JP6566314B2 - Secondary battery current control device - Google Patents

Secondary battery current control device Download PDF

Info

Publication number
JP6566314B2
JP6566314B2 JP2015177890A JP2015177890A JP6566314B2 JP 6566314 B2 JP6566314 B2 JP 6566314B2 JP 2015177890 A JP2015177890 A JP 2015177890A JP 2015177890 A JP2015177890 A JP 2015177890A JP 6566314 B2 JP6566314 B2 JP 6566314B2
Authority
JP
Japan
Prior art keywords
secondary battery
power storage
current
storage device
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015177890A
Other languages
Japanese (ja)
Other versions
JP2017055562A (en
Inventor
田中 正志
正志 田中
明夫 樫村
明夫 樫村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibaraki University NUC
Original Assignee
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibaraki University NUC filed Critical Ibaraki University NUC
Priority to JP2015177890A priority Critical patent/JP6566314B2/en
Publication of JP2017055562A publication Critical patent/JP2017055562A/en
Application granted granted Critical
Publication of JP6566314B2 publication Critical patent/JP6566314B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池の放電あるいは充電電流を制御する、二次電池の電流制御装置に関する。   The present invention relates to a secondary battery current control device for controlling discharge or charging current of a secondary battery.

電力を二次電池に一旦蓄え、上記二次電池に蓄えた電力を必要に応じて負荷に供給する、電力供給装置は広く利用されている。上記二次電池として、例えば鉛電池やニッケル水素電池、リチウムイオン電池、その他いろいろな電池が使用されている。なお上記二次電池に電力を供給する電力源としては、特に限定されるものではなく、色々な電源が存在する。   2. Description of the Related Art A power supply apparatus that temporarily stores power in a secondary battery and supplies the power stored in the secondary battery to a load as needed is widely used. As the secondary battery, for example, a lead battery, a nickel metal hydride battery, a lithium ion battery, and other various batteries are used. The power source that supplies power to the secondary battery is not particularly limited, and various power sources exist.

二次電池に蓄えた電力を負荷に供給するための電力供給装置では、従来から、二次電池の蓄電能力を増大するための技術開発や、二次電池の充放電サイクルの寿命を長くするための技術開発、が行われてきた。この結果二次電池の蓄電能力は向上し、また二次電池の充放電サイクルにおける劣化に関しても大きな改善がみられる。二次電池の充放電サイクルにおける劣化を抑制し、寿命を改善する技術として、例えば二次電池の放電電流をパルス状にすることが提案されている。放電電流をパルス状にすることにより、二次電池の活物質の劣化が抑制され、充放電サイクルの寿命を延ばすことが可能となる。このような技術は、例えば特許文献1に開示されている。   Conventionally, in a power supply device for supplying power stored in a secondary battery to a load, technical development for increasing the storage capacity of the secondary battery and extending the life of the charge / discharge cycle of the secondary battery Technology development. As a result, the storage capacity of the secondary battery is improved, and a significant improvement is also seen with respect to deterioration in the charge / discharge cycle of the secondary battery. As a technique for suppressing deterioration in the charge / discharge cycle of the secondary battery and improving the life, for example, making the discharge current of the secondary battery pulsed has been proposed. By making the discharge current into a pulse shape, deterioration of the active material of the secondary battery is suppressed, and the life of the charge / discharge cycle can be extended. Such a technique is disclosed in Patent Document 1, for example.

特開2006−325331号公報JP 2006-325331 A

二次電池の充放電サイクルの寿命の改善はたいへん素晴らしい成果であり、社会的貢献度がたいへん大きい。しかし市場ニーズは上記二次電池の長寿命化の要求に止まらず、市場が拡大するにつれて新たなニーズが色々生まれている。大きなニーズとして、二次電池の1回当たりの充電に対する負荷への電力供給可能時間をさらに伸ばしてほしいとのニーズがある。例えば電気自動車を例に挙げると、1回の充電で走行できる距離をさらに長くしてほしいとの強いニーズがある。また例えば太陽光を利用した照明装置において、昼間の充電電力で照明可能な時間をできるだけ長くしてほしいとのニーズがある。このようなニーズに応えるために従来は、二次電池その物の蓄電能力を向上することに開発の重点が置かれてきた。   Improving the life of the secondary battery charge / discharge cycle is a great achievement and has a great social contribution. However, the market needs are not limited to the demand for extending the life of the secondary battery, and various new needs are generated as the market expands. As a major need, there is a need to further increase the power supply available time to the load for each charge of the secondary battery. For example, taking an electric vehicle as an example, there is a strong need to further increase the distance that can be traveled by one charge. In addition, for example, in an illumination device that uses sunlight, there is a need to make the illumination time possible with daytime charging power as long as possible. In order to meet such needs, conventionally, development has been focused on improving the storage capacity of the secondary battery itself.

二次電池その物の蓄電能力を改善することは大変重要である。しかしそれだけでなく、二次電池から負荷への電力供給における効率向上、すなわち損失の低減も改善すべき重要な課題である。もし二次電池から負荷への電力供給動作における効率向上、すなわち損失低減を図ることができれば、二次電池の同じ充電量に対する負荷への電力供給時間をより長くすることができ、上記ニーズに答えることができる。   It is very important to improve the storage capacity of the secondary battery itself. However, not only that, but also improvement in efficiency in power supply from the secondary battery to the load, that is, reduction of loss is an important issue to be improved. If the efficiency in power supply operation from the secondary battery to the load can be improved, that is, the loss can be reduced, the power supply time to the load can be made longer for the same charge amount of the secondary battery, and the above needs are answered. be able to.

本発明の目的は、二次電池からの電力供給の効率向上を可能とする二次電池の電流制御装置を提供することである。   An object of the present invention is to provide a secondary battery current control device that can improve the efficiency of power supply from the secondary battery.

上記課題を解決する為の第1の発明は、負荷へ電力を供給する二次電池の電流を制御する二次電池の電流制御装置であって、前記電流制御装置は、蓄えた電力に基づいて電流を供給する蓄電装置と、前記蓄電装置を前記二次電池に並列接続する接続装置と、前記接続装置の接続状態を制御する制御装置と、を有し、前記制御装置は、前記二次電池が前記負荷と接続されている状態において、前記接続装置を所定の周期で動作させ、前記蓄電装置を所定の周期で繰り返し、前記二次電池に並列接続し、さらに、前記二次電池が直列接続された少なくとも第1二次電池と第2二次電池とを有していて、さらに、前記電流制御装置が有する前記蓄電装置は少なくとも第1コンデンサと第2コンデンサを有し、前記接続装置により、前記第1コンデンサが所定の周期で繰り返し前記第1二次電池と並列に接続され、前記第2コンデンサが所定の周期で繰り返し前記第2二次電池と並列に接続されることを特徴とする、二次電池の電流制御装置である。
1st invention for solving the said subject is a current control apparatus of the secondary battery which controls the electric current of the secondary battery which supplies electric power to load, Comprising: The said current control apparatus is based on the stored electric power. A power storage device that supplies current; a connection device that connects the power storage device to the secondary battery in parallel; and a control device that controls a connection state of the connection device, the control device including the secondary battery. Is connected to the load, the connection device is operated at a predetermined cycle, the power storage device is repeated at a predetermined cycle, and connected in parallel to the secondary battery , and the secondary battery is connected in series. And at least a first secondary battery and a second secondary battery, and the power storage device included in the current control device includes at least a first capacitor and a second capacitor. The first condenser The secondary battery is repeatedly connected in parallel with the first secondary battery in a predetermined cycle, and the second capacitor is repeatedly connected in parallel with the second secondary battery in a predetermined cycle. It is a current control device.

上記課題を解決する為の第2の発明は、負荷へ電力を供給する二次電池の電流を制御する二次電池の電流制御装置であって、前記電流制御装置は、蓄えた電力に基づいて電流を供給する蓄電装置と、前記蓄電装置を前記二次電池に並列接続する接続装置と、前記接続装置の接続状態を制御する制御装置と、を有し、前記制御装置は、前記二次電池が前記負荷と接続されている状態において、前記接続装置を所定の周期で動作させ、前記蓄電装置を所定の周期で繰り返し、前記二次電池に並列接続し、前記蓄電装置が前記二次電池に並列接続されたときに、一時的に前記蓄電装置から前記二次電池に電流が供給されることを特徴とする、二次電池の電流制御装置である。

A second invention for solving the above problem is a current control device for a secondary battery that controls a current of a secondary battery that supplies power to a load, and the current control device is based on the stored power. A power storage device that supplies current; a connection device that connects the power storage device to the secondary battery in parallel; and a control device that controls a connection state of the connection device, the control device including the secondary battery. Is connected to the load, the connection device is operated at a predetermined cycle, the power storage device is repeated at a predetermined cycle, connected in parallel to the secondary battery, and the power storage device is connected to the secondary battery. A current control device for a secondary battery, wherein current is temporarily supplied from the power storage device to the secondary battery when connected in parallel.

上記課題を解決する為の第3の発明は、第1の発明の二次電池の電流制御装置において、前記第1コンデンサあるいは前記第2コンデンサが前記第1二次電池あるいは前記第2二次電池に接続されるときに、前記第1コンデンサあるいは前記第2コンデンサの端子電圧が前記第1二次電池あるいは前記第2二次電池の端子電圧より大きいことを特徴とする、二次電池の電流制御装置である。
According to a third aspect of the present invention for solving the above-mentioned problems, in the secondary battery current control device according to the first aspect, the first capacitor or the second capacitor is the first secondary battery or the second secondary battery. The current control of the secondary battery, wherein the terminal voltage of the first capacitor or the second capacitor is larger than the terminal voltage of the first secondary battery or the second secondary battery when connected to Device.

上記課題を解決する為の第4の発明は、第1の発明乃至第3の発明の内の一の発明の二次電池の電流制御装置において、前記制御装置は、前記二次電池が前記負荷と接続されている状態に加え、前記二次電池が外部から電力の供給を受けて電力を蓄電している状態においても、前記接続装置を所定の周期で動作させ、前記蓄電装置を所定の周期で繰り返し、前記二次電池に並列接続することを特徴とする、二次電池の電流制御装置である。
A fourth invention for solving the above-mentioned problems is a current control device for a secondary battery according to one of the first to third inventions , wherein the control device is configured such that the secondary battery is the load. In addition to the state where the secondary battery is supplied with electric power from the outside and stores the electric power, the connecting device is operated at a predetermined cycle, and the power storage device is operated at a predetermined cycle. The secondary battery current control device is repeatedly connected in parallel to the secondary battery.

上記課題を解決する為の第5の発明は、第1の発明乃至第4の発明の内の一の発明の二次電池の電流制御装置において、前記制御装置は、0.1秒より長い周期で繰り返し、前記接続装置を動作させることを特徴とする、二次電池の電流制御装置である。
A fifth invention for solving the above-described problems is a current control device for a secondary battery according to one of the first to fourth inventions , wherein the control device has a cycle longer than 0.1 seconds. The current control device for the secondary battery is characterized in that the connection device is operated repeatedly.

上記課題を解決する為の第6の発明は、第1の発明乃至第5の発明の内の一の発明の二次電池の電流制御装置において、前記蓄電装置は10ファラッド以上の容量を有していることを特徴とする、二次電池の電流制御装置である。
A sixth invention for solving the above-described problems is a secondary battery current control device according to one of the first to fifth inventions , wherein the power storage device has a capacity of 10 Farads or more. It is the electric current control apparatus of a secondary battery characterized by the above-mentioned.

上記課題を解決する為の第7の発明は、第6の発明の二次電池の電流制御装置において、前記蓄電装置は100ファラッド以上の容量を有していることを特徴とする、二次電池の電流制御装置である。
A seventh invention for solving the above-mentioned problem is a secondary battery current control device according to the sixth invention , wherein the power storage device has a capacity of 100 Farad or more. Current control device.

本発明によれば、二次電池からの電力供給の効率向上が可能となる、二次電池の電流制御装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the electric current control apparatus of a secondary battery which can improve the efficiency of the electric power supply from a secondary battery can be obtained.

本発明を適用した負荷への電力供給装置構成を示す回路図である。It is a circuit diagram which shows the electric power supply apparatus structure to the load to which this invention is applied. 負荷への電力負荷パターンの一例を説明する説明図である。It is explanatory drawing explaining an example of the electric power load pattern to load. 第1二次電池80を流れる電流波形である。It is a current waveform flowing through the first secondary battery 80. 蓄電装置120を流れる電流波形である。It is a current waveform flowing through the power storage device 120. 第2二次電池90を流れる電流波形である。It is a current waveform flowing through the second secondary battery 90. 蓄電装置130を流れる電流波形である。It is a current waveform flowing through the power storage device 130. シミュレーション結果に基づくグラフである。It is a graph based on a simulation result. 二次電池70に電力を蓄える蓄電動作を説明する説明図である。FIG. 6 is an explanatory diagram for explaining a power storage operation for storing electric power in a secondary battery.

1.実施例の説明
1.1 実施例の基本構成の説明
以下図面を用いて本発明を実施するための一形態(以下実施例と記す)を説明する。図1は本発明を適用した負荷への電力供給装置の構成を示す回路図である。直流電力を蓄える二次電池70に端子62と端子64を介して負荷50が電気的に接続されている。なお実際の製品では、二次電池70と負荷50との間には、電源スイッチなどの開閉手段やヒューズ等の安全装置が設けられるが、本発明の構成及び動作を説明することが図1の目的であり、煩雑さを避けるためにこれらを省略している。
1. 1. Description of Embodiments 1.1 Description of Basic Configuration of Embodiments A mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing a configuration of a power supply device to a load to which the present invention is applied. A load 50 is electrically connected to a secondary battery 70 that stores DC power via a terminal 62 and a terminal 64. In an actual product, an open / close means such as a power switch and a safety device such as a fuse are provided between the secondary battery 70 and the load 50. The configuration and operation of the present invention will be described with reference to FIG. They are for the purpose and are omitted to avoid complications.

本実施例ではさらに二次電池70の放電あるいは充電電流を制御するために二次電池の電流制御装置100が設けられている。以下で説明するが二次電池の電流制御装置100を設けることにより二次電池70から負荷50へ電力を供給している状態において、二次電池70を流れる電流Ib1や電流Ib2を周期的に変えることができ、これにより二次電池70の内部損失を低減でき、結果的に所定の蓄積電力に基づく負荷50への供給電力量を増大することが可能となる。言い換えると所定の蓄積電力に基づく負荷50への電力供給時間を長くすることが可能となる。
1.2 負荷50の説明
負荷50は、特に限定されるものではない。負荷50は例えば照明装置であっても良いし、車両駆動用のモータであっても良い。本発明を適用するうえで、負荷50を特に限定する必要は無く、色々な種類の負荷に対して本発明が適用可能である。
In this embodiment, a secondary battery current control device 100 is further provided to control the discharging or charging current of the secondary battery 70. As will be described below, in the state where power is supplied from the secondary battery 70 to the load 50 by providing the secondary battery current control device 100, the current I b1 and the current I b2 flowing through the secondary battery 70 are periodically changed. As a result, the internal loss of the secondary battery 70 can be reduced, and as a result, the amount of power supplied to the load 50 based on predetermined stored power can be increased. In other words, the power supply time to the load 50 based on the predetermined stored power can be increased.
1.2 Description of Load 50 The load 50 is not particularly limited. The load 50 may be, for example, a lighting device or a vehicle driving motor. In applying the present invention, the load 50 is not particularly limited, and the present invention can be applied to various types of loads.

例えば負荷50は直流電力を消費する負荷であっても良いし、交流電力を受けて動作する負荷であっても良い。また負荷50が直流電力を消費する負荷の場合であっても、二次電池70から供給される直流電圧がそのまま供給可能な負荷であっても良いし、適切な電圧に変換した後に供給される負荷であっても良い。この場合には、負荷50として記載した負荷が電圧変換装置を備えていることを意味する。また交流電力を消費する負荷である場合には、負荷50として記載した負荷が直流電力を受けて交流電力を発生する電力変換装置を備えていることを意味する。
1.3 二次電池70の説明
この実施例では、二次電池70は直列接続された第1二次電池80と第2二次電池90とを有している。また第1二次電池80と第2二次電池90はそれぞれ少なくとも1個のリチウムイオン二次電池を有している。しかしこれは一例であり、二次電池70を構成する第1二次電池80や第2二次電池90の両方が常に必要なわけではなく、どちらか一つのみであっても良い。また第1二次電池80や第2二次電池90だけでなく、さらに多くの直列接続された二次電池が、例えば第3二次電池や第4二次電池が設けられていても良い。
For example, the load 50 may be a load that consumes DC power, or may be a load that operates by receiving AC power. Further, even when the load 50 is a load that consumes DC power, the load may be a load that can be supplied with the DC voltage supplied from the secondary battery 70 as it is, or supplied after being converted to an appropriate voltage. It may be a load. In this case, it means that the load described as the load 50 includes a voltage conversion device. In the case of a load that consumes AC power, it means that the load described as the load 50 includes a power conversion device that receives DC power and generates AC power.
1.3 Description of Secondary Battery 70 In this embodiment, the secondary battery 70 has a first secondary battery 80 and a second secondary battery 90 connected in series. Each of the first secondary battery 80 and the second secondary battery 90 includes at least one lithium ion secondary battery. However, this is an example, and both the first secondary battery 80 and the second secondary battery 90 constituting the secondary battery 70 are not always necessary, and only one of them may be used. Further, not only the first secondary battery 80 and the second secondary battery 90 but also a larger number of secondary batteries connected in series may be provided, for example, a third secondary battery or a fourth secondary battery.

さらにまた第1二次電池80あるいは第2二次電池90が、1個以上の直列接続されたリチウムイオン二次電池を有するだけでなく、それぞれが並列接続されたリチウムイオン二次電池を有していても良い。なお並列接続されたリチウムイオン二次電池は容量が増大したと考えられるので、この場合には第1二次電池80や第2二次電池90などに付いてより大きな容量を有する二次電池であるとして取り扱うことができる。   Furthermore, the first secondary battery 80 or the second secondary battery 90 has not only one or more series-connected lithium ion secondary batteries, but also includes lithium ion secondary batteries connected in parallel. May be. In addition, since it is thought that the capacity | capacitance of the lithium ion secondary battery connected in parallel is increased, in this case, it is a secondary battery having a larger capacity attached to the first secondary battery 80, the second secondary battery 90, etc. It can be handled as being.

第1二次電池80と第2二次電池90がそれぞれ有するリチウムイオン電池の直列接続の数を増やすことにより、負荷50へ供給する電圧を増大することができる。また上述のように第1二次電池80や第2二次電池90に加えてさらに多くの直列接続された二次電池を設けることで負荷50へ供給する電圧を増大することができる。本実施例では説明を分かり易くするために、第1二次電池80と第2二次電池90の2組の二次電池を有する例で説明する。なお本実施例では、第1二次電池80や第2二次電池90の各組は1個またはそれ以上のリチウムイオン電池を備えているが、リチウムイオン電池は一例であり、鉛二次電池やその他の種類の二次電池であっても良い。
1.4 二次電池の電流制御装置100の説明
本実施例では、二次電池70から負荷50へ供給する電流値を周期的に変化させることにより、二次電池70における電力の損失を低減でき、その結果として二次電池70から負荷50への電力供給の効率を向上することができる。二次電池70から負荷50へ供給する電流値を周期的に変化させるために、本実施例では二次電池の電流制御装置100が設けられている。
The voltage supplied to the load 50 can be increased by increasing the number of lithium ion batteries connected in series to each of the first secondary battery 80 and the second secondary battery 90. In addition to the first secondary battery 80 and the second secondary battery 90 as described above, the voltage supplied to the load 50 can be increased by providing more secondary batteries connected in series. In the present embodiment, in order to make the explanation easy to understand, an example having two sets of secondary batteries of a first secondary battery 80 and a second secondary battery 90 will be described. In this embodiment, each set of the first secondary battery 80 and the second secondary battery 90 includes one or more lithium ion batteries, but the lithium ion battery is an example, and a lead secondary battery. Or other types of secondary batteries.
1.4 Description of Secondary Battery Current Control Device 100 In this embodiment, the loss of power in the secondary battery 70 can be reduced by periodically changing the current value supplied from the secondary battery 70 to the load 50. As a result, the efficiency of power supply from the secondary battery 70 to the load 50 can be improved. In order to periodically change the current value supplied from the secondary battery 70 to the load 50, a secondary battery current control device 100 is provided in this embodiment.

二次電池の電流制御装置100は、蓄電装置120や蓄電装置130と、蓄電装置120や蓄電装置130を第1二次電池80あるいは第2二次電池90に並列に接続するための接続装置140と、接続装置140を制御するための制御装置150と、を備えている。二次電池70に負荷50が接続された状態で、制御装置150は接続装置140を所定の周期、例えば1秒周期で、切り替える。この実施例では、第1二次電池80および第2二次電池90に接続されている接続装置140の端子142が、端子144に接続されると、蓄電装置120と第1二次電池80が並列に接続される。この状態では蓄電装置130は第2二次電池90や負荷50とは接続されない状態となり、蓄電装置130の電流Ic2は流れない。この状態では、負荷50には第1二次電池80を流れる電流Ib1と蓄電装置120を流れる電流Ic1とのベクトル和の電流が流れる。なおこの実施例では第2二次電池90を流れる電流Ib2が負荷50を流れる電流と等しくなる。 The secondary battery current control device 100 includes a power storage device 120 and a power storage device 130, and a connection device 140 for connecting the power storage device 120 and the power storage device 130 to the first secondary battery 80 or the second secondary battery 90 in parallel. And a control device 150 for controlling the connection device 140. In a state in which the load 50 is connected to the secondary battery 70, the control device 150 switches the connection device 140 at a predetermined cycle, for example, a one-second cycle. In this embodiment, when the terminal 142 of the connection device 140 connected to the first secondary battery 80 and the second secondary battery 90 is connected to the terminal 144, the power storage device 120 and the first secondary battery 80 are connected. Connected in parallel. In this state, power storage device 130 is not connected to second secondary battery 90 or load 50, and current I c2 of power storage device 130 does not flow. In this state, a current that is a vector sum of current I b1 flowing through first secondary battery 80 and current I c1 flowing through power storage device 120 flows through load 50. In this embodiment, the current I b2 flowing through the second secondary battery 90 is equal to the current flowing through the load 50.

次に接続装置140の端子142が端子146に接続されると、蓄電装置120は接続されない状態となり、蓄電装置120を流れていた電流Ic1が流れなくなる。一方蓄電装置130が第2二次電池90に並列に接続される。この状態では、負荷50を流れる電流は蓄電装置130を流れる電流Ic2と第2二次電池90を流れる電流Ib2とのベクトル和の電流となる。なおこの実施例では第1二次電池80を流れる電流Ib1が負荷50を流れる電流と等しくなる。 Next, when the terminal 142 of the connection device 140 is connected to the terminal 146, the power storage device 120 is not connected, and the current I c1 flowing through the power storage device 120 does not flow. On the other hand, power storage device 130 is connected in parallel to second secondary battery 90. In this state, the current flowing through the load 50 is a vector sum of the current I c2 flowing through the power storage device 130 and the current I b2 flowing through the second secondary battery 90. In this embodiment, the current I b1 flowing through the first secondary battery 80 is equal to the current flowing through the load 50.

制御装置150による制御によって、接続装置140の端子142と端子144あるいは端子146との接続が所定周期で切り替わると、蓄電装置120と第1二次電池80あるいは蓄電装置130と第2二次電池90とが交互に接続する。この切り替わりにより、第1二次電池80を流れる電流Ib1や第2二次電池90を流れる電流Ib2が、上記一定周期毎に変化する。このように二次電池70を流れる電流を周期的に変化させることにより、二次電池70を構成する第1二次電池80や第2二次電池90の損失が低減され、二次電池70から負荷50への電流供給における損失が低減する、言い換えると二次電池70から負荷50への電力供給における効率が向上する。このことについて次に説明する。
2.実施例についてのシミュレーション条件およびシミュレーション結果の説明
2.1 シミュレーション条件の説明
図1の実施例において、蓄電装置120と蓄電装置130にコンデンサを使用し、該コンデンサの容量を1Fから1000Fまでの範囲を想定して、変化させてシミュレーションを行った。接続装置140の切り替え周期を1秒間とし、1秒の周期で蓄電装置120と蓄電装置130とが交互に、第1二次電池80や第2二次電池90にそれぞれ並列接続されるように設定した。なおこのシミュレーションでは、一例として、接続装置140は以下に記載の負荷50の消費電力の変化に関係なく、上記条件で切り替え周期を一定とし、1秒としている。
When the connection between the terminal 142 and the terminal 144 or the terminal 146 of the connection device 140 is switched at a predetermined cycle by the control by the control device 150, the power storage device 120 and the first secondary battery 80 or the power storage device 130 and the second secondary battery 90 are switched. And are connected alternately. As a result of this switching, the current I b1 flowing through the first secondary battery 80 and the current I b2 flowing through the second secondary battery 90 change at the predetermined intervals. Thus, by periodically changing the current flowing through the secondary battery 70, the loss of the first secondary battery 80 and the second secondary battery 90 constituting the secondary battery 70 is reduced. Loss in current supply to the load 50 is reduced, in other words, efficiency in power supply from the secondary battery 70 to the load 50 is improved. This will be described next.
2. 2. Description of Simulation Conditions and Simulation Results for Embodiment 2.1 Description of Simulation Conditions In the embodiment of FIG. 1, capacitors are used for the power storage device 120 and the power storage device 130, and the capacities of the capacitors range from 1F to 1000F. Assuming that the simulation was changed. The switching cycle of the connection device 140 is set to 1 second, and the power storage device 120 and the power storage device 130 are alternately connected in parallel to the first secondary battery 80 and the second secondary battery 90 in a cycle of 1 second. did. In this simulation, as an example, the connection device 140 sets the switching cycle to be constant under the above conditions and is 1 second regardless of the change in the power consumption of the load 50 described below.

第1二次電池80および第2二次電池90をリチウムイオン二次電池で構成し、第1二次電池80の端子電圧Vb1および第2二次電池90の端子電圧Vb2をそれぞれ4Vから24Vの範囲で変化させた。また端子62と端子64からの放電条件となる負荷50の消費電力を図2に示す100秒を単位とする電力負荷パターンとし、この電力負荷パターンを8回繰り返し、時間0秒から時間800秒までのシミュレーションを行った。なお図2では代表例として時間700秒から時間800秒までの100秒間の電力負荷パターンのみを示すが、他の期間も電力負荷パターンは同じである。 The first secondary battery 80 and the second secondary battery 90 are constituted by lithium ion secondary batteries, and the terminal voltage V b1 of the first secondary battery 80 and the terminal voltage V b2 of the second secondary battery 90 are respectively 4V. It was changed in the range of 24V. Further, the power consumption of the load 50 as a discharge condition from the terminals 62 and 64 is set to a power load pattern in units of 100 seconds shown in FIG. 2, and this power load pattern is repeated 8 times, from time 0 seconds to time 800 seconds. A simulation was performed. In FIG. 2, only a power load pattern for 100 seconds from time 700 seconds to time 800 seconds is shown as a representative example, but the power load pattern is the same in other periods.

図3から図6は、図1に記載のシミュレーション回路の電流波形であり、時間0秒から時間800秒までのシミュレーションに基づく電流波形の内、時間700秒から時間800秒までの100秒間のみを示す。しかし他の時間における電流波形も時間700秒から時間800秒までの100秒間の波形とほぼ類似しており、同様の動作が行われていると考えることができる。   FIGS. 3 to 6 are current waveforms of the simulation circuit shown in FIG. 1. Of the current waveforms based on the simulation from time 0 seconds to time 800 seconds, only 100 seconds from time 700 seconds to time 800 seconds are shown. Show. However, the current waveform at other times is almost similar to the waveform for 100 seconds from time 700 seconds to time 800 seconds, and it can be considered that the same operation is performed.

図3は第1二次電池80を流れる電流Ib1の波形であり、図4は蓄電装置120を流れる電流Ic1の波形である。図5は第2二次電池90を流れる電流Ib2の波形であり、図6は蓄電装置130を流れる電流Ic2の波形である。これら図3から図6に記載した各電流波形と第1二次電池80や第2二次電池90および蓄電装置120や蓄電装置130の動作に関しては、改めて以下で述べる。 3 shows a waveform of current I b1 flowing through first secondary battery 80, and FIG. 4 shows a waveform of current I c1 flowing through power storage device 120. 5 shows a waveform of the current I b2 flowing through the second secondary battery 90, and FIG. 6 shows a waveform of the current I c2 flowing through the power storage device 130. Each of the current waveforms described in FIGS. 3 to 6 and the operations of the first secondary battery 80, the second secondary battery 90, the power storage device 120, and the power storage device 130 will be described again below.

2.2 シミュレーション結果の説明
上述の条件に従って800秒までシミュレーションを行った結果に付いて図7のグラフを用いて説明する。上述のように、第1二次電池80の電圧Vb1や第2二次電池90の電圧Vb2を4Vから24Vまでの範囲で変化させた。この電圧Vb1や電圧Vb2の変化をX軸としている。また蓄電装置120および蓄電装置130の静電容量を1Fから1000Fの範囲で変化させた。この静電容量の変化をY軸としている。
2.2 Description of Simulation Results The results of simulation up to 800 seconds according to the above conditions will be described using the graph of FIG. As described above, the voltage V b1 of the first secondary battery 80 and the voltage V b2 of the second secondary battery 90 were changed in the range from 4V to 24V. Changes in the voltage V b1 and the voltage V b2 are taken as the X axis. Further, the electrostatic capacities of the power storage device 120 and the power storage device 130 were changed in the range of 1F to 1000F. This change in capacitance is taken as the Y axis.

負荷50に対して端子62や端子64から電源側のシミュレーション開始時の充電電力量、言い換えると電池容量を一定値に設定し、800秒のシミュレーション後の電池容量を求めた。二次電池の電流制御装置100を設けない状態でのシミュレーション後の電池容量をQnoとし、二次電池の電流制御装置100を設けて本願発明を適用したシミュレーション後の電池容量Qproとし、電池容量Qnoに対する電池容量Qproの容量比Aを求めた。すなわち容量比Aは次の式1で示される。 The charging power amount at the time of starting the simulation on the power source side from the terminal 62 or 64 with respect to the load 50, in other words, the battery capacity was set to a constant value, and the battery capacity after 800 seconds of simulation was obtained. The battery capacity after simulation in the state where the secondary battery current control device 100 is not provided is defined as Q no , the secondary battery current control device 100 is provided as the simulated battery capacity Q pro to which the present invention is applied, and the battery The capacity ratio A of the battery capacity Q pro to the capacity Q no was determined. That is, the capacity ratio A is expressed by the following formula 1.

容量比A = Qpro /Qno ・・・(1)
式1で示される容量比Aを図7のZ軸に示す。シミュレーション結果において、もしシミュレーション後の電池容量Qproがシミュレーション後の電池容量をQnoと同じであれば容量比Aが1となる。もし容量比Aが1より大きければ、二次電池の電流制御装置100を設けたことにより、二次電池70から負荷50への放電時間が延びることになる。すなわち二次電池の電流制御装置100を設けることにより第1二次電池80あるいは第2二次電池90の電流が周期的に変化し、これにより上記二次電池80や第2二次電池90の内部損失が低下し、また電流制御装置内部の蓄電装置120から負荷50へのエネルギー供給が可能となる、との両効果により、二次電池70の放電量が抑制され、1回の充電に対する放電時間が延びることになる。
Capacity ratio A = Q pro / Q no (1)
The capacity ratio A expressed by Equation 1 is shown on the Z axis in FIG. In the simulation result, if the battery capacity Q pro after the simulation is the same as the battery capacity Q no after the simulation, the capacity ratio A is 1. If the capacity ratio A is greater than 1, the discharge time from the secondary battery 70 to the load 50 is extended by providing the secondary battery current control device 100. That is, by providing the secondary battery current control device 100, the current of the first secondary battery 80 or the second secondary battery 90 is periodically changed. The internal loss is reduced and the energy supply from the power storage device 120 inside the current control device to the load 50 is enabled, so that the discharge amount of the secondary battery 70 is suppressed and the discharge for one charge is performed. Time will be extended.

図7に記載のシミュレーション結果に基づくグラフを見ると、蓄電装置120や蓄電装置130の容量を大きくするに従って1回の充電に対する放電時間の延長効果が大きくなる傾向がある。例えば10F以上で効果が表れ、100F以上でより顕著な効果が表れている。さらに第1二次電池80の電圧Vb1や第2二次電池90の電圧Vb2の値が大きいほど大きな効果が表れている。 When the graph based on the simulation result shown in FIG. 7 is seen, the effect of extending the discharge time for one charge tends to increase as the capacity of the power storage device 120 or the power storage device 130 is increased. For example, an effect appears at 10F or more, and a more remarkable effect appears at 100F or more. Furthermore, the greater the value of the voltage V b1 of the first secondary battery 80 and the voltage V b2 of the second secondary battery 90, the greater the effect.

2.3 実施例の特徴についての説明
図3に記載の第1二次電池80を流れる電流Ib1波形と図4に記載の蓄電装置120を流れる電流Ic1との関係について検討する。図1に示す状態では接続装置140の端子142が端子146側にあり蓄電装置120が第1二次電池80と並列に接続されている状態である。この1つ前の状態では、蓄電装置120は二次電池70から電気的に切り離された状態にあり、図4のグラフにおいてその時の電流は電流Ic1aで示され、実際には電流が流れていない。この状態では、図3に記載の電流Ib1aで示す如く、第1二次電池80には負荷50に供給するための大きな電流が流れる。この電流Ib1aが流れることにより第1二次電池80に蓄えられた容量が減少し、第1二次電池80の端子電圧Vb1が減少すると考えられる。一方蓄電装置120は電流Ic1が流れないので蓄電装置120の容量は維持され、蓄電装置120の端子電圧Vc1も低下することなく維持される。
2.3 Description of Features of Example The relationship between the waveform of the current I b1 flowing through the first secondary battery 80 illustrated in FIG. 3 and the current I c1 flowing through the power storage device 120 illustrated in FIG. 4 will be examined. In the state shown in FIG. 1, the terminal 142 of the connection device 140 is on the terminal 146 side, and the power storage device 120 is connected in parallel with the first secondary battery 80. In this previous state, the power storage device 120 is electrically disconnected from the secondary battery 70, and the current at that time is indicated by the current Ic1a in the graph of FIG. Absent. In this state, a large current for supplying the load 50 flows through the first secondary battery 80, as indicated by the current Ib1a shown in FIG. It is considered that the capacity stored in the first secondary battery 80 decreases due to the current I b1a flowing, and the terminal voltage V b1 of the first secondary battery 80 decreases. On the other hand, since the current I c1 does not flow in the power storage device 120, the capacity of the power storage device 120 is maintained, and the terminal voltage V c1 of the power storage device 120 is also maintained without decreasing.

接続装置140の端子142が端子144側に切り替わり端子142が蓄電装置120に接続されたことにより、蓄電装置120と第1二次電池80とが並列接続される。まず蓄電装置120と第1二次電池80の電圧差に応じて蓄電装置120から図4に示す大きな電流Ic1bが一時的に放出される。この電流が第1二次電池80へ流れ込み、図3に電流Ib1bとして示すように第1二次電池80を一時的に充電する。さらに、図1に記載のように、第1二次電池80が負荷50に対して電気回路的には接続されているにも関わらず、放電電流に対する蓄電装置の電圧低下率と電池の内部抵抗に起因した電圧降下率のバランスによって電流Ib2bとして示すように蓄電装置120から第1二次電池80へ継続的な充電電流も流すことができる。第1二次電池80あるいは第2二次電池90の電流が周期的に変化することによる二次電池の内部損失の低下効果と蓄電装置120からのエネルギー供給に加えて、電池の充電効果もあるので、図7を用いて説明した効果が生じるものと考えられる。 When the terminal 142 of the connection device 140 is switched to the terminal 144 side and the terminal 142 is connected to the power storage device 120, the power storage device 120 and the first secondary battery 80 are connected in parallel. First, large current I c1b shown in FIG. 4 is temporarily released from power storage device 120 in accordance with the voltage difference between power storage device 120 and first secondary battery 80. This current flows into the first secondary battery 80, and temporarily charges the first secondary battery 80 as shown as current Ib1b in FIG. Further, as shown in FIG. 1, although the first secondary battery 80 is connected to the load 50 in terms of an electric circuit, the voltage drop rate of the power storage device with respect to the discharge current and the internal resistance of the battery Due to the balance of the voltage drop rate due to, a continuous charging current can also flow from the power storage device 120 to the first secondary battery 80 as shown as the current Ib2b . In addition to the effect of reducing the internal loss of the secondary battery due to the periodic change of the current of the first secondary battery 80 or the second secondary battery 90 and the energy supply from the power storage device 120, there is also a battery charging effect. Therefore, it is considered that the effect described with reference to FIG. 7 occurs.

また次のように考えることができる。一般的には、電池とキャパシタとの並列接続回路では、内部抵抗の高い電池は電流が流れにくく、このためキャパシタに電流が偏ってしまう。今蓄電装置120と第1二次電池80との並列回路を考えると、コンデンサで構成する蓄電装置120の内部抵抗が第1二次電池80より低いので、蓄電装置120を流れる電流Ic1が第1二次電池80を流れる電流Ib1より流れ易い傾向となる。蓄電装置120の容量が小さいと電流Ic1が流れることにより蓄電装置120の端子電圧が急激に低下する。しかし蓄電装置120の容量が大きくなると、例えば蓄電装置120の容量が10F以上、さらに大きくなり蓄電装置120の容量が100F以上、さらにより大きくなり蓄電装置120の容量が1000F以上、となると、すなわち蓄電装置120の容量が大きくなるに従って、蓄電装置120の電流Ic1による端子電圧の低下の時定数が大きくなり、端子電圧の低下が遅くなる。蓄電装置120と第1二次電池80とが並列接続されているので、蓄電装置120の端子電圧と第1二次電池80の端子電圧が等し保たれることになり、第1二次電池80の端子電圧を持ち上げることが必要となる。このため蓄電装置120の電流Ic1が第1二次電池80の充電電流として第1二次電池80に流れ込む。このような現象が生じ、この現象が図7に示すような効果が生じる一因となっている。 The following can also be considered. In general, in a parallel connection circuit of a battery and a capacitor, a battery having a high internal resistance hardly flows current, and thus the current is biased to the capacitor. Considering a parallel circuit of the power storage device 120 and the first secondary battery 80 now, since the internal resistance of the power storage device 120 constituted by a capacitor is lower than that of the first secondary battery 80, the current I c1 flowing through the power storage device 120 is the first. The current I b1 flowing through the secondary battery 80 tends to flow more easily. When the capacity of the power storage device 120 is small, the current Ic1 flows, so that the terminal voltage of the power storage device 120 rapidly decreases. However, when the capacity of the power storage device 120 is increased, for example, the capacity of the power storage device 120 is 10F or more, and further, the capacity of the power storage device 120 is 100F or more. As the capacity of the device 120 increases, the time constant of the terminal voltage decrease due to the current I c1 of the power storage device 120 increases, and the terminal voltage decrease slows down. Since the power storage device 120 and the first secondary battery 80 are connected in parallel, the terminal voltage of the power storage device 120 and the terminal voltage of the first secondary battery 80 are kept equal, and thus the first secondary battery. It is necessary to raise the terminal voltage of 80. Therefore, the current I c1 of the power storage device 120 flows into the first secondary battery 80 as the charging current of the first secondary battery 80. Such a phenomenon occurs, and this phenomenon contributes to the effect as shown in FIG.

今蓄電装置120と第1二次電池80との関係を説明したが、図5に示す第2二次電池90を流れる電流Ib2と蓄電装置130を流れる電流Ic2とは、上述した第1二次電池80を流れる電流Ib1と蓄電装置120を流れる電流Ic1との関係に非常に似ている。従って蓄電装置130は第2二次電池90に対して、蓄電装置120が第1二次電池80に及ぼすのと同様の作用をなし、同様の効果を奏するものと考える。 Now, the relationship between the power storage device 120 and the first secondary battery 80 has been described. The current I b2 flowing through the second secondary battery 90 and the current I c2 flowing through the power storage device 130 shown in FIG. This is very similar to the relationship between the current I b1 flowing through the secondary battery 80 and the current I c1 flowing through the power storage device 120. Therefore, it is considered that the power storage device 130 has the same effect on the second secondary battery 90 as the power storage device 120 exerts on the first secondary battery 80 and has the same effect.

2.4 実施例におけるその他の作用効果についての説明
特許文献1に記載の方式では、解決しようとする課題が二次電池の充放電サイクル寿命の改善であり、本発明では効果においておよび構成において、特許文献1に記載の公知の発明とは異なっている。しかしそれだけでなく、図1に記載の実施例ではさらに異なる効果を有している。例えば蓄電装置120と第1二次電池80との端子間電圧の差が小さく、接続装置140の端子間に作用している電圧が小さい。蓄電装置130と第2二次電池90とに付いても同様である。従って接続装置140を介して流れる電流も少ない。接続装置140の電気的な負担が小さく、長寿命化に適している。
2.4 Explanation of other operational effects in the embodiment In the method described in Patent Document 1, the problem to be solved is improvement of the charge / discharge cycle life of the secondary battery. In the present invention, in effect and configuration, This is different from the known invention described in Patent Document 1. However, the embodiment shown in FIG. 1 has a further different effect. For example, the voltage difference between the terminals of the power storage device 120 and the first secondary battery 80 is small, and the voltage acting between the terminals of the connection device 140 is small. The same applies to power storage device 130 and second secondary battery 90. Therefore, the current flowing through the connecting device 140 is also small. The electrical load on the connection device 140 is small, and it is suitable for extending the life.

また二次電池70は、接続装置140の動作に関係なく、回路的には負荷50に接続されており、仮に接続装置140に異常が発生しても二次電池70から負荷50へ電流を供給し続けることが可能となる。従って例えば負荷50が非常灯であったり、信号機であったり、車両の駆動装置であったり、安全性に関わる装置である場合に、安全性が維持され易い効果がある。例えば接続装置140が故障し、どちらかに接続した状態のままで動かなくなっても、あるいは蓄電装置120や蓄電装置130が二次電池70と接続することが困難となっても、直ちに危険な状態となるものではなく、二次電池70と負荷50との接続を維持し、二次電池70から負荷50への電力供給を維持することが可能である。   The secondary battery 70 is connected to the load 50 in terms of circuit regardless of the operation of the connection device 140, and even if an abnormality occurs in the connection device 140, current is supplied from the secondary battery 70 to the load 50. It becomes possible to continue doing. Therefore, for example, when the load 50 is an emergency light, a traffic light, a vehicle drive device, or a device related to safety, there is an effect that safety is easily maintained. For example, even if the connection device 140 breaks down and remains in a state where it is connected to either of them, or even if it becomes difficult for the power storage device 120 or the power storage device 130 to connect to the secondary battery 70, it is immediately dangerous. However, the connection between the secondary battery 70 and the load 50 can be maintained, and the power supply from the secondary battery 70 to the load 50 can be maintained.

3.実施例の変形例に付いての説明
図1において、第1二次電池80や第2二次電池90としてシミュレーションではリチウムイオン二次電池を使用した。しかしリチウムイオン二次電池に限らず他の種類の電池であっても、これら1回の充電に対する放電時間の延長効果があるものと考える。さらにシミュレーションでは蓄電装置120や蓄電装置130としてコンデンサを使用した。しかし第1二次電池80や第2二次電池90を流れる電流を周期的に変化させる作用は、コンデンサの使用に限られるものでは無く、蓄電装置120や蓄電装置130は蓄電作用を有していればよく、コンデンサ以外の蓄電装置、例えば二次電池であっても可能である。
3. Description of Modification of Example In FIG. 1, a lithium ion secondary battery was used in the simulation as the first secondary battery 80 and the second secondary battery 90. However, not only lithium ion secondary batteries but also other types of batteries are considered to have an effect of extending the discharge time for these one-time charging. Further, in the simulation, capacitors were used as the power storage device 120 and the power storage device 130. However, the action of periodically changing the current flowing through the first secondary battery 80 and the second secondary battery 90 is not limited to the use of a capacitor, and the power storage device 120 and the power storage device 130 have a power storage function. The power storage device other than the capacitor, such as a secondary battery, is also possible.

しかし、図1や図8に示すように蓄電装置120や蓄電装置130としてコンデンサを使用する方が、コンデンサ以外の蓄電装置、例えば二次電池、を使用するよりも優れている。すなわちコンデンサは充放電動作において、二次電池などに比べて放電電流に対する電圧降下が低い。このため二次電池と並列接続するとコンデンサからエネルギーを引き出し易い。従って本発明の実施例としてはコンデンサを使用する方が、発明の効果の点から望ましい。   However, as shown in FIGS. 1 and 8, the use of a capacitor as the power storage device 120 or the power storage device 130 is superior to the use of a power storage device other than the capacitor, for example, a secondary battery. That is, the capacitor has a lower voltage drop with respect to the discharge current in the charge / discharge operation than the secondary battery or the like. For this reason, when connected in parallel with the secondary battery, it is easy to extract energy from the capacitor. Therefore, it is preferable to use a capacitor as an embodiment of the present invention from the viewpoint of the effect of the present invention.

また二次電池70は本実施例では、第1二次電池80と第2二次電池90とを備えている。しかし上述した如く、第1二次電池80あるいは第2二次電池90のどちらか一方だけでも良い。あるいはさらに多くの二次電池を備えていても良い。負荷50の種類に応じて、適切な供給電圧が選択されることが重要であり、供給電圧の観点から二次電池70が有する直列の二次電池の数を決定することができる。蓄電装置120や蓄電装置130の数も実施例に限られるものではなく、1個でも良いし、さらに多くの蓄電装置を有していても良い。蓄電装置120や蓄電装置130として使用する部品、例えばコンデンサを使用する場合に各コンデンサにはそれぞれ好ましい使用電圧がある。各コンデンサの使用電圧と二次電池70全体の電圧との関係で、蓄電装置120や蓄電装置130を構成するコンデンサの直列接続数を決めることが望ましい。また蓄電装置120や蓄電装置130の容量をどのような値にするかに基づいて、蓄電装置120や蓄電装置130を構成するコンデンサの並列接続数を決めることが望ましい。   The secondary battery 70 includes a first secondary battery 80 and a second secondary battery 90 in this embodiment. However, as described above, only one of the first secondary battery 80 and the second secondary battery 90 may be used. Alternatively, more secondary batteries may be provided. It is important that an appropriate supply voltage is selected according to the type of load 50, and the number of serial secondary batteries included in the secondary battery 70 can be determined from the viewpoint of the supply voltage. The number of power storage devices 120 and power storage devices 130 is not limited to the example, and may be one or more power storage devices. When using components used as the power storage device 120 or the power storage device 130, for example, capacitors, each capacitor has a preferable voltage. It is desirable to determine the number of capacitors connected in series constituting the power storage device 120 or the power storage device 130 based on the relationship between the voltage used for each capacitor and the voltage across the secondary battery 70. Further, it is desirable to determine the number of capacitors connected in parallel that constitute power storage device 120 or power storage device 130 based on what value the capacity of power storage device 120 or power storage device 130 is set to.

図1や以下で説明する図8に記載の実施例おいては、動作の安定性などの観点から、第1二次電池80や第2二次電池90は、それぞれほぼ同じ特性の二次電池を同じ数だけ直列および並列接続することにより構成されている。また蓄電装置120や蓄電装置130は、図示を省略しているが、それぞれほぼ同じ特性のコンデンサを同じ数だけ直列および並列接続することにより構成されている。   In the embodiment shown in FIG. 1 and FIG. 8 described below, the first secondary battery 80 and the second secondary battery 90 are secondary batteries having substantially the same characteristics from the viewpoint of operational stability. Are connected in series and in parallel by the same number. Although not shown, the power storage device 120 and the power storage device 130 are configured by connecting the same number of capacitors having substantially the same characteristics in series and in parallel.

上記シミュレーションでは、1秒間隔で、蓄電装置120と蓄電装置130の繋ぎ変えを行ったが、この周期に限るものではない。例えば0.1秒間隔で切り替えても良いし、もっと短い間隔で切り替えても良い。さらに長い間隔で、切り替えても良い。例えば10秒あるいはそれより長い間隔でも良い。間隔が長くなると、例えば第1二次電池80の電圧低下が大きくなり、例えば蓄電装置120が第1二次電池80に接続されたときの蓄電装置120と第1二次電池80との端子電圧の差が大きくなる。しかし、第1二次電池80の電圧低下は負荷50へ供給する電流と、第1二次電池80の容量との関係で定まり、第1二次電池80から負荷50へ供給する電流が大きい場合に第1二次電池80の電圧低下が大きくなる。今第1二次電池80について述べたが、第2二次電池90に付いても同様である。従って二次電池70が供給する電流の大きさに基づいて接続装置140の切り替え動作の周期を変えるようにしても良い。この場合、負荷50への供給電流が大きい場合と、負荷50への供給電流が小さい場合とを比較すると、負荷50への供給電流が大きい場合の方が短い周期で切り替えることになる。   In the simulation, the connection between the power storage device 120 and the power storage device 130 is performed at intervals of one second, but the present invention is not limited to this cycle. For example, switching may be performed at intervals of 0.1 seconds, or switching may be performed at shorter intervals. Switching may be performed at longer intervals. For example, the interval may be 10 seconds or longer. When the interval becomes longer, for example, the voltage drop of the first secondary battery 80 becomes larger. For example, the terminal voltage between the power storage device 120 and the first secondary battery 80 when the power storage device 120 is connected to the first secondary battery 80 is increased. The difference becomes larger. However, the voltage drop of the first secondary battery 80 is determined by the relationship between the current supplied to the load 50 and the capacity of the first secondary battery 80, and the current supplied from the first secondary battery 80 to the load 50 is large. In addition, the voltage drop of the first secondary battery 80 increases. Although the first secondary battery 80 has been described above, the same applies to the second secondary battery 90. Therefore, the cycle of the switching operation of the connection device 140 may be changed based on the magnitude of the current supplied by the secondary battery 70. In this case, when the case where the supply current to the load 50 is large and the case where the supply current to the load 50 is small, switching is performed in a shorter cycle when the supply current to the load 50 is large.

制御装置150が二次電池70の供給電流量と接続装置140の切り替え周期との関係を表すデータを有していて、このデータに基づいて制御装置150が切り替え周期を制御するようにしても良い。あるいは、第1二次電池80あるいは第2二次電池90等の端子間電圧の変化を実際に検出し、検出結果に従って制御装置150が接続装置140の切り替え周期を制御するようにしても良い。また他の考え方として、蓄電装置120や蓄電装置130を接続したときの蓄電装置120あるいは蓄電装置130を流れる電流値を計測して、この電流値が設定範囲内となるように接続装置140の切り替え周期を制御しても良い。   The control device 150 may have data representing the relationship between the supply current amount of the secondary battery 70 and the switching cycle of the connection device 140, and the control device 150 may control the switching cycle based on this data. . Alternatively, a change in the voltage between terminals of the first secondary battery 80 or the second secondary battery 90 or the like may be actually detected, and the control device 150 may control the switching cycle of the connection device 140 according to the detection result. As another idea, the current value flowing through the power storage device 120 or the power storage device 130 when the power storage device 120 or the power storage device 130 is connected is measured, and the connection device 140 is switched so that the current value falls within the set range. The period may be controlled.

4.本発明が適用された製品に関する動作の説明
図1を用いて二次電池70から負荷50への電力の供給動作に付いて説明したが、実際の製品においては、電力供給源から二次電池70に電力を供給して二次電池70に電力を蓄え、蓄えられた電力に基づいて、負荷50を駆動するための電力が二次電池70から供給される。二次電池70に電力を蓄える蓄電動作に付いて図8を用いて説明する。なお他の図面と同一符号は同一の構成を示し、略同様の作用をなすと共に略同様の効果を奏する。
4). 1. Description of Operation Related to Product to which the Present Invention is Applied While the power supply operation from the secondary battery 70 to the load 50 has been described with reference to FIG. 1, in an actual product, the secondary battery 70 is supplied from the power supply source. Power is stored in the secondary battery 70, and power for driving the load 50 is supplied from the secondary battery 70 based on the stored power. A power storage operation for storing electric power in the secondary battery 70 will be described with reference to FIG. Note that the same reference numerals as those in the other drawings indicate the same configuration, and perform substantially the same function and achieve substantially the same effect.

二次電池の電流制御装置100が設けられていない場合には、負荷50の代わりに設けられた直流電源55から端子62や端子64を介して第1二次電池80および第2二次電池90に直流電流が供給される。二次電池70を構成する第1二次電池80や第2二次電池90にそれぞれ直流電源55から充電電流Ib1cや電流Ib2cが供給される。二次電池の電流制御装置100が設けられていない場合には、充電電流Ib1cと電流Ib2cは同じ値となる。 When the secondary battery current control device 100 is not provided, the first secondary battery 80 and the second secondary battery 90 are connected from the DC power supply 55 provided instead of the load 50 via the terminal 62 and the terminal 64. Is supplied with a direct current. The charging current I B1c and current I b2c supplied from the first secondary battery 80 and each direct current power source 55 to the second secondary battery 90 constituting the secondary battery 70. When the secondary battery current control device 100 is not provided, the charging current I b1c and the current I b2c have the same value.

次に二次電池の電流制御装置100が設けられ、接続装置140の動作により、蓄電装置120と蓄電装置130が所定周期で交互に第1二次電池80や第2二次電池90に並列接続されると、電流Ib1cや電流Ib2cは、パルス状に変化する電流すなわち断続的な電流状態となる。接続装置140の動作と第1二次電池80を流れる電流Ib1cや第2二次電池90を流れる電流Ic2cについて検討する。 Next, a secondary battery current control device 100 is provided, and the power storage device 120 and the power storage device 130 are alternately connected in parallel to the first secondary battery 80 and the second secondary battery 90 in a predetermined cycle by the operation of the connection device 140. Then, the current I b1c and the current I b2c are changed to a pulse-like current, that is, an intermittent current state. The operation of the connecting device 140 and the current I b1c flowing through the first secondary battery 80 and the current I c2c flowing through the second secondary battery 90 are examined.

接続装置140の端子142と端子146とが接続している状態を考える。この状態では蓄電装置120は接続されていない。従って蓄電装置120の電流Ic1cは流れない。二次電池70と直流電源55とが接続されているので、第1二次電池80には電流Ib1cが供給される。また第2二次電池90には電流Ib2cが流れ、蓄電装置130には電流Ic2cが流れる。電流Ib1cが流れることによって第1二次電池80の蓄電量が増大し、第1二次電池80の端子電圧Vb1が増大する。この結果第1二次電池80の端子電圧Vb1が蓄電装置120の端子電圧Vc1より大きくなる。第2二次電池90と蓄電装置130にもそれぞれ電流Ib2cや電流Ic2cが流れるので第2二次電池90の端子電圧Vb2や蓄電装置130の端子電圧Vc2が増大するが、第2二次電池90と蓄電装置130とは互いに略短絡状態に近い状態で並列接続されているので、第2二次電池90の端子電圧Vb2や蓄電装置130の端子電圧Vc2は互いに略同じ値に維持される。 Consider a state in which the terminal 142 and the terminal 146 of the connection device 140 are connected. In this state, the power storage device 120 is not connected. Therefore, current I c1c of power storage device 120 does not flow. Since the secondary battery 70 and the DC power supply 55 are connected, the current I b1c is supplied to the first secondary battery 80. Further, the current I b2c flows through the second secondary battery 90, and the current I c2c flows through the power storage device 130. When the current I b1c flows, the storage amount of the first secondary battery 80 increases, and the terminal voltage V b1 of the first secondary battery 80 increases. As a result, the terminal voltage V b1 of the first secondary battery 80 becomes larger than the terminal voltage V c1 of the power storage device 120. Since the current I b2c and the current I c2c also flow through the second secondary battery 90 and the power storage device 130, respectively, the terminal voltage V b2 of the second secondary battery 90 and the terminal voltage V c2 of the power storage device 130 increase. Since the secondary battery 90 and the power storage device 130 are connected in parallel with each other in a substantially short-circuited state, the terminal voltage V b2 of the second secondary battery 90 and the terminal voltage V c2 of the power storage device 130 are substantially the same value. Maintained.

次に接続装置140が動作して、接続装置140の端子142が端子144に接続され、端子146が解放されると、第1二次電池80の端子電圧Vb1が蓄電装置120の端子電圧Vc1より大きいので、電流Ib1cが逆方向の値となり、蓄電装置120の充電電流として作用する。蓄電装置120には直流電源55および第1二次電池80から電流が供給され、蓄電装置120の充電量が増大し、蓄電装置120の端子電圧Vc1が増大する。蓄電装置120の端子電圧Vc1が第1二次電池80の端子電圧Vb1に等しくなると、第1二次電池80から蓄電装置120への電流が無くなり、直流電源55から第1二次電池80と蓄電装置120の両方に充電電流が供給されるようになる。 Next, when the connection device 140 operates to connect the terminal 142 of the connection device 140 to the terminal 144 and release the terminal 146, the terminal voltage Vb1 of the first secondary battery 80 becomes the terminal voltage V of the power storage device 120. Since it is larger than c1 , the current Ib1c has a value in the reverse direction and acts as a charging current for the power storage device 120. Current is supplied to the power storage device 120 from the DC power supply 55 and the first secondary battery 80, the amount of charge of the power storage device 120 increases, and the terminal voltage V c1 of the power storage device 120 increases. When the terminal voltage V c1 of the power storage device 120 becomes equal to the terminal voltage V b1 of the first secondary battery 80, the current from the first secondary battery 80 to the power storage device 120 disappears, and the first secondary battery 80 from the DC power supply 55 is lost. And the power storage device 120 are supplied with charging current.

蓄電装置130は接続されていないので電流Ic2cが流れない。その結果蓄電装置130の端子電圧Vc2は増大しないが、第2二次電池90には直流電源55から電流Ib2cが供給されるので第2二次電池90の端子電圧Vc2が増大する。次に接続装置140の端子142が再び端子146に接続されると、第2二次電池90から蓄電装置130に充電電流が流れる。すなわち第2二次電池90に一時的に逆方向の電流が流れる。このような動作が、接続装置140が切り替わる度に行われる。第1二次電池80や第2二次電池90を流れる電流は、パルス状に変化するだけでなく、周期的に逆方向の電流が流れる。 Since power storage device 130 is not connected, current I c2c does not flow. As a result the terminal voltage V c2 of the power storage device 130 is not increased, since the second secondary battery 90 current I b2c is supplied from the DC power source 55 terminal voltage V c2 of the second secondary battery 90 is increased. Next, when the terminal 142 of the connection device 140 is connected to the terminal 146 again, a charging current flows from the second secondary battery 90 to the power storage device 130. That is, a reverse current temporarily flows through the second secondary battery 90. Such an operation is performed every time the connection device 140 is switched. The current flowing through the first secondary battery 80 and the second secondary battery 90 not only changes in a pulse shape, but also a current in the reverse direction periodically flows.

このように二次電池の電流制御装置100を用いることにより、負荷50へ電力を供給している状態だけでなく、直流電源55から二次電池70へ充電電力が供給されている状態においても、二次電池70の電流をパルス状態のように所定周期で変化するように制御することかでき、効率向上や長寿命化の効果を奏することが可能となる。さらに二次電池70を流れる電流を、所定周期で変化するだけでなく、二次電池70を流れる電流の方向を所定周期で変化するように制御することかでき、より大きな効果を得ることができる。   By using the current control device 100 for the secondary battery in this way, not only in a state where power is supplied to the load 50, but also in a state where charging power is supplied from the DC power supply 55 to the secondary battery 70, It is possible to control the current of the secondary battery 70 so as to change at a predetermined cycle like a pulse state, and it is possible to achieve the effect of improving the efficiency and extending the life. Furthermore, the current flowing through the secondary battery 70 can be controlled not only to change at a predetermined cycle, but also to change the direction of the current flowing through the secondary battery 70 at a predetermined cycle, so that a greater effect can be obtained. .

50・・・負荷、62・・・端子、64・・・端子、80・・・第1二次電池、90・・・第2二次電池、120・・・蓄電装置、130・・・蓄電装置、140・・・接続装置、150・・・制御装置。 50 ... Load, 62 ... Terminal, 64 ... Terminal, 80 ... First secondary battery, 90 ... Second secondary battery, 120 ... Power storage device, 130 ... Power storage Device, 140... Connection device, 150... Control device.

Claims (7)

負荷へ電力を供給する二次電池の電流を制御する二次電池の電流制御装置であって、
前記電流制御装置は、蓄えた電力に基づいて電流を供給する蓄電装置と、前記蓄電装置を前記二次電池に並列接続する接続装置と、前記接続装置の接続状態を制御する制御装置と、を有し、
前記制御装置は、前記二次電池が前記負荷と接続されている状態において、前記接続装置を所定の周期で動作させ、前記蓄電装置を所定の周期で繰り返し、前記二次電池に並列接続し、
さらに、前記二次電池が直列接続された少なくとも第1二次電池と第2二次電池とを有していて、
さらに、前記電流制御装置が有する前記蓄電装置は少なくとも第1コンデンサと第2コンデンサを有し、
前記接続装置により、前記第1コンデンサが所定の周期で繰り返し前記第1二次電池と並列に接続され、前記第2コンデンサが所定の周期で繰り返し前記第2二次電池と並列に接続されることを特徴とする、二次電池の電流制御装置。
A secondary battery current control device that controls the current of a secondary battery that supplies power to a load,
The current control device includes: a power storage device that supplies current based on stored power; a connection device that connects the power storage device in parallel to the secondary battery; and a control device that controls a connection state of the connection device. Have
The control device operates the connection device in a predetermined cycle while the secondary battery is connected to the load, repeats the power storage device in a predetermined cycle, and connects in parallel to the secondary battery ,
Furthermore, the secondary battery has at least a first secondary battery and a second secondary battery connected in series,
Furthermore, the power storage device included in the current control device has at least a first capacitor and a second capacitor,
The connecting device repeatedly connects the first capacitor in parallel with the first secondary battery at a predetermined cycle, and repeatedly connects the second capacitor in parallel with the second secondary battery at a predetermined cycle. A current control device for a secondary battery.
負荷へ電力を供給する二次電池の電流を制御する二次電池の電流制御装置であって、
前記電流制御装置は、蓄えた電力に基づいて電流を供給する蓄電装置と、前記蓄電装置を前記二次電池に並列接続する接続装置と、前記接続装置の接続状態を制御する制御装置と、を有し、
前記制御装置は、前記二次電池が前記負荷と接続されている状態において、前記接続装置を所定の周期で動作させ、前記蓄電装置を所定の周期で繰り返し、前記二次電池に並列接続し、
前記蓄電装置が前記二次電池に並列接続されたときに、一時的に前記蓄電装置から前記二次電池に電流が供給されることを特徴とする、二次電池の電流制御装置。
A secondary battery current control device that controls the current of a secondary battery that supplies power to a load,
The current control device includes: a power storage device that supplies current based on stored power; a connection device that connects the power storage device in parallel to the secondary battery; and a control device that controls a connection state of the connection device. Have
The control device operates the connection device in a predetermined cycle while the secondary battery is connected to the load, repeats the power storage device in a predetermined cycle, and connects in parallel to the secondary battery ,
A current control device for a secondary battery, wherein current is temporarily supplied from the power storage device to the secondary battery when the power storage device is connected in parallel to the secondary battery.
請求項1に記載の二次電池の電流制御装置において、
前記第1コンデンサあるいは前記第2コンデンサが前記第1二次電池あるいは前記第2二次電池に接続されるときに、前記第1コンデンサあるいは前記第2コンデンサの端子電圧が前記第1二次電池あるいは前記第2二次電池の端子電圧より大きいことを特徴とする、二次電池の電流制御装置。
The current control device for a secondary battery according to claim 1 ,
When the first capacitor or the second capacitor is connected to the first secondary battery or the second secondary battery, the terminal voltage of the first capacitor or the second capacitor is changed to the first secondary battery or A current control device for a secondary battery, wherein the current control device is larger than a terminal voltage of the second secondary battery.
請求項1乃至請求項3の内の一に記載の二次電池の電流制御装置において、
前記制御装置は、前記二次電池が前記負荷と接続されている状態に加え、前記二次電池が外部から電力の供給を受けて電力を蓄電している状態においても、前記接続装置を所定の周期で動作させ、前記蓄電装置を所定の周期で繰り返し、前記二次電池に並列接続することを特徴とする、二次電池の電流制御装置。
The secondary battery current control device according to any one of claims 1 to 3 ,
In addition to the state in which the secondary battery is connected to the load, the control device sets the connection device to a predetermined state even in a state in which the secondary battery is supplied with electric power from the outside and stores electric power. A secondary battery current control device, wherein the secondary battery is operated in a cycle, the power storage device is repeated in a predetermined cycle, and connected in parallel to the secondary battery.
請求項1乃至請求項4の内の一に記載の二次電池の電流制御装置において、
前記制御装置は、0.1秒より長い周期で繰り返し、前記接続装置を動作させることを特徴とする、二次電池の電流制御装置。
In the secondary battery current control device according to any one of claims 1 to 4 ,
The current control device for a secondary battery, wherein the control device is operated repeatedly at a cycle longer than 0.1 seconds.
請求項1乃至請求項5の内の一に記載の二次電池の電流制御装置において、前記蓄電装置は10ファラッド以上の容量を有していることを特徴とする、二次電池の電流制御装置。 6. The secondary battery current control device according to claim 1 , wherein the power storage device has a capacity of 10 Farads or more. 7. . 請求項6に記載の二次電池の電流制御装置において、前記蓄電装置は100ファラッド以上の容量を有していることを特徴とする、二次電池の電流制御装置。 The current control device for a secondary battery according to claim 6 , wherein the power storage device has a capacity of 100 Farad or more.
JP2015177890A 2015-09-09 2015-09-09 Secondary battery current control device Expired - Fee Related JP6566314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015177890A JP6566314B2 (en) 2015-09-09 2015-09-09 Secondary battery current control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015177890A JP6566314B2 (en) 2015-09-09 2015-09-09 Secondary battery current control device

Publications (2)

Publication Number Publication Date
JP2017055562A JP2017055562A (en) 2017-03-16
JP6566314B2 true JP6566314B2 (en) 2019-08-28

Family

ID=58317853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015177890A Expired - Fee Related JP6566314B2 (en) 2015-09-09 2015-09-09 Secondary battery current control device

Country Status (1)

Country Link
JP (1) JP6566314B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2096079T3 (en) * 1991-05-17 1997-03-01 Alsthom Cge Alcatel DISCHARGE OPTIMIZATION DEVICE AT LEAST TWO ELECTROCHEMICAL GENERATORS.
JP4189987B2 (en) * 2001-04-17 2008-12-03 Necトーキン株式会社 Battery pack and external host device system using the battery pack as a power source
JP3718769B2 (en) * 2001-11-27 2005-11-24 インターナショナル・ビジネス・マシーンズ・コーポレーション Intelligent battery
JP2007282347A (en) * 2006-04-05 2007-10-25 Teijin Ltd Power system

Also Published As

Publication number Publication date
JP2017055562A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
KR102336970B1 (en) battery system
JP5764260B2 (en) Battery system and method for supplying an intermediate voltage
JP5959561B2 (en) Multiple battery DC microgrid charging / discharging system connected in series
US10361573B2 (en) Battery pack
JP5851551B2 (en) Secondary battery charge / discharge control apparatus and method including active balance circuit and algorithm for charging / discharging a plurality of secondary batteries connected in series
KR100991317B1 (en) Charge storing device using capacitor and its control method
US9160179B2 (en) Charging apparatus and charging method
WO2016209378A9 (en) Hybrid energy storage
WO2013140710A1 (en) Balance correction device and power storage system
US10110023B2 (en) Power supply system
JP5656154B2 (en) Power system
US9472976B2 (en) Storage battery device and charging control method
CN103368221A (en) Battery system
CN103326610A (en) Topological structure for inductance-type Z-source inverter
CN103457317A (en) Electric automobile storage battery voltage balancing system and electric automobile using same
JP6357966B2 (en) Power supply control device and electronic device
JP2016116435A (en) Power conversion system
JP6566314B2 (en) Secondary battery current control device
CN106655313B (en) Current control device of energy storage battery
KR20120068053A (en) Charger and discharer for secondary battery
JP4607087B2 (en) Battery system and output current control method
JP4758788B2 (en) Power supply
JP5429656B1 (en) DC power supply
TW201815008A (en) Intelligent fast battery balancer having a duty cycle fuzzy operation to quickly balance each cell of the battery pack
KR20130021555A (en) The parallel connection device of the circuit for charge and discharge of multiple batteries

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190718

R150 Certificate of patent or registration of utility model

Ref document number: 6566314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees