JP6565426B2 - Multi-tube condensation heat exchanger - Google Patents

Multi-tube condensation heat exchanger Download PDF

Info

Publication number
JP6565426B2
JP6565426B2 JP2015147911A JP2015147911A JP6565426B2 JP 6565426 B2 JP6565426 B2 JP 6565426B2 JP 2015147911 A JP2015147911 A JP 2015147911A JP 2015147911 A JP2015147911 A JP 2015147911A JP 6565426 B2 JP6565426 B2 JP 6565426B2
Authority
JP
Japan
Prior art keywords
tube
pipe
heat exchanger
refrigerant
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015147911A
Other languages
Japanese (ja)
Other versions
JP2017026265A (en
Inventor
壮司 釼菱
壮司 釼菱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2015147911A priority Critical patent/JP6565426B2/en
Publication of JP2017026265A publication Critical patent/JP2017026265A/en
Application granted granted Critical
Publication of JP6565426B2 publication Critical patent/JP6565426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は多重管式凝縮熱交換器に関し、特に内管を形成する多葉管の中心部に弾性体を設けた多重管式凝縮熱交換器に関する。   The present invention relates to a multi-tube condensing heat exchanger, and more particularly to a multi-tube condensing heat exchanger in which an elastic body is provided at the center of a multi-leaf tube forming an inner tube.

従来から、ガス燃焼式熱源機、ヒートポンプ式熱源機、燃料電池発電装置等の熱源機で加熱した湯水を貯湯タンクに貯湯して所望の給湯先に給湯する貯湯給湯装置、前記熱源機で加熱した湯水を利用して暖房端末へ熱を供給する暖房装置、その他の種々の産業分野においては、高温の流体と低温の流体との間で熱交換させる為の種々の熱交換器が幅広く使用されている。   Conventionally, hot water heated by a heat source device such as a gas combustion heat source device, a heat pump heat source device, a fuel cell power generation device, etc. is stored in a hot water storage tank and hot water is supplied to a desired hot water supply destination, and heated by the heat source device. Various heat exchangers for exchanging heat between a high-temperature fluid and a low-temperature fluid are widely used in heating devices that supply hot water to a heating terminal and other various industrial fields. Yes.

特に、2重管式熱交換器は、熱交換性能に優れ且つ製作費の面で有利であるため広く採用されており、最近では内管として管壁が周方向に山部と谷部を繰り返す波形形状をなす多葉管を用い、その多葉管を外管の内部に収納した2重管式熱交換器も採用されている。   In particular, the double-pipe heat exchanger has been widely adopted because it has excellent heat exchange performance and is advantageous in terms of production cost. Recently, the pipe wall as an inner pipe repeats crests and troughs in the circumferential direction. A double tube heat exchanger in which a multi-leaf tube having a corrugated shape is used and the multi-leaf tube is housed inside an outer tube is also employed.

しかし、貯湯給湯装置に用いる2重管式熱交換器において、例えば内管内に冷媒を流し、内管と外管との間の隙間に湯水を流すような場合に、内管に亀裂が発生すると冷媒が漏洩して湯水に混入する虞がある。   However, in a double-pipe heat exchanger used in a hot water storage and hot water supply device, for example, when a coolant flows in the inner pipe and hot water flows in a gap between the inner pipe and the outer pipe, a crack occurs in the inner pipe. There is a risk that the refrigerant leaks and enters the hot water.

そこで、特許文献1に開示された3重管式熱交換器においては、山部と谷部を周方向に交互に繰り返す波形形状の多葉管からなる内管を2重構造とし、この2重多葉管の内管を外管の内部に収納して、内管内を流れる冷媒が、内管と外管との間を流れる湯水に混入するのを防止可能に構成してある。   Therefore, in the triple-pipe heat exchanger disclosed in Patent Document 1, an inner pipe made of a corrugated multi-leaf pipe that alternately repeats crests and troughs in the circumferential direction has a double structure. The inner tube of the multi-leaf tube is housed in the outer tube so that the refrigerant flowing in the inner tube can be prevented from entering the hot water flowing between the inner tube and the outer tube.

また、特許文献2には、内管と外管を有する2重管式熱交換器において、内管の管壁内側に波形チューブで形成した伝熱フィンが接するように配置し、伝熱フィンの内側に内管中心部を閉塞する柱体を設けた構造が開示されている。前記柱体は、耐熱性を有するセラミックやプラスチックで円柱や角柱形状に製造された可塑性体である。   Further, in Patent Document 2, in a double-pipe heat exchanger having an inner tube and an outer tube, a heat transfer fin formed of a corrugated tube is in contact with the inner wall of the inner tube, The structure which provided the pillar which obstruct | occludes an inner pipe | tube center part inside is disclosed. The column body is a plastic body made of a heat-resistant ceramic or plastic in a cylindrical or prismatic shape.

この2重管式熱交換器では、内管の内部に高温ガスを流し、外管と内管の間に冷却水を流すようになっており、高温ガスから内管への伝熱効率を高めるべく、内管内に伝熱フィンが設けられている。内管から冷却水への伝熱面積は内管の外周面のみであるから、熱交換性能が大きく改善されるものではない。   In this double pipe heat exchanger, high temperature gas is allowed to flow inside the inner pipe, and cooling water is allowed to flow between the outer pipe and the inner pipe, in order to increase the heat transfer efficiency from the high temperature gas to the inner pipe. The heat transfer fin is provided in the inner tube. Since the heat transfer area from the inner pipe to the cooling water is only the outer peripheral surface of the inner pipe, the heat exchange performance is not greatly improved.

特開2015−010757号公報Japanese Patent Laying-Open No. 2015-010757 特開平11−183062号公報Japanese Patent Laid-Open No. 11-183062

特許文献1に記載の3重管式熱交換器では、内管を形成する多葉管の中心部を流れる冷媒は、内管と外管の間を流れる湯水と熱交換されにくいため、熱交換性能が低くなり、また冷媒の充填量が多くなる。   In the triple-pipe heat exchanger described in Patent Document 1, the refrigerant flowing through the central portion of the multi-leaf tube forming the inner tube is not easily exchanged with hot water flowing between the inner tube and the outer tube. The performance is lowered and the charging amount of the refrigerant is increased.

本発明の目的は、内管を形成する多葉管の中心部に弾性体を設け、内管の中心部に冷媒が流通しないように閉塞した多重管式凝縮熱交換器を提供することである。   An object of the present invention is to provide a multi-tube condensing heat exchanger in which an elastic body is provided in the central portion of a multi-leaf tube forming an inner tube and closed so that no refrigerant flows through the central portion of the inner tube. .

請求項1の多重管式凝縮熱交換器は、内管と、この内管を内部に収納した外管とを備え、前記内管の内部を流れる冷媒と前記内管と外管との間を流れる給湯湯水との間で熱交換可能に構成された多重管式凝縮熱交換器であって、前記内管が多葉管形状に形成された多重管式凝縮熱交換器において、前記内管を形成する多葉管の中心部に弾性体を設け、前記中心部に冷媒が流通しないように前記弾性体で閉塞し、前記弾性体は、冷媒が気液混合状態又は液体状態で流れる前記熱交換器の冷媒の流通方向の後半部分に設けられたことを特徴としている。 The multi-tube condensing heat exchanger according to claim 1 includes an inner tube and an outer tube in which the inner tube is housed, and a refrigerant flowing inside the inner tube is interposed between the inner tube and the outer tube. A multi-tube condensation heat exchanger configured to be capable of exchanging heat with flowing hot and cold hot water, wherein the inner tube has a multi-leaf tube shape, and the inner tube is An elastic body is provided in the central portion of the multi-leaf tube to be formed, and the elastic body is blocked by the elastic body so that the refrigerant does not flow through the central portion, and the elastic body is configured to perform the heat exchange in which the refrigerant flows in a gas-liquid mixed state or a liquid state It is characterized in that it is provided in the latter half of the flow direction of the refrigerant in the vessel .

請求項1の発明によれば、内管と、この内管を内部に収納した外管とを備え、前記内管の内部を流れる冷媒と前記内管と外管との間を流れる給湯湯水との間で熱交換可能に構成され、前記内管が多葉管形状に形成された多重管式凝縮熱交換器であり、前記内管を形成する多葉管の中心部に弾性体を設け、前記中心部に冷媒が流通しないように前記弾性体で閉塞したので、内管の中心部に冷媒が流通するのを防止し、熱交換性能を高め、冷媒の充填量を節減することができる。   According to the first aspect of the present invention, there is provided an inner pipe and an outer pipe containing the inner pipe therein, a refrigerant flowing inside the inner pipe, hot water and hot water flowing between the inner pipe and the outer pipe, It is a multi-tube type condensation heat exchanger that is configured so that heat can be exchanged between, and the inner tube is formed in a multi-leaf tube shape, and an elastic body is provided at the center of the multi-leaf tube that forms the inner tube, Since the elastic body blocks the refrigerant so that the refrigerant does not flow through the central portion, the refrigerant can be prevented from flowing through the central portion of the inner tube, heat exchange performance can be improved, and the amount of refrigerant charged can be reduced.

そして、前記弾性体は、冷媒が気液混合状態又は液体状態で流れる前記熱交換器の冷媒の流通方向の後半部分に設けられているため、多葉管の中心部に冷媒が流通するのを防止する弾性体の使用量を節減し、効率的に必要な冷媒量を削減することができる。 And since the said elastic body is provided in the latter half part of the distribution direction of the refrigerant | coolant of the said heat exchanger with which a refrigerant | coolant flows in a gas-liquid mixed state or a liquid state, a refrigerant | coolant distribute | circulates to the center part of a multileaf tube. The amount of the elastic body to be prevented can be saved, and the necessary amount of refrigerant can be efficiently reduced.

本発明の実施例に係る3重管式熱交換器と上部保温材と下部保温材の分解斜視図である。1 is an exploded perspective view of a triple tube heat exchanger, an upper heat insulating material, and a lower heat insulating material according to an embodiment of the present invention. 図1の3重管式熱交換器の断面図である。It is sectional drawing of the triple tube | pipe type heat exchanger of FIG. 図1の3重管式熱交換器の断面図である。It is sectional drawing of the triple tube | pipe type heat exchanger of FIG. 内管を形成する2重多葉管の部分斜視図である。It is a fragmentary perspective view of the double multileaf tube which forms an inner tube.

以下、本発明を実施するための形態について実施例に基づいて説明する。   Hereinafter, modes for carrying out the present invention will be described based on examples.

本発明の3重管式熱交換器1の全体構造について説明する。
図1〜図4に示すように、3重管式熱交換器1(これが多重管式凝縮熱交換器に相当する)は、内管2と漏洩検知管3と外管4とを備え、内管2の内部に内側流体通路5、漏洩検知管3と外管4の間に外側流体通路6を有し、内側流体通路5を流れる冷媒と外側流体通路6を流れる湯水との間で熱交換を行うように構成されている。
The overall structure of the triple pipe heat exchanger 1 of the present invention will be described.
As shown in FIGS. 1 to 4, the triple tube heat exchanger 1 (which corresponds to a multiple tube condensation heat exchanger) includes an inner tube 2, a leak detection tube 3, and an outer tube 4. The pipe 2 has an inner fluid passage 5, and an outer fluid passage 6 between the leak detection pipe 3 and the outer pipe 4. Heat exchange is performed between the refrigerant flowing in the inner fluid passage 5 and hot water flowing in the outer fluid passage 6. Is configured to do.

図1に示すように、3重管式熱交換器1は、全体が矩形形状の渦巻状に構成され、平面視にて略矩形形状の複数のループ管7を有する。複数のループ管7は、上下方向に2層に且つ各層が複数巻(三重巻)になるように配置されている。各層に配置された3つのループ管7は、内側から外側に向かって徐々に大型化するようなサイズに構成されている。
3重管式熱交換器1は、発泡ポリプロピレン、発泡ポリスチレン等の樹脂を発泡成形した上下に2分割された上部保温材8と下部保温材9で覆われている。
As shown in FIG. 1, the triple-pipe heat exchanger 1 is configured in a rectangular spiral shape as a whole and includes a plurality of loop tubes 7 having a substantially rectangular shape in plan view. The plurality of loop tubes 7 are arranged in two layers in the vertical direction so that each layer has a plurality of turns (triple turns). The three loop tubes 7 arranged in each layer are configured to have a size that gradually increases from the inside toward the outside.
The triple-pipe heat exchanger 1 is covered with an upper heat insulating material 8 and a lower heat insulating material 9 which are divided into upper and lower parts obtained by foaming a resin such as expanded polypropylene and expanded polystyrene.

3重管式熱交換器1の両端部には、加熱前の湯水が導入され且つ低温の冷媒が導出される分岐部10と、加熱された湯水が導出され且つ高温の冷媒が導入される分岐部11とが形成されている。分岐部11の近傍においては内管2に冷媒通路13aが接続され、外管4に循環用配管4bが接続され、分岐部10の近傍においては内管2に冷媒通路13bが接続され、外管4に循環用配管4aが接続されている。3重管式熱交換器1は全体として水平姿勢となるように配設され、分岐部10よりも分岐部11の方が上方となるように配設されている。   At both ends of the triple-pipe heat exchanger 1, a branch part 10 into which hot water before heating is introduced and a low-temperature refrigerant is led out, and a branch from which heated hot water is led out and a high-temperature refrigerant is introduced. Part 11 is formed. A refrigerant passage 13a is connected to the inner tube 2 in the vicinity of the branch portion 11, a circulation pipe 4b is connected to the outer tube 4, and a refrigerant passage 13b is connected to the inner tube 2 in the vicinity of the branch portion 10. 4 is connected to a circulation pipe 4a. The triple-pipe heat exchanger 1 is disposed so as to have a horizontal posture as a whole, and is disposed such that the branching portion 11 is located above the branching portion 10.

次に、3重管式熱交換器1の内部構造について図2〜図4に基づいて説明する。
この3重管式熱交換器1は、内管2と漏洩検知管3と外管4とを備え、内管2と漏洩検知管3と外管4は、例えばリン脱酸銅製の円形断面の水道用銅管又はこれと同等品からなる所定の長さの素材管を用いて製作される。素材管の管壁の厚さは例えば0.6〜1.0mmで、3重管式熱交換器の外径は例えば16〜20mmである。但し、これらの数値は例示でありこれらに限定されるものではない。
Next, the internal structure of the triple-pipe heat exchanger 1 will be described with reference to FIGS.
The triple pipe heat exchanger 1 includes an inner pipe 2, a leak detection pipe 3, and an outer pipe 4, and the inner pipe 2, the leak detection pipe 3 and the outer pipe 4 have a circular cross section made of, for example, phosphorous deoxidized copper. It is manufactured using a material pipe of a predetermined length made of a copper pipe for water supply or an equivalent product thereof. The thickness of the tube wall of the material pipe is, for example, 0.6 to 1.0 mm, and the outer diameter of the triple pipe heat exchanger is, for example, 16 to 20 mm. However, these numerical values are illustrative and are not limited thereto.

図2に示すとおり、内管2は、管壁が周方向に山部2aと谷部2bが繰り返す波形形状をなす多葉管に構成されている。漏洩検知管3は、内管2とほぼ同形状の多葉管からなり、内管2に外嵌させて内管2の外周面近傍部に配置されている。外管4の内部に内管2と漏洩検知管3とが収納されている。   As shown in FIG. 2, the inner tube 2 is configured as a multi-leaf tube having a corrugated shape in which the tube wall repeats a crest 2 a and a trough 2 b in the circumferential direction. The leak detection tube 3 is a multi-leaf tube having substantially the same shape as the inner tube 2, and is fitted on the inner tube 2 and arranged in the vicinity of the outer peripheral surface of the inner tube 2. An inner tube 2 and a leak detection tube 3 are housed inside the outer tube 4.

内管2の内部の内側流体通路5は、4つの谷部2bで囲まれた流体通路5aと4つの山部2a内側の流体通路5bとから形成され、漏洩検知管3と外管4との間の外側流体通路6は、ほぼ三角形断面の4つの流体通路6aから形成される。   The inner fluid passage 5 inside the inner pipe 2 is formed of a fluid passage 5a surrounded by four valleys 2b and four fluid passages 5b inside the crests 2a. The outer fluid passage 6 therebetween is formed by four fluid passages 6a having a substantially triangular cross section.

内管2の中心部の流体通路5aには弾性体15が設けられ、流体通路5aに冷媒が流通しないよう、流体通路5a内が弾性体15で閉塞されている。なお、弾性体15は、シリコンゴム等の耐熱性のある弾性体で構成される。   An elastic body 15 is provided in the fluid passage 5a at the center of the inner pipe 2, and the fluid passage 5a is closed by the elastic body 15 so that no refrigerant flows through the fluid passage 5a. The elastic body 15 is composed of a heat-resistant elastic body such as silicon rubber.

ここで、後述するように、2重多葉管12を製作する際、内管2の素材管を漏洩検知管3の素材管に挿入した2重管の円形の断面形状から、例えば4葉状の断面形状に絞り加工されて、内管2の中心部の流体通路5aが形成される。このため、流体通路5aの断面形状が一定形状に仕上がるとは限らず、弾性体15を採用することにより流体通路5a内を閉塞状態にすることができる。   Here, as will be described later, when the double multi-leaf tube 12 is manufactured, from the circular cross-sectional shape of the double tube in which the material tube of the inner tube 2 is inserted into the material tube of the leak detection tube 3, for example, a four-leaf shape is formed. By drawing into a cross-sectional shape, a fluid passage 5a at the center of the inner tube 2 is formed. For this reason, the cross-sectional shape of the fluid passage 5a is not necessarily finished in a constant shape, and the fluid passage 5a can be closed by adopting the elastic body 15.

内管2を形成する多葉管は、軸心直交断面において山部2aと谷部2bとを接続する直線部2cを有し、漏洩検知管3を形成する多葉管は、軸心直交断面において山部3aと谷部3bとを接続する直線部3cを有し、内管2の直線部2cと、それに対向する漏洩検知管3の直線部3cとが面接触状に密着している。   The multi-leaf tube forming the inner tube 2 has a straight portion 2c that connects the peak portion 2a and the valley portion 2b in the axial orthogonal cross section, and the multi-leaf tube forming the leak detection tube 3 is the axial orthogonal cross section. , The straight portion 3c that connects the peak portion 3a and the trough portion 3b, and the straight portion 2c of the inner tube 2 and the straight portion 3c of the leak detection tube 3 that opposes the straight portion 3c are in close contact with each other.

尚、直線部2c,3cは螺旋状に捩じられた帯板状管壁であり、このように、帯板状管壁2c,3cが密着しているため、内側流体通路5内を流れる冷媒と、外側流体通路6内を流れる湯水との間の熱交換性能が高くなる。しかも、内管2と漏洩検知管3の一体性が高まるため、剛性を確保する上で有利である。尚、山部2aとそれに連なる1対の直線部2cは、開角が約45°の扇形に形成されており、漏洩検知管3についても同様である。   The straight portions 2c and 3c are strip-like tube walls twisted in a spiral shape, and the belt-like tube walls 2c and 3c are in close contact with each other. And the heat exchange performance between the hot water flowing in the outer fluid passage 6 is enhanced. In addition, since the integrity of the inner tube 2 and the leak detection tube 3 is increased, it is advantageous in securing rigidity. The peak portion 2a and a pair of linear portions 2c connected to the peak portion 2a are formed in a fan shape with an opening angle of about 45 °, and the same applies to the leak detection tube 3.

内管2の山部2aの大部分は漏洩検知管3の山部3aの内面に面接触状に密着すると共に、漏洩検知管3の山部3aの大部分が外管4の内面に面接触状に密着している。そのため、3重管式熱交換器1の全体の剛性を高めることができる上、内側流体通路5内を流れる冷媒と外側流体通路6内を流れる湯水との間の熱交換性能も高くなる。   Most of the crest 2a of the inner tube 2 is in surface contact with the inner surface of the crest 3a of the leak detection tube 3, and most of the crest 3a of the leak detection tube 3 is in surface contact with the inner surface of the outer tube 4. It is closely attached to the shape. Therefore, the overall rigidity of the triple pipe heat exchanger 1 can be increased, and the heat exchange performance between the refrigerant flowing in the inner fluid passage 5 and the hot water flowing in the outer fluid passage 6 is also improved.

図4は、外管4の内部に挿入される内管2と漏洩検知管3とからなる2重多葉管12を示している。2重多葉管12を製作する際、内管2の素材管の内側に例えば円柱状の弾性体15を挿入し、この内管2の素材管を漏洩検知管3の素材管に挿入した状態の2重管を例えば4葉状に加工することで、中心部に弾性体15を設けた2重多葉管12が製作される。この2重多葉管12を外管4の素材管に挿入した状態で、少なくとも外管4を縮径加工することで3重管式熱交換器1を製作する。尚、2重多葉管12と外管4の両方を縮径加工してもよい。   FIG. 4 shows a double multi-leaf tube 12 composed of an inner tube 2 and a leak detection tube 3 inserted into the outer tube 4. When manufacturing the double multi-leaf tube 12, for example, a cylindrical elastic body 15 is inserted inside the material tube of the inner tube 2, and the material tube of the inner tube 2 is inserted into the material tube of the leak detection tube 3. This double tube is processed into a four-leaf shape, for example, so that a double multi-leaf tube 12 provided with an elastic body 15 at the center is manufactured. In a state where the double multi-leaf tube 12 is inserted into the material tube of the outer tube 4, at least the outer tube 4 is reduced in diameter to manufacture the triple tube heat exchanger 1. Note that both the double multi-leaf tube 12 and the outer tube 4 may be reduced in diameter.

この2重多葉管12は、図4に示すように、所定のリード角をもって螺旋状に捩じった形状に構成されている。前記所定のリード角は、軸心方向に例えば300〜500mm移行する毎に1回転するような角度である。上記の捩じりを付加してあるため、3重管式熱交換器1をコイル状に巻回した構造の熱交換器に構成する際に巻回しやすくなる上、3重管式熱交換器1内を流れる流体に対する攪拌作用が得られる。但し、上記の捩じりは必須のものではなく省略してもよい。   As shown in FIG. 4, the double multi-leaf tube 12 is configured in a spirally twisted shape with a predetermined lead angle. The predetermined lead angle is an angle that makes one rotation for every 300 to 500 mm in the axial direction, for example. Since the above twist is added, it becomes easy to wind the triple tube heat exchanger 1 when it is configured as a heat exchanger having a coil structure, and the triple tube heat exchanger A stirring action can be obtained with respect to the fluid flowing through the inside of the tank. However, the above twisting is not essential and may be omitted.

弾性体15は、冷媒が気液混合状態又は液体状態で流れる3重管式熱交換器1の冷媒の流通方向の後半部分に設けられている。
ここで、冷媒は、内側流体通路5内を冷媒通路13a側から流入して、冷媒通路13b側から流出されるため、ループ管7内を反時計回りで流れる。一方、湯水は、外側流体通路6内を循環用配管4a側から流入して、循環用配管4b側から流出されるため、ループ管7内を冷媒とは対向流の時計回りで流れる。
The elastic body 15 is provided in the latter half of the refrigerant flow direction of the triple pipe heat exchanger 1 in which the refrigerant flows in a gas-liquid mixed state or a liquid state.
Here, since the refrigerant flows into the inner fluid passage 5 from the refrigerant passage 13a side and flows out from the refrigerant passage 13b side, the refrigerant flows in the loop pipe 7 counterclockwise. On the other hand, since the hot water flows in the outer fluid passage 6 from the circulation pipe 4a side and flows out from the circulation pipe 4b side, the hot water flows in the loop pipe 7 in the counterclockwise direction of the refrigerant.

3重管式熱交換器1で利用される冷媒としては、主にプロパンガスが使用され、内側流体通路5内を冷媒通路13a側から流入された冷媒は気体状態であるが、外側流体通路6内を対向流で流通する湯水との間で熱交換されて、冷媒通路13b側から流出される際は液体状態となっている。   As the refrigerant used in the triple pipe heat exchanger 1, propane gas is mainly used, and the refrigerant that has flowed into the inner fluid passage 5 from the refrigerant passage 13a side is in a gaseous state, but the outer fluid passage 6 When heat is exchanged with the hot water flowing in the counterflow in the interior and the refrigerant flows out from the refrigerant passage 13b side, it is in a liquid state.

従って、冷媒の流通方向の後半部分とは、上下に2層に配置された複数のループ管7の内、下層に配置された複数のループ管7を指し、この下層の複数のループ菅の内部にのみ弾性体15が設けられている。但し、3重管式熱交換器1の後半部分だけでなく、前半部分にも弾性体15が設けてもよい。   Accordingly, the latter half of the refrigerant flow direction refers to a plurality of loop pipes 7 arranged in a lower layer among a plurality of loop pipes 7 arranged in two layers above and below, Only the elastic body 15 is provided. However, the elastic body 15 may be provided not only in the latter half portion of the triple pipe heat exchanger 1 but also in the first half portion.

次に、上記の3重管式熱交換器1の作用、効果について説明する。
この3重管式熱交換器1は、内管2及び漏洩検知管3が多葉管形状に形成され、2重多葉管12の中心部である内側流体通路5aに弾性体15を設け、内側流体通路5aに冷媒が流通しないように弾性体15で閉塞したので、内側流体通路5aに冷媒が流通するのを防止し、熱交換性能を高め、冷媒の充填量を節減することができる。
Next, the operation and effect of the triple pipe heat exchanger 1 will be described.
In this triple tube heat exchanger 1, the inner tube 2 and the leak detection tube 3 are formed in a multi-leaf tube shape, and an elastic body 15 is provided in the inner fluid passage 5a which is the center of the double multi-leaf tube 12, Since the elastic body 15 blocks the refrigerant so that the refrigerant does not flow through the inner fluid passage 5a, the refrigerant can be prevented from flowing through the inner fluid passage 5a, heat exchange performance can be improved, and the amount of refrigerant charged can be reduced.

弾性体15は、冷媒が気液混合状態又は液体状態で流れる3重管式熱交換器1の冷媒の流通方向の後半部分に設けられているため、2重多葉管12の中心部に冷媒が流通するのを防止する弾性体15の使用量を節減し、効率的に必要な冷媒量を削減することができる。   The elastic body 15 is provided in the second half of the refrigerant flow direction of the triple tube heat exchanger 1 in which the refrigerant flows in a gas-liquid mixed state or in a liquid state. It is possible to reduce the amount of the elastic body 15 used to prevent the refrigerant from circulating and efficiently reduce the necessary amount of refrigerant.

尚、3重管式熱交換器1の冷媒の流通方向の前半部分においては、冷媒がガス状態になっていて、内管を形成する多葉管の中心部に存在する冷媒の量は少量であるから、そこに弾性体を設けても冷媒の充填量を節減する効果に乏しいため、弾性体15を3重管式熱交換器1の冷媒の流通方向の後半部分に設けている。   Note that in the first half of the refrigerant flow direction of the triple-pipe heat exchanger 1, the refrigerant is in a gas state, and the amount of refrigerant present in the central portion of the multi-leaf tube forming the inner tube is small. Therefore, even if an elastic body is provided there, the effect of reducing the charging amount of the refrigerant is poor, and therefore the elastic body 15 is provided in the latter half portion of the triple-pipe heat exchanger 1 in the refrigerant flow direction.

次に、前記実施例を部分的に変更する例について説明する。
1)内管2と漏洩検知管3からなる2重多葉管12における、山部2a,3aの数と谷部2b,3bの数は、4に限らず、3又は5以上としてもよい。
Next, an example in which the above embodiment is partially changed will be described.
1) The number of peak portions 2a, 3a and the number of valley portions 2b, 3b in the double multi-leaf tube 12 including the inner tube 2 and the leakage detection tube 3 are not limited to four, and may be three or five or more.

2)内管2と漏洩検知管3と外管4の素材管の金属材料は、リン脱酸銅に限るものではなく、その他の種々の銅材料でもよく、銅以外の金属(例えば、アルミニウムやその合金、真鍮、マグネシウム合金、チタンなど)であってもよい。内管2と漏洩検知管3と外管4を同種の金属材料の素材管から製作するとは限らず、異なる種類の金属材料の素材管から製作してもよい。また、内管2の管壁の厚さと漏洩検知管3の管壁の厚さは同じでもよく、異なっていてもよい。   2) The metal material of the material tube of the inner tube 2, the leak detection tube 3 and the outer tube 4 is not limited to phosphorous deoxidized copper, but may be other various copper materials, and may be a metal other than copper (for example, aluminum or The alloy, brass, magnesium alloy, titanium, etc.) may be used. The inner tube 2, the leak detection tube 3, and the outer tube 4 are not necessarily manufactured from a material tube of the same kind of metal material, but may be manufactured from a material tube of a different kind of metal material. Moreover, the thickness of the tube wall of the inner tube 2 and the thickness of the tube wall of the leak detection tube 3 may be the same or different.

3)3重管式熱交換器1に弾性体15を設けたものを例に説明したが、内管2と外管4のみで構成される2重管式熱交換器に弾性体を設けて構成することも可能である。
4)前記弾性体の素材は円柱体に限らず、多角形柱体でもよい。また、弾性体の材料としては合成樹脂製発泡体を採用してもよい。
5)その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施することができる。
3) Although the example in which the elastic body 15 is provided in the triple pipe heat exchanger 1 has been described as an example, an elastic body is provided in the double pipe heat exchanger composed only of the inner pipe 2 and the outer pipe 4. It is also possible to configure.
4) The material of the elastic body is not limited to a cylindrical body, but may be a polygonal column. Moreover, you may employ | adopt a synthetic resin foam as a material of an elastic body.
5) In addition, those skilled in the art can implement the present invention in a form in which various modifications are added without departing from the spirit of the present invention.

1 3重管式熱交換器
2 内管
4 外管
12 2重多葉管
15 弾性体
1 Triple tube heat exchanger 2 Inner tube 4 Outer tube 12 Double multi-leaf tube 15 Elastic body

Claims (1)

内管と、この内管を内部に収納した外管とを備え、前記内管の内部を流れる冷媒と前記内管と外管との間を流れる給湯湯水との間で熱交換可能に構成された多重管式凝縮熱交換器であって、前記内管が多葉管形状に形成された多重管式凝縮熱交換器において、
前記内管を形成する多葉管の中心部に弾性体を設け、前記中心部に冷媒が流通しないように前記弾性体で閉塞し
前記弾性体は、冷媒が気液混合状態又は液体状態で流れる前記熱交換器の冷媒の流通方向の後半部分に設けられたことを特徴とする多重管式凝縮熱交換器。
An inner pipe and an outer pipe that accommodates the inner pipe are provided so that heat can be exchanged between the refrigerant flowing inside the inner pipe and hot water and hot water flowing between the inner pipe and the outer pipe. In the multi-tube condensation heat exchanger, the inner tube is formed in a multi-leaf tube shape,
An elastic body is provided at the center of the multi-leaf tube forming the inner tube, and the elastic body is closed so that no refrigerant flows through the center .
The multi-tube condensing heat exchanger is characterized in that the elastic body is provided in a second half portion in a refrigerant flow direction of the heat exchanger in which the refrigerant flows in a gas-liquid mixed state or a liquid state .
JP2015147911A 2015-07-27 2015-07-27 Multi-tube condensation heat exchanger Active JP6565426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015147911A JP6565426B2 (en) 2015-07-27 2015-07-27 Multi-tube condensation heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147911A JP6565426B2 (en) 2015-07-27 2015-07-27 Multi-tube condensation heat exchanger

Publications (2)

Publication Number Publication Date
JP2017026265A JP2017026265A (en) 2017-02-02
JP6565426B2 true JP6565426B2 (en) 2019-08-28

Family

ID=57946471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147911A Active JP6565426B2 (en) 2015-07-27 2015-07-27 Multi-tube condensation heat exchanger

Country Status (1)

Country Link
JP (1) JP6565426B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091864U (en) * 1973-12-20 1975-08-02
JPH0539331Y2 (en) * 1987-01-13 1993-10-05
JP6211313B2 (en) * 2013-06-28 2017-10-11 岩谷マテリアル株式会社 Triple tube heat exchanger
JP6277713B2 (en) * 2013-12-24 2018-02-14 株式会社ノーリツ Double tube heat exchanger

Also Published As

Publication number Publication date
JP2017026265A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
KR20090055604A (en) Corrugated heat exchanger tube for hot water supply
JP2016217669A (en) Double-pipe heat exchanger and heat-pump type water heater
JP6573210B2 (en) Double tube heat exchanger and heat pump heat source machine equipped with the same
JP6211313B2 (en) Triple tube heat exchanger
JP5796222B2 (en) Heat exchanger
JP6565426B2 (en) Multi-tube condensation heat exchanger
JP2009264644A (en) Heat exchanger
JP5157617B2 (en) Heat exchanger
JP2010038429A (en) Heat exchanger
KR20140025201A (en) Heat exchanger
JP2007271194A (en) Heat exchanger
JP2008267631A (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
KR20150092210A (en) Tubing element for a heat exchanger means
JP2013253710A (en) Heat exchanger and heat pump water heater with the same
JP6662019B2 (en) Double tube heat exchanger
JP2010210137A (en) Heat exchanger
JP2020029999A (en) Triple pipe type heat exchanger
JP2017026266A (en) Multi-tubular condensation heat exchanger
JP2008175450A (en) Heat exchanger
KR20130117898A (en) Heat exchange pipe and heat exchanger having the same
JP5858877B2 (en) Heat exchanger
KR20150004531A (en) Heat Exchanger
JP2013204861A (en) Heat exchanger
JP4549228B2 (en) Plate heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R150 Certificate of patent or registration of utility model

Ref document number: 6565426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150