarded battery according to the first embodiment. After the battery (1) is in the reversed state, the sub-circuit switch 9 corresponding to the reversed discarded unit battery is closed to deal with it. The waste unit battery 1 having a residual amount of electricity tries to force a discharge current to flow through the main circuit 2 but includes a sub circuit resistor 5 connected to the reversed waste unit battery (battery (1)). By being bypassed by the circuit 4, the reverse polarity voltage of the reversed discarded unit battery (battery (1)) is lowered, and the entire discharge is continued. That is, even when some of the discarded unit batteries are in a reversal state due to overdischarge, other discarded unit batteries that are not in the reversing state can be continuously discharged. Further, the reverse polarity voltage of the discarded unit battery that has been reversed by the discharge current being bypassed to the sub circuit 4 is lowered, and the risk of heat generation, expansion, and gas ejection of the battery is suppressed.

副回路4に各々接続された副回路抵抗5は、各々の廃棄単位電池1の放電に加え、何れかの廃棄単位電池1が転極した場合、その対象となる廃棄単位電池の正極電流バイパスの役割を果たす。副回路4では、廃棄単位電池1各々に副回路スイッチ9を各々設け、多様の残存電気量バランスに対応できるようにしてある。   The sub-circuit resistors 5 connected to the sub-circuits 4 are connected to the positive current bypass of the target waste unit battery when any one of the waste unit batteries 1 is reversed, in addition to the discharge of each waste unit battery 1. Play a role. In the sub circuit 4, sub circuit switches 9 are provided for each of the disposal unit batteries 1 so as to cope with various remaining electric energy balances.

なお、上記の通り転極した廃棄単位電池1は、副回路スイッチ9を閉とすると逆極電圧が抑制されるが、電池内の電流の大きさや向きは副回路スイッチ9を閉とした時の逆極電圧や廃棄単位電池1の種類や性能による。例えば廃棄単位電池(リチウムイオン電池)を転極、大きく逆極充電させた後に副回路スイッチ9を閉とすると、転極した廃棄単位電池は逆極電圧に従って放電し逆極電圧は下降する。また、副回路スイッチ9を閉として逆極電圧が下降後もその電圧が0Vに近付かず保たれている場合、転極した廃棄単位電池は微弱ながら逆極充電され続けている。   In addition, when the sub-circuit switch 9 is closed, the reverse unit voltage of the discarded unit battery 1 that has been reversed as described above is suppressed, but the magnitude and direction of the current in the battery is the same as when the sub-circuit switch 9 is closed. It depends on the type and performance of the reverse pole voltage and the disposal unit battery 1. For example, when the sub-circuit switch 9 is closed after the waste unit battery (lithium ion battery) is reversed and largely charged at the reverse polarity, the reversed waste unit battery is discharged according to the reverse voltage and the reverse voltage is lowered. Further, when the sub-circuit switch 9 is closed and the reverse voltage drops and the voltage is maintained without approaching 0V, the reversed discarded unit battery continues to be charged with the reverse polarity although it is weak.

図6は、図5における各電圧、各電流の変化を示すグラフである。図7は、図5において転極した廃棄単位電池の逆極電圧を副回路抵抗が抑える仕組みを示す図である。廃棄単位電池1の中で転極状態となった廃棄単位電池(電池(1))に接続された副回路4の副回路スイッチ9を閉じ、他の副回路スイッチ(電池(2)〜(4))はそのままの状態とする。電池(1)の逆極充電が抑制され、放電が継続されていることがわかる。   FIG. 6 is a graph showing changes in each voltage and current in FIG. FIG. 7 is a diagram illustrating a mechanism in which the sub-circuit resistance suppresses the reverse polarity voltage of the discarded unit battery that has been reversed in FIG. 5. The sub-circuit switch 9 of the sub-circuit 4 connected to the disposal unit battery (battery (1)) that is in a reversal state in the disposal unit battery 1 is closed, and the other sub-circuit switches (batteries (2) to (4 )) Is left as it is. It can be seen that reverse charging of the battery (1) is suppressed and discharging is continued.

放電が進むと電池の起電力が低下し電池の内部抵抗RSが増大する。内部抵抗RSの抵抗値相当の起電力が発生し逆極充電される(図6のA)。この状態を放置すると逆極電圧は全体の電圧を相殺してゼロ付近になる値まで上昇するが、この時点で副回路抵抗5を接続することで副回路抵抗5に放電電流IR’が流れ、逆極電圧VRSはIR’×RSまで低下する(図6のB)。その後放電の進行により他の廃棄単位電池の電圧が低下し、それに伴いIR’が低下すると逆極電圧V0は0V付近で安定する(図6のC)。 As the discharge proceeds, the electromotive force of the battery decreases and the internal resistance R S of the battery increases. An electromotive force corresponding to the resistance value of the internal resistance R S is generated and reverse polarity charging is performed (A in FIG. 6). If this state is left as it is, the reverse polarity voltage rises to a value close to zero by canceling the entire voltage. At this time, the discharge current I R ′ flows through the sub circuit resistor 5 by connecting the sub circuit resistor 5. The reverse voltage V RS decreases to I R ′ × R S (B in FIG. 6). Thereafter, as the discharge proceeds, the voltage of other waste unit batteries decreases, and when I R ′ decreases accordingly, the reverse voltage V 0 stabilizes in the vicinity of 0 V (C in FIG. 6).

上記のように、残存電気量が少ない廃棄単位電池1の順に転極が始まり、転極した廃棄単位電池1の副回路4を閉とすることにより、廃棄単位電池1の逆電圧を抑制しながら、直列に接続された廃棄単位電池1全体の電圧は徐々にゼロに近付く。内部抵抗RSの低減措置をとらない場合、内部抵抗RSは非常に大きな値となり、放電工程は全く進まなくなり、電池の膨張や発熱に繋がる。電池内部の電池の逆極充電を抑制するためには内部抵抗RSの抑制が不可欠であり、本発明では副回路抵抗5を廃棄単位電池1に並行に接続することで逆極充電を抑制する。 As described above, the reversal starts in the order of the waste unit battery 1 with the least amount of residual electricity, and the sub-circuit 4 of the discarded waste unit battery 1 is closed, thereby suppressing the reverse voltage of the waste unit battery 1. The voltage across the waste unit batteries 1 connected in series gradually approaches zero. If not taken reduction measures the internal resistance R S, the internal resistance R S becomes very large value, the discharge process is completely no longer proceed, leading to the expansion and heating of the battery. In order to suppress the reverse charge of the battery inside the battery, it is indispensable to suppress the internal resistance R S. In the present invention, the reverse circuit charge is suppressed by connecting the sub circuit resistor 5 to the waste unit battery 1 in parallel. .

また、過放電による転極状態の廃棄単位電池1が生じても、転極状態が生じていない廃棄単位電池1の放電を継続して行う一方で、放電を加速するために短絡放電を行い完全放電させることを並行して行うと効果的である。各廃棄単位電池1のうち十分に電圧低下が確認できたものについては、その電池に接続された短絡回路7の短絡用スイッチ6を閉じ、廃棄単位電池1の電圧が一定値まで低下した後に廃棄単位電池1の回路を短絡することにより、放電加速の為の短絡放電を行い完全放電させる。特にリチウムイオン電池は放電が進行すると内部抵抗が大きくなり、抵抗を接続しての放電速度が著しく低下する。そのため抵抗を接続しての放電により廃棄単位電池1の電圧が十分に低下した場合でも、実際には放電が不十分であり、廃棄単位電池の回路を開とすると電圧が急激に上昇し、操作によってはアークや火花が発生してしまうことがある。このような電圧上昇を防止するためには、極力抵抗の小さい回路を用いて電圧が上昇しなくなるまで放電を行う必要があり、本発明では電線による短絡という手段を用いて完全放電を行う。廃棄単位電池1の電圧が下がっても残存電気量が残っている場合があり、廃棄単位電池1の電圧が十分に低下した時点で短絡する必要がある。また、転極あるいは電圧低下した廃棄単位電池1を短絡することで、逆極電圧を大きく減らすことが出来るため、全体の電圧を損なわず放電速度を高く保つことができる。   In addition, even if the waste unit battery 1 in a reversal state due to overdischarge is generated, the waste unit battery 1 in which a reversal state has not occurred is continuously discharged, while a short-circuit discharge is performed to accelerate the discharge. It is effective to discharge in parallel. For each disposal unit battery 1 whose voltage drop has been sufficiently confirmed, the shorting switch 6 of the short circuit 7 connected to the battery is closed and discarded after the voltage of the disposal unit battery 1 has dropped to a certain value. By short-circuiting the circuit of the unit battery 1, a short-circuit discharge for accelerating discharge is performed to complete discharge. In particular, as the discharge proceeds, the internal resistance of the lithium ion battery increases, and the discharge rate when the resistor is connected is significantly reduced. Therefore, even when the voltage of the waste unit battery 1 is sufficiently lowered due to the discharge with the resistor connected, the discharge is actually insufficient, and when the circuit of the waste unit battery is opened, the voltage suddenly increases and the operation Some arcs and sparks may occur. In order to prevent such a voltage increase, it is necessary to perform a discharge until the voltage does not increase using a circuit having a resistance as small as possible. In the present invention, a complete discharge is performed using a means of a short circuit by an electric wire. Even if the voltage of the waste unit battery 1 decreases, there may be a case where the remaining amount of electricity remains, and it is necessary to short-circuit when the voltage of the waste unit battery 1 is sufficiently lowered. Moreover, since the reverse pole voltage can be greatly reduced by short-circuiting the discarded unit battery 1 that has undergone reversal or voltage reduction, the discharge rate can be kept high without impairing the overall voltage.

図8は、第1の実施形態による廃棄電池の放電処理装置の構成図である。この放電処理装置では、廃棄処理される5個の廃棄単位電池1が直列接続した状態で設置され、まとめて放電される。この放電処理装置は、複数の廃棄単位電池1各々の電圧を測定する電圧測定手段10と、測定した電圧値をもとに副回路スイッチ9の開閉を制御する副回路制御手段11と、測定した電圧値をもとに短絡用スイッチ6の開閉を制御する短絡回路制御手段12とを有することが特徴である。それ以外については、構成上は、図1、2、3および5に示した廃棄電池の放電処理方法の図と同じであるので、同一部分には同一符号を付して詳細な説明は省略する。   FIG. 8 is a configuration diagram of the discharge treatment apparatus for a waste battery according to the first embodiment. In this discharge treatment apparatus, five waste unit batteries 1 to be disposed of are disposed in series and discharged together. This discharge processing apparatus measures voltage measuring means 10 for measuring the voltage of each of the plurality of waste unit batteries 1, and subcircuit control means 11 for controlling opening and closing of the subcircuit switch 9 based on the measured voltage value. It is characterized by having a short circuit control means 12 for controlling the opening and closing of the shorting switch 6 based on the voltage value. Other than that, the configuration is the same as that of the disposal method of the discarded battery shown in FIGS. 1, 2, 3 and 5, and therefore, the same parts are denoted by the same reference numerals and detailed description thereof is omitted. .

副回路スイッチ9は、放電開始時は開とする。電圧測定手段10は、廃棄単位電池1各々の電圧値を測定し、その値を副回路制御手段11に通知する。副回路制御手段11は、電圧値から廃棄単位電池1が転極あるいは設定の電圧までの低下を検知すると、該当する廃棄単位電池1に対応する副回路スイッチ9を閉とする。このように、放電中に複数の廃棄単位電池1の中で転極状態となったものについては、その副回路4のみが閉となり、逆極充電が抑制され、全体の放電は継続される。   The sub circuit switch 9 is opened at the start of discharge. The voltage measuring means 10 measures the voltage value of each waste unit battery 1 and notifies the sub-circuit control means 11 of the value. When the sub circuit control means 11 detects a drop in voltage from the voltage value to the reversal unit voltage or the set voltage, the sub circuit control unit 11 closes the sub circuit switch 9 corresponding to the corresponding discard unit battery 1. As described above, among the plurality of discarded unit batteries 1 during the discharge, only the sub circuit 4 is closed, the reverse polarity charging is suppressed, and the entire discharge is continued.

更に、電圧測定手段10により、特定の時間を経て放電が一段したことが確認できたら、短絡回路制御手段12により短絡用スイッチ6を閉じる。これは放電対象の廃棄単位電池の種類によっては、見かけ上の電圧が低下しても残存電気量が多い場合があり、短絡事故の危険を防止するためである。   Further, when it is confirmed by the voltage measuring means 10 that the discharge has completed one stage after a specific time, the short circuit switch 6 is closed by the short circuit control means 12. This is to prevent the risk of a short-circuit accident, depending on the type of disposal unit battery to be discharged, even if the apparent voltage decreases, the amount of remaining electricity may be large.

また、短絡回路7を閉とした後も副回路4は閉のままとする。これにより、短絡後に接触不良や廃棄単位電池1の取り出し等で廃棄単位電池が回路から開放された後、同じ場所に未放電の廃棄単位電池1や回路開放により電圧の上昇した廃棄単位電池1をセットすることによる短絡事故の危険を防止することができる。   Further, the sub circuit 4 remains closed even after the short circuit 7 is closed. Thereby, after the waste unit battery is released from the circuit due to contact failure or removal of the waste unit battery 1 after the short circuit, the undischarged waste unit battery 1 or the waste unit battery 1 whose voltage has increased due to the circuit opening is placed in the same place. The risk of a short circuit accident due to setting can be prevented.

原理的には短絡スイッチを手動で操作することも可能であるが、逆極充電が進む前に短絡させる必要があるため(逆極電圧が大きくなってからの短絡は危険である)、短絡用スイッチの制御は自動で行うことが望ましく、図8に示す廃棄電池の放電処理装置は安全性が高い。   In principle, it is possible to manually operate the short-circuit switch, but it is necessary to short-circuit before the reverse-polarization proceeds (short-circuiting after the reverse-polarity voltage increases is dangerous). It is desirable to automatically control the switch, and the discharge treatment apparatus for a waste battery shown in FIG. 8 has high safety.

上述した第1の実施形態によれば、一部の廃棄単位電池が過放電による転極状態になった場合でも、副回路抵抗5は正極電流バイパスの役割を果たすことにより、転極状態になっていない他の廃棄単位電池を継続して放電させることができる。   According to the first embodiment described above, even when some of the discarded unit batteries are in a reversal state due to overdischarge, the sub circuit resistor 5 is in a reversal state by serving as a positive current bypass. Other waste unit batteries that have not been discharged can be continuously discharged.

また、上述した第1の実施形態によれば、放電電流が副回路4にバイパスされ転極した廃棄単位電池の逆極電圧が下降することにより、電池の発熱、膨張、ガス噴出の危険を抑制することができる。   In addition, according to the first embodiment described above, the risk of heat generation, expansion, and gas ejection of the battery is suppressed by decreasing the reverse polarity voltage of the discarded unit battery whose discharge current is bypassed to the subcircuit 4 and reversed. can do.

また、上述した第1の実施形態によれば、廃棄単位電池1の電圧が一定値まで低下した後にその短絡用スイッチ6を閉じことにより、放電加速のための短絡放電を行い完全放電させることができる。   Further, according to the first embodiment described above, by closing the short-circuit switch 6 after the voltage of the disposal unit battery 1 has dropped to a certain value, the short-circuit discharge for accelerating the discharge can be performed and the complete discharge can be performed. it can.

また、上述した第1の実施形態によれば、上記短絡用スイッチの制御を自動で行うことにより、高い安全性が得られる。   Moreover, according to 1st Embodiment mentioned above, high safety | security is acquired by performing control of the said switch for a short circuit automatically.

(第2の実施形態)
以下に、第2の実施形態による廃棄電池の放電処理方法および廃棄電池の放電処理装置について、図9乃至図12を用いて説明する。
(Second Embodiment)
A waste battery discharge treatment method and a waste battery discharge treatment apparatus according to a second embodiment will be described below with reference to FIGS. 9 to 12.

図9は、第2の実施形態による廃棄電池の放電処理方法の図である。図2に示した第1の実施形態による廃棄電池の放電処理方法と異なる点は、放電処理の開始時から副回路4の副回路スイッチ9を閉としていることである。つまり、第2の実施形態による廃棄電池の放電処理方法では、放電処理中は常時、複数の廃棄単位電池各々に副回路抵抗5が電気的に接続されている。それ以外は、構成上は第1の実施形態と同じであるので、同一部分には同一符号を付して詳細な説明は省略する。尚、図9は、第2の実施形態による廃棄電池の放電処理装置の構成図でもある。   FIG. 9 is a diagram of a method for discharging a discarded battery according to the second embodiment. A difference from the discharge processing method of the waste battery according to the first embodiment shown in FIG. 2 is that the sub circuit switch 9 of the sub circuit 4 is closed from the start of the discharge processing. That is, in the discharge processing method for a waste battery according to the second embodiment, the sub-circuit resistor 5 is electrically connected to each of the plurality of waste unit batteries at all times during the discharge processing. Other than that, the configuration is the same as that of the first embodiment, and therefore, the same portions are denoted by the same reference numerals and detailed description thereof is omitted. FIG. 9 is also a configuration diagram of the discharge processing apparatus for a waste battery according to the second embodiment.

第2の実施形態による廃棄電池の放電処理装置および放電処理方法の作用・動作について説明する。複数の廃棄単位電池1の起電力で生じる放電電流を主回路抵抗3に流し、且つ、複数の廃棄単位電池1各々の起電力で生じる個別放電電流が各々に接続された副回路抵抗5に流れることにより、複数の廃棄単位電池の残存電気量を放電させる(通常時の放電工程)。この通常時の放電工程中に、複数の廃棄単位電池の一部が過放電による転極状態になった場合、その転極状態になった廃棄単位電池で発生する放電電流とは逆方向で流れる電流および放電電流が、その転極状態になった廃棄単位電池に接続された副回路抵抗5に流れることにより、転極状態になっていない廃棄単位電池を継続して放電させる(転極時の放電工程)。残存電気量が減少して転極した廃棄単位電池1に関しては、対応する副回路抵抗5がスムーズに放電から逆極電圧抑制に役割が切り替わる。以上より、一部の廃棄単位電池が過放電による転極状態になった場合でも、転極状態になっていない他の廃棄単位電池を継続して放電させることができる。また、放電電流が副回路4にバイパスされることで転極した廃棄単位電池の逆極電圧が下降し、電池の発熱、膨張、ガス噴出の危険が抑制される。   The operation and operation of the discharge treatment apparatus and discharge treatment method for a waste battery according to the second embodiment will be described. A discharge current generated by the electromotive force of the plurality of waste unit cells 1 flows through the main circuit resistor 3, and an individual discharge current generated by the electromotive force of each of the plurality of waste unit cells 1 flows through the sub circuit resistor 5 connected thereto. As a result, the amount of electricity remaining in the plurality of waste unit batteries is discharged (discharge process in a normal state). During the normal discharge process, when some of the plurality of waste unit batteries are in a reversal state due to overdischarge, the discharge current generated in the reversal unit battery in the reverse state flows in the opposite direction. The current and the discharge current flow through the sub-circuit resistor 5 connected to the discarded unit battery in the inverted state, thereby continuously discharging the discarded unit battery that is not in the inverted state (at the time of the inversion). Discharge process). With respect to the discarded unit battery 1 that has been reversed due to a decrease in the amount of remaining electricity, the role of the corresponding sub-circuit resistor 5 is smoothly switched from discharge to reverse voltage suppression. From the above, even when some of the discarded unit batteries are in a reversed state due to overdischarge, other discarded unit batteries that are not in the reversed state can be continuously discharged. Further, the reverse polarity voltage of the discarded unit battery that has been reversed by the discharge current being bypassed to the sub circuit 4 is lowered, and the risk of heat generation, expansion, and gas ejection of the battery is suppressed.

また、残存電気量が減少して転極した廃棄単位電池1に関しても、対応する副回路抵抗5がスムーズに放電から逆極電圧抑制に役割が切り替わり、手作業で実施する場合はその手間を簡略化することができ、放電処理装置を用いて実施する場合は装置を簡略化することができる。   Also, with respect to the discarded unit battery 1 whose polarity has been reversed due to a decrease in the amount of remaining electricity, the role of the corresponding sub-circuit resistor 5 smoothly switches from discharging to suppressing the reverse voltage, and the work is simplified when it is performed manually. In the case where the discharge treatment apparatus is used, the apparatus can be simplified.

また、副回路抵抗5は、第1の実施形態による廃棄電池の放電処理のような逆極充電を抑制する役割だけでなく、残存電気量の多い廃棄単位電池1の放電の役割も果たす。その結果、放電を主回路抵抗3に加えて副回路抵抗5で行うため、放電を主回路抵抗3のみで行う場合と比較すると、放電に要する時間を短縮することができる。   Further, the sub-circuit resistor 5 serves not only to suppress reverse charging like the discharge processing of the waste battery according to the first embodiment but also to discharge the waste unit battery 1 having a large amount of remaining electricity. As a result, since the discharge is performed by the sub circuit resistor 5 in addition to the main circuit resistor 3, the time required for the discharge can be shortened as compared with the case where the discharge is performed only by the main circuit resistor 3.

一方で、副回路抵抗5に放電と逆極電圧の2つの役割を持たせることにより、副回路抵抗の選定や装置の設計に適した条件がでてくる。逆極充電の大きさは、放電対象である廃棄単位電池の電圧、放電時に直列に接続する廃棄単位電池の積層数、主回路抵抗3の抵抗値(それぞれ主回路2を流れる放電電流が大きくなるように設定すると、副回路抵抗5を通常と逆向きに流れる電流IR’が大きくなり、逆極電圧は大きくなる)、そして副回路抵抗5の抵抗値等に依存している。 On the other hand, by providing the subcircuit resistor 5 with two roles of discharge and reverse voltage, conditions suitable for the selection of the subcircuit resistor and the design of the device appear. The magnitude of the reverse polarity charging is the voltage of the waste unit battery to be discharged, the number of stacked waste unit batteries connected in series at the time of discharge, the resistance value of the main circuit resistor 3 (the discharge current flowing through the main circuit 2 is increased respectively) With this setting, the current I R ′ flowing in the reverse direction of the subcircuit resistance 5 becomes large and the reverse voltage becomes large), and depends on the resistance value of the subcircuit resistance 5 and the like.

副回路抵抗5の抵抗値が大きいほど逆極電圧は大きくなり(抵抗値∞で副回路が開の状態と同じ)、抵抗値が小さいほど逆極電圧は小さくなる(前述のIR’の低下による)。副回路抵抗5の抵抗値が大きい場合、逆極電圧が大きいために、副回路抵抗5の発熱が大きくなり、装置設計に制約がでてくる。以上のように、逆極電圧を抑制する目的のみで副回路4を使用する場合、抵抗値はある程度小さい方が好ましい。一方で、放電の目的で副回路4を使用する場合、放電による発熱を抑制するためには抵抗値がある程度大きい方が望ましい。抵抗値が小さいと発熱が大きくなるため、装置設計が難しくなるためである。 The reverse pole voltage increases as the resistance value of the subcircuit resistance 5 increases (the same as when the subcircuit is open at the resistance value ∞), and the reverse pole voltage decreases as the resistance value decreases (the above-described decrease in IR ). by). When the resistance value of the sub circuit resistor 5 is large, the reverse polarity voltage is large, and thus the heat generation of the sub circuit resistor 5 is increased, which restricts the device design. As described above, when the sub circuit 4 is used only for the purpose of suppressing the reverse polarity voltage, it is preferable that the resistance value is small to some extent. On the other hand, when the sub circuit 4 is used for the purpose of discharging, it is desirable that the resistance value be large to some extent in order to suppress heat generation due to discharging. This is because if the resistance value is small, the heat generation becomes large, so that the device design becomes difficult.

以上のように副回路抵抗5は、抵抗値を大きくすると逆極電圧の抑制効果が薄くなり、転極時の発熱が大きくなる。抵抗値を小さくすると(転極していない通常時の)放電工程中の発熱が大きくなる。そのため副回路抵抗5に放電と逆極電圧抑制の2つの役割を持たせる場合は、放電の条件を考慮して適切な抵抗を用いると有効である。また、図示していないが、副回路抵抗5を抵抗値の異なるものを複数用意し、通常時の放電工程中は複数の副回路抵抗5の中の抵抗値が大きいものを接続し、廃棄単位電池1各々の電圧を測定し転極状態となった場合は(転極時の放電工程時)、その中の抵抗値が小さいものに切り替えて接続すると有効である。これにより、通常時の放電工程中は、抵抗値が大きい副回路抵抗を用いることにより放電による発熱を抑制し、転極時の放電工程中は、抵抗値が小さい副回路抵抗を用いることにより転極状態になった廃棄単位電池の逆極電圧を抑制することができる。   As described above, when the resistance value of the sub circuit resistor 5 is increased, the effect of suppressing the reverse polarity voltage is reduced, and the heat generation during the switching is increased. When the resistance value is decreased, the heat generation during the discharging process (in a normal state where no polarity is reversed) increases. Therefore, when the sub-circuit resistor 5 has two roles of discharge and reverse voltage suppression, it is effective to use an appropriate resistor in consideration of discharge conditions. Although not shown, a plurality of sub-circuit resistors 5 having different resistance values are prepared, and a plurality of sub-circuit resistors 5 having a large resistance value are connected during a normal discharge process, and a unit of disposal is provided. When the voltage of each of the batteries 1 is measured to be in a reversal state (during the discharge process at the time of reversal), it is effective to switch and connect to one having a small resistance value. As a result, during the normal discharge process, the subcircuit resistance with a large resistance value is used to suppress heat generation due to the discharge, and during the discharge process during reversal, the subcircuit resistance with a small resistance value is used to switch the resistance. It is possible to suppress the reverse polarity voltage of the discarded unit battery that is in a polar state.

また、電圧測定装置、抵抗値の異なる複数の副回路抵抗および抵抗切替装置を組み込むことにより、上記動作を実現する廃棄電池の放電処理装置を提供することもできる。   In addition, it is possible to provide a discharge processing apparatus for a waste battery that realizes the above operation by incorporating a voltage measuring device, a plurality of sub-circuit resistors having different resistance values, and a resistance switching device.

図10は第2の実施形態による廃棄電池の放電処理において、各電圧の変化を示すグラフである。図11は、第2の実施形態による廃棄電池の放電処理(転極時の放電工程)において、転極した廃棄単位電池の逆極電圧を副回路抵抗が抑える仕組みを示す図である。   FIG. 10 is a graph showing changes in each voltage in the discharge process of the waste battery according to the second embodiment. FIG. 11 is a diagram showing a mechanism in which the sub-circuit resistance suppresses the reverse polarity voltage of the discarded waste unit battery in the discharge process (discharge process at the time of switching) according to the second embodiment.

電池(電圧VS、内部抵抗RS)の電圧VSが維持できている場合(見かけ上の電はVO)、副回路抵抗5(抵抗値R)にはIR=VO/Rとなる放電電流IRが流れている(図10のA)。放電が進むと電池の起電力が低下し電池の内部抵抗RSが増大する。その結果内部抵抗RSの抵抗値相当の起電力が発生し逆極充電される。副回路4はすでに閉となっているため、副回路抵抗5にそれまでと逆向きの放電電流IR’が流れ、見かけ上の起電力VOは負になりIR’×RSまで低下する(図10のB)。その後放電の進行とともに電池の起電力VSが低下するため、その後放電の進行により他の廃棄単位電池の電圧が低下し、それに伴いIR’が低下すると逆極電圧V0は0V付近で安定する(図10のC)。 Battery if (voltage V S, the internal resistance R S) the voltage V S of which can be maintained (the electrodeposition apparent V O), the secondary circuit resistor 5 (resistance value R) and I R = V O / R A discharge current I R flows (A in FIG. 10). As the discharge proceeds, the electromotive force of the battery decreases and the internal resistance R S of the battery increases. As a result, an electromotive force corresponding to the resistance value of the internal resistance R S is generated and reverse polarity charging is performed. Since the sub circuit 4 is already closed, a discharge current I R ′ in the opposite direction flows through the sub circuit resistor 5, and the apparent electromotive force V O becomes negative and decreases to I R ′ × R S. (B in FIG. 10). Thereafter, the electromotive force V S of the battery decreases with the progress of discharge, so that the voltage of other discarded unit batteries decreases with the progress of discharge, and when I R ′ decreases accordingly, the reverse voltage V 0 is stable at around 0V. (C in FIG. 10).

図10における転極時の放電工程の様子は、BおよびCにおける電池(1)のグラフが示している。廃棄単位電池を5個(電池(1)〜(5))直列に接続し、最も残存電気量の少ない廃棄単位電池を電池(1)としている。電池(1)が転極すると副回路抵抗5を含む副回路4が本発明の基本形と同様に働き、廃棄単位電池1の逆極充電を抑制して放電が進む。Cの最後では、各電池(1)〜(5)の残存電気量が殆ど無くなり、全体の放電が無事完了していることがわかる。   The state of the discharging process at the time of reversal in FIG. 10 is shown by the graph of the battery (1) in B and C. Five waste unit batteries (batteries (1) to (5)) are connected in series, and the waste unit battery with the least amount of remaining electricity is the battery (1). When the battery (1) is reversed, the sub circuit 4 including the sub circuit resistor 5 works in the same manner as the basic form of the present invention, and the discharge of the waste unit battery 1 is suppressed while suppressing the reverse polarity charging. At the end of C, it can be seen that the amount of electricity remaining in each of the batteries (1) to (5) is almost eliminated, and the entire discharge is completed successfully.

図12は、第2の実施形態による廃棄電池の放電処理装置の構成図である。この放電処理装置では、廃棄処理される5個の廃棄単位電池1が直列接続した状態で設置され、まとめて放電される。この放電処理装置では、放電中は、副回路スイッチ9を常時閉とし、副回路スイッチ9の開閉制御を行う必要がないため、副回路制御手段11が存在しないことが特徴である。それ以外については、構成上は、図8に示した廃棄電池の放電処理装置の図と同じであるので、同一部分には同一符号を付して詳細な説明は省略する。   FIG. 12 is a configuration diagram of a discharge treatment apparatus for a waste battery according to the second embodiment. In this discharge treatment apparatus, five waste unit batteries 1 to be disposed of are disposed in series and discharged together. This discharge processing apparatus is characterized in that the sub circuit switch 9 is normally closed during discharge and there is no need to perform opening / closing control of the sub circuit switch 9, so that the sub circuit control means 11 does not exist. Other than that, the configuration is the same as that of the waste battery discharge treatment apparatus shown in FIG. 8, and therefore, the same parts are denoted by the same reference numerals and detailed description thereof is omitted.

この廃棄電池の放電処理装置においては、放電中は副回路スイッチ9を常時閉とするため、図5乃至図7を用いて説明した第2の実施形態による廃棄電池の放電処理を簡単に実施することができる。   In this waste battery discharge treatment apparatus, since the sub circuit switch 9 is normally closed during discharge, the discharge treatment of the waste battery according to the second embodiment described with reference to FIGS. 5 to 7 is simply performed. be able to.

上述した第2の実施形態によれば、転極状態になった廃棄単位電池で発生する放電電流とは逆方向で流れる電流および放電電流が副回路抵抗5に流れることにより、転極状態になっていない他の廃棄単位電池を継続して放電させることができる。   According to the second embodiment described above, a current that flows in the opposite direction to the discharge current that occurs in the discarded unit battery that has been in a reversed state and a discharge current that flows through the sub-circuit resistor 5 result in a reversed state. Other waste unit batteries that have not been discharged can be continuously discharged.

また、上述した第2の実施形態によれば、放電電流が副回路4にバイパスされ転極した廃棄単位電池の逆極電圧が下降することにより、電池の発熱、膨張、ガス噴出の危険を抑制することができる。   In addition, according to the second embodiment described above, the risk of heat generation, expansion, and gas ejection of the battery is suppressed by decreasing the reverse polarity voltage of the discarded unit battery that is bypassed and reversed by the discharge current in the sub circuit 4. can do.

また、上述した第2の実施形態によれば、転極状態になった廃棄単位電池において対応する副回路抵抗5がスムーズに放電から逆極電圧抑制に役割が切り替わることにより、手作業の手間や放電処理装置の構造を簡略化することができる。   In addition, according to the second embodiment described above, the role of the corresponding sub-circuit resistor 5 in the discarded unit battery in the inverted state is smoothly switched from the discharge to the reverse voltage suppression, so that manual labor and time are reduced. The structure of the discharge processing apparatus can be simplified.

また、上述した第2の実施形態によれば、放電を主回路抵抗3に加えて副回路抵抗5で行うことにより、放電に要する時間を短縮することができる。   Further, according to the second embodiment described above, the time required for the discharge can be shortened by performing the discharge with the sub circuit resistor 5 in addition to the main circuit resistor 3.

また、上述した第2の実施形態によれば、通常時の放電工程中は、抵抗値が大きい副回路抵抗を用いることにより放電による発熱を抑制し、転極時の放電工程中は、抵抗値が小さい副回路抵抗を用いることにより転極状態になった廃棄単位電池の逆極電圧を抑制することができる。   Further, according to the second embodiment described above, during the normal discharge process, the sub-circuit resistance having a large resistance value is used to suppress heat generation due to the discharge, and during the discharge process during the reversal, the resistance value is reduced. By using a small sub-circuit resistance, it is possible to suppress the reverse voltage of the discarded unit battery that is in the inverted state.

また、上述した第2の実施形態によれば、廃棄単位電池1の電圧が一定値まで低下した後にその短絡用スイッチ6を閉じことにより、放電加速のための短絡放電を行い完全放電させることができる。   Further, according to the second embodiment described above, by closing the short-circuit switch 6 after the voltage of the disposal unit battery 1 has dropped to a certain value, short-circuit discharge for acceleration of discharge can be performed and complete discharge can be performed. it can.

以上説明した少なくとも一つの実施形態の廃棄電池の放電処理装置および放電処理方法によれば、複数の廃棄単位電池を直列接続した状態でまとめて放電させる際、一部の廃棄単位電池が過放電による転極状態になった場合でも、転極状態になっていない他の廃棄単位電池を継続して放電させることができる。   According to the discharge processing apparatus and the discharge processing method for a waste battery according to at least one embodiment described above, when a plurality of waste unit batteries are discharged together in a state of being connected in series, some of the waste unit batteries are overdischarged. Even in the inversion state, other discarded unit batteries that are not in the inversion state can be continuously discharged.

尚、廃棄単位電池は、リチウムイオン電池、ニッケル水素電池等の二次電池全般を対象としており、その種類は問わない。また、セル・モジュール・ユニット等の電池の形態も問わない。   In addition, the disposal unit battery is intended for all secondary batteries such as lithium ion batteries and nickel metal hydride batteries, and the type thereof is not limited. Moreover, the form of batteries such as cells, modules, and units is not limited.

また、廃棄電池は1次使用で不要となった電池であり、放電処理を実施した後に他の使用目的にリユースするケースもある。本発明の放電処理により放電した電池をリユース品として使用することも可能である。   In addition, the discarded battery is a battery that is no longer needed after the primary use, and may be reused for other purposes after the discharge treatment. The battery discharged by the discharge treatment of the present invention can be used as a reuse product.

さらに、数個の単位電池が直列に接続され、制御基板により各電池の電位を制御できるようにした電池モジュールを放電処理する場合、前記の電池モジュールを本発明の廃棄単位電池とみなし、複数の電池モジュールを放電処理することが可能である。この場合前記の電池モジュールの放電は廃棄目的に限定するもではなく、リユースを目的としてもよい。   Further, when a battery module in which several unit batteries are connected in series and the potential of each battery can be controlled by the control board is discharged, the battery module is regarded as a discarded unit battery of the present invention, It is possible to discharge the battery module. In this case, the discharge of the battery module is not limited to the purpose of disposal but may be intended for reuse.

また、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Moreover, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1・・・廃棄単位電池
2・・・主回路
3・・・主回路抵抗
4・・・副回路
5・・・副回路抵抗
6・・・短絡用スイッチ
7・・・短絡回路
8・・・主回路スイッチ
9・・・副回路スイッチ
10・・・電圧測定手段
11・・・副回路制御手段
12・・・短絡回路制御手段
DESCRIPTION OF SYMBOLS 1 ... Waste unit battery 2 ... Main circuit 3 ... Main circuit resistance 4 ... Sub circuit 5 ... Sub circuit resistance 6 ... Short circuit switch 7 ... Short circuit 8 ... Main circuit switch 9 ... sub circuit switch 10 ... voltage measuring means 11 ... sub circuit control means 12 ... short circuit control means

Claims (11)

直列接続された複数の廃棄単位電池の一端の正極と他端の負極の間に主回路抵抗を接続し、前記複数の廃棄単位電池各々の正極と負極の間に各々副回路抵抗および開閉器を直列接続することにより、前記複数の廃棄単位電池を放電処理する廃棄電池の放電処理方法であって、
前記複数の廃棄単位電池の起電力で生じる放電電流を前記主回路抵抗に流すことにより、前記複数の廃棄単位電池の残存電気量を放電させる通常時の放電工程と、
この通常時の放電工程中に、前記複数の廃棄単位電池の一部が過放電による転極状態になった場合、その転極状態になった廃棄単位電位に接続された開閉器を閉じることにより、前記副回路抵抗を接続し、転極状態になっていない廃棄単位電池を継続して放電させる転極時の放電工程とを有し、
前記複数の廃棄単位電池の残存電気量を放電させることを特徴とする廃棄電池の放電処理方法。
A main circuit resistor is connected between a positive electrode at one end and a negative electrode at the other end of the plurality of waste unit batteries connected in series, and a sub-circuit resistor and a switch are connected between the positive electrode and the negative electrode of each of the plurality of waste unit batteries. A waste battery discharge treatment method for discharging the plurality of waste unit batteries by connecting in series,
A normal discharge step of discharging the residual electricity quantity of the plurality of waste unit batteries by causing a discharge current generated by electromotive force of the plurality of waste unit batteries to flow through the main circuit resistor;
When a part of the plurality of waste unit batteries is in a reversal state due to overdischarge during the normal discharge process, the switch connected to the waste unit potential in the reversal state is closed. , Connecting the sub-circuit resistance, and continuously discharging the waste unit battery that is not in the reversal state, and a discharging process during reversal,
A method for discharging treatment of a waste battery, comprising: discharging a remaining amount of electricity of the plurality of waste unit batteries.
前記転極時の放電工程中に、前記複数の廃棄単位電池の一部が過放電による転極状態になった場合、その転極状態になった廃棄単位電位に接続された開閉器を閉じることにより、その転極状態になった廃棄単位電池で発生する前記放電電流とは逆方向で流れる電流および前記放電電流を、その転極状態になった廃棄単位電池に接続された前記副回路抵抗に流すことを特徴とする請求項1に記載の廃棄電池の放電処理方法。   When a part of the plurality of waste unit batteries is in a reversal state due to overdischarge during the discharging process at the time of the reversal, the switch connected to the waste unit potential in the reversal state is closed. Thus, the current flowing in the opposite direction to the discharge current generated in the discarded unit battery in the inverted state and the discharge current are transferred to the sub-circuit resistance connected to the discarded unit battery in the inverted state. The discharge treatment method for a waste battery according to claim 1, wherein the battery is discharged. 直列接続された複数の廃棄単位電池の一端の正極と他端の負極の間に主回路抵抗を接続し、且つ、前記複数の廃棄単位電池各々の正極と負極の間に各々副回路抵抗を接続することにより、前記複数の廃棄単位電池を放電処理する廃棄電池の放電処理方法であって、
前記複数の廃棄単位電池の起電力で生じる放電電流を前記主回路抵抗に流し、且つ、前記複数の廃棄単位電池各々の起電力で生じる個別放電電流を各々の前記副回路抵抗に流すことにより、前記複数の廃棄単位電池の残存電気量を放電させる通常時の放電工程と、
この通常時の放電工程中に、前記複数の廃棄単位電池の一部が過放電による転極状態になった場合、転極状態になっていない廃棄単位電池を継続して放電させる転極時の放電工程とを有し、
前記複数の廃棄単位電池の残存電気量を放電させることを特徴とする廃棄電池の放電処理方法。
A main circuit resistor is connected between the positive electrode at one end and the negative electrode at the other end of the plurality of waste unit batteries connected in series, and a sub-circuit resistor is connected between the positive electrode and the negative electrode of each of the plurality of waste unit batteries. A waste battery discharge treatment method for discharging the plurality of waste unit batteries,
By causing a discharge current generated by the electromotive force of the plurality of waste unit cells to flow through the main circuit resistor, and causing an individual discharge current generated by the electromotive force of each of the plurality of waste unit cells to flow through the sub circuit resistor, A normal discharge step of discharging the remaining electricity of the plurality of waste unit batteries;
During the normal discharge process, when a part of the plurality of waste unit batteries is in a reversal state due to overdischarge, the waste unit battery that is not in the reversal state is continuously discharged. A discharge process,
A method for discharging treatment of a waste battery, comprising: discharging a remaining amount of electricity of the plurality of waste unit batteries.
前記転極時の放電工程中に、前記複数の廃棄単位電池の一部が過放電による転極状態になった場合、その転極状態になった廃棄単位電池で発生する前記放電電流とは逆方向で流れる電流および前記放電電流を、その転極状態になった廃棄単位電池に接続された前記副回路抵抗に流すことを特徴とする請求項3に記載の廃棄電池の放電処理方法。   When a part of the plurality of discarded unit batteries is in a reversal state due to overdischarge during the discharging process during the reversal, the discharge current generated in the discarded unit battery in the reversal state is opposite to the discharge current. 4. The method for discharging treatment of a waste battery according to claim 3, wherein the current flowing in the direction and the discharge current are caused to flow through the sub-circuit resistance connected to the waste unit battery in the inverted state. 前記副回路抵抗は抵抗値の異なるものを複数用意し、
前記通常時の放電工程中は、前記副回路抵抗の中の抵抗値が大きいものを用いることにより、放電による発熱を抑制し、
前記転極時の放電工程中は、前記副回路抵抗の中の抵抗値が小さいものを用いることにより、前記転極状態になった廃棄単位電池の逆極電圧を抑制することを特徴とする請求項3又は請求項4に記載の廃棄電池の放電処理方法。
Prepare a plurality of sub circuit resistors with different resistance values,
During the normal discharge process, by using a large resistance value in the sub-circuit resistance, suppressing heat generation due to discharge,
The reverse polarity voltage of the discarded unit battery in the inversion state is suppressed by using the sub-circuit resistance having a small resistance value during the discharging process during the inversion. Item 5. A method for discharging treatment of a waste battery according to Item 3 or Item 4.
前記通常時の放電工程又は前記転極時の放電工程が実施され、前記複数の廃棄単位電池の一部が所定値以下の電圧に低下した場合、その廃棄単位電池の正極と負極を接続し、その廃棄単位電池の放電を加速することを特徴とする請求項1乃至請求項5のいずれか1項に記載の廃棄電池の放電処理方法。 Wherein is commonly practiced discharging process or the reversing time of the discharge process during, when a part of the plurality of waste unit batteries falls below the voltage predetermined value, connect the positive and negative of the disposal unit cell, The discharge processing method for a waste battery according to any one of claims 1 to 5, wherein the discharge of the waste unit battery is accelerated. 直列接続された複数の廃棄単位電池の一端の正極と他端の負極の間に接続される主回路抵抗と、
前記複数の廃棄単位電池各々の正極と負極の間に各々接続され、通常は開いている副回路スイッチと、
前記複数の廃棄単位電池各々の正極と負極の間に、前記副回路スイッチと共に各々直列接続される副回路抵抗と、
前記複数の廃棄単位電池各々の電圧を測定する電圧測定手段と、
この電圧測定手段により測定した前記電圧の値をもとに、前記複数の廃棄単位電池の一部が過放電による転極状態になった場合、その転極状態になった廃棄単位電池を特定し、その廃棄単位電池に接続された開閉器を閉じる制御手段とを有し、
前記複数の廃棄単位電池の残存電気量を放電させることを特徴とする廃棄電池の放電処理装置。
A main circuit resistor connected between the positive electrode at one end and the negative electrode at the other end of the plurality of waste unit batteries connected in series;
A sub-circuit switch connected between a positive electrode and a negative electrode of each of the plurality of waste unit batteries, and normally open;
A sub-circuit resistor connected in series with the sub-circuit switch between the positive electrode and the negative electrode of each of the plurality of waste unit batteries;
Voltage measuring means for measuring the voltage of each of the plurality of waste unit batteries;
Based on the value of the voltage measured by the voltage measuring means, when a part of the plurality of discarded unit batteries is in a reversal state due to overdischarge, the discarded unit battery in the reversal state is identified. And a control means for closing a switch connected to the disposal unit battery,
A discharge processing apparatus for a waste battery, wherein the remaining electricity of the plurality of waste unit batteries is discharged.
前記複数の廃棄単位電池の起電力で生じる放電電流が前記主回路抵抗を流れることにより、前記複数の廃棄単位電池の残存電気量を放電させ、放電中に前記複数の廃棄単位電池の一部が過放電による転極状態になった場合、その転極状態になった廃棄単位電池で発生する前記放電電流とは逆方向で流れる電流および前記放電電流が、その転極状態になった廃棄単位電池に接続された前記副回路抵抗に流れることにより、転極状態になっていない廃棄単位電池を継続して放電させることを特徴とする請求項7に記載の廃棄電池の放電処理装置。   The discharge current generated by the electromotive force of the plurality of waste unit batteries flows through the main circuit resistor, thereby discharging the remaining amount of electricity of the plurality of waste unit batteries, and a part of the plurality of waste unit batteries is discharged during the discharge. When a reversal state is caused by overdischarge, a current flowing in a direction opposite to the discharge current generated in the waste unit battery in the reversal state and the discharge unit battery in which the discharge current is in the reversal state The waste battery discharge treatment device according to claim 7, wherein the waste unit battery that is not in the inversion state is continuously discharged by flowing through the sub-circuit resistance connected to the battery. 直列接続された複数の廃棄単位電池の一端の正極と他端の負極の間に接続される主回路抵抗と、
前記複数の廃棄単位電池各々の正極と負極の間に各々接続される副回路抵抗とを有し、
前記複数の廃棄単位電池の残存電気量を放電させる際は、前記複数の廃棄単位電池に前記主回路抵抗および前記副回路抵抗の両方が接続されることを特徴とする廃棄電池の放電処理装置。
A main circuit resistor connected between the positive electrode at one end and the negative electrode at the other end of the plurality of waste unit batteries connected in series;
A sub-circuit resistor connected between a positive electrode and a negative electrode of each of the plurality of waste unit batteries,
When discharging the remaining amount of electricity of the plurality of waste unit batteries, both the main circuit resistance and the sub circuit resistance are connected to the plurality of waste unit batteries.
前記複数の廃棄単位電池の起電力で生じる放電電流が前記主回路抵抗を流れ、且つ、前記複数の廃棄単位電池各々の起電力で生じる個別放電電流が各々の前記副回路抵抗を流れることにより、前記複数の廃棄単位電池の残存電気量を放電させ、放電中に前記複数の廃棄単位電池の一部が過放電による転極状態になった場合、その転極状態になった廃棄単位電池で発生する前記放電電流とは逆方向で流れる電流および前記放電電流が、その転極状態になった廃棄単位電池に接続された前記副回路抵抗を流れることにより、転極状態になっていない廃棄単位電池を継続して放電させることを特徴とする請求項9に記載の廃棄電池の放電処理装置。   The discharge current generated by the electromotive force of the plurality of waste unit batteries flows through the main circuit resistance, and the individual discharge current generated by the electromotive force of each of the plurality of waste unit batteries flows through the sub circuit resistance. When the remaining amount of electricity in the plurality of waste unit batteries is discharged and a part of the plurality of waste unit batteries is in a reversal state due to overdischarge during the discharge, it is generated in the waste unit battery in the reversal state A waste unit battery that is not in the inverted state by flowing the current flowing in the opposite direction to the discharge current and the discharge current flowing through the sub-circuit resistance connected to the discarded unit battery that is in the inverted state. The discharge treatment apparatus for a waste battery according to claim 9, wherein the discharge is continued. 前記複数の廃棄単位電池各々の正極と負極の間に各々接続され、通常は開いている短絡用スイッチを更に有し、前記複数の廃棄単位電池の残存電気量を放電させ、前記複数の廃棄単位電池の一部が所定値以下の電圧に低下した場合、その廃棄単位電池に接続された前記短絡用スイッチを閉じ、その廃棄単位電池の放電を加速することを特徴とする請求項7乃至請求項10のいずれか1項に記載の廃棄電池の放電処理装置。   A plurality of waste unit batteries, each of which is connected between a positive electrode and a negative electrode of each of the plurality of waste unit batteries, and further includes a normally open shorting switch; 7. When a part of the battery drops to a voltage equal to or lower than a predetermined value, the short-circuit switch connected to the disposal unit battery is closed to accelerate the discharge of the disposal unit battery. The discharge treatment apparatus for a waste battery according to any one of 10.
JP2017195427A 2017-10-05 2017-10-05 Discharge battery discharge treatment method and waste battery discharge treatment apparatus Active JP6567014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017195427A JP6567014B2 (en) 2017-10-05 2017-10-05 Discharge battery discharge treatment method and waste battery discharge treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017195427A JP6567014B2 (en) 2017-10-05 2017-10-05 Discharge battery discharge treatment method and waste battery discharge treatment apparatus

Publications (2)

Publication Number Publication Date
JP2019071701A JP2019071701A (en) 2019-05-09
JP6567014B2 true JP6567014B2 (en) 2019-08-28

Family

ID=66440711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017195427A Active JP6567014B2 (en) 2017-10-05 2017-10-05 Discharge battery discharge treatment method and waste battery discharge treatment apparatus

Country Status (1)

Country Link
JP (1) JP6567014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128343A1 (en) * 2021-12-30 2023-07-06 주식회사 민테크 Waste battery discharge process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102397594B1 (en) * 2020-05-08 2022-05-16 주식회사 마루온 Current Control Type Battery Discharge Apparatus
DE102020118418A1 (en) 2020-07-13 2022-01-13 Duesenfeld Gmbh Accumulator discharge device for discharging accumulators and method for discharging a plurality of accumulators
US20240006672A1 (en) * 2020-11-03 2024-01-04 Maroo On Inc. Battery discharge apparatus and discharging method thereof
CN113161639B (en) * 2021-03-10 2023-05-30 深圳清研锂业科技有限公司 Safe discharge method of waste lithium ion battery
WO2023037362A1 (en) * 2021-09-06 2023-03-16 Sparkion Power Algorithms Ltd Flip switch system for rechargeable power storage devices
WO2023134946A1 (en) * 2022-01-12 2023-07-20 Robert Bosch Gmbh Device for the (deep) discharging of (vehicle) battery units
WO2023134947A1 (en) * 2022-01-12 2023-07-20 Robert Bosch Gmbh Method for (deep) discharge of (vehicle) battery units

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617114U (en) * 1992-07-30 1994-03-04 三菱重工業株式会社 Battery pack discharge device
JPH0992342A (en) * 1995-09-28 1997-04-04 Sony Corp Battery device
JP5439000B2 (en) * 2009-03-19 2014-03-12 株式会社東芝 Battery assembly system and battery protection device
JP2013230003A (en) * 2012-04-25 2013-11-07 Sanyo Electric Co Ltd Power supply device, vehicle and power storage apparatus having power supply device, and method of discharging assembled battery
WO2016006152A1 (en) * 2014-07-11 2016-01-14 パナソニックIpマネジメント株式会社 Storage battery pack, and storage battery pack operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128343A1 (en) * 2021-12-30 2023-07-06 주식회사 민테크 Waste battery discharge process

Also Published As

Publication number Publication date
JP2019071701A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6567014B2 (en) Discharge battery discharge treatment method and waste battery discharge treatment apparatus
JP6402225B1 (en) Discharge battery discharge treatment apparatus and discharge treatment method
JP4966998B2 (en) Charge control circuit, battery pack, and charging system
KR101780524B1 (en) Charging/discharging control device, battery pack, electrical equipment, and charging/discharging control method
JP5618986B2 (en) Charger
US8476869B2 (en) Battery voltage equalizer circuit and method for using the same
JP2007318950A (en) Cell voltage balancing device for secondary battery
JP2011004509A5 (en)
US20140266049A1 (en) Detection and prevention of short formation in battery cells
WO2017054148A1 (en) Battery cell balancing structure
JP5361529B2 (en) Lithium-ion battery charge control device and lithium-ion battery system
JP2002272010A (en) Charging and discharging circuit of group of batteries connected in series
CN105790341A (en) Method and circuit for battery detection
CN108944479B (en) Power battery balancing method and device and vehicle
US8228654B2 (en) Apparatus and method for protecting battery by comparison of full charge capacity
WO2019069971A1 (en) Assembled battery
JP6959096B2 (en) Charge / discharge control circuit and battery device equipped with this
JP5227484B2 (en) Charging method for series-connected secondary batteries
JP5650235B2 (en) Method for equalizing the voltage of an electrical storage unit
JP6888733B2 (en) Batteries
JP2012138985A (en) Discharge controller, discharge control method, and program
JP3862078B2 (en) Secondary battery recovery method and secondary battery charger
TWI573311B (en) Charge and discharge balance structure
CN205646784U (en) Lithium ion battery organizes charge and discharge protective circuit
JP2013146160A (en) Charge control system and charge control method of battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190418

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190730

R150 Certificate of patent or registration of utility model

Ref document number: 6567014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250