JP6565228B2 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP6565228B2
JP6565228B2 JP2015044677A JP2015044677A JP6565228B2 JP 6565228 B2 JP6565228 B2 JP 6565228B2 JP 2015044677 A JP2015044677 A JP 2015044677A JP 2015044677 A JP2015044677 A JP 2015044677A JP 6565228 B2 JP6565228 B2 JP 6565228B2
Authority
JP
Japan
Prior art keywords
permanent magnet
wall portion
electric motor
magnet
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015044677A
Other languages
Japanese (ja)
Other versions
JP2016165185A (en
Inventor
学 河治
学 河治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2015044677A priority Critical patent/JP6565228B2/en
Publication of JP2016165185A publication Critical patent/JP2016165185A/en
Application granted granted Critical
Publication of JP6565228B2 publication Critical patent/JP6565228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、界磁コイルを有する環状のステータと、ロータヨークの外表面から永久磁石が露出したロータとを備えた表面磁石型の電動モータに関する。   The present invention relates to a surface magnet type electric motor including an annular stator having a field coil and a rotor having a permanent magnet exposed from the outer surface of a rotor yoke.

従来、少ない容積で有効磁束量(ステータとロータとの間の鎖交磁束量)を多く確保できる表面磁石型(SPM: Surface Permanent Magnet)の電動モータが知られている(例えば特許文献1〜2参照)。   2. Description of the Related Art Conventionally, a surface permanent magnet (SPM) electric motor that can secure a large effective magnetic flux amount (linkage magnetic flux amount between a stator and a rotor) with a small volume is known (for example, Patent Documents 1 and 2). reference).

特許文献1の電動モータは、ロータヨークの外表面に複数の永久磁石を接着すると共に、周方向に隣接する永久磁石どうしを非磁性の接着剤で固定している。また、これら永久磁石の外周に筒状の保護材を配置している。   In the electric motor of Patent Document 1, a plurality of permanent magnets are bonded to the outer surface of the rotor yoke, and the permanent magnets adjacent in the circumferential direction are fixed with a nonmagnetic adhesive. Moreover, the cylindrical protective material is arrange | positioned on the outer periphery of these permanent magnets.

特許文献2の電動モータは、外表面からロータの回転軸芯の方向に窪む磁石保持溝をロータヨークに形成し、この磁石保持溝に対して永久磁石を挿入している。この磁石保持溝は、回転軸芯側の底部幅より外周側の上部幅を狭くして、永久磁石を磁石保持溝の形状と同一に形成している。また、永久磁石の外周面とロータヨークの外周面とを面一に構成している。   In the electric motor of Patent Document 2, a magnet holding groove that is recessed from the outer surface in the direction of the rotational axis of the rotor is formed in the rotor yoke, and a permanent magnet is inserted into the magnet holding groove. In the magnet holding groove, the upper width on the outer peripheral side is made narrower than the bottom width on the rotating shaft side, and the permanent magnet is formed in the same shape as the magnet holding groove. Further, the outer peripheral surface of the permanent magnet and the outer peripheral surface of the rotor yoke are configured to be flush with each other.

特開2009−44797号公報JP 2009-44797 A 特開2013−21826号公報JP 2013-21826 A

上述した表面磁石型の電動モータは、ロータの回転に伴う遠心力を受けて永久磁石が脱落するのを防止する技術である。しかしながら、特許文献1に記載の電動モータは、ロータヨークの外表面に永久磁石を接着するので、永久磁石の位置決めが困難である。仮に、永久磁石の周方向の間隔が不均一になった場合、周方向の磁束密度にばらつきが生じて電動モータの制御性が低下してしまう。さらに、周方向に隣接する永久磁石どうしを接着したり、永久磁石の外周に保護材を設置したりするので、組付工数や材料コストの増加を招いてしまう。   The surface magnet type electric motor described above is a technique for preventing the permanent magnet from falling off due to the centrifugal force accompanying the rotation of the rotor. However, in the electric motor described in Patent Document 1, since the permanent magnet is bonded to the outer surface of the rotor yoke, it is difficult to position the permanent magnet. If the circumferential interval between the permanent magnets becomes non-uniform, the circumferential magnetic flux density varies and the controllability of the electric motor is reduced. Furthermore, since permanent magnets adjacent to each other in the circumferential direction are bonded together or a protective material is installed on the outer circumference of the permanent magnet, the number of assembling steps and material costs are increased.

特許文献2に記載の電動モータは、磁石保持溝に永久磁石を挿入するので、永久磁石の位置決めが容易で、組付工数の増加を招くことがない。しかしながら、永久磁石の外周面とロータヨークの外周面とを面一に構成しているので、周方向に隣接する永久磁石の端面において閉じ磁束が発生して有効磁束量が低下する。その結果、所望の回転トルクを得るために永久磁石の大型化を招いてしまう。一方、ネオジム等の高価な希土類が含まれる永久磁石を使用する場合、有効磁束量を増加させて、永久磁石をコンパクトなものにすることが望まれている。   In the electric motor described in Patent Document 2, since the permanent magnet is inserted into the magnet holding groove, the positioning of the permanent magnet is easy, and the assembly man-hour is not increased. However, since the outer peripheral surface of the permanent magnet and the outer peripheral surface of the rotor yoke are configured to be flush with each other, a closed magnetic flux is generated at the end surface of the permanent magnet adjacent in the circumferential direction, and the effective magnetic flux amount is reduced. As a result, the permanent magnet is increased in size to obtain a desired rotational torque. On the other hand, when a permanent magnet containing an expensive rare earth such as neodymium is used, it is desired to make the permanent magnet compact by increasing the amount of effective magnetic flux.

このように、電動モータにあっては、簡便な構成で有効磁束量を増加させることが可能な永久磁石を保持しつつ制御性の高い電動モータが求められている。   As described above, there is a demand for an electric motor with high controllability while holding a permanent magnet capable of increasing the effective magnetic flux with a simple configuration.

本発明に係る電動モータの特徴構成は、界磁コイルを有する環状のステータと、前記ステータの内部空間で回転軸芯を中心に回転し、円筒状の外表面から前記回転軸芯の方向に窪む複数の磁石保持溝を有するロータヨークと、前記磁石保持溝に装着された状態で前記外表面から径外方向に突出して円弧状に形成される外壁部と、前記回転軸芯に向く裏壁部と、前記ロータヨークの周方向における両端部位である一対の側壁部とを有する複数の永久磁石とを備え、前記側壁部は、前記裏壁部の端部から前記径外方向に延出する第一側面と、前記第一側面から前記外壁部の端部に行くに連れて、前記一対の側壁部どうしが接近するように形成される第二側面とを有し、前記磁石保持溝の前記周方向における両端には、前記外表面から前記回転軸芯に向かうほど互いの間隔が広くなり、前記第二側面の一部に当接する一対の当接部が形成され、前記第二側面は、前記当接部に当接する被当接部と、前記当接部に当接せずに前記外面から径外方向に突出する突出部と、を有する点にある。 The characteristic configuration of the electric motor according to the present invention includes an annular stator having a field coil, and a rotating shaft centered in an inner space of the stator, which is recessed from a cylindrical outer surface toward the rotating shaft core. A rotor yoke having a plurality of magnet holding grooves, an outer wall portion projecting radially outward from the outer surface in a state of being mounted in the magnet holding groove, and a back wall portion facing the rotation axis And a plurality of permanent magnets having a pair of side wall portions that are both end portions in the circumferential direction of the rotor yoke, and the side wall portion extends from the end portion of the back wall portion in the radially outward direction. A side surface and a second side surface formed so that the pair of side wall portions approach each other from the first side surface toward the end of the outer wall portion, and the circumferential direction of the magnet holding groove On both ends of the rotating shaft core from the outer surface As the distance from each other increases, the distance between each other increases, and a pair of contact portions that contact a part of the second side surface is formed. The second side surface includes a contacted portion that contacts the contact portion, and the contact in that it has a, a projection projecting radially outward from the outer table surface without contact to the section.

本構成のように永久磁石を磁石保持溝に収容しつつ永久磁石の外壁部を円弧状に形成すれば、各永久磁石の周方向の間隔が均一となるように位置決めが可能となる。また、永久磁石の外壁部をステータの内表面と平行な円弧状とすれば、永久磁石をステータの内周面に対して一様に近接させることが可能となる。このため、本構成の電動モータは、周方向に配置される永久磁石の磁束密度を均一にして制御性を高めつつ、所望の回転トルクが得ることができる。   If the outer wall of the permanent magnet is formed in an arc shape while the permanent magnet is accommodated in the magnet holding groove as in this configuration, positioning can be performed so that the intervals in the circumferential direction of the permanent magnets are uniform. Further, if the outer wall portion of the permanent magnet is formed in an arc shape parallel to the inner surface of the stator, the permanent magnet can be uniformly brought close to the inner peripheral surface of the stator. For this reason, the electric motor of this structure can obtain a desired rotational torque while improving the controllability by making the magnetic flux density of the permanent magnets arranged in the circumferential direction uniform.

また、本構成では、永久磁石の外壁部をロータの外表面から径外方向に突出させているので、周方向に隣接する永久磁石の側壁部どうしの間には、ロータヨークが存在しない部位がある。その結果、特許文献2に記載の電動モータのように、永久磁石の側壁部の磁束がロータヨークを介してループを描くといった不都合を抑制することができる。よって、有効磁束量を増加させて、永久磁石をコンパクトなものとすることができる。   In this configuration, since the outer wall portion of the permanent magnet protrudes radially outward from the outer surface of the rotor, there is a portion where the rotor yoke does not exist between the side wall portions of the permanent magnets adjacent in the circumferential direction. . As a result, the inconvenience that the magnetic flux on the side wall of the permanent magnet draws a loop through the rotor yoke, as in the electric motor described in Patent Document 2, can be suppressed. Therefore, the amount of effective magnetic flux can be increased and the permanent magnet can be made compact.

さらに、本構成では、磁石保持溝の両端に、ロータの外表面から回転軸芯に向かうほど互いの間隔が広くなる一対の当接部を有しており、この当接部を、永久磁石の一対の側壁部どうしが接近するように形成される第二側面の一部に当接させている。つまり、ロータの回転に伴う遠心力を受けた永久磁石は、回転軸芯に向かって幅が広くなる当接部と第二側面とが当接することで、脱落することが防止される。このため、特許文献1に記載の電動モータのように、回転磁石の押さえ部材を別途設ける必要がなく、組付け工数等を低減することができる。   Further, in this configuration, at both ends of the magnet holding groove, there is a pair of abutting portions that increase in distance from each other toward the rotation axis from the outer surface of the rotor. It is made to contact | abut to a part of 2nd side surface formed so that a pair of side wall part may approach. That is, the permanent magnet that has received the centrifugal force accompanying the rotation of the rotor is prevented from falling off due to the contact between the contact portion that becomes wider toward the rotation axis and the second side surface. For this reason, unlike the electric motor described in Patent Document 1, it is not necessary to separately provide a pressing member for the rotating magnet, and the number of assembling steps can be reduced.

よって、簡便な構成で有効磁束量を増加させることが可能な永久磁石を保持しつつ制御性の高い電動モータを提供することができた。   Therefore, it was possible to provide an electric motor with high controllability while holding a permanent magnet that can increase the effective magnetic flux amount with a simple configuration.

他の特徴構成は、前記永久磁石は、前記裏壁部と前記第一側面との角度が90度以上で構成されている点にある。   Another characteristic configuration is that the permanent magnet is configured such that an angle between the back wall portion and the first side surface is 90 degrees or more.

本構成のように、裏壁部と第一側面との角度が90度以上で構成されることで、永久磁石を成形する際のひび割れやカケなどが抑制される。よって、磁石保持溝に対する永久磁石の装着姿勢が安定するので、第二側面と当接部との当接姿勢が適正なものとなり、永久磁石を精度よく保持することができる。   Like this structure, the angle of a back wall part and a 1st side surface is comprised at 90 degree | times or more, and the crack at the time of shape | molding a permanent magnet, a crack, etc. are suppressed. Therefore, since the mounting posture of the permanent magnet with respect to the magnet holding groove is stabilized, the contact posture between the second side surface and the contact portion becomes appropriate, and the permanent magnet can be held with high accuracy.

他の特徴構成は、前記回転軸芯に沿う方向視において、前記永久磁石は、前記周方向の中央の磁束方向に対して、前記側壁部の磁束方向が傾斜している点にある。   Another characteristic configuration is that the magnetic flux direction of the side wall portion of the permanent magnet is inclined with respect to the central magnetic flux direction in the circumferential direction when viewed in the direction along the rotation axis.

本構成のように、永久磁石を着磁する際に側壁部の磁束方向を傾斜させれば、隣接する永久磁石の側壁部どうしを行き来する磁束が、ロータヨークの外周面に沿って滑らかに繋がる。その結果、ロータの回転に伴って永久磁石の極性が急激に切換ることがなく、コギングトルクの発生を抑制して電動モータの円滑な回転を実現することができる。その結果、電動モータの制御性を高めることができる。   If the magnetic flux direction of the side wall portion is inclined when the permanent magnet is magnetized as in this configuration, the magnetic flux that moves back and forth between the side wall portions of the adjacent permanent magnets is smoothly connected along the outer peripheral surface of the rotor yoke. As a result, the polarity of the permanent magnet does not change abruptly with the rotation of the rotor, and the smooth rotation of the electric motor can be realized by suppressing the generation of cogging torque. As a result, the controllability of the electric motor can be improved.

オイルポンプの断面図である。It is sectional drawing of an oil pump. 図1のII−II断面図である。It is II-II sectional drawing of FIG. ロータヨークと永久磁石とを示す断面図である。It is sectional drawing which shows a rotor yoke and a permanent magnet. ロータヨークと永久磁石とを示す拡大断面図である。It is an expanded sectional view showing a rotor yoke and a permanent magnet. 永久磁石の斜視図である。It is a perspective view of a permanent magnet. 磁束集中パターンにおける磁束の流れを示す模式図である。It is a schematic diagram which shows the flow of the magnetic flux in a magnetic flux concentration pattern. 着磁半径に応じた磁束密度とコギングトルクとの関係を示す図である。It is a figure which shows the relationship between the magnetic flux density according to a magnetization radius, and cogging torque. 別実施形態1に係るロータヨークと永久磁石とを示す拡大断面図である。6 is an enlarged cross-sectional view showing a rotor yoke and a permanent magnet according to another embodiment 1. FIG. 別実施形態2に係るロータヨークと永久磁石とを示す拡大断面図である。It is an expanded sectional view showing a rotor yoke and a permanent magnet according to another embodiment 2. 別実施形態3に係るロータヨークと永久磁石とを示す拡大断面図である。It is an expanded sectional view showing a rotor yoke and a permanent magnet according to another embodiment 3.

以下に、本発明に係る電動モータの実施形態について、図面に基づいて説明する。本実施形態では、電動モータMを、ウォータポンプPに使用した一例として説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。   Embodiments of an electric motor according to the present invention will be described below with reference to the drawings. In the present embodiment, the electric motor M will be described as an example used for the water pump P. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the invention.

〔基本構成〕
図1に示すように、電動モータMを収容する樹脂製のモータハウジング1と、インペラ6を収容する樹脂製のポンプハウジング2とを連結し、モータハウジング1に制御ケースCを一体形成してウォータポンプPが構成されている。
[Basic configuration]
As shown in FIG. 1, a resin motor housing 1 that houses an electric motor M and a resin pump housing 2 that houses an impeller 6 are connected, and a control case C is formed integrally with the motor housing 1 to form a water. A pump P is configured.

回転軸芯Xと同軸芯に配置される支持シャフト4の一方の端部をモータハウジング1に支持し、他方の端部をポンプハウジング2に支持しており、この支持シャフト4に外嵌する状態で回転自在に樹脂製の回転シャフト5を支持している。この回転シャフト5の一方の端部側に前記電動モータMのロータ20を備え、回転シャフト5の他方の端部側に複数のインペラ6を一体形成している。   One end of a support shaft 4 arranged coaxially with the rotary shaft core X is supported by the motor housing 1, and the other end is supported by the pump housing 2, and is fitted to the support shaft 4. The resin-made rotating shaft 5 is supported rotatably. The rotor 20 of the electric motor M is provided on one end side of the rotating shaft 5, and a plurality of impellers 6 are integrally formed on the other end side of the rotating shaft 5.

電動モータMは、ブラシレスDCモータとして構成され、制御ケースCに収容された制御基板7に実装される制御素子によりロータ20の回転が制御される。   The electric motor M is configured as a brushless DC motor, and the rotation of the rotor 20 is controlled by a control element mounted on the control board 7 accommodated in the control case C.

本実施形態の電動モータMは、ウォータポンプ以外に、車両のエンジンにおいて潤滑油を供給するオイルポンプの駆動源などに使用可能である。例えば、アイドリングストップ時に弁開閉時期制御装置(VVT)への油圧補助用として使用可能である。また、車両のウインドウの開閉や、ステアリングホイールの駆動源として使用することも可能であり、車両以外に使用しても良い。   The electric motor M of the present embodiment can be used as a drive source for an oil pump that supplies lubricating oil in a vehicle engine in addition to a water pump. For example, it can be used for assisting hydraulic pressure to the valve timing control device (VVT) when idling is stopped. Moreover, it can also be used as an opening / closing of a window of a vehicle or a driving source of a steering wheel, and may be used other than a vehicle.

以下では、電動モータMがブラシレスDCモータとして構成される例を挙げる。しかし、三相交流モータと基本的に共通する構成であるため、三相交流モータとして構成しても良く特に限定されない。   Hereinafter, an example in which the electric motor M is configured as a brushless DC motor will be described. However, since it is basically the same configuration as the three-phase AC motor, it may be configured as a three-phase AC motor and is not particularly limited.

(電動モータ)
図1及び図2に示すように電動モータMは、回転軸芯Xを中心にした環状に構成されるステータ10と、このステータ10の内部空間で回転軸芯Xを中心に回転自在に支持されるロータ20とを備えている。
(Electric motor)
As shown in FIG. 1 and FIG. 2, the electric motor M is supported in an annular shape around the rotation axis X and is rotatably supported around the rotation axis X in the internal space of the stator 10. The rotor 20 is provided.

ステータ10は多数の電磁鋼板を積層して構成され、ステータ10に一体的に形成された9つのティース部11に対してインシュレータ12を介して界磁コイル13を巻回した9スロット型に構成されている。ただし、ティース部11の数は9つに限るものではない。   The stator 10 is configured by laminating a large number of electromagnetic steel plates, and is configured as a 9-slot type in which a field coil 13 is wound via an insulator 12 on nine teeth 11 formed integrally with the stator 10. ing. However, the number of teeth portions 11 is not limited to nine.

ロータ20は、回転シャフト5と一体回転するロータヨーク21と、ロータヨーク21の外周に一部が露出する形態で支持された複数の永久磁石30とを備えることにより全体的に円柱状に構成されている。図2には6つの永久磁石30を備えた6極型を示している。ただし、永久磁石30の数は6つに限るものでない。   The rotor 20 is configured in a generally cylindrical shape by including a rotor yoke 21 that rotates integrally with the rotary shaft 5 and a plurality of permanent magnets 30 that are supported in a manner that a part of the rotor yoke 21 is exposed on the outer periphery of the rotor yoke 21. . FIG. 2 shows a six-pole type having six permanent magnets 30. However, the number of permanent magnets 30 is not limited to six.

図3に示すように、ロータヨーク21は、打ち抜き加工等により成形された多数の磁性鋼板を積層して構成され、このロータヨーク21の外表面には回転軸芯Xの方向に窪む複数の磁石保持溝S(本実施形態では6箇所)が形成されている。この複数の磁石保持溝Sに、夫々、永久磁石30が装着される。   As shown in FIG. 3, the rotor yoke 21 is formed by laminating a number of magnetic steel plates formed by stamping or the like, and a plurality of magnets that are recessed in the direction of the rotation axis X are held on the outer surface of the rotor yoke 21. Grooves S (six locations in the present embodiment) are formed. The permanent magnets 30 are mounted in the plurality of magnet holding grooves S, respectively.

図4に示すように、磁石保持溝Sは、平坦な溝底面Saと、周方向における両端である一対の溝側面Sbとを有している。この溝側面Sbは、溝底面Saから径外方向に鋭角に立ち上がっている。つまり、一対の溝底面Saは、溝底面Saからロータヨーク21の外表面に行くに連れて接近するように傾斜している。その結果、一対の溝側面Sbには、ロータヨーク21の外表面から回転軸芯Xに向かうほど互いの間隔が広くなる(回転軸芯Xに向かって鋭角に屈曲する)一対の当接部Sbaが形成されている。   As shown in FIG. 4, the magnet holding groove S has a flat groove bottom surface Sa and a pair of groove side surfaces Sb that are both ends in the circumferential direction. The groove side surface Sb rises from the groove bottom surface Sa at an acute angle in the radially outward direction. That is, the pair of groove bottom surfaces Sa are inclined so as to approach from the groove bottom surface Sa to the outer surface of the rotor yoke 21. As a result, the pair of groove side surfaces Sb has a pair of contact portions Sba that are spaced apart from each other toward the rotation axis X from the outer surface of the rotor yoke 21 (bent at an acute angle toward the rotation axis X). Is formed.

ロータヨーク21は、多数の磁性鋼板を重ね合わせた状態で回転軸芯Xの方向にカシメ加工を行うために、多数の磁性鋼板の間にダボ状部を形成し、このダボ状部により多数の電磁鋼板の相対位置関係を維持し、夫々の分離を阻止するように構成されている。尚、磁性鋼板の表面は絶縁膜が形成されるため、この絶縁膜として絶縁性の接着剤を用いることで複数の磁性鋼板の位置関係を維持するように構成しても良い。   The rotor yoke 21 is formed with dowel-shaped portions between a large number of magnetic steel plates in order to perform caulking in the direction of the rotation axis X with a large number of magnetic steel plates being stacked. The relative positional relationship of the steel plates is maintained, and the respective separation is prevented. In addition, since an insulating film is formed on the surface of the magnetic steel plate, an insulating adhesive may be used as the insulating film so that the positional relationship between the plurality of magnetic steel plates may be maintained.

永久磁石30は、ネオジム、サマリウムやジスプロシウム等の希土類を含む強力なものが用いられている。この永久磁石30は、図4〜図5に示す形状に成形されるものであるが、磁石の素材を切削により成形しても良く、型を用いて成形しても良い。また、ロータ20を組み立てる工程として、着磁された永久磁石30を磁石保持溝Sに挿入しても良く、磁石保持溝Sに減磁された磁石の素材を挿入した後に着磁を行い、永久磁石30としても良い。尚、以下の説明では、磁石保持溝Sに磁石の素材を挿入した後に着磁を行うものであるが、磁石保持溝Sに挿入する対象を永久磁石30としている。   As the permanent magnet 30, a strong magnet containing a rare earth such as neodymium, samarium or dysprosium is used. The permanent magnet 30 is formed into the shape shown in FIGS. 4 to 5, but the material of the magnet may be formed by cutting or using a mold. Further, as a process of assembling the rotor 20, the magnetized permanent magnet 30 may be inserted into the magnet holding groove S. After inserting the magnet material demagnetized into the magnet holding groove S, the magnet 20 is magnetized to be permanent. The magnet 30 may be used. In the following description, magnetization is performed after a magnet material is inserted into the magnet holding groove S, but the target to be inserted into the magnet holding groove S is the permanent magnet 30.

永久磁石30は、磁石保持溝Sに装着された状態でロータヨーク21の外表面から径外方向に突出して円弧状に形成される外壁部31と、回転軸芯Xに向く平面状の裏壁部32と、ロータヨーク21の周方向(幅方向)における両端部位である一対の側壁部33とを有している。これら外壁部31と側壁部33との接続部や裏壁部32と側壁部33との接続部は、所定の曲率を有する滑らかな形状を呈している。   The permanent magnet 30 is mounted in the magnet holding groove S, protrudes radially outward from the outer surface of the rotor yoke 21 and is formed in an arc shape, and a planar back wall portion facing the rotation axis X 32 and a pair of side wall portions 33 which are both end portions in the circumferential direction (width direction) of the rotor yoke 21. The connection portion between the outer wall portion 31 and the side wall portion 33 and the connection portion between the back wall portion 32 and the side wall portion 33 have a smooth shape having a predetermined curvature.

外壁部31の外面は、図2に示すように、ステータ10の内周面の円弧形状と平行な円弧形状を有している。これにより、永久磁石30をステータ10の内周面に対して一様に近接させることが可能となり、大きな回転トルクを得ることができる。また、図3に示すように、ロータヨーク21の回転軸芯Xと外壁部31の外面との距離(最大半径R1)は、ロータヨーク21の半径R2より大きく構成されている。つまり、周方向に隣接する永久磁石30の側壁部33どうしの間には、ロータヨーク21が存在しない部位がある。このため、永久磁石30の側壁部33を通過する磁束が、ロータヨーク21を介してループを描くといった不都合が抑制され、回転トルクとして機能する有効磁束量を増加させることができる。特に、本実施形態における電動モータMに、後述する磁束集中パターンを併用すれば、図6に示すように、隣接する永久磁石30の側壁部33どうしの磁束が滑らかに繋がることとなり、回転トルクに寄与しない有効磁束量を無くすことができる。   As shown in FIG. 2, the outer surface of the outer wall portion 31 has an arc shape parallel to the arc shape of the inner peripheral surface of the stator 10. Thereby, it becomes possible to make the permanent magnet 30 approach uniformly with respect to the inner peripheral surface of the stator 10, and a large rotational torque can be obtained. As shown in FIG. 3, the distance (maximum radius R <b> 1) between the rotation axis X of the rotor yoke 21 and the outer surface of the outer wall portion 31 is configured to be larger than the radius R <b> 2 of the rotor yoke 21. That is, there is a portion where the rotor yoke 21 does not exist between the side wall portions 33 of the permanent magnets 30 adjacent in the circumferential direction. For this reason, the inconvenience that the magnetic flux passing through the side wall 33 of the permanent magnet 30 draws a loop via the rotor yoke 21 is suppressed, and the amount of effective magnetic flux that functions as rotational torque can be increased. In particular, if a magnetic flux concentration pattern, which will be described later, is used in combination with the electric motor M in the present embodiment, the magnetic fluxes between the side wall portions 33 of the adjacent permanent magnets 30 are smoothly connected as shown in FIG. The amount of effective magnetic flux that does not contribute can be eliminated.

図4〜図5に示すように、永久磁石30の側壁部33は、裏壁部32の端部から径外方向に延出する平面状(断面直線状)の第一側面33aと、第一側面33aから外壁部31の端部に行くに連れて、一対の側壁部33どうしが接近するように形成される平面状(断面直線状)の第二側面33bとで構成されている。この第二側面33bの一部が、磁石保持溝Sの溝側面Sbの当接部Sbaに当接している。本実施形態の永久磁石30は、平面状の側壁部33を有しているので、例えば側壁部33を有しない三日月状の永久磁石30のように、型成形時に焼結される磁石粒子が隅部に流動し難いといった不都合がない。よって、永久磁石30の成形が容易である。   As shown in FIGS. 4 to 5, the side wall portion 33 of the permanent magnet 30 includes a first side surface 33 a having a planar shape (straight cross section) extending radially outward from an end portion of the back wall portion 32, and a first side surface 33 a. The second side surface 33b has a planar shape (linear cross section) formed so that the pair of side wall portions 33 approach each other from the side surface 33a toward the end of the outer wall portion 31. A part of the second side surface 33b is in contact with the contact portion Sba of the groove side surface Sb of the magnet holding groove S. Since the permanent magnet 30 of this embodiment has the planar side wall part 33, the magnet particles sintered at the time of molding are cornered like the crescent-shaped permanent magnet 30 which does not have the side wall part 33, for example. There is no inconvenience that it is difficult to flow. Therefore, the permanent magnet 30 can be easily formed.

また、図4に示すように永久磁石30の第一側面33aと磁石保持溝Sの溝底面Saとの交差角α1を約90度に設定している。このため、永久磁石30を成形する際のひび割れやカケなどが抑制される。よって、磁石保持溝Sに対する永久磁石30の装着姿勢が安定するので、第二側面33bと当接部Sbaとの当接姿勢が適正なものとなり、永久磁石30を精度よく保持することができる。この交差角α1は、磁石保持溝Sの溝側面Sbと溝底面Saとの交差角β(例えば、80度)より大きい。つまり、永久磁石30の第一側面33aとロータヨーク21の磁石保持溝Sの溝側面Sbとは離間している。   Further, as shown in FIG. 4, the crossing angle α1 between the first side surface 33a of the permanent magnet 30 and the groove bottom surface Sa of the magnet holding groove S is set to about 90 degrees. For this reason, cracks, chipping, and the like when molding the permanent magnet 30 are suppressed. Therefore, since the mounting posture of the permanent magnet 30 with respect to the magnet holding groove S is stabilized, the contact posture between the second side surface 33b and the contact portion Sba becomes appropriate, and the permanent magnet 30 can be held with high accuracy. This intersection angle α1 is larger than the intersection angle β (for example, 80 degrees) between the groove side surface Sb and the groove bottom surface Sa of the magnet holding groove S. That is, the first side surface 33 a of the permanent magnet 30 and the groove side surface Sb of the magnet holding groove S of the rotor yoke 21 are separated from each other.

一方、第二側面33bと磁石保持溝Sの溝底面Saとの交差角α2は、磁石保持溝Sの溝側面Sbと溝底面Saとの交差角βとほぼ等しく構成しており、第二側面33bが当接部Sbaに沿って当接している。これによって、永久磁石30がロータ20の回転によって遠心力を受けても、回転軸芯X方向に幅が広くなる当接部Sbaと第二側面33bとが当接することで、永久磁石30が脱落しない。   On the other hand, the crossing angle α2 between the second side surface 33b and the groove bottom surface Sa of the magnet holding groove S is configured to be substantially equal to the crossing angle β between the groove side surface Sb of the magnet holding groove S and the groove bottom surface Sa. 33b is in contact along the contact portion Sba. As a result, even when the permanent magnet 30 receives a centrifugal force due to the rotation of the rotor 20, the contact portion Sba, which is wider in the direction of the rotation axis X, and the second side surface 33b contact each other, so that the permanent magnet 30 falls off. do not do.

(永久磁石の着磁方向)
次に、永久磁石30の着磁方向について説明する。本実施形態における永久磁石30は、図6に示すように、回転軸芯Xに沿う方向視において、周方向の中央の磁束方向に対して側壁部33の磁束方向が傾斜しており、永久磁石30を通過する磁束群が収束点Tに収束するように着磁されている。つまり、一般的に、中央の磁束方向と側壁部33の磁束方向とが平行なパラレルパターンに対して、磁束集中パターンとなっている。
(Permanent magnet magnetization direction)
Next, the magnetization direction of the permanent magnet 30 will be described. As shown in FIG. 6, the permanent magnet 30 according to the present embodiment has a magnetic flux direction of the side wall portion 33 that is inclined with respect to the central magnetic flux direction in the circumferential direction when viewed in the direction along the rotation axis X. The magnetic flux group passing through 30 is magnetized so as to converge at the convergence point T. That is, generally, it is a magnetic flux concentration pattern with respect to a parallel pattern in which the central magnetic flux direction and the magnetic flux direction of the side wall 33 are parallel.

これによって、隣接する永久磁石30の側壁部33どうしを行き来する磁束が、ロータヨーク21の外周に沿って滑らかに繋がっている。その結果、ロータ20の回転に伴って永久磁石30の極性が急激に切換ることがなく、コギングトルクの発生を抑制して電動モータMの円滑な回転を実現することができる。   As a result, the magnetic flux traveling between the side wall portions 33 of the adjacent permanent magnets 30 is smoothly connected along the outer periphery of the rotor yoke 21. As a result, the polarity of the permanent magnet 30 does not change abruptly as the rotor 20 rotates, and the smooth rotation of the electric motor M can be realized while suppressing the generation of cogging torque.

続いて、電動モータMの着磁半径L(図6に示す回転軸芯Xと収束点Tとの距離)の最適化について検証する。本実施形態では、磁束集中パターンにおける着磁半径Lに着目した。これは、着磁半径Lを減少させるほど永久磁石30の側壁部33を通過する磁束が周方向に沿ったものになり、コギングトルクが減少するとの知見に基づいている。一方、着磁半径Lを減少するほど磁束方向が分散するので、永久磁石30を通過する磁束量が減少すると考えられる。そこで、磁束密度の減少度合いを抑制しつつコギングトルクを大幅に減少することのできる着磁半径Lについて検証する。   Subsequently, the optimization of the magnetization radius L of the electric motor M (the distance between the rotational axis X and the convergence point T shown in FIG. 6) will be verified. In this embodiment, attention is paid to the magnetization radius L in the magnetic flux concentration pattern. This is based on the knowledge that as the magnetizing radius L is decreased, the magnetic flux passing through the side wall portion 33 of the permanent magnet 30 is along the circumferential direction, and the cogging torque is decreased. On the other hand, since the magnetic flux direction is dispersed as the magnetization radius L is reduced, it is considered that the amount of magnetic flux passing through the permanent magnet 30 is reduced. Therefore, the magnetization radius L that can significantly reduce the cogging torque while suppressing the decrease degree of the magnetic flux density will be verified.

ここで、図4に示すように、例えば、ロータヨーク21の回転軸芯Xと外壁部31の外面との距離である最大半径R1=22.5mm程度、ロータヨーク21の半径R2=22mm程度、永久磁石30の径方向の最大高さ(最大厚K)=3.5mm程度に設定した。また、永久磁石30の第一側面33aと磁石保持溝Sの溝底面Saとの交差角α1=90度程度、第二側面33bと磁石保持溝Sの溝底面Saとの交差角α2=80度程度、磁石保持溝Sの溝側面Sbと溝底面Saとの交差角β=80度程度に設定した。   Here, as shown in FIG. 4, for example, the maximum radius R1 = 22.5 mm, which is the distance between the rotational axis X of the rotor yoke 21 and the outer surface of the outer wall portion 31, the radius R2 = 22 mm of the rotor yoke 21, and a permanent magnet. The maximum radial height (maximum thickness K) of 30 was set to about 3.5 mm. Further, the intersection angle α1 of the first side surface 33a of the permanent magnet 30 and the groove bottom surface Sa of the magnet holding groove S is about 90 degrees, and the intersection angle α2 of the second side surface 33b and the groove bottom surface Sa of the magnet holding groove S is 80 degrees. The crossing angle β between the groove side surface Sb of the magnet holding groove S and the groove bottom surface Sa was set to about 80 degrees.

図7には、所定の回転角度の範囲内におけるコギングトルクの積分値と磁束密度の積分値とを関係が示される。なお、図中の曲線に記載した数字は、着磁半径Lを示している。   FIG. 7 shows the relationship between the integrated value of the cogging torque and the integrated value of the magnetic flux density within a predetermined rotation angle range. In addition, the number described in the curve in the figure indicates the magnetization radius L.

図7に示すようにコギングトルクが極小値となる変化点が2つ(着磁半径L=23mm程度、36mm程度)存在した。特に、着磁半径L=100mm程度(パラレルパターンに近似)から着磁半径L=36mm程度までの間は、磁束密度がそれほど減少していないにも関わらず、コギングトルクが大幅に減少していることが理解できる。具体的には、着磁半径L=36mm程度の場合は、着磁半径L=100mm程度に比べて、コギングトルクが約54%減少したのに対し、磁束密度の減少を約4%に留めることができた。また、コギングトルクを3割程度減少できる着磁半径Lは、概ね60mmである。一方、着磁半径L=23mm程度の場合は、着磁半径L=100mm程度に比べて、磁束密度が約16%減少したが、コギングトルクをほとんど無くすことができた。   As shown in FIG. 7, there are two change points (magnetization radius L = about 23 mm, about 36 mm) where the cogging torque becomes a minimum value. In particular, between the magnetizing radius L = 100 mm (approximate to the parallel pattern) and the magnetizing radius L = 36 mm, the cogging torque is greatly reduced even though the magnetic flux density is not so much reduced. I understand that. Specifically, when the magnetizing radius L is about 36 mm, the cogging torque is reduced by about 54% compared to the magnetizing radius L = 100 mm, while the decrease in the magnetic flux density is limited to about 4%. I was able to. The magnetization radius L that can reduce the cogging torque by about 30% is approximately 60 mm. On the other hand, when the magnetizing radius L is about 23 mm, the magnetic flux density is reduced by about 16% compared to the magnetizing radius L = about 100 mm, but the cogging torque can be almost eliminated.

ところで、着磁半径Lは、最大半径R1=22.5mm程度より小さくできない。つまり、着磁半径Lの最適下限値は、ロータ20の最大半径R1付近(L/R1=1.0)に設定するのが好ましい。一方、着磁半径Lの最適上限値は、磁束密度を若干減少させてもコギングトルクを大幅に減少することのできる着磁半径L=60mm(L/R1=2.7)付近に設定するのが好ましい。また、大きな回転トルクが要求される表面磁石型の電動モータMとして、より好ましくは、着磁半径L=30〜60mm(L/R1=1.3〜2.7)である。さらに、大きな回転トルクおよび静粛性能が要求される電動モータMとして、より好ましくは、着磁半径L=30〜50mm(L/R1=1.3〜2.2)である。   By the way, the magnetization radius L cannot be smaller than the maximum radius R1 = 22.5 mm. That is, the optimum lower limit value of the magnetizing radius L is preferably set in the vicinity of the maximum radius R1 of the rotor 20 (L / R1 = 1.0). On the other hand, the optimum upper limit value of the magnetizing radius L is set in the vicinity of the magnetizing radius L = 60 mm (L / R1 = 2.7) which can significantly reduce the cogging torque even if the magnetic flux density is slightly reduced. Is preferred. The surface magnet type electric motor M requiring a large rotational torque is more preferably a magnetization radius L = 30 to 60 mm (L / R1 = 1.3 to 2.7). Further, as the electric motor M that requires a large rotational torque and quiet performance, the magnetization radius L is preferably 30 to 50 mm (L / R1 = 1.3 to 2.2).

[別実施形態1]
上述した実施形態では、永久磁石30の第一側面33aと磁石保持溝Sの溝底面Saとの交差角α1を直角に設定したが、図8に示すように、交差角α1を鈍角(90度より大)に設定しても良い。これにより、永久磁石30を成形する際のひび割れやカケなどをより一層抑制することができる。
[Another embodiment 1]
In the embodiment described above, the intersecting angle α1 between the first side surface 33a of the permanent magnet 30 and the groove bottom surface Sa of the magnet holding groove S is set to a right angle. However, as shown in FIG. Larger). Thereby, the crack, chipping, etc. at the time of shaping the permanent magnet 30 can be further suppressed.

[別実施形態2]
また、図9に示すように、第一側面33aをR形状に設定しても良い。この場合、隣接する永久磁石30の第一側面33aとの距離が短縮されるので、第一側面33aを通過した磁束を隣接する永久磁石30の第一側面33aに円滑に受け渡すことができる。
[Another embodiment 2]
Moreover, as shown in FIG. 9, you may set the 1st side surface 33a to R shape. In this case, since the distance to the first side surface 33a of the adjacent permanent magnet 30 is shortened, the magnetic flux that has passed through the first side surface 33a can be smoothly transferred to the first side surface 33a of the adjacent permanent magnet 30.

[別実施形態3]
上述した実施形態では、永久磁石30の裏壁部32を平坦に形成したが、図10に示すように、裏壁部32をR形状に構成しても良い。これにより、永久磁石30の径方向の高さが短縮されるので、高価な永久磁石30の体積がさらに小さくなって材料コストを節約することができる。
[Another embodiment 3]
In the embodiment described above, the back wall portion 32 of the permanent magnet 30 is formed flat, but the back wall portion 32 may be formed in an R shape as shown in FIG. Thereby, since the radial height of the permanent magnet 30 is shortened, the volume of the expensive permanent magnet 30 is further reduced, and the material cost can be saved.

[その他の実施形態]
(1)上述したように電動モータMをウォータポンプPに使用した場合は、防錆性の観点から、ロータヨーク21と永久磁石30とで構成されるロータ20の外周を樹脂で覆うことが好ましい。一方、電動モータMをオイルポンプの駆動源として使用した場合は、永久磁石30がロータ20の回転によって遠心力を受けても、回転軸芯X方向に幅が広くなるロータヨーク21の当接部Sbaと永久磁石30の第二側面33bとが当接して永久磁石30が脱落しないので、ロータ20の外周を樹脂で覆わなくても良い。
(2)上述した実施形態では、永久磁石30の第二側面33bを平面状に形成して磁石保持溝Sの当接部Sbaと当接させる構成としたが、永久磁石30が脱落しない範囲内で、第二側面33bに曲線を設けたり、凹凸を設けたりしても良い。また、永久磁石30の平面状の第一側面33aや第二側面33bの中途部に折れ点を設けても良い。これらによって、第二側面33bと当接部Sbaとの当接面積が減少するので、閉じ磁束をより一層減少させることができる。
[Other Embodiments]
(1) When the electric motor M is used for the water pump P as described above, it is preferable to cover the outer periphery of the rotor 20 composed of the rotor yoke 21 and the permanent magnet 30 with a resin from the viewpoint of rust prevention. On the other hand, when the electric motor M is used as a drive source for the oil pump, even if the permanent magnet 30 receives a centrifugal force due to the rotation of the rotor 20, the contact portion Sba of the rotor yoke 21 that becomes wider in the direction of the rotation axis X. And the second side surface 33b of the permanent magnet 30 come into contact with each other and the permanent magnet 30 does not fall off, so the outer periphery of the rotor 20 does not have to be covered with resin.
(2) In the above-described embodiment, the second side surface 33b of the permanent magnet 30 is formed in a flat shape and is brought into contact with the contact portion Sba of the magnet holding groove S. However, the permanent magnet 30 does not fall off. Thus, the second side surface 33b may be provided with a curve or uneven. Moreover, you may provide a crease | fold point in the middle part of the planar 1st side surface 33a of the permanent magnet 30, or the 2nd side surface 33b. As a result, the contact area between the second side surface 33b and the contact portion Sba is reduced, so that the closing magnetic flux can be further reduced.

本発明は、ロータヨークの外表面から永久磁石が露出した表面磁石型の電動モータに利用可能である。   The present invention is applicable to a surface magnet type electric motor in which a permanent magnet is exposed from the outer surface of a rotor yoke.

10 ステータ
13 界磁コイル
21 ロータヨーク
30 永久磁石
31 外壁部
32 裏壁部
33 側壁部
33a 第一側面
33b 第二側面
S 磁石保持溝
Sb 溝側面(両端)
Sba 当接部
X 回転軸芯
DESCRIPTION OF SYMBOLS 10 Stator 13 Field coil 21 Rotor yoke 30 Permanent magnet 31 Outer wall part 32 Back wall part 33 Side wall part 33a First side surface 33b Second side surface S Magnet holding groove Sb Groove side surface (both ends)
Sba contact part X rotation axis

Claims (3)

界磁コイルを有する環状のステータと、
前記ステータの内部空間で回転軸芯を中心に回転し、円筒状の外表面から前記回転軸芯の方向に窪む複数の磁石保持溝を有するロータヨークと、
前記磁石保持溝に装着された状態で前記外表面から径外方向に突出して円弧状に形成される外壁部と、前記回転軸芯に向く裏壁部と、前記ロータヨークの周方向における両端部位である一対の側壁部とを有する複数の永久磁石とを備え、
前記側壁部は、前記裏壁部の端部から前記径外方向に延出する第一側面と、前記第一側面から前記外壁部の端部に行くに連れて、前記一対の側壁部どうしが接近するように形成される第二側面とを有し、
前記磁石保持溝の前記周方向における両端には、前記外表面から前記回転軸芯に向かうほど互いの間隔が広くなり、前記第二側面の一部に当接する一対の当接部が形成され、
前記第二側面は、前記当接部に当接する被当接部と、前記当接部に当接せずに前記外面から径外方向に突出する突出部と、を有する電動モータ。
An annular stator having field coils;
A rotor yoke having a plurality of magnet holding grooves that rotate around an axis of rotation in the internal space of the stator and that are recessed from a cylindrical outer surface in the direction of the axis of rotation;
An outer wall portion that protrudes radially outward from the outer surface in a state of being mounted in the magnet holding groove, is formed in an arc shape, a back wall portion that faces the rotating shaft core, and both end portions in the circumferential direction of the rotor yoke. A plurality of permanent magnets having a pair of side wall portions,
The side wall portion includes a first side surface extending in the radially outward direction from an end portion of the back wall portion, and the pair of side wall portions as they go from the first side surface to the end portion of the outer wall portion. And a second side formed to approach,
At both ends in the circumferential direction of the magnet holding groove, a distance from each other increases toward the rotating shaft core from the outer surface, and a pair of contact portions that contact a part of the second side surface are formed,
The second aspect is an electric motor having a projection projecting said abutting portion abuts on the abutted portion from the outer table surface radially outside without abutting on the abutting portion.
前記永久磁石は、前記裏壁部と前記第一側面との角度が90度以上で構成されている請求項1に記載の電動モータ。   The electric motor according to claim 1, wherein the permanent magnet has an angle of 90 degrees or more between the back wall portion and the first side surface. 前記回転軸芯に沿う方向視において、前記永久磁石は、前記周方向の中央の磁束方向に対して、前記側壁部の磁束方向が傾斜している請求項1又は2に記載の電動モータ。   The electric motor according to claim 1 or 2, wherein the permanent magnet has a magnetic flux direction of the side wall portion inclined with respect to a magnetic flux direction at a center in the circumferential direction when viewed in a direction along the rotation axis.
JP2015044677A 2015-03-06 2015-03-06 Electric motor Active JP6565228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044677A JP6565228B2 (en) 2015-03-06 2015-03-06 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044677A JP6565228B2 (en) 2015-03-06 2015-03-06 Electric motor

Publications (2)

Publication Number Publication Date
JP2016165185A JP2016165185A (en) 2016-09-08
JP6565228B2 true JP6565228B2 (en) 2019-08-28

Family

ID=56876846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044677A Active JP6565228B2 (en) 2015-03-06 2015-03-06 Electric motor

Country Status (1)

Country Link
JP (1) JP6565228B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210012707A (en) * 2019-07-26 2021-02-03 엘지이노텍 주식회사 Motor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739090A (en) * 1993-07-21 1995-02-07 Toshiba Corp Permanent magnet type motor
JP3500822B2 (en) * 1995-12-26 2004-02-23 アイシン・エィ・ダブリュ株式会社 Permanent magnet synchronous motor
JP3509508B2 (en) * 1997-02-21 2004-03-22 アイシン・エィ・ダブリュ株式会社 Permanent magnet synchronous motor
JP3704010B2 (en) * 1999-12-07 2005-10-05 本田技研工業株式会社 Permanent magnet type motor and permanent magnet fixing method
JP2004328818A (en) * 2003-04-21 2004-11-18 Toyoda Mach Works Ltd Magnet type motor
JP2009124852A (en) * 2007-11-14 2009-06-04 Asmo Co Ltd Rotor for rotary electric machine, and rotary electric machine
JP5228582B2 (en) * 2008-04-04 2013-07-03 三菱電機株式会社 Permanent magnet type rotating electric machine and electric power steering device using the same
JP2010166683A (en) * 2009-01-15 2010-07-29 Fujitsu General Ltd Permanent magnet motor
JP2011019401A (en) * 2010-10-28 2011-01-27 Shin-Etsu Chemical Co Ltd Method of manufacturing permanent magnet segment for permanent magnet rotating machine
JP5616835B2 (en) * 2011-03-29 2014-10-29 カヤバ工業株式会社 Brushless motor

Also Published As

Publication number Publication date
JP2016165185A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP6667084B2 (en) Surface magnet type motor
JP6640621B2 (en) Motor rotor and brushless motor
JP6282795B2 (en) motor
CN108352745B (en) Motor with a stator having a stator core
JP5332082B2 (en) motor
US20130154436A1 (en) Permanent magnet type rotary electric machine and electric power steering apparatus using the same
JP2015050880A (en) Electric motor
JP2005253146A (en) Motor
JP6545393B2 (en) Conscious pole rotor, motor and air conditioner
JP2013102597A (en) Rotor for electric motor and brushless motor
JP2013099038A (en) Rotor for electric motor and brushless motor
JP2004304958A (en) Permanent-magnetic motor
JP2020054211A (en) motor
JP2011109778A (en) Fuel pump
WO2016143184A1 (en) Electric motor and electric motor manufacturing device
JP6565228B2 (en) Electric motor
JP6695241B2 (en) Brushless motor
CN111869052B (en) Motor and brushless wiper motor
JP2012016090A (en) Permanent magnet embedded motor
JP7077153B2 (en) Motors and brushless wiper motors
JP2020010539A (en) Rotor and brushless motor
JP5444756B2 (en) IPM motor rotor and IPM motor
JP6157379B2 (en) Rotating electric machine stator
JP2005039909A (en) Permanent magnet embedded type motor
JP2007060801A (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R151 Written notification of patent or utility model registration

Ref document number: 6565228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151