JP6566014B2 - Quality inspection method and quality inspection system for unvulcanized rubber material - Google Patents

Quality inspection method and quality inspection system for unvulcanized rubber material Download PDF

Info

Publication number
JP6566014B2
JP6566014B2 JP2017236178A JP2017236178A JP6566014B2 JP 6566014 B2 JP6566014 B2 JP 6566014B2 JP 2017236178 A JP2017236178 A JP 2017236178A JP 2017236178 A JP2017236178 A JP 2017236178A JP 6566014 B2 JP6566014 B2 JP 6566014B2
Authority
JP
Japan
Prior art keywords
rubber material
unvulcanized rubber
dielectric constant
compounding agent
quality inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017236178A
Other languages
Japanese (ja)
Other versions
JP2019105450A (en
Inventor
智 小野寺
智 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2017236178A priority Critical patent/JP6566014B2/en
Priority to PCT/JP2018/035774 priority patent/WO2019111500A1/en
Priority to US16/770,934 priority patent/US11826928B2/en
Priority to CN201880078888.7A priority patent/CN111448451A/en
Priority to EP18886746.9A priority patent/EP3722795A4/en
Publication of JP2019105450A publication Critical patent/JP2019105450A/en
Application granted granted Critical
Publication of JP6566014B2 publication Critical patent/JP6566014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は未加硫ゴム材料の品質検査方法および品質検査システムに関し、さらに詳しくは、未加硫ゴム材料中の配合剤の配合割合の適否を、簡便かつ迅速に把握することができる未加硫ゴム材料の品質検査方法および品質検査システムに関するものである。   The present invention relates to a quality inspection method and a quality inspection system for an unvulcanized rubber material, and more particularly, an unvulcanized that can easily and quickly grasp the suitability of a compounding ratio of a compounding agent in an unvulcanized rubber material. The present invention relates to a quality inspection method and a quality inspection system for rubber materials.

タイヤ等のゴム製品を製造する際には、ミキサー(混合機)やゴム押出機を用いて未加硫ゴムと配合剤とを混練して、未加硫ゴム材料を製造する工程がある。この製造工程では、未加硫ゴムに対して設定された配合割合で配合剤が添加される。実際に添加された配合剤の配合割合が基準範囲から外れていれば、製造した未加硫ゴム材料の品質に影響が生じる。ひいては、この未加硫ゴム材料を使用して製造したゴム製品の品質に影響する。   When manufacturing rubber products such as tires, there is a step of manufacturing an unvulcanized rubber material by kneading unvulcanized rubber and a compounding agent using a mixer (mixer) or a rubber extruder. In this manufacturing process, the compounding agent is added at a blending ratio set for the unvulcanized rubber. If the proportion of the compounding agent actually added is out of the standard range, the quality of the produced unvulcanized rubber material will be affected. As a result, it affects the quality of rubber products manufactured using this unvulcanized rubber material.

従来、例えば未加硫ゴム材料中の硫黄の配合量を検査する方法として、酸素フラスコ燃焼法や過酸化ナトリウム溶融法が知られているが、これらの検査方法では、手順や準備が複雑であり、検査に要する時間も長くなる。   Conventionally, for example, oxygen flask combustion method and sodium peroxide melting method are known as methods for inspecting the compounding amount of sulfur in unvulcanized rubber materials, but these inspection methods involve complicated procedures and preparations. The time required for the inspection also becomes longer.

未加硫ゴム材料の品質を決定する方法として、押出された未加硫ゴム材料に対して超音波(0.5MHz〜20MHz)を発信し、未加硫ゴム材料を透過した超音波の強度の減衰量を検知する方法が提案されている(特許文献1参照)。この提案の方法では、超音波の強度の減衰量に基づいて、未加硫ゴム材料中の汚染物質の有無および含有量の相対的変化を把握することは可能であるが、未加硫ゴム材料における配合剤の配合割合が適切か否かを判断するものではない。   As a method for determining the quality of the unvulcanized rubber material, ultrasonic waves (0.5 MHz to 20 MHz) are transmitted to the extruded unvulcanized rubber material, and the ultrasonic wave intensity transmitted through the unvulcanized rubber material is measured. A method for detecting the amount of attenuation has been proposed (see Patent Document 1). In this proposed method, it is possible to grasp the presence or absence of contaminants and the relative change in the content of unvulcanized rubber material based on the attenuation of ultrasonic intensity. It is not judged whether or not the blending ratio of the compounding agent is appropriate.

対象物が未加硫ゴム材料ではないが、コンクリートについては、その誘電率に基づいてコンクリートの含有塩化物濃度、含有率等を測定する方法が知られている(例えば、特許文献2参照)。   Although the object is not an unvulcanized rubber material, for concrete, a method is known in which the concentration of chloride contained in the concrete, the content, and the like are measured based on the dielectric constant (see, for example, Patent Document 2).

特表2014−521948号公報Special table 2014-521948 gazette 特開2006−214941号公報JP 2006-214941 A

本発明の目的は、未加硫ゴム材料中の配合剤の配合割合の適否を、簡便かつ迅速に把握することができる未加硫ゴム材料の品質検査方法および品質検査システムを提供することにある。   An object of the present invention is to provide a quality inspection method and a quality inspection system for an unvulcanized rubber material capable of easily and quickly grasping the suitability of the compounding ratio of the compounding agent in the unvulcanized rubber material. .

上記目的を達成するため本発明の未加硫ゴム材料の品質検査方法は、未加硫ゴムに所定種類の配合剤が混合された未加硫ゴム材料の誘電率に基づいて前記未加硫ゴム材料における前記配合剤の配合割合を演算装置により算出し、算出した前記配合割合が予め設定されている配合基準範囲の範囲内か範囲外かを前記演算装置により判断することを特徴とする。   In order to achieve the above object, a quality inspection method for an unvulcanized rubber material according to the present invention is based on a dielectric constant of an unvulcanized rubber material in which a predetermined type of compounding agent is mixed with unvulcanized rubber. The blending ratio of the compounding agent in the material is calculated by an arithmetic device, and it is determined by the arithmetic device whether the calculated blending proportion is within or outside a preset blending reference range.

本発明の未加硫ゴム材料の品質検査システムは、未加硫ゴムに所定種類の配合剤が混合された未加硫ゴム材料の誘電率を検出する誘電率測定器と、前記誘電率測定器により検出された前記誘電率が入力される演算装置とを有し、前記誘電率に基づいて前記演算装置により前記未加硫ゴム材料における前記配合剤の配合割合が算出されて、算出された前記配合割合が前記演算装置に入力されている配合基準範囲の範囲内か範囲外かが判断される構成にしたことを特徴とする。   A quality inspection system for an unvulcanized rubber material according to the present invention includes a dielectric constant measuring device for detecting a dielectric constant of an unvulcanized rubber material in which a predetermined kind of compounding agent is mixed with unvulcanized rubber, and the dielectric constant measuring device. The arithmetic unit to which the dielectric constant detected by is input, and the arithmetic unit calculates the compounding ratio of the compounding agent in the unvulcanized rubber material based on the dielectric constant, and the calculated It is characterized in that it is determined whether the blending ratio is within or outside the blending standard range input to the arithmetic unit.

本発明によれば、未加硫ゴム材料の誘電率を検出すれば、この誘電率に基づいて演算装置により演算処理をすることで、その未加硫ゴム材料の配合剤の配合割合を算出して、配合割合の適否を迅速に判断できる。しかも、様々な溶液を用いてデータを取得する必要もないので、簡便に検査を行うことができる。   According to the present invention, if the dielectric constant of the unvulcanized rubber material is detected, the blending ratio of the compounding agent of the unvulcanized rubber material is calculated by performing an arithmetic process using an arithmetic unit based on the dielectric constant. Thus, the suitability of the blending ratio can be quickly determined. In addition, since it is not necessary to acquire data using various solutions, the inspection can be performed easily.

本発明の未加硫ゴム材料の品質検査システムを例示する説明図である。It is explanatory drawing which illustrates the quality inspection system of the unvulcanized rubber material of this invention. カーボンブラックの配合割合およびマスターバッチの配合割合のそれぞれと、未加硫ゴム材料の誘電率との関係を模式的に例示するグラフ図である。It is a graph which illustrates typically the relationship between each of the compounding ratio of carbon black and the compounding ratio of a masterbatch, and the dielectric constant of an unvulcanized rubber material. モニタに表示される内容(配合剤の配合割合の経時変化)を例示する説明図である。It is explanatory drawing which illustrates the content (A time-dependent change of the mixture ratio of a compounding agent) displayed on a monitor. モニタに表示される別の内容(配合剤の分散具合)を例示する説明図である。It is explanatory drawing which illustrates another content (dispersion degree of a compounding agent) displayed on a monitor.

以下、本発明の未加硫ゴム材料の品質検査方法および品質検査システムを、図に示した実施形態に基づいて説明する。   Hereinafter, the quality inspection method and quality inspection system of the unvulcanized rubber material of the present invention will be described based on the embodiments shown in the drawings.

図1に例示する本発明の未加硫ゴム材料の品質検査システム1(以下、検査システム1という)は、誘電率測定器2と、誘電率測定器2により検出された誘電率が入力される演算装置3と、演算装置3に無線または有線によって接続されたモニタ3aとを備えている。本発明は、未加硫ゴムMに所定種類の非加硫系配合剤Acが混合された一次ゴム材料R1、一次ゴム材料R1に所定種類の加硫系配合剤Asが混合された最終ゴム材料R2のいずれの未加硫ゴム材料Rも検査対象にすることもできるが、この実施形態では、押出機4により押し出された直後の最終ゴム材料R2を検査対象にしている。   An unvulcanized rubber material quality inspection system 1 of the present invention illustrated in FIG. 1 (hereinafter referred to as inspection system 1) receives a dielectric constant measuring device 2 and a dielectric constant detected by the dielectric constant measuring device 2. An arithmetic device 3 and a monitor 3a connected to the arithmetic device 3 by radio or wire are provided. The present invention provides a primary rubber material R1 in which a predetermined type of non-vulcanized compounding agent Ac is mixed with unvulcanized rubber M, and a final rubber material in which a predetermined type of vulcanized compounding agent As is mixed with primary rubber material R1. Any unvulcanized rubber material R of R2 can be the inspection object, but in this embodiment, the final rubber material R2 immediately after being extruded by the extruder 4 is the inspection object.

非加硫系配合剤Acとしては、カーボンブラックやシリカを例示できる。加硫系配合剤Asとしては、加硫活性剤、加硫促進助剤または硫黄の少なくとも1つを例示できる。加硫活性剤、加硫促進助剤および硫黄を規定の割合で混合したマスターバッチを加硫系配合剤Asとしてもよい。   Examples of the non-vulcanizing compounding agent Ac include carbon black and silica. Examples of the vulcanizing compounding agent As include at least one of a vulcanization activator, a vulcanization acceleration aid, and sulfur. A master batch in which a vulcanization activator, a vulcanization accelerator and sulfur are mixed in a specified ratio may be used as the vulcanizing compound As.

押出機4は、回転駆動されるスクリューが内設されたシリンダ4aと、シリンダ4aの後端部の上面に形成された材料投入口4bと、材料投入口4bに設置されたホッパ4dと、シリンダ4aの先端に形成された押出口4cとを有している。押出口4cの前方には、コンベヤ等の搬送手段が延在している。また、ホッパ4dを介して材料投入口4bに所定種類の加硫系配合剤Asを投入する配合剤供給部5が設置されている。   The extruder 4 includes a cylinder 4a in which a rotationally driven screw is installed, a material charging port 4b formed on the upper surface of the rear end portion of the cylinder 4a, a hopper 4d installed in the material charging port 4b, And an extrusion port 4c formed at the tip of 4a. A conveying means such as a conveyor extends in front of the extrusion port 4c. In addition, a compounding agent supply unit 5 for supplying a predetermined type of vulcanizing compounding agent As to the material charging port 4b through the hopper 4d is installed.

押出機4のシリンダ4aには、シート状の一次ゴム材料R1がホッパ4dを介して材料投入口4bから連続的に投入される。また、配合剤供給部5によりホッパ4dを介して材料投入口4bから連続的に所定種類の加硫系配合剤Asが投入される。加硫系配合剤Asは、100重量部の未加硫ゴムMに対して予め設定された所定割合で投入される設定になっている。   The sheet-like primary rubber material R1 is continuously fed into the cylinder 4a of the extruder 4 from the material charging port 4b through the hopper 4d. Further, a predetermined kind of vulcanizing compound As is continuously fed from the material charging port 4b through the hopper 4d by the compounding agent supply unit 5. The vulcanized compounding agent As is set to be charged at a predetermined ratio with respect to 100 parts by weight of the unvulcanized rubber M.

投入された一次ゴム材料R1および加硫系配合剤Asは、回転するスクリューによってシリンダ4aの中で混合および混練されつつ前方移動する。そして、押出口4cからシート状に成形された最終ゴム材料R2が連続的に押し出されて製造される。   The charged primary rubber material R1 and vulcanizing compounding agent As are moved forward while being mixed and kneaded in the cylinder 4a by a rotating screw. And the last rubber material R2 shape | molded in the sheet form from the extrusion port 4c is extruded continuously, and is manufactured.

誘電率測定器2は公知の種々の仕様の機器を使用することができる。検査対象(未加硫ゴム材料R)に超音波を照射して非接触で誘電率を検出できる機器が好ましい。例えば、押し出されている最終ゴム材料R2を通過させつつ、最終ゴム材料R2の通過した範囲の誘電率を誘電率測定器2によって逐次検出する。   The dielectric constant measuring device 2 can use various devices with various known specifications. A device capable of detecting the dielectric constant in a non-contact manner by irradiating the inspection object (unvulcanized rubber material R) with ultrasonic waves is preferable. For example, while permitting the final rubber material R2 being extruded to pass through, the dielectric constant in the range through which the final rubber material R2 has passed is sequentially detected by the dielectric constant measuring device 2.

誘電率測定器2は1台だけでなく、複数台を最終ゴム材料R2の幅方向に並列させて配置した構成にすることもできる。或いは、誘電率測定器2を最終ゴム材料R2の幅方向に移動可能にした構成にすることもできる。これらの構成を採用することで、最終ゴム材料R2の実質的に全幅を検査可能にすることができる。   Not only one dielectric constant measuring instrument 2 but also a plurality of dielectric constant measuring instruments 2 can be arranged in parallel in the width direction of the final rubber material R2. Alternatively, the dielectric constant measuring device 2 can be configured to be movable in the width direction of the final rubber material R2. By adopting these configurations, it is possible to inspect substantially the entire width of the final rubber material R2.

図2に例示するように、演算装置3には最終ゴム材料R2における所定種類の加硫系配合剤Asの配合割合と最終ゴム材料R2の誘電率との相関関係データが入力されている。具体的には、加硫系配合剤Asとして使用されるマスターバッチの配合割合が大きくなるに連れて、最終ゴム材料R2の誘電率が低くなる傾向がある。演算装置3は、この相関関係データと、逐次入力された誘電率とに基づいて、最終ゴム材料R2における加硫系配合剤Asの配合割合D1を算出する。   As illustrated in FIG. 2, correlation data between the blending ratio of a predetermined type of vulcanizing compounding agent As in the final rubber material R2 and the dielectric constant of the final rubber material R2 is input to the arithmetic device 3. Specifically, as the blending ratio of the master batch used as the vulcanizing compounding agent As increases, the dielectric constant of the final rubber material R2 tends to decrease. The arithmetic device 3 calculates the blending ratio D1 of the vulcanizing compound As in the final rubber material R2 based on the correlation data and the sequentially input dielectric constant.

この実施形態では、一次ゴム材料R1における所定種類の非加硫系配合剤Acの配合割合と一次ゴム材料R1の誘電率との相関関係データも演算装置3に入力されている。具体的には、非加硫系配合剤Acとして使用されるカーボンブラックの配合割合が大きくなるに連れて、一次ゴム材料R1の誘電率が高くなる傾向がある。配合剤A(Ac、As)の種類によって、その配合割合と、その配合剤Aを混合した未加硫ゴム材料Rの誘電率との相関関係(誘電率が比例的に大きくなるのか小さくなるのか、および、誘電率が変化する程度)は異なるので、使用するそれぞれの配合剤Aに対してこの相関関係データを予め取得して演算装置3に入力しておく。   In this embodiment, correlation data between the blending ratio of the predetermined type of non-vulcanizing compounding agent Ac in the primary rubber material R1 and the dielectric constant of the primary rubber material R1 is also input to the arithmetic unit 3. Specifically, the dielectric constant of the primary rubber material R1 tends to increase as the blending ratio of carbon black used as the non-vulcanizing compounding agent Ac increases. Depending on the type of compounding agent A (Ac, As), the correlation between the compounding ratio and the dielectric constant of unvulcanized rubber material R mixed with compounding agent A (whether the dielectric constant increases proportionally or decreases) , And the degree of change in the dielectric constant), the correlation data is acquired in advance for each compounding agent A to be used and input to the arithmetic unit 3.

演算装置3にはさらに、加硫系配合剤Asの種類毎に適切な配合割合を示す配合基準範囲C1が入力されている。そして図3に例示するように、演算装置3は、算出された配合割合D1と配合基準範囲C1とを逐次比較して、配合割合D1が配合基準範囲C1の範囲内か範囲外かを逐次判断する。   Further, a blending reference range C1 indicating an appropriate blending ratio for each type of the vulcanizing compounding agent As is input to the arithmetic device 3. Then, as illustrated in FIG. 3, the arithmetic device 3 sequentially compares the calculated blending ratio D1 and the blending reference range C1 and sequentially determines whether the blending ratio D1 is within or outside the blending reference range C1. To do.

モニタ3aには、演算装置3による判断結果が逐次表示される。表示する判断結果は、算出した配合割合D1が配合基準範囲C1の範囲外であることを単純に知らせる警告でもよく、図3に例示する配合割合D1の経時変化を逐次表示してもよい。   The determination result by the arithmetic device 3 is sequentially displayed on the monitor 3a. The determination result to be displayed may be a warning simply indicating that the calculated blending ratio D1 is outside the blending reference range C1, or the time-dependent change of the blending ratio D1 illustrated in FIG. 3 may be sequentially displayed.

このように本発明によれば、最終ゴム材料R2の誘電率を検出し、この誘電率に基づいて演算処理をすることで、最終ゴム材料R2の加硫系配合剤Asの配合割合を算出して、この配合割合の適否を非破壊検査によって迅速に判断できる。しかも、従来の検査方法にように、様々な溶液を用いてデータを取得する必要もないので、検査を簡便に行うことができる。   As described above, according to the present invention, the blending ratio of the vulcanizing compounding agent As of the final rubber material R2 is calculated by detecting the dielectric constant of the final rubber material R2 and performing arithmetic processing based on the dielectric constant. Thus, the suitability of this blending ratio can be quickly judged by nondestructive inspection. Moreover, since it is not necessary to acquire data using various solutions as in the conventional inspection method, the inspection can be easily performed.

ところで、配合基準範囲C1を満足する配合割合で加硫系配合剤Asが一次ゴム材料R1に添加されても、加硫系配合剤Asが未加硫ゴムM(一次ゴム材料R1)に対して十分に分散して混合されていなければ、製造した最終ゴム材料R2の品質に影響が生じる。それ故、加硫系配合剤Asの分散具合の適否も判断する構成にすることがより好ましい。   By the way, even if the vulcanized compounding agent As is added to the primary rubber material R1 at a compounding ratio that satisfies the compounding standard range C1, the vulcanized compounding agent As is based on the unvulcanized rubber M (primary rubber material R1). If not sufficiently dispersed and mixed, the quality of the manufactured final rubber material R2 is affected. Therefore, it is more preferable to adopt a configuration in which the suitability of the degree of dispersion of the vulcanizing compounding agent As is also judged.

そこで、押出した最終ゴム材料R2を平面視で多数の区画に区分して、区分された区画毎に誘電率を検出する。そして、検出されたそれぞれの区画の誘電率のばらつきの大きさに基づいて、演算装置3により、最終ゴム材料R2における加硫系配合剤Asの分散程度D2を算出する。   Therefore, the extruded final rubber material R2 is divided into a number of sections in plan view, and the dielectric constant is detected for each of the sections. And based on the magnitude | size of the variation of the detected dielectric constant of each division, the arithmetic unit 3 calculates the dispersion degree D2 of the vulcanizing compound additive As in the final rubber material R2.

演算装置3には、加硫系配合剤Asの種類毎に適切な分散程度D2を示す分散基準範囲C2を入力しておく。そして演算装置3は、算出した分散程度D2と分散基準範囲C2とを逐次比較して、分散程度D2が分散基準範囲C2の範囲内か範囲外かを判断する。   A dispersion reference range C2 indicating an appropriate dispersion degree D2 is input to the arithmetic device 3 for each type of vulcanizing compounding agent As. Then, the arithmetic device 3 sequentially compares the calculated dispersion degree D2 and the dispersion reference range C2, and determines whether the dispersion degree D2 is within or outside the range of the dispersion reference range C2.

例えば、基準誘電率Cdを設定しておき、この基準誘電率Cdとそれぞれの区画の誘電率との偏差の絶対値を、所定の面積範囲(単位面積当たり)で平均した値を分散程度D2にする。この分散程度D2が大きい程、加硫系配合剤Asが良好に分散していないので、予め設定した平均許容範囲を分散基準範囲C2に設定して、分散基準範囲C2よりも分散程度D2が大きい場合に分散具合が悪いと判断する。   For example, a reference dielectric constant Cd is set, and an absolute value of a deviation between the reference dielectric constant Cd and the dielectric constant of each section is averaged over a predetermined area range (per unit area) to a dispersion degree D2. To do. The greater the dispersion degree D2, the better the vulcanizing compound As is not dispersed. Therefore, the preset average allowable range is set to the dispersion reference range C2, and the dispersion degree D2 is larger than the dispersion reference range C2. In such a case, it is determined that the degree of dispersion is poor.

局部的に誘電率が過大あるいは過小である場合にも、加硫系配合剤Asが良好に分散していないと言える。そこで、予め設定した局部許容範囲を分散基準範囲C2に設定して、分散基準範囲C2よりも分散程度D2が大きい区画が存在する場合に分散具合が悪いと判断することもできる。上述した平均許容範囲と局部許容範囲の少なくとも一方を分散基準範囲C2として採用することができるが、両方を採用することが好ましい。   Even when the dielectric constant is locally too large or too small, it can be said that the vulcanized compounding agent As is not well dispersed. Therefore, it is also possible to determine that the degree of dispersion is poor when a local allowable range set in advance is set as the dispersion reference range C2 and there is a section having a dispersion degree D2 larger than the dispersion reference range C2. At least one of the above-described average allowable range and local allowable range can be adopted as the dispersion reference range C2, but it is preferable to adopt both.

モニタ3aには、演算装置3による判断結果が逐次表示される。表示する判断結果は、算出された分散程度D2が分散基準範囲C2の範囲外であることを単純に知らせる警告でもよいが、図4に例示するように誘電率(或いは配合割合D1)の分布を表示する構成にすることもできる。   The determination result by the arithmetic device 3 is sequentially displayed on the monitor 3a. The determination result to be displayed may be a warning that simply informs that the calculated dispersion degree D2 is outside the dispersion reference range C2. However, as illustrated in FIG. 4, the distribution of the dielectric constant (or blending ratio D1) is illustrated. It can also be configured to display.

図4のような表示をする構成にする場合、それぞれの区画をその誘電率の大きさに応じて演算装置3により複数階級(例えば〜85、85〜95、・・・などの指数)で区分けする。そして、それぞれの区画を、区分けされた階級を識別可能にしてモニタ3aに表示する。図4では区分された階級を、空白や線による模様を用いて識別可能にしているが、色の違いや色の濃淡によって階級を識別可能にするとよい。このような表示をすることで、モニタ3aを一目するだけで、加硫系配合剤Asの分散具合の適否を容易に把握することが可能になる。   When the display is configured as shown in FIG. 4, each section is divided into a plurality of classes (for example, indexes such as ~ 85, 85 to 95,...) By the arithmetic unit 3 according to the dielectric constant. To do. Then, each section is displayed on the monitor 3a so that the classified classes can be identified. In FIG. 4, the classified classes can be identified by using a pattern such as a blank or a line. However, it is preferable that the classes can be identified by the difference in color or the shade of color. By making such a display, it is possible to easily grasp the suitability of the vulcanizing compound As as dispersed just by looking at the monitor 3a.

上述した内容は、一次ゴム材料R1に対しても同様に適用することができる。即ち、一次ゴム材料R1の誘電率を検出し、この誘電率に基づいて演算処理をすることで、一次ゴム材料R1の非加硫系配合剤Acの配合割合および配合割合の適否を迅速に判断できる。また、一次ゴム材料R1における非加硫系配合剤Acの分散具合の適否を、最終ゴム材料R2の場合と同様に把握することが可能になる。   The above-described contents can be similarly applied to the primary rubber material R1. That is, by detecting the dielectric constant of the primary rubber material R1 and performing arithmetic processing based on this dielectric constant, it is possible to quickly determine whether or not the blending ratio and blending ratio of the non-vulcanized compounding agent Ac of the primary rubber material R1 are appropriate. it can. Moreover, it becomes possible to grasp the suitability of the dispersion of the non-vulcanizing compounding agent Ac in the primary rubber material R1 as in the case of the final rubber material R2.

1 検査システム
2 誘電率測定器
3 演算装置
3a モニタ
4 押出機
4a シリンダ
4b 材料投入口
4c 押出口
4d ホッパ
5 配合剤供給部
R 未加硫ゴム材料
R1 一次ゴム材料
R2 最終ゴム材料
M 未加硫ゴム
A 配合剤
Ac 非加硫系配合剤
As 加硫系配合剤
C1 配合基準範囲
C2 分散基準範囲
DESCRIPTION OF SYMBOLS 1 Inspection system 2 Permittivity measuring device 3 Arithmetic unit 3a Monitor 4 Extruder 4a Cylinder 4b Material inlet 4c Extrusion port 4d Hopper 5 Compounding agent supply part R Unvulcanized rubber material R1 Primary rubber material R2 Final rubber material M Unvulcanized Rubber A Compounding agent Ac Non-vulcanizing compounding agent As Vulcanizing compounding agent C1 Compounding standard range C2 Dispersion standard range

Claims (8)

未加硫ゴムに所定種類の配合剤が混合された未加硫ゴム材料の誘電率に基づいて前記未加硫ゴム材料における前記配合剤の配合割合を演算装置により算出し、算出した前記配合割合が予め設定されている配合基準範囲の範囲内か範囲外かを前記演算装置により判断することを特徴とする未加硫ゴム材料の品質検査方法。   Based on the dielectric constant of the unvulcanized rubber material in which a predetermined type of compounding agent is mixed with unvulcanized rubber, the compounding ratio of the compounding agent in the unvulcanized rubber material is calculated by an arithmetic unit, and the calculated compounding ratio A method for inspecting the quality of an unvulcanized rubber material, characterized in that it is determined by the arithmetic unit whether or not is within a pre-set compounding reference range. 前記未加硫ゴム材料を平面視で多数の区画に区分して、前記区画毎に前記誘電率を検出し、検出したそれぞれの区画の前記誘電率のばらつきの大きさに基づいて前記演算装置により、前記未加硫ゴム材料における前記配合剤の分散程度を算出し、算出した前記分散程度が予め設定されている分散基準範囲の範囲内か範囲外かを判断する請求項1に記載の未加硫ゴム材料の品質検査方法。   The unvulcanized rubber material is divided into a number of sections in a plan view, the dielectric constant is detected for each section, and the arithmetic unit determines the variation in the dielectric constant of each detected section. The degree of dispersion of the compounding agent in the unvulcanized rubber material is calculated, and it is determined whether the calculated degree of dispersion is within or outside a preset dispersion reference range. Quality inspection method for vulcanized rubber materials. それぞれの前記区画の前記誘電率の大きさに応じてそれぞれの前記区画を前記演算装置により複数階級に区分けし、それぞれの前記区画を、区分けされた前記階級を識別可能にしてモニタに表示する請求項2に記載の未加硫ゴム材料の品質検査方法。   Each of the sections is divided into a plurality of classes by the arithmetic unit according to the dielectric constant of each of the sections, and each of the sections is displayed on a monitor so that the classified classes can be identified. Item 3. A quality inspection method for an unvulcanized rubber material according to Item 2. 前記配合剤が、カーボンブラック、シリカ、加硫活性剤、加硫促進助剤または硫黄の少なくとも1つである請求項1〜3のいずれかに記載の未加硫ゴム材料の品質検査方法。   The method for quality inspection of an unvulcanized rubber material according to any one of claims 1 to 3, wherein the compounding agent is at least one of carbon black, silica, a vulcanization activator, a vulcanization acceleration aid, or sulfur. 未加硫ゴムに所定種類の配合剤が混合された未加硫ゴム材料の誘電率を検出する誘電率測定器と、前記誘電率測定器により検出された前記誘電率が入力される演算装置とを有し、前記誘電率に基づいて前記演算装置により前記未加硫ゴム材料における前記配合剤の配合割合が算出されて、算出された前記配合割合が前記演算装置に入力されている配合基準範囲の範囲内か範囲外かが判断される構成にしたことを特徴とする未加硫ゴム材料の品質検査システム。   A dielectric constant measuring device for detecting a dielectric constant of an unvulcanized rubber material in which a predetermined type of compounding agent is mixed with unvulcanized rubber; and an arithmetic unit for inputting the dielectric constant detected by the dielectric constant measuring device; The blending ratio of the compounding agent in the unvulcanized rubber material is calculated by the computing device based on the dielectric constant, and the computed blending ratio is input to the computing device. A quality inspection system for unvulcanized rubber material, characterized in that it is determined whether it is within or outside the range. 前記未加硫ゴム材料の平面視で多数に区分された区画毎に前記誘電率が検出され、検出されたそれぞれの区画の前記誘電率のばらつきの大きさに基づいて、前記演算装置により、前記未加硫ゴム材料における前記配合剤の分散程度が算出され、算出された前記分散程度が予め設定されている分散基準範囲の範囲内か範囲外かが判断される構成にした請求項5に記載の未加硫ゴム材料の品質検査システム。   The dielectric constant is detected for each of a plurality of sections divided in plan view of the unvulcanized rubber material, and based on the magnitude of variation in the dielectric constant of each detected section, The degree of dispersion of the compounding agent in the unvulcanized rubber material is calculated, and it is determined whether the calculated degree of dispersion is within or outside a preset dispersion reference range. Quality inspection system for unvulcanized rubber materials. 前記演算装置に無線または有線により接続されたモニタを有し、それぞれの前記区画の前記誘電率の大きさに応じてそれぞれの前記区画が前記演算装置により複数階級に区分けされて、それぞれの前記区画が、区分けされた前記階級を識別可能にして前記モニタに表示される構成にした請求項6に記載の未加硫ゴム材料の品質検査システム。   A monitor connected to the arithmetic device wirelessly or by wire; each of the sections is divided into a plurality of classes by the arithmetic device in accordance with the dielectric constant of each of the sections; 7. The quality inspection system for an unvulcanized rubber material according to claim 6, wherein the classified class is identifiable and displayed on the monitor. 前記配合剤が、カーボンブラック、シリカ、加硫活性剤、加硫促進助剤または硫黄の少なくとも1つである請求項5〜7のいずれかに記載の未加硫ゴム材料の品質検査システム。   The quality inspection system for an unvulcanized rubber material according to any one of claims 5 to 7, wherein the compounding agent is at least one of carbon black, silica, a vulcanization activator, a vulcanization acceleration aid, or sulfur.
JP2017236178A 2017-12-08 2017-12-08 Quality inspection method and quality inspection system for unvulcanized rubber material Active JP6566014B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017236178A JP6566014B2 (en) 2017-12-08 2017-12-08 Quality inspection method and quality inspection system for unvulcanized rubber material
PCT/JP2018/035774 WO2019111500A1 (en) 2017-12-08 2018-09-26 Method and system for inspecting quality of unvulcanized rubber material, and method and system for manufacturing unvulcanized rubber material
US16/770,934 US11826928B2 (en) 2017-12-08 2018-09-26 Quality inspection method and quality inspection system for unvulcanized rubber material, and production method and production system for unvulcanized rubber material
CN201880078888.7A CN111448451A (en) 2017-12-08 2018-09-26 Quality inspection method and quality inspection system for unvulcanized rubber material, and method and system for producing unvulcanized rubber material
EP18886746.9A EP3722795A4 (en) 2017-12-08 2018-09-26 Method and system for inspecting quality of unvulcanized rubber material, and method and system for manufacturing unvulcanized rubber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017236178A JP6566014B2 (en) 2017-12-08 2017-12-08 Quality inspection method and quality inspection system for unvulcanized rubber material

Publications (2)

Publication Number Publication Date
JP2019105450A JP2019105450A (en) 2019-06-27
JP6566014B2 true JP6566014B2 (en) 2019-08-28

Family

ID=67062666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017236178A Active JP6566014B2 (en) 2017-12-08 2017-12-08 Quality inspection method and quality inspection system for unvulcanized rubber material

Country Status (1)

Country Link
JP (1) JP6566014B2 (en)

Also Published As

Publication number Publication date
JP2019105450A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
CN102083893B (en) Method and device for producing a cross-linkable rubber mixture
KR101136017B1 (en) Extrusion conveying device
JP6566015B2 (en) Method and system for producing unvulcanized rubber material
US9796124B2 (en) Method for determining the quality of non-crosslinked rubber mixtures, and corresponding device
US20210370574A1 (en) Method and device for controlling a production system for planar or strand-shaped bodies
JP6566014B2 (en) Quality inspection method and quality inspection system for unvulcanized rubber material
WO2019111500A1 (en) Method and system for inspecting quality of unvulcanized rubber material, and method and system for manufacturing unvulcanized rubber material
JP2009031099A (en) Method and device for inspecting granular elastomer polymer
JP2017116330A (en) Analysis method of filler structure in polymeric material
US10336138B2 (en) Rubber composition and method for producing same, crosslinked rubber composition, and tire
Leblanc Factors affecting the extrudate swell and melt fracture phenomena of rubber compounds
JP6680892B2 (en) A test method for in situ silanization of light-colored fillers.
JP7035817B2 (en) Rubber material manufacturing method and manufacturing system
JP2023023716A (en) rubber processing method
KR20120017180A (en) Indication apparatus of tire extrudate weight faulty product
JP2022190433A (en) Performance evaluation method for elastic materials
JP2023042145A (en) Kneading method and kneading system for unvulcanized rubber
JP2023023717A (en) rubber mixing method
JP2005001228A (en) Rubber continuous kneading equipment and rubber continuous kneading method
JP7417618B2 (en) In-line ultrasonic checking method for detecting partial vulcanization of rubber mixtures in “in situ” silanization of light-colored fillers
KR200478944Y1 (en) Simulation apparatus for tire tread
JP2006231746A (en) Supply system of vulcanizing type compounding agent
JP2023083914A (en) Device and method for inspecting rubber-coated cord member
JP4609193B2 (en) Rubber material kneading method
JP2005283446A (en) System and method for inspecting vulcanized rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R150 Certificate of patent or registration of utility model

Ref document number: 6566014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250