JP6563618B1 - Conductive coating material - Google Patents
Conductive coating material Download PDFInfo
- Publication number
- JP6563618B1 JP6563618B1 JP2019003890A JP2019003890A JP6563618B1 JP 6563618 B1 JP6563618 B1 JP 6563618B1 JP 2019003890 A JP2019003890 A JP 2019003890A JP 2019003890 A JP2019003890 A JP 2019003890A JP 6563618 B1 JP6563618 B1 JP 6563618B1
- Authority
- JP
- Japan
- Prior art keywords
- coating material
- conductive coating
- seconds
- shear rate
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011248 coating agent Substances 0.000 title claims abstract description 124
- 238000000576 coating method Methods 0.000 title claims abstract description 124
- 239000000463 material Substances 0.000 title claims abstract description 123
- 229920005989 resin Polymers 0.000 claims abstract description 50
- 239000011347 resin Substances 0.000 claims abstract description 50
- 239000000843 powder Substances 0.000 claims abstract description 49
- 239000002184 metal Substances 0.000 claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002612 dispersion medium Substances 0.000 claims abstract description 34
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 44
- 238000009835 boiling Methods 0.000 claims description 26
- UODXCYZDMHPIJE-UHFFFAOYSA-N menthanol Chemical compound CC1CCC(C(C)(C)O)CC1 UODXCYZDMHPIJE-UHFFFAOYSA-N 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 12
- 229920000178 Acrylic resin Polymers 0.000 claims description 9
- 239000004925 Acrylic resin Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 5
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 5
- 229940116411 terpineol Drugs 0.000 claims description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- 239000012461 cellulose resin Substances 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 229920001187 thermosetting polymer Polymers 0.000 claims description 4
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 3
- 239000002736 nonionic surfactant Substances 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- 238000011068 loading method Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 30
- 238000007639 printing Methods 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 19
- 238000011084 recovery Methods 0.000 description 17
- 239000007787 solid Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 238000005219 brazing Methods 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920000084 Gum arabic Polymers 0.000 description 4
- 241000978776 Senegalia senegal Species 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 239000000205 acacia gum Substances 0.000 description 4
- 235000010489 acacia gum Nutrition 0.000 description 4
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 4
- 229940112669 cuprous oxide Drugs 0.000 description 4
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 4
- 238000010908 decantation Methods 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- -1 isobornyl propine Chemical compound 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 3
- SMYREFDDLSTNKQ-UHFFFAOYSA-N oxocan-2-ol Chemical compound OC1CCCCCCO1 SMYREFDDLSTNKQ-UHFFFAOYSA-N 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000009974 thixotropic effect Effects 0.000 description 3
- WNWHHMBRJJOGFJ-UHFFFAOYSA-N 16-methylheptadecan-1-ol Chemical compound CC(C)CCCCCCCCCCCCCCCO WNWHHMBRJJOGFJ-UHFFFAOYSA-N 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- HPEUJPJOZXNMSJ-UHFFFAOYSA-N Methyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC HPEUJPJOZXNMSJ-UHFFFAOYSA-N 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 2
- IGODOXYLBBXFDW-UHFFFAOYSA-N alpha-Terpinyl acetate Chemical compound CC(=O)OC(C)(C)C1CCC(C)=CC1 IGODOXYLBBXFDW-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 2
- HOWGUJZVBDQJKV-UHFFFAOYSA-N docosane Chemical compound CCCCCCCCCCCCCCCCCCCCCC HOWGUJZVBDQJKV-UHFFFAOYSA-N 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- MMKRHZKQPFCLLS-UHFFFAOYSA-N ethyl myristate Chemical compound CCCCCCCCCCCCCC(=O)OCC MMKRHZKQPFCLLS-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- FNAZRRHPUDJQCJ-UHFFFAOYSA-N henicosane Chemical compound CCCCCCCCCCCCCCCCCCCCC FNAZRRHPUDJQCJ-UHFFFAOYSA-N 0.000 description 2
- NDJKXXJCMXVBJW-UHFFFAOYSA-N heptadecane Chemical compound CCCCCCCCCCCCCCCCC NDJKXXJCMXVBJW-UHFFFAOYSA-N 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 2
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 2
- ZAZKJZBWRNNLDS-UHFFFAOYSA-N methyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OC ZAZKJZBWRNNLDS-UHFFFAOYSA-N 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- LQERIDTXQFOHKA-UHFFFAOYSA-N nonadecane Chemical compound CCCCCCCCCCCCCCCCCCC LQERIDTXQFOHKA-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- JIRNEODMTPGRGV-UHFFFAOYSA-N pentadecylbenzene Chemical compound CCCCCCCCCCCCCCCC1=CC=CC=C1 JIRNEODMTPGRGV-UHFFFAOYSA-N 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- MCVUKOYZUCWLQQ-UHFFFAOYSA-N tridecylbenzene Chemical compound CCCCCCCCCCCCCC1=CC=CC=C1 MCVUKOYZUCWLQQ-UHFFFAOYSA-N 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- 239000001149 (9Z,12Z)-octadeca-9,12-dienoate Substances 0.000 description 1
- WTTJVINHCBCLGX-UHFFFAOYSA-N (9trans,12cis)-methyl linoleate Natural products CCCCCC=CCC=CCCCCCCCC(=O)OC WTTJVINHCBCLGX-UHFFFAOYSA-N 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- AZLNHMGSTZDDIY-UHFFFAOYSA-N 1-nonylnaphthalene Chemical compound C1=CC=C2C(CCCCCCCCC)=CC=CC2=C1 AZLNHMGSTZDDIY-UHFFFAOYSA-N 0.000 description 1
- BUZMJVBOGDBMGI-UHFFFAOYSA-N 1-phenylpropylbenzene Chemical compound C=1C=CC=CC=1C(CC)C1=CC=CC=C1 BUZMJVBOGDBMGI-UHFFFAOYSA-N 0.000 description 1
- SRBSSROHORQGBO-UHFFFAOYSA-N 11-methyldodecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCC(C)C SRBSSROHORQGBO-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- HBNHCGDYYBMKJN-UHFFFAOYSA-N 2-(4-methylcyclohexyl)propan-2-yl acetate Chemical compound CC1CCC(C(C)(C)OC(C)=O)CC1 HBNHCGDYYBMKJN-UHFFFAOYSA-N 0.000 description 1
- CDMGNVWZXRKJNS-UHFFFAOYSA-N 2-benzylphenol Chemical compound OC1=CC=CC=C1CC1=CC=CC=C1 CDMGNVWZXRKJNS-UHFFFAOYSA-N 0.000 description 1
- VSTJZLHMTQCYSC-UHFFFAOYSA-N 2-ethylhexanoic acid;2-[2-(2-hydroxyethoxy)ethoxy]ethanol Chemical compound CCCCC(CC)C(O)=O.CCCCC(CC)C(O)=O.OCCOCCOCCO VSTJZLHMTQCYSC-UHFFFAOYSA-N 0.000 description 1
- OPJWPPVYCOPDCM-UHFFFAOYSA-N 2-ethylhexyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(CC)CCCC OPJWPPVYCOPDCM-UHFFFAOYSA-N 0.000 description 1
- YVHUUEPYEDOELM-UHFFFAOYSA-N 2-ethylpropanedioic acid;piperidin-1-id-2-ylmethylazanide;platinum(2+) Chemical compound [Pt+2].[NH-]CC1CCCC[N-]1.CCC(C(O)=O)C(O)=O YVHUUEPYEDOELM-UHFFFAOYSA-N 0.000 description 1
- XULHFMYCBKQGEE-UHFFFAOYSA-N 2-hexyl-1-Decanol Chemical compound CCCCCCCCC(CO)CCCCCC XULHFMYCBKQGEE-UHFFFAOYSA-N 0.000 description 1
- MEEKGULDSDXFCN-UHFFFAOYSA-N 2-pentylphenol Chemical compound CCCCCC1=CC=CC=C1O MEEKGULDSDXFCN-UHFFFAOYSA-N 0.000 description 1
- LNJCGNRKWOHFFV-UHFFFAOYSA-N 3-(2-hydroxyethylsulfanyl)propanenitrile Chemical compound OCCSCCC#N LNJCGNRKWOHFFV-UHFFFAOYSA-N 0.000 description 1
- BWVZAZPLUTUBKD-UHFFFAOYSA-N 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol Chemical compound CC1(C)C(C)C2CC1CC2C1CCCC(O)C1 BWVZAZPLUTUBKD-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- PKIXXJPMNDDDOS-UHFFFAOYSA-N Methyl linoleate Natural products CCCCC=CCCC=CCCCCCCCC(=O)OC PKIXXJPMNDDDOS-UHFFFAOYSA-N 0.000 description 1
- RSKIYZNCMZZQNX-UHFFFAOYSA-N OC=O.OC=O.OC=O.N Chemical compound OC=O.OC=O.OC=O.N RSKIYZNCMZZQNX-UHFFFAOYSA-N 0.000 description 1
- GWFGDXZQZYMSMJ-UHFFFAOYSA-N Octadecansaeure-heptadecylester Natural products CCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC GWFGDXZQZYMSMJ-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229940031954 dibutyl sebacate Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- CAMHHLOGFDZBBG-UHFFFAOYSA-N epoxidized methyl oleate Natural products CCCCCCCCC1OC1CCCCCCCC(=O)OC CAMHHLOGFDZBBG-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- QMTNOLKHSWIQBE-FGTMMUONSA-N exo-(+)-cinmethylin Chemical compound O([C@H]1[C@]2(C)CC[C@@](O2)(C1)C(C)C)CC1=CC=CC=C1C QMTNOLKHSWIQBE-FGTMMUONSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- ZMPPFNHWXMJARX-UHFFFAOYSA-N heptadecylbenzene Chemical compound CCCCCCCCCCCCCCCCCC1=CC=CC=C1 ZMPPFNHWXMJARX-UHFFFAOYSA-N 0.000 description 1
- WGXGAUQEMYSVJM-UHFFFAOYSA-N hexadecanenitrile Chemical compound CCCCCCCCCCCCCCCC#N WGXGAUQEMYSVJM-UHFFFAOYSA-N 0.000 description 1
- DEQLTFPCJRGSHW-UHFFFAOYSA-N hexadecylbenzene Chemical compound CCCCCCCCCCCCCCCCC1=CC=CC=C1 DEQLTFPCJRGSHW-UHFFFAOYSA-N 0.000 description 1
- NRHBFNBZAZZTAU-UHFFFAOYSA-N hexadecylcyclohexane Chemical compound CCCCCCCCCCCCCCCCC1CCCCC1 NRHBFNBZAZZTAU-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- NKBWPOSQERPBFI-UHFFFAOYSA-N octadecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC NKBWPOSQERPBFI-UHFFFAOYSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- ZNUABQHWFGTOCO-UHFFFAOYSA-N pentadecylcyclohexane Chemical compound CCCCCCCCCCCCCCCC1CCCCC1 ZNUABQHWFGTOCO-UHFFFAOYSA-N 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical compound CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- NQAVPKIJZCHUNS-UHFFFAOYSA-N tetradecylcyclohexane Chemical compound CCCCCCCCCCCCCCC1CCCCC1 NQAVPKIJZCHUNS-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- XBEADGFTLHRJRB-UHFFFAOYSA-N undecylbenzene Chemical compound CCCCCCCCCCCC1=CC=CC=C1 XBEADGFTLHRJRB-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Paints Or Removers (AREA)
- Die Bonding (AREA)
- Conductive Materials (AREA)
Abstract
【課題】 大面積の部材を比較的低温で接合する場合であっても、充分な接合強度を得ることができる導電性塗布材料を提供する。【解決手段】 半導体素子を基材に接合するための導電性塗布材料であって、金属粉と、非加熱硬化型樹脂と、分散媒とを含み、導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値である、導電性塗布材料。【選択図】なしPROBLEM TO BE SOLVED: To provide a conductive coating material capable of obtaining sufficient bonding strength even when a large area member is bonded at a relatively low temperature. A conductive coating material for bonding a semiconductor element to a substrate, which includes metal powder, a non-heat curable resin, and a dispersion medium. The conductive coating material is sheared at 25 ° C. After loading at a rate of 0.05 [/ s] for 60 seconds, the shear rate was increased to 30 [/ s] and maintained for 10 seconds to apply the load, after which the shear rate was set to 0.05 [/ s When the shear rate is reduced to 0.05 [/ s], the viscosity value 10 seconds after the shear rate is reduced to 0.05 [/ s] is 60 before the shear rate is increased to 30 [/ s]. A conductive coating material having a value of 60% or more compared to the value of the maximum viscosity in seconds. [Selection figure] None
Description
本発明は、導電性塗布材料に関する。 The present invention relates to a conductive coating material.
半導体チップの基板への接合方法として、ろう材を用いた技術が従来から広く知られている。この接合法においては、半導体チップ又は基板のいずれかへ、ろう材を融着した後に、半導体チップを基板に載置して、ろう材の融点以上の温度に加熱して、ろう材を溶融・凝固させる。このときの加熱温度(接合温度)は、使用するろう材の融点を考慮して設定される。例えば、近年、接合で一般的に用いられているろう材として、AuSn系ろう材が知られているが、その融点は約280℃であることから、接合温度は300℃以上の温度に設定されることが多い。 As a method for bonding a semiconductor chip to a substrate, a technique using a brazing material has been widely known. In this joining method, after the brazing material is fused to either the semiconductor chip or the substrate, the semiconductor chip is placed on the substrate and heated to a temperature equal to or higher than the melting point of the brazing material to melt the brazing material. Solidify. The heating temperature (joining temperature) at this time is set in consideration of the melting point of the brazing material to be used. For example, in recent years, AuSn brazing material is known as a brazing material that is generally used for joining. However, since the melting point is about 280 ° C., the joining temperature is set to a temperature of 300 ° C. or higher. Often.
接合の際の温度(接合温度)は、十分な接合が可能であるならば、できるだけ低温とすることが好ましい。これは、接合温度を高温とすると、接合後の冷却時に生じる熱応力が大きくなり半導体チップの電気的特性に変動が生じるおそれがあるからである。また、接合のための加熱そのものが、半導体チップの特性に影響を及ぼすおそれもあるからである。 The bonding temperature (bonding temperature) is preferably as low as possible if sufficient bonding is possible. This is because if the bonding temperature is high, the thermal stress generated during cooling after bonding increases, and the electrical characteristics of the semiconductor chip may vary. Further, the heating for bonding itself may affect the characteristics of the semiconductor chip.
そこで、半導体チップの接合の低温化を図るため、従来のろう付けによる接合法に替わる方法として、銀や銅等の導電性金属からなる金属粉末を含有する導電性塗布材料を使用する接合法が開発されてきた。 Therefore, in order to reduce the bonding temperature of the semiconductor chip, a bonding method using a conductive coating material containing a metal powder made of a conductive metal such as silver or copper is used as an alternative to the conventional brazing bonding method. Has been developed.
このような半導体接合用の導電性塗布材料には、焼結タイプと、加熱硬化タイプとが存在する。例えば、特開2013−232527号公報(特許文献1)は、エポキシ樹脂、フェノール系硬化剤、銀被覆銅粉、イミダゾール系硬化促進剤、シランカップリング剤、及び希釈剤を含む加熱硬化タイプの導電性塗布材料を開示している。 Such conductive coating materials for semiconductor bonding include a sintered type and a thermosetting type. For example, Japanese Unexamined Patent Publication No. 2013-232527 (Patent Document 1) discloses a heat-curing type conductive material including an epoxy resin, a phenol-based curing agent, silver-coated copper powder, an imidazole-based curing accelerator, a silane coupling agent, and a diluent. An adhesive coating material is disclosed.
近年、パワーモジュール等の用途において、大電流を流すために半導体素子が大面積化している。本発明者の検討によれば、このような大面積の半導体素子は、半導体チップの基板への接合について、充分な接合強度を得ることが難しい。 In recent years, in applications such as power modules, the area of semiconductor elements has been increased in order to pass a large current. According to the study of the present inventor, it is difficult for such a large-area semiconductor element to obtain a sufficient bonding strength for bonding a semiconductor chip to a substrate.
上述した加熱硬化型の樹脂を含むタイプの導電性塗布材料を大面積の半導体素子に適用した場合においては、樹脂の加熱硬化に伴う収縮に起因して、焼成後の塗膜厚さが不均一になりやすく、十分な接合強度が得ることが難しくなる。 When the above-mentioned conductive coating material containing a thermosetting resin is applied to a large-area semiconductor element, the coating film thickness after baking is non-uniform due to shrinkage caused by the heat curing of the resin. It becomes difficult to obtain sufficient bonding strength.
一方、上述した低接合温度用途に用いられる焼結タイプの導電性塗布材料は、一般的に樹脂を含有しない。樹脂を含有してしまうと、樹脂により金属粒子の焼結が妨げられ、熱伝導性及び導電性が低下してしまうとされている。しかしながら、樹脂を含まない焼結タイプの導電性塗布材料は、熱伝導性及び導電性の低下が回避できる一方で、接合層と半導体素子との間に生じる空隙に起因して、大面積の半導体素子において十分な接合強度を得ることが難しくなる。 On the other hand, the above-mentioned sintered type conductive coating material used for low junction temperature applications generally does not contain a resin. If the resin is contained, the resin is prevented from sintering metal particles, and the thermal conductivity and conductivity are reduced. However, a sintered-type conductive coating material that does not contain a resin can avoid a decrease in thermal conductivity and conductivity, while a large-area semiconductor due to voids generated between the bonding layer and the semiconductor element. It becomes difficult to obtain sufficient bonding strength in the element.
したがって、本発明の目的は、大面積の部材を比較的低温で接合する場合であっても、充分な接合強度を得ることができる導電性塗布材料を提供することにある。 Accordingly, an object of the present invention is to provide a conductive coating material capable of obtaining sufficient bonding strength even when a large-area member is bonded at a relatively low temperature.
本発明者は、鋭意研究の結果、後述する導電性塗布材料によって、上記目的を達成できることを見いだして、本発明に到達した。 As a result of earnest research, the present inventor has found that the above object can be achieved by a conductive coating material described later, and has reached the present invention.
したがって、本発明は、次の(1)を含む。
(1)
半導体素子を基材に接合するための導電性塗布材料であって、
金属粉と、非加熱硬化型樹脂と、分散媒とを含み、
導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値である、導電性塗布材料。
Accordingly, the present invention includes the following (1).
(1)
A conductive coating material for bonding a semiconductor element to a substrate,
Including metal powder, non-heat curable resin, and dispersion medium,
The conductive coating material was loaded at a shear rate of 0.05 [/ s] at 25 ° C. for 60 seconds, and then increased to 30 [/ s] and maintained for 10 seconds. Then, when the shear rate was reduced to 0.05 [/ s], the
本発明によれば、大面積の部材を比較的低温で接合する場合であっても、充分な接合強度を得ることができる導電性塗布材料を得ることができる。 According to the present invention, it is possible to obtain a conductive coating material capable of obtaining sufficient bonding strength even when a large-area member is bonded at a relatively low temperature.
以下に本発明を実施の態様をあげて詳細に説明する。本発明は以下にあげる具体的な実施の態様に限定されるものではない。 The present invention will be described in detail below with reference to embodiments. The present invention is not limited to the specific embodiments described below.
[導電性塗布材料]
好適な実施の態様において、本発明の導電性塗布材料は、半導体素子を基材に接合するための導電性塗布材料であって、金属粉と、非加熱硬化型樹脂と、分散媒とを含み、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値である。
[Conductive coating material]
In a preferred embodiment, the conductive coating material of the present invention is a conductive coating material for bonding a semiconductor element to a substrate, and includes a metal powder, a non-heat curable resin, and a dispersion medium. At 25 ° C., after applying a load at a shear rate of 0.05 [/ s] for 60 seconds, the shear rate was increased to 30 [/ s] and maintained for 10 seconds, and then the shear rate was increased. When the shear rate is reduced to 0.05 [/ s], the
好適な実施の態様において、本発明の導電性塗布材料は、金属粉と、非加熱硬化型樹脂と、分散媒とを含む導電性塗布材料であって、導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値であり、導電性塗布材料を25μmアプリケーターで5cm/秒の速度で印刷し、120℃で10分間、乾燥させた後の塗膜を解砕して得られる粉を2vol%H2残部窒素雰囲気で昇温して体積収縮率が2%になるときの温度が350℃未満である。
In a preferred embodiment, the conductive coating material of the present invention is a conductive coating material containing metal powder, a non-heat curable resin, and a dispersion medium, and the conductive coating material is at 25 ° C. After applying the load at a shear rate of 0.05 [/ s] for 60 seconds, the shear rate was increased to 30 [/ s] and maintained for 10 seconds, and then the load was applied. s], the
導電性塗布材料は、常温常圧において、いわゆるペーストの状態として取り扱える組成物である。ペースト状の材料を、塗工あるいは印刷して、その後に加熱することによって焼結し、半導体素子を基材に接合することができる。 The conductive coating material is a composition that can be handled as a so-called paste at normal temperature and pressure. A paste-like material can be applied or printed and then sintered by heating to bond the semiconductor element to the substrate.
[半導体素子]
導電性塗布材料によって接合される半導体素子は、導電性塗布材料による接合が、好適に実現できる半導体素子であれば、特に制約はない。このような半導体素子として、例えば、Si、SiC、GaN、Ga2O3をあげることができるが、これに限られるものではない。
[Semiconductor element]
The semiconductor element joined by the conductive coating material is not particularly limited as long as the semiconductor element can be suitably joined by the conductive coating material. Examples of such semiconductor elements include Si, SiC, GaN, and Ga 2 O 3 , but are not limited thereto.
[基材]
導電性塗布材料によって接合される基材は、導電性塗布材料による接合が、好適に実現できる基材であれば、特に制約はない。このような基材として、例えば、無酸素銅、タフピッチ銅、コルソン合金、リン青銅をあげることができるが、これに限られるものではない。
[Base material]
The base material to be joined by the conductive coating material is not particularly limited as long as the base material can be suitably joined by the conductive coating material. Examples of such a substrate include, but are not limited to, oxygen-free copper, tough pitch copper, Corson alloy, and phosphor bronze.
[金属粉]
導電性塗布材料に含まれる金属粉は、導電性塗布材料のペーストの製造に使用される公知の金属粉を使用することができる。好適な実施の態様において、金属粉として、銅粉、又は銅合金の粉を、使用することができる。金属粉は、所望により、表面処理された金属粉であってもよい。
[Metal powder]
As the metal powder contained in the conductive coating material, a known metal powder used for manufacturing a paste of the conductive coating material can be used. In a preferred embodiment, copper powder or copper alloy powder can be used as the metal powder. The metal powder may be a surface-treated metal powder as desired.
好適な実施の態様において、導電性塗布材料に含まれる金属粉の含有量は、例えば80〜92質量%の範囲、好ましくは82〜90質量%の範囲とすることができる。 In a preferred embodiment, the content of the metal powder contained in the conductive coating material can be, for example, in the range of 80 to 92% by mass, and preferably in the range of 82 to 90% by mass.
[固めかさ密度]
好適な実施の態様において、金属粉の固めかさ密度は、例えば3.0[g/cm3]未満、好ましくは2.5[g/cm3]未満とすることができる。固めかさ密度の下限には、特に制約はないが、例えば1.5[g/cm3]以上とすることができる。固めかさ密度は、後述する実施例に開示された手段によって、測定することができる。
[Solid bulk density]
In a preferred embodiment, the solid bulk density of the metal powder can be, for example, less than 3.0 [g / cm 3 ], preferably less than 2.5 [g / cm 3 ]. Although there is no restriction | limiting in particular in the minimum of a firm bulk density, For example, it can be 1.5 [g / cm < 3 >] or more. The compacted bulk density can be measured by means disclosed in Examples described later.
[BET比表面積]
好適な実施の態様において、金属粉のBET比表面積は、例えば1.5〜10.0[m2/g]の範囲、好ましくは1.5〜5.0[m2/g]の範囲とすることができる。BET比表面積は、後述する実施例に開示された手段によって、測定することができる。
[BET specific surface area]
In a preferable embodiment, BET specific surface area of the metal powder, for example in the range of 1.5~10.0 [m 2 / g], preferably a range of 1.5~5.0 [m 2 / g] can do. The BET specific surface area can be measured by means disclosed in Examples described later.
[非加熱硬化型樹脂]
導電性塗布材料に含まれる非加熱硬化型樹脂は、導電性塗布材料のペーストの製造に使用される公知の非加熱硬化型樹脂を使用することができる。本発明において、非加熱硬化型樹脂とは、加熱硬化型樹脂を含まないことを意味しており、非加熱硬化型樹脂として加熱硬化型樹脂を使用することはできない。
[Non-heat curable resin]
As the non-heat curable resin contained in the conductive coating material, a known non-heat curable resin used for manufacturing a paste of the conductive coating material can be used. In the present invention, the non-heat curable resin means that the heat curable resin is not included, and the heat curable resin cannot be used as the non-heat curable resin.
好適な実施の態様において、非加熱硬化型樹脂として、例えば、セルロース系樹脂、アクリル樹脂、アルキッド樹脂、ポリビニルアルコール系樹脂、ポリビニルアセタール、ケトン樹脂、尿素樹脂、メラミン樹脂、ポリエステル、ポリアミド、ポリウレタンをあげることができる。 In a preferred embodiment, examples of the non-heat curable resin include cellulose resins, acrylic resins, alkyd resins, polyvinyl alcohol resins, polyvinyl acetals, ketone resins, urea resins, melamine resins, polyesters, polyamides, and polyurethanes. be able to.
好適な実施の態様において、非加熱硬化型樹脂として、例えば、ポリカルボナート、ポリメタクリル酸、ポリメタクリル酸エステル、ポリエステルをあげることができる。 In a preferred embodiment, examples of the non-heat-curable resin include polycarbonate, polymethacrylic acid, polymethacrylic acid ester, and polyester.
好適な実施の態様において、非加熱硬化型樹脂として、好ましくは、アクリル樹脂、セルロース系樹脂、及びポリビニルアルコール系樹脂からなる群から選択された1種以上の非加熱硬化型樹脂を使用することができる。 In a preferred embodiment, the non-heat curable resin is preferably one or more non-heat curable resins selected from the group consisting of acrylic resins, cellulose resins, and polyvinyl alcohol resins. it can.
好適な実施の態様において、導電性塗布材料に含まれる非加熱硬化型樹脂の含有量は、例えば0.1〜5質量%の範囲、好ましくは0.3〜5質量%の範囲とすることができる。 In a preferred embodiment, the content of the non-heat curable resin contained in the conductive coating material is, for example, in the range of 0.1 to 5% by mass, preferably in the range of 0.3 to 5% by mass. it can.
[分散媒]
導電性塗布材料に含まれる分散媒は、導電性塗布材料のペーストの製造に使用される公知の分散媒を使用することができる。このような公知の分散媒として、例えば、アルコール溶剤(例えばテルピネオール、ジヒドロテルピネオール、イソプロピルアルコール、ブチルカルビトール、テルピネルオキシエタノール、ジヒドロテルピネルオキシエタノールからなる群から選択された1種以上)、グリコールエーテル溶剤(例えばブチルカルビトール)、アセテート溶剤(例えばブチルカルビトールアセテート、ジヒドロターピネオールアセテート、ジヒドロカルビトールアセテート、カルビトールアセテート、リナリールアセテート、ターピニルアセテートからなる群から選択された1種以上)、ケトン溶剤(例えばメチルエチルケトン)、炭化水素溶剤(例えばトルエン、シクロヘキサンからなる群から選択された1種以上)、セロソルブ類(例えばエチルセロソルブ、ブチルセロソルブからなる群から選択された1種以上)、ジエチルフタレート、又はプロピネオート系溶剤(例えばジヒドロターピニルプロピネオート、ジヒドロカルビルプロピネオート、イソボニルプロピネオートからなる群から選択された1種以上)をあげることができる。
[Dispersion medium]
As the dispersion medium contained in the conductive coating material, a known dispersion medium used for manufacturing a paste of the conductive coating material can be used. As such a known dispersion medium, for example, an alcohol solvent (for example, one or more selected from the group consisting of terpineol, dihydroterpineol, isopropyl alcohol, butyl carbitol, terpineloxyethanol, dihydroterpineloxyethanol), glycol Ether solvent (for example, butyl carbitol), acetate solvent (for example, one or more selected from the group consisting of butyl carbitol acetate, dihydroterpineol acetate, dihydrocarbitol acetate, carbitol acetate, linalyl acetate, and terpinyl acetate) , Ketone solvents (for example, methyl ethyl ketone), hydrocarbon solvents (for example, one or more selected from the group consisting of toluene and cyclohexane), cellosolves (for example, ethyl celloso) Selected from the group consisting of dihydroterpinyl propine auto, dihydrocarbyl propine auto,
好適な実施の態様において、分散媒として、好ましくは、ターピネオール、ジヒドロターピネオール、グリコール系溶剤、及びエチレンオキサイド鎖を有するノニオン系界面活性剤からなる群から選択された1種以上の分散媒又はそれらの混合物を使用することができる。 In a preferred embodiment, the dispersion medium is preferably one or more dispersion media selected from the group consisting of terpineol, dihydroterpineol, glycol solvents, and nonionic surfactants having an ethylene oxide chain, or a combination thereof. Mixtures can be used.
好適な実施の態様において、分散媒として、沸点が200℃以上300℃未満の低沸点溶媒と、沸点が300℃以上の高沸点溶媒の混合物を使用することができる。好適な実施の態様において、低沸点溶媒の沸点を、200℃以上300℃未満、好ましくは200℃以上250℃未満とすることができる。 In a preferred embodiment, a mixture of a low boiling point solvent having a boiling point of 200 ° C. or more and less than 300 ° C. and a high boiling point solvent having a boiling point of 300 ° C. or more can be used as the dispersion medium. In a preferred embodiment, the boiling point of the low boiling point solvent can be 200 ° C. or higher and lower than 300 ° C., preferably 200 ° C. or higher and lower than 250 ° C.
好適な実施の態様において、低沸点溶媒として、例えばアルコール系溶剤、グリコールエーテル溶剤をあげることができる。 In a preferred embodiment, examples of the low boiling point solvent include alcohol solvents and glycol ether solvents.
好適な実施の態様において、低沸点溶媒として、好ましくは、ターピネオール、ジヒドロターピネオールをあげることができる。 In a preferred embodiment, the low boiling point solvent is preferably terpineol or dihydroterpineol.
好適な実施の態様において、高沸点溶媒として、イソボルニルシクロヘキサノール(MTPH、日本テルペン社製)、ステアリン酸ブチル、エキセパールBS(花王社製)、ステアリン酸ステアリル、エキセパールSS(花王社製)、ステアリン酸2−エチルヘキシル、エキセパールEH−S(花王社製)、ステアリン酸イソトリデシル、エキセパールTD−S(花王社製)、イソオクタデカノール、ファインオキソコール180(日産化学社製)、ファインオキソコール180T(日産化学社製)、2−ヘキシルデカノール、ファインオキソコール1600(日産化学社製)、トリブチリン、テトラエチレングリコール、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘネイコサン、ドコサン、メチルヘプタデカン、トリデシルシクロヘキサン、テトラデシルシクロヘキサン、ペンタデシルシクロヘキサン、ヘキサデシルシクロヘキサン、ウンデシルベンゼン、ドデシルベンゼン、テトラデシルベンゼン、トリデシルベンゼン、ペンタデシルベンゼン、ヘキサデシルベンゼン、ヘプタデシルベンゼン、ノニルナフタレン、ジフェニルプロパン、オクタン酸オクチル、ミリスチン酸メチル、ミリスチン酸エチル、リノール酸メチル、ステアリン酸メチル、トリエチレングリコールビス(2−エチルヘキサン酸)、クエン酸トリブチル、ペンチルフェノール、セバシン酸ジブチル、オレイルアルコール、セチルアルコール、メトキシフェネチルアルコール、ベンジルフェノール、ヘキサデカニトリル、ヘプタデカニトリル、安息香酸ベンジル、シンメチリン、エチレンオキサイド鎖を有するノニオン系界面活性剤をあげることができる。 In a preferred embodiment, as a high boiling point solvent, isobornyl cyclohexanol (MTPH, manufactured by Nippon Terpene Co., Ltd.), butyl stearate, Exepal BS (produced by Kao Corp.), stearyl stearate, Exepal SS (produced by Kao Corp.), 2-ethylhexyl stearate, Exepal EH-S (manufactured by Kao), isotridecyl stearate, Exepal TD-S (manufactured by Kao), isooctadecanol, fine oxocol 180 (manufactured by Nissan Chemical Co., Ltd.), fine oxocol 180T (Nissan Chemical), 2-hexyldecanol, fine oxocol 1600 (Nissan Chemical), tributyrin, tetraethylene glycol, heptadecane, octadecane, nonadecane, eicosane, heneicosane, docosane, methylheptadecane, tridecyl Chlohexane, tetradecylcyclohexane, pentadecylcyclohexane, hexadecylcyclohexane, undecylbenzene, dodecylbenzene, tetradecylbenzene, tridecylbenzene, pentadecylbenzene, hexadecylbenzene, heptadecylbenzene, nonylnaphthalene, diphenylpropane, octanoic acid Octyl, methyl myristate, ethyl myristate, methyl linoleate, methyl stearate, triethylene glycol bis (2-ethylhexanoic acid), tributyl citrate, pentylphenol, dibutyl sebacate, oleyl alcohol, cetyl alcohol, methoxyphenethyl alcohol , Benzylphenol, hexadecanonitrile, heptadeconitrile, benzyl benzoate, cinmethylin, ethyleneoxy It can be mentioned nonionic surface active agent having a id chain.
好適な実施の態様において、高沸点溶媒として、好ましくはblaunon L 207をあげることができる。 In a preferred embodiment, the high boiling point solvent is preferably blaunon L207.
好適な実施の態様において、低沸点溶媒と高沸点溶媒は、例えば含有される(低沸点溶媒)/(高沸点溶媒)の質量比を、例えば0.1〜0.7、好ましくは0.2〜0.5の範囲とすることができる。 In a preferred embodiment, the low-boiling solvent and the high-boiling solvent contain, for example, a mass ratio of (low-boiling solvent) / (high-boiling solvent), for example, 0.1 to 0.7, preferably 0.2. It can be made into the range of -0.5.
好適な実施の態様において、導電性塗布材料に含まれる分散媒の含有量は、例えば7〜20質量%の範囲、好ましくは8〜15質量%の範囲とすることができる。 In a preferred embodiment, the content of the dispersion medium contained in the conductive coating material can be, for example, in the range of 7 to 20% by mass, and preferably in the range of 8 to 15% by mass.
[含有比率]
好適な実施の態様において、導電性塗布材料に含有される(非加熱硬化型樹脂)/(金属粉)の比率は、例えば0.0005〜0.08の範囲、好ましくは0.003〜0.07の範囲とすることができる。
[Content ratio]
In a preferred embodiment, the ratio of (non-heat curable resin) / (metal powder) contained in the conductive coating material is, for example, in the range of 0.0005 to 0.08, preferably 0.003 to 0.00. The range can be 07.
好適な実施の態様において、導電性塗布材料に含有される(分散媒)/(金属粉)の比率は、例えば0.07〜0.25の範囲、好ましくは0.1〜0.21の範囲とすることができる。 In a preferred embodiment, the ratio of (dispersion medium) / (metal powder) contained in the conductive coating material is, for example, in the range of 0.07 to 0.25, preferably in the range of 0.1 to 0.21. It can be.
[粘度]
好適な実施の態様において、本発明の導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、例えば60%以上、好ましくは65%以上、さらに好ましくは70%以上の値である。本発明において、この相対値を粘度回復率という。それぞれのせん断速度における粘度の値は、後述する実施例に開示の手段によって測定することができる。ただし、せん断速度を急激に変化させると、試料に生じる応力の急激な変化に検出器が対応しきれず、異常値を検出することがある。このため実際の測定操作においては、せん断速度を切り替えたタイミングの前後0.5sの応力に関する情報は本発明に係る現象を考察するうえで対象外とした。すなわち、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値とは、実際に測定操作においては直前の59.5秒間における最大粘度の値を用いた。
[viscosity]
In a preferred embodiment, the conductive coating material of the present invention increases the shear rate to 30 [/ s] after loading at 25 ° C. with a shear rate of 0.05 [/ s] for 60 seconds. 10 seconds after the shear rate is reduced to 0.05 [/ s] when a load is applied by maintaining for 10 seconds and then the shear rate is reduced to 0.05 [/ s]. The viscosity value is, for example, 60% or more, preferably 65% or more, more preferably 70% or more, compared with the value of the maximum viscosity for 60 seconds before the shear rate is increased to 30 [/ s]. Value. In the present invention, this relative value is referred to as a viscosity recovery rate. The value of the viscosity at each shear rate can be measured by means disclosed in the examples described later. However, if the shear rate is suddenly changed, the detector may not be able to cope with the sudden change in stress generated in the sample, and an abnormal value may be detected. For this reason, in the actual measurement operation, the information on the stress of 0.5 s before and after the timing at which the shear rate is switched is excluded from consideration of the phenomenon according to the present invention. That is, as the value of the maximum viscosity in 60 seconds before increasing the shear rate to 30 [/ s], the value of the maximum viscosity in the immediately preceding 59.5 seconds was actually used in the measurement operation.
好適な実施の態様において、本発明の導電性塗布材料は、25℃において、せん断速度0.05[/s]で負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えた時点での粘度の値が、せん断速度を30[/s]へと増大させる直前の粘度の値と比較して、例えば0.1〜10%、好ましくは0.1〜5%の範囲にある。ただし、上述の通り、せん断速度を急激に変化させると、試料に生じる応力の急激な変化に検出器が対応しきれず、異常値を検出することがあるために、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えた時点での粘度の値とは、実際の測定操作においてはせん断速度を30[/s]へと増大させてから9.5秒後の値を用いた。 In a preferred embodiment, the conductive coating material of the present invention is loaded with a shear rate of 0.05 [/ s] at 25 ° C. and then increased to 30 [/ s]. The viscosity value at the time when the load is applied while being maintained for 2 seconds is, for example, 0.1 to 10%, preferably 0. 0, compared to the viscosity value immediately before the shear rate is increased to 30 [/ s]. It is in the range of 1 to 5%. However, as described above, if the shear rate is suddenly changed, the detector cannot cope with the sudden change in the stress generated in the sample, and an abnormal value may be detected. Therefore, the shear rate is set to 30 [/ s]. The value of the viscosity at the time when the load was applied while being increased for 10 seconds is the value after 9.5 seconds after the shear rate was increased to 30 [/ s] in the actual measurement operation. Was used.
好適な実施の態様において、本発明の導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた時点での粘度の値が、例えば1000〜10000[Pas]の範囲、好ましくは1000〜7000[Pas]の範囲にある。 In a preferred embodiment, the conductive coating material of the present invention has a viscosity value of, for example, 1000 to 10,000 [Pas] at 25 ° C. when a load is applied for 60 seconds at a shear rate of 0.05 [/ s]. ], Preferably 1000 to 7000 [Pas].
[チクソトロピーインデックス値(TI値)]
本開示におけるTI値(チクソトロピーインデックス値)は、せん断速度1[s-1]で測定した25℃における粘度V1を、せん断速度10[s-1]で測定した25℃における粘度V10で除した値と定義される。好適な実施の態様において、本発明のTI値は、3〜10である。このTI値は、上述のせん断応力と同様の手段によって測定することができる。
[Thixotropic index value (TI value)]
The TI value (thixotropic index value) in the present disclosure is a value obtained by dividing the viscosity V1 at 25 ° C. measured at a shear rate of 1 [s −1 ] by the viscosity V10 at 25 ° C. measured at a shear rate of 10 [s −1 ]. Is defined. In a preferred embodiment, the TI value of the present invention is 3-10. This TI value can be measured by the same means as the above-mentioned shear stress.
[体積収縮率]
好適な実施の態様において、本発明の導電性塗布材料は、25μmアプリケーターで5cm/秒の速度で印刷し、120℃で10分間、乾燥させた後の塗膜を解砕して得られる粉を、2vol%H2残部窒素雰囲気で、98mNの荷重をかけて、5℃/分の速度で昇温して、体積収縮率が2%になるときの温度が350℃未満であり、すなわち乾燥塗膜の解砕粉の2%体積収縮温度が350℃未満であり、好ましくは200〜340℃の範囲にある。この2%体積収縮温度は、さらに詳細には後述する実施例に開示された手段によって測定することができる。
[Volume shrinkage]
In a preferred embodiment, the conductive coating material of the present invention is a powder obtained by crushing the coating film after printing at a speed of 5 cm / second with a 25 μm applicator and drying at 120 ° C. for 10 minutes. In a 2 vol% H 2 balance nitrogen atmosphere, a load of 98 mN is applied and the temperature is increased at a rate of 5 ° C./min. The temperature when the volume shrinkage becomes 2% is less than 350 ° C. The 2% volume shrinkage temperature of the pulverized powder of the membrane is less than 350 ° C., preferably in the range of 200 to 340 ° C. This 2% volume shrinkage temperature can be measured in more detail by means disclosed in the examples described later.
[塗膜の表面粗さRa]
好適な実施の態様において、本発明の導電性塗布材料は、印刷した後に乾燥した塗膜の表面粗さRaを、例えば0.01〜0.3[μm]の範囲、好ましくは0.05〜0.2[μm]の範囲とすることができる。乾燥塗膜の表面粗さRaは、後述する実施例に開示された手段によって測定することができる。
[Surface roughness Ra of coating film]
In a preferred embodiment, the conductive coating material of the present invention has a surface roughness Ra of a coating film dried after printing, for example, in the range of 0.01 to 0.3 [μm], preferably 0.05 to. The range can be 0.2 [μm]. The surface roughness Ra of the dried coating film can be measured by the means disclosed in Examples described later.
[接合強度]
好適な実施の態様において、本発明の導電性塗布材料を使用して接合した接合体の接合強度は、例えば15[MPa]以上、好ましくは20[MPa]以上とすることができる。接合強度は、後述する実施例に開示された手段によって測定することができる。
[Joint strength]
In a preferred embodiment, the joint strength of the joined body joined using the conductive coating material of the present invention can be, for example, 15 [MPa] or more, preferably 20 [MPa] or more. The bonding strength can be measured by means disclosed in Examples described later.
[導電性塗布材料の製造]
好適な実施の態様において、導電性塗布材料は、上記の金属粉、非加熱硬化型樹脂、分散媒を、公知の手段によって混合して攪拌することによって、製造することができる。好適な実施の態様において、混合して攪拌した後に、3本ロールに通過させて、導電性塗布材料を得ることができる。これらの手順は詳細には、後述する実施例の手順によって、行うことができる。
[Manufacture of conductive coating materials]
In a preferred embodiment, the conductive coating material can be produced by mixing and stirring the above metal powder, non-heat curable resin, and dispersion medium by a known means. In a preferred embodiment, after mixing and stirring, the mixture can be passed through three rolls to obtain a conductive coating material. In detail, these procedures can be performed according to the procedures of the embodiments described later.
[好適な実施の態様]
本発明は次の(1)以下の実施態様を含む。
(1)
半導体素子を基材に接合するための導電性塗布材料であって、
金属粉と、非加熱硬化型樹脂と、分散媒とを含み、
導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値である、導電性塗布材料。
(2)
金属粉と、非加熱硬化型樹脂と、分散媒とを含む導電性塗布材料であって、
導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値であり、
導電性塗布材料を25μmアプリケーターで5cm/秒の速度で印刷し、120℃で10分間、乾燥させた後の塗膜を解砕して得られる粉を2vol%H2残部窒素雰囲気で昇温して体積収縮率が2%になるときの温度が350℃未満である、導電性塗布材料。
(3)
せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えた時点での粘度の値が、せん断速度を30[/s]へと増大させる直前の粘度の値と比較して、0.1〜10%の範囲にある、(1)〜(2)のいずれかに記載の導電性塗布材料。
(4)
せん断速度0.05[/s]で60秒間負荷を与えた時点での粘度の値が、1000〜10000[Pa・s]の範囲にある、(1)〜(3)のいずれかに記載の導電性塗布材料。
(5)
非加熱硬化型樹脂を0.1〜5質量%の範囲で含む、(1)〜(4)のいずれかに記載の導電性塗布材料。
(6)
金属粉を80〜92質量%の範囲で含む、(1)〜(5)のいずれかに記載の導電性塗布材料。
(7)
含有される(非加熱硬化型樹脂)/(金属粉)の比率が、0.0005〜0.08の範囲にあり、
含有される(分散媒)/(金属粉)の比率が、0.07〜0.25の範囲にある、(1)〜(6)のいずれかに記載の導電性塗布材料。
(8)
金属粉のかさ密度が、3[g/cm3]未満である、(1)〜(7)のいずれかに記載の導電性塗布材料。
(9)
金属粉のBET比表面積が、1.5〜10.0[m2/g]の範囲にある、(1)〜(8)のいずれかに記載の導電性塗布材料。
(10)
分散媒が、ターピネオール、ジヒドロターピネオール、及びエチレンオキサイド鎖を有するノニオン系界面活性剤からなる群から選択された1種以上の分散媒又はそれらの混合物である、(1)〜(9)のいずれかに記載の導電性塗布材料。
(11)
前記分散媒は、沸点が200℃以上300℃未満の低沸点溶媒と、沸点が300℃以上の高沸点溶媒とを含む、(1)〜(10)のいずれかに記載の導電性塗布材料。
(12)
金属粉の金属が、銅又は銅合金である、(1)〜(11)のいずれかに記載の導電性塗布材料。
(13)
非加熱硬化型樹脂が、アクリル樹脂、セルロース系樹脂、及びポリビニルアルコール系樹脂からなる群から選択された1種以上の非加熱硬化型樹脂である、(1)〜(12)のいずれかに記載の導電性塗布材料。
[Preferred Embodiment]
The present invention includes the following embodiments (1) and below.
(1)
A conductive coating material for bonding a semiconductor element to a substrate,
Including metal powder, non-heat curable resin, and dispersion medium,
The conductive coating material was loaded at a shear rate of 0.05 [/ s] at 25 ° C. for 60 seconds, and then increased to 30 [/ s] and maintained for 10 seconds. Then, when the shear rate was reduced to 0.05 [/ s], the
(2)
A conductive coating material containing a metal powder, a non-heat curable resin, and a dispersion medium,
The conductive coating material was loaded at a shear rate of 0.05 [/ s] at 25 ° C. for 60 seconds, and then increased to 30 [/ s] and maintained for 10 seconds. Then, when the shear rate was reduced to 0.05 [/ s], the
The conductive coating material was printed with a 25 μm applicator at a speed of 5 cm / sec, and the powder obtained by crushing the coating film after drying at 120 ° C. for 10 minutes was heated in a 2 vol% H 2 balance nitrogen atmosphere A conductive coating material having a temperature of less than 350 ° C. when the volume shrinkage is 2%.
(3)
When the shear rate is increased to 30 [/ s] and maintained for 10 seconds and the load is applied, the viscosity value is compared with the viscosity value immediately before increasing the shear rate to 30 [/ s]. The conductive coating material according to any one of (1) to (2), in a range of 0.1 to 10%.
(4)
The viscosity value at the time of applying a load for 60 seconds at a shear rate of 0.05 [/ s] is in the range of 1000 to 10000 [Pa · s], according to any one of (1) to (3) Conductive coating material.
(5)
The conductive coating material according to any one of (1) to (4), which contains a non-thermosetting resin in a range of 0.1 to 5% by mass.
(6)
The conductive coating material according to any one of (1) to (5), comprising metal powder in a range of 80 to 92% by mass.
(7)
The ratio of (non-heat curable resin) / (metal powder) contained is in the range of 0.0005 to 0.08,
The conductive coating material according to any one of (1) to (6), wherein the ratio of (dispersion medium) / (metal powder) contained is in the range of 0.07 to 0.25.
(8)
The conductive coating material according to any one of (1) to (7), wherein the bulk density of the metal powder is less than 3 [g / cm 3 ].
(9)
The conductive coating material according to any one of (1) to (8), wherein the BET specific surface area of the metal powder is in the range of 1.5 to 10.0 [m 2 / g].
(10)
Any of (1) to (9), wherein the dispersion medium is one or more dispersion media selected from the group consisting of terpineol, dihydroterpineol, and a nonionic surfactant having an ethylene oxide chain, or a mixture thereof. The conductive coating material described in 1.
(11)
The said dispersion medium is an electroconductive coating material in any one of (1)-(10) containing the low boiling point solvent whose boiling point is 200 degreeC or more and less than 300 degreeC, and the high boiling point solvent whose boiling point is 300 degreeC or more.
(12)
The conductive coating material according to any one of (1) to (11), wherein the metal of the metal powder is copper or a copper alloy.
(13)
The non-heat curable resin is one or more non-heat curable resins selected from the group consisting of acrylic resins, cellulose resins, and polyvinyl alcohol resins, according to any one of (1) to (12). Conductive coating material.
本発明は、上述の特定事項を備えた導電性塗布材料を含み、導電性ペースト、放熱材料を含む。 The present invention includes a conductive coating material having the above specific matters, and includes a conductive paste and a heat dissipation material.
以下に実施例をあげて、本発明をさらに詳細に説明する。本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
[例1](発明例1〜9、比較例1〜2)
[銅粉の調製]
銅粉を以下の手順で調製した。
亜酸化銅1kg、アラビアゴム4.0gを純水7Lに分散させ、容器の中で500rpmで回転させた。ここに25vol%の希硫酸2Lを瞬間的に添加し、銅粉を得た。デカンテーションで十分に銅粉を沈降させ、その後上澄み液を取り除き、純水を7L加え、撹拌させ、静置させた。この作業を上澄み液のpHが4を上回るまで繰り返した。
pHが4を上回ったら、上澄み液を捨て、pH12のアンモニア水を7L添加し、30分撹拌させ、遠心分離で固液分離した。得られた銅粉に純水を7L加え、撹拌した。上澄み液のpHが8を下回るまで繰り返した。固形分の含水率が10%となるように遠心分離で銅粉を回収した後、窒素中で70℃、2時間で乾燥させた。得られた乾燥銅粉を自動乳鉢で710μmの篩を通過するまで解砕し、さらにジェットミルで解砕した。
[Example 1] (Invention Examples 1-9, Comparative Examples 1-2)
[Preparation of copper powder]
Copper powder was prepared by the following procedure.
1 kg of cuprous oxide and 4.0 g of gum arabic were dispersed in 7 L of pure water and rotated in a container at 500 rpm. To this, 2 L of 25 vol% dilute sulfuric acid was added instantaneously to obtain copper powder. The copper powder was sufficiently settled by decantation, then the supernatant was removed, 7 L of pure water was added, and the mixture was stirred and allowed to stand. This operation was repeated until the pH of the supernatant liquid exceeded 4.
When the pH exceeded 4, the supernatant was discarded, 7 L of pH 12 ammonia water was added, stirred for 30 minutes, and solid-liquid separated by centrifugation. 7 L of pure water was added to the obtained copper powder and stirred. This was repeated until the pH of the supernatant was below 8. The copper powder was recovered by centrifugation so that the moisture content of the solid content was 10%, and then dried in nitrogen at 70 ° C. for 2 hours. The obtained dried copper powder was crushed with an automatic mortar until it passed through a 710 μm sieve, and further crushed with a jet mill.
[銅粉のBET比表面積]
解砕して得られた銅粉のBET比表面積を、BELSORP−miniII(マイクロトラックベル社)で測定した。銅粉を真空中で200℃、5時間脱気した後、比表面積を測定し、3.1[m2・g-1]であった。
[BET specific surface area of copper powder]
The BET specific surface area of the copper powder obtained by pulverization was measured with BELSORP-miniII (Microtrack Bell). After degassing the copper powder in vacuum at 200 ° C. for 5 hours, the specific surface area was measured and found to be 3.1 [m 2 · g −1 ].
[銅粉の固めかさ密度]
得られた銅粉の固めかさ密度を、パウダテスタPT−X(ホソカワミクロン社)を使って測定した。10ccのカップにガイドを取り付けてカップに銅粉を入れ、1000回タップさせた。ガイドを残して、10ccの容積を上回っている部分を摺り切り、容器に入っている銅粉の重量を測定し求めた固めかさ密度は2.1[g・cm-3]であった。
[Solid bulk density of copper powder]
The solid bulk density of the obtained copper powder was measured using a powder tester PT-X (Hosokawa Micron). A guide was attached to a 10 cc cup, and copper powder was put into the cup and tapped 1000 times. The portion exceeding the volume of 10 cc was scraped, leaving the guide, and the mass density determined by measuring the weight of the copper powder contained in the container was 2.1 [g · cm −3 ].
[ペーストの調製]
銅粉を使用したペーストを以下の手順で調製した。
ジヒドロターピネオールとアクリル樹脂ビークル(固形分35%、互応化学KFA−2000)を表1に記載の比率となるように秤量し、自転公転ミキサーで5分撹拌した。そこに上記銅粉を表1に記載の比率となるように添加し、さらに自転公転ミキサーで5分撹拌した。得られた混合物を、ロール径80mmのロール間ギャップを5μmとし、3本のロール周速を出側:中央:入側を9:3:1で、出側の周速が150rpmとして3本ロールに5パス通し、ペーストを得た。ロール材質は3本ともアルミナロールである。銅粉との混練前に分散媒と樹脂とを予め混練することで、分散媒に樹脂が分散する。樹脂が分散した分散媒に銅粉を混錬することで、混合物における樹脂および銅粉の分散性を一層向上させることができる。さらに周速差が生じるように3本のロールの周速を設定することで、銅粉が変形しないほどの適度なせん断応力が混練物に付与され、さらに分散が進む。このように、弾性体として振る舞う樹脂を導電性塗布材料中に均一に分散することによって、高い粘度回復率を実現することができると考えられる。
[Preparation of paste]
A paste using copper powder was prepared by the following procedure.
Dihydroterpineol and an acrylic resin vehicle (solid content: 35%, interactive KFA-2000) were weighed so as to have the ratio shown in Table 1, and stirred for 5 minutes with a rotating and rotating mixer. The said copper powder was added there so that it might become the ratio of Table 1, and also it stirred for 5 minutes with the autorotation revolution mixer. Three rolls with the obtained mixture having a roll diameter of 80 mm with a gap between rolls of 5 μm, a peripheral speed of three rolls on the outlet side: a center: an inlet side of 9: 3: 1, and a peripheral speed on the outlet side of 150 rpm. The paste was obtained through 5 passes. All three roll materials are alumina rolls. By kneading the dispersion medium and the resin in advance before kneading with the copper powder, the resin is dispersed in the dispersion medium. By kneading the copper powder in the dispersion medium in which the resin is dispersed, the dispersibility of the resin and the copper powder in the mixture can be further improved. Furthermore, by setting the peripheral speed of the three rolls so that a peripheral speed difference is generated, an appropriate shear stress is applied to the kneaded material so that the copper powder is not deformed, and the dispersion further proceeds. Thus, it is considered that a high viscosity recovery rate can be realized by uniformly dispersing the resin that behaves as an elastic body in the conductive coating material.
[ペーストの粘度回復]
次に、ペーストを印刷後に、ペーストの粘度がどれだけ回復するかを調査した。具体的にはペーストに0.05[s-1]のせん断速度で負荷を与え、定常状態、すなわち印刷前の状態を模擬した。そこに瞬間的に30[s-1]のせん断速度まで上昇させてこのせん断速度での負荷を10[s]与え、印刷時の状態を模擬した。その後、瞬間的にせん断速度を0.05[s-1]へと減少させて負荷を軽減し、印刷時相当の状態から粘度がどの程度回復するかを求めた。粘度の測定は、MCR102(アントンパール社製)を使用して、ジオメトリーは2°コーンプレートとし、温度は25℃とした。
[Recovery of viscosity of paste]
Next, it was investigated how much the viscosity of the paste recovered after printing the paste. Specifically, a load was applied to the paste at a shear rate of 0.05 [s −1 ] to simulate a steady state, that is, a state before printing. The shear rate was instantaneously increased to 30 [s −1 ] and a load at this shear rate was applied for 10 [s] to simulate the printing state. Thereafter, the shear rate was instantaneously decreased to 0.05 [s −1 ] to reduce the load, and how much the viscosity was recovered from a state corresponding to printing was determined. For the measurement of viscosity, MCR102 (manufactured by Anton Paar) was used, the geometry was a 2 ° cone plate, and the temperature was 25 ° C.
[ペーストによって接合した接合体の調製]
アルカリ脱脂、酸洗、水洗の前処理を施した厚み1mmの無酸素銅板に厚み100μm、開口部6mm×6mmのステンレスマスクでペーストを印刷し、ホットプレート上で70℃、3分で予備加熱をした。Au層をスパッタリングで形成した5mm×5mmのSiチップを、ペースト乾燥塗膜とAu面が接するように搭載して、0.4MPaの荷重をかけ、ギ酸バブリングした窒素で室温から300℃まで昇温し、300℃で15分保持し、接合体を得た。この接合体の接合強度をボンドテスターのツールをSiチップ側面から無酸素銅版から150μmの高さで掃引速度100μm/秒で当てることにより測定した。
[Preparation of joined body joined by paste]
The paste is printed with a stainless steel mask with a thickness of 100 μm and an opening of 6 mm × 6 mm on an oxygen-free copper plate with a thickness of 1 mm that has been pretreated with alkali degreasing, pickling, and water washing. did. A 5 mm x 5 mm Si chip with an Au layer formed by sputtering was mounted so that the dry paste coating and the Au surface were in contact, a load of 0.4 MPa was applied, and the temperature was raised from room temperature to 300 ° C with nitrogen formate bubbling And kept at 300 ° C. for 15 minutes to obtain a joined body. The bonding strength of the bonded body was measured by applying a bond tester tool from the side of the Si chip to the height of 150 μm from the oxygen-free copper plate at a sweep rate of 100 μm / second.
[例2](比較例3)
例1と同様の手順で亜酸化銅スラリーに希硫酸を添加し、銅粉を得た。上澄み液のpHがpH4を上回るまでデカンテーションと水洗を繰り返した。pHが4を上回ったら、遠心分離で固液分離し、含水率11%の固形分を得た。例1の手順で解砕まで行った。得られた銅粉のBET比表面積、固めかさ密度を例1の手順で測定し、それぞれ、3.0[m2g-1]、3.4[g・cm-3]であった。例1の手順に従いペーストを作製し、評価した。
[Example 2] (Comparative Example 3)
In the same procedure as in Example 1, dilute sulfuric acid was added to the cuprous oxide slurry to obtain copper powder. Decantation and water washing were repeated until the pH of the supernatant liquid exceeded pH4. When the pH exceeded 4, solid-liquid separation was performed by centrifugation to obtain a solid content having a water content of 11%. The procedure of Example 1 was followed until crushing. The BET specific surface area and the solid bulk density of the obtained copper powder were measured by the procedure of Example 1, and were 3.0 [m 2 g −1 ] and 3.4 [g · cm −3 ], respectively. A paste was prepared and evaluated according to the procedure of Example 1.
[例3](比較例4)
例1の銅粉、ジヒドロターピネオール、アクリル樹脂ビークルを表1に記載の比率となるように秤量し、これらを自転公転ミキサーで5分撹拌し、ペーストを作製した。その後、例1の手順で評価した。
[Example 3] (Comparative Example 4)
The copper powder, dihydroterpineol, and acrylic resin vehicle of Example 1 were weighed so as to have the ratios shown in Table 1, and these were stirred for 5 minutes with a rotating and rotating mixer to prepare a paste. Then, it evaluated by the procedure of Example 1.
[例4](発明例10)
アクリル樹脂ビークルとblaunon L 207を2.9:11の比率で自転公転ミキサーで5分撹拌した。 そこにblaunon L 207が11に対して例1の銅粉が85となるように銅粉を混合物に添加し、さらに自転公転ミキサーで5分撹拌した。得られた混合物を、ロールギャップを5μmとした3本ロールに5パス通し、ペーストを作製し、例1の手順で評価した。
[Example 4] (Invention Example 10)
The acrylic resin vehicle and blaunon L 207 were stirred at a ratio of 2.9: 11 for 5 minutes with a rotation and revolution mixer. Thereto, copper powder was added to the mixture so that the copper powder of Example 1 was 85 with respect to blaunon L 207 of 11, and the mixture was further stirred for 5 minutes with a rotation and revolution mixer. The obtained mixture was passed through three rolls with a roll gap of 5 μm for 5 passes to produce a paste, and evaluated according to the procedure of Example 1.
[例5](発明例11)
例1の銅粉、エチルセルロース、ジヒドロターピネオールが所定の比率となるようにエチルセルロースビークル(日新化成、EC−100FTD)とジヒドロターピネオールを混自転公転ミキサーで5分撹拌した。ここに例1の銅粉を所定量加え、例1の手順に従いペーストを作製し、評価した。
[Example 5] (Invention Example 11)
The ethylcellulose vehicle (Nisshin Kasei, EC-100FTD) and dihydroterpineol were stirred for 5 minutes with a mixing and revolving mixer so that the copper powder, ethylcellulose, and dihydroterpineol of Example 1 had a predetermined ratio. A predetermined amount of the copper powder of Example 1 was added thereto, and a paste was prepared and evaluated according to the procedure of Example 1.
[例6](比較例5)
例1においてアクリル樹脂ビークルの固形分がエポキシ樹脂(ナガセケムテックス株式会社製、商品名:EX−214L)となるようにエポキシ樹脂とジヒドロターピネオールを混合し、例1の手順に従いペーストを作製し、評価した。
[Example 6] (Comparative Example 5)
In Example 1, the epoxy resin and dihydroterpineol were mixed so that the solid content of the acrylic resin vehicle was an epoxy resin (trade name: EX-214L, manufactured by Nagase ChemteX Corporation), and a paste was prepared according to the procedure of Example 1, evaluated.
[例7](比較例6)
例1においてアクリル樹脂ビークルの固形分がレゾール型フェノール樹脂(群栄化学工業株式会社製、レヂトップPL−4348)となるようにフェノール樹脂とジヒドロターピネオールを混合し、例1の手順に従いペーストを作製し、評価した。
[Example 7] (Comparative Example 6)
In Example 1, the phenol resin and dihydroterpineol were mixed so that the solid content of the acrylic resin vehicle was a resol type phenol resin (Resitop PL-4348, manufactured by Gunei Chemical Industry Co., Ltd.), and a paste was prepared according to the procedure of Example 1. ,evaluated.
[例8](発明例12)
例1の手順で製粉後にpHが4を上回るまでデカンテーションと水洗を繰り返した。pHが4を上回ったら、上澄み液を捨て、pH13のアンモニア水を7L添加し、30分撹拌させ、遠心分離で固液分離し、例1の手順で乾燥、解砕し、銅粉を得た。得られた銅粉のBET比表面積、固めかさ密度を例1の手順で測定し、それぞれ、3.2[m2・g-1]、1.8[g・cm-3]であった。例1の手順に従いペーストを作製し、評価した。
[Example 8] (Invention Example 12)
Decantation and water washing were repeated until the pH exceeded 4 after milling according to the procedure of Example 1. When the pH exceeded 4, the supernatant was discarded, 7 L of pH 13 ammonia water was added, stirred for 30 minutes, solid-liquid separated by centrifugation, dried and crushed by the procedure of Example 1 to obtain copper powder. . The BET specific surface area and the solid bulk density of the obtained copper powder were measured by the procedure of Example 1, and were 3.2 [m 2 · g −1 ] and 1.8 [g · cm −3 ], respectively. A paste was prepared and evaluated according to the procedure of Example 1.
[例9](発明例13)
例1の手順でアラビアゴムを分子量5000の豚から精製したコラーゲンペプチドとして製粉を行い、pHが4を上回るまでデカンテーションと水洗を繰り返した。pHが4を上回ったら、上澄み液を捨て、pH13のアンモニア水を7L添加し、30分撹拌させ、遠心分離で固液分離し、例1の手順で乾燥、解砕し、銅粉を得た。得られた銅粉のBET比表面積、固めかさ密度を例1の手順で測定し、それぞれ、4.8[m2・g-1]、1.5[g・cm-3]であった。例1の手順に従いペーストを作製し、評価した。
[Example 9] (Invention Example 13)
The gum arabic was milled as a collagen peptide purified from pigs having a molecular weight of 5000 by the procedure of Example 1, and decantation and water washing were repeated until the pH exceeded 4. When the pH exceeded 4, the supernatant was discarded, 7 L of pH 13 ammonia water was added, stirred for 30 minutes, solid-liquid separated by centrifugation, dried and crushed by the procedure of Example 1 to obtain copper powder. . The BET specific surface area and the solid bulk density of the obtained copper powder were measured by the procedure of Example 1, and were 4.8 [m 2 · g −1 ] and 1.5 [g · cm −3 ], respectively. A paste was prepared and evaluated according to the procedure of Example 1.
[例10](発明例14)
亜酸化銅1kg、アラビアゴム4.0gを純水7Lに分散させ、容器の中で500rpmで回転させた。ここに25vol%の希硫酸2Lを10mL/分の速度で添加し、銅粉を得た。この後、例1の手順で銅粉を作製し、これを用いて例1の手順で評価を行った。
[Example 10] (Invention Example 14)
1 kg of cuprous oxide and 4.0 g of gum arabic were dispersed in 7 L of pure water and rotated in a container at 500 rpm. Here, 2 L of 25 vol% dilute sulfuric acid was added at a rate of 10 mL / min to obtain copper powder. Then, copper powder was produced in the procedure of Example 1, and it evaluated in the procedure of Example 1 using this.
[例11](発明例15)
亜酸化銅1kg、アラビアゴム4.0gを純水7Lに分散させ、容器の中で500rpmで回転させた。ここに25vol%の希硫酸2Lを50mL/分の速度で添加し、銅粉を得た。この後、例1の手順で銅粉を作製し、これを用いて例1の手順で評価を行った。
[Example 11] (Invention Example 15)
1 kg of cuprous oxide and 4.0 g of gum arabic were dispersed in 7 L of pure water and rotated in a container at 500 rpm. Here, 2 L of 25 vol% dilute sulfuric acid was added at a rate of 50 mL / min to obtain copper powder. Then, copper powder was produced in the procedure of Example 1, and it evaluated in the procedure of Example 1 using this.
[例12]
[塗膜の表面粗さRa、2%体積収縮温度]
上記の発明例及び比較例で得られたペーストをスライドガラス上に25μmアプリケーターで印刷し、得られた塗膜を120℃、10分で乾燥させた。この乾燥塗膜の表面粗さRaをJIS B 0633:2001に従い、触式粗さ計で測定した。この乾燥塗膜をスライドガラスからはがし、乳棒、乳鉢で解砕し、得られた粉を密度4.7[g・cm-3]のペレットに成型した。このペレットをTMA4000(ネッチ・ジャパン社)で2%H2−N2を100mL流しながら、98mNの荷重をかけ、5℃/分の速度で昇温し、2%体積が収縮する温度を求めた。その結果、いずれのペーストも350℃未満であった。
[Example 12]
[Coating surface roughness Ra, 2% volume shrinkage temperature]
The pastes obtained in the above inventive examples and comparative examples were printed on a slide glass with a 25 μm applicator, and the obtained coating film was dried at 120 ° C. for 10 minutes. The surface roughness Ra of the dried coating film was measured with a tactile roughness meter in accordance with JIS B 0633: 2001. The dried coating film was peeled off from the slide glass and crushed with a pestle and mortar, and the obtained powder was molded into pellets having a density of 4.7 [g · cm −3 ]. The pellet was heated at a rate of 5 ° C./min with a load of 98 mN while flowing 100 mL of 2% H 2 —N 2 with TMA4000 (Netch Japan Co., Ltd.), and the temperature at which 2% volume contracted was determined. . As a result, all pastes were less than 350 ° C.
[例13]
[チクソトロピーインデックス値]
上記の発明例及び比較例で得られたペーストについて、上述の、0.01〜100[s-1]の範囲においてペーストに発生する応力に基づいて、TI値を算出した。その結果、発明例および比較例のTI値はすべて3〜10の範囲内であった。
[Example 13]
[Thixotropic index value]
About the paste obtained by said invention example and comparative example, TI value was computed based on the stress which generate | occur | produces in a paste in the range of the above-mentioned 0.01-100 [s < -1 >]. As a result, the TI values of the inventive examples and comparative examples were all in the range of 3-10.
[結果]
上記測定した結果と、それぞれの条件を、表1(表1−1、表1−2、表1−3)にまとめて示す。
[result]
The measurement results and the respective conditions are collectively shown in Table 1 (Table 1-1, Table 1-2, Table 1-3).
発明例1、比較例2について、粘度回復率のグラフを図1に示す。図2は、負荷したせん断速度の時間経過による変化を示すグラフである。図2において、横軸を経過時間[s](秒)とし、縦軸を剪断速度[s-1]としたグラフを示して、これによってそれぞれの経過時間において負荷したせん断速度の値を示している。図1では、発明例1及び比較例2について、横軸を経過時間[s](秒)とし、縦軸を粘度回復率[%]としたグラフを示している。粘度回復率は、せん断速度0.05[/s]で60秒間負荷を与えた時点での粘度であってせん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値を100%として、それぞれの経過時間における相対値を回復率として示した。負荷するせん断速度は、図2に示す通りであり、経過時間0[s]から60[s]まで0.05[s-1]とし、経過時間60[s]において瞬時に30[s-1]へと負荷を増大させて、この負荷を10[s]維持した後に、経過時間70[s]において瞬時に負荷を0.05[s-1]へと減少させて、その後、この負荷を測定終了まで維持した。なお、図1の測定においては異常値が生じなかったが、一般にはせん断速度を急激に変化させると、試料に生じる応力の急激な変化に検出器が対応しきれず、異常値を検出することがあるために、実際の測定操作においては、せん断速度を切り替えたタイミングの前後0.5sの応力に関する情報は現象を考察するうえで対象外とした。 A graph of the viscosity recovery rate for Invention Example 1 and Comparative Example 2 is shown in FIG. FIG. 2 is a graph showing the change of the applied shear rate over time. FIG. 2 shows a graph in which the horizontal axis is elapsed time [s] (seconds) and the vertical axis is shear rate [s −1 ], thereby showing the value of the shear rate loaded at each elapsed time. Yes. FIG. 1 shows a graph with respect to Invention Example 1 and Comparative Example 2 in which the horizontal axis represents elapsed time [s] (seconds) and the vertical axis represents viscosity recovery rate [%]. The viscosity recovery rate is the viscosity at the time when a load is applied for 60 seconds at a shear rate of 0.05 [/ s], and is the value of the maximum viscosity in 60 seconds before increasing the shear rate to 30 [/ s]. The relative value in each elapsed time was shown as a recovery rate as 100%. The shear rate to be applied is as shown in FIG. 2 and is 0.05 [s −1 ] from an elapsed time of 0 [s] to 60 [s], and instantaneously 30 [s −1 at the elapsed time of 60 [s]. The load is increased to 0.05 [s −1 ] at an elapsed time of 70 [s], and then the load is reduced to 0.05 [s −1 ]. This was maintained until the end of the measurement. Although no abnormal value occurred in the measurement of FIG. 1, in general, if the shear rate is changed rapidly, the detector cannot detect the sudden change in the stress generated in the sample, and the abnormal value may be detected. For this reason, in the actual measurement operation, the information about the stress of 0.5 s before and after the timing at which the shear rate is switched is excluded from consideration of the phenomenon.
なお、経過時間0[s]から60[s]までの負荷は、ペーストの取り扱いとしては、印刷前の状態を模擬している。経過時間60[s]において瞬時に30[s-1]へと負荷を増大させてこの負荷を10[s]維持したのは、ペーストの取り扱いとしては、印刷中の状態を模擬している。経過時間70[s]において瞬時に負荷を0.05[s-1]へと減少させてその後この負荷を維持したのは、ペーストの取り扱いとしては、印刷終了後の状態を模擬している。 Note that the load from the elapsed time of 0 [s] to 60 [s] simulates the state before printing as the handling of the paste. The fact that the load is increased to 30 [s −1 ] instantaneously at the elapsed time 60 [s] and this load is maintained at 10 [s] simulates the state during printing as the handling of the paste. The fact that the load is instantaneously reduced to 0.05 [s −1 ] at the elapsed time of 70 [s] and this load is maintained thereafter simulates the state after the end of printing as the handling of the paste.
このように経過時間に応じてせん断速度による負荷を変化させることによって、粘度回復率がどのように変化したかを、発明例1、比較例2について、グラフとして図1に示した。負荷したせん断速度の時間経過による変化を図2に示す。図1から示されるように、印刷前の状態においては、発明例1のペースト(導電性塗布材料)と、比較例2のペーストは、いずれも粘度回復率がほぼ100%(即ち、粘度が一定)を示している。次に、印刷によって生じる負荷をかけると発明例1のペースト(導電性塗布材料)は粘度回復率が約0.5[%]にまで急減したが、印刷によって生じる負荷を除去するとすぐに回復して、負荷除去から1[s]以内に70%に到達し、負荷除去から3[s]以内に90%に到達し、5[s]以内に約100%近くにまで粘度回復率が回復した。すなわち、発明例1のペースト(導電性塗布材料)は印刷終了後には速やかに粘度が回復することがわかった。一方、比較例2のペーストは、印刷によって生じる負荷をかけると粘度回復率が約0.02[%]にまで急減したが、印刷によって生じる負荷を除去しても容易に回復せず、負荷除去から5[s]を経過しても約16[%]近くにしか粘度回復率が回復せず、その後の測定時間終了時まで経過しても(経過時間150[s])、粘度回復率の値は20[%]付近にとどまっていた。すなわち、比較例2のペーストは印刷終了後にも容易に粘度が回復せず、回復しない状態が継続することがわかった。 FIG. 1 is a graph showing how the viscosity recovery rate is changed by changing the load due to the shear rate in accordance with the elapsed time in the graph of Invention Example 1 and Comparative Example 2. FIG. 2 shows changes in the applied shear rate over time. As shown in FIG. 1, in the state before printing, the paste of Example 1 (conductive coating material) and the paste of Comparative Example 2 both have a viscosity recovery rate of almost 100% (that is, the viscosity is constant). ). Next, when a load caused by printing was applied, the viscosity recovery rate of the paste of Example 1 (conductive coating material) rapidly decreased to about 0.5 [%], but recovered immediately when the load caused by printing was removed. Thus, 70% was reached within 1 [s] from the load removal, 90% was reached within 3 [s] from the load removal, and the viscosity recovery rate recovered to about 100% within 5 [s]. . That is, it was found that the viscosity of the paste of Example 1 (conductive coating material) quickly recovered after printing was completed. On the other hand, when the load generated by printing was applied to the paste of Comparative Example 2, the viscosity recovery rate rapidly decreased to about 0.02 [%], but even when the load generated by printing was removed, it did not easily recover and the load was removed. Even after 5 [s] has passed, the viscosity recovery rate recovered only to about 16 [%], and even after the end of the subsequent measurement time (elapsed time 150 [s]), the viscosity recovery rate The value stayed around 20 [%]. That is, it was found that the viscosity of the paste of Comparative Example 2 did not easily recover even after the printing was completed, and the state where it did not recover continued.
なお、発明例1のペースト(導電性塗布材料)において、せん断速度0.05[/s]で59.5秒間負荷を与えた時点の粘度の値は約3.76×103[Pa・s]であった。比較例2のペースト(導電性塗布材料)において、せん断速度0.05[/s]で59.5秒間負荷を与えた時点の粘度の値は約4.34×104[Pa・s]であった。 In the paste of Example 1 (conductive coating material), the value of the viscosity at the time when a load was applied for 59.5 seconds at a shear rate of 0.05 [/ s] was about 3.76 × 10 3 [Pa · s. ]Met. In the paste of Comparative Example 2 (conductive coating material), the value of the viscosity when a load was applied for 59.5 seconds at a shear rate of 0.05 [/ s] was about 4.34 × 10 4 [Pa · s]. there were.
図1に示されるように、発明例1のペースト、及び比較例2のペーストは、いずれも、低いせん断速度(印刷前の状態)には、所定の粘度を維持している。ところが、いったん、高いせん断速度(印刷中の状態)が負荷されると、いずれも急激に粘度が低下する。換言すれば、発明例1のペースト、及び比較例2のペーストは、いずれも、高いTI値を有している。しかしながら、高いせん断速度(印刷中の状態)が解除されると、発明例1のペーストでは、粘度が急激に回復して、ほぼ元の状態へと速やかに回復するが、比較例2のペーストでは、低減した粘度は容易に回復せず、回復しないままの状態が継続する。すなわち、単に高いTI値を有しているという指標だけでなく、このような印刷模擬状態にあたる高いせん断速度が負荷された後の、粘度回復性が優れているという指標が、接合強度に優れた導電性塗布材料を得るために重要であることが明らかとなった。 As shown in FIG. 1, the paste of Invention Example 1 and the paste of Comparative Example 2 both maintain a predetermined viscosity at a low shear rate (state before printing). However, once a high shear rate (a state during printing) is applied, the viscosity of each of them rapidly decreases. In other words, the paste of Invention Example 1 and the paste of Comparative Example 2 both have high TI values. However, when the high shear rate (the state during printing) is released, the paste of Invention Example 1 suddenly recovers its viscosity and quickly recovers to its original state, but the paste of Comparative Example 2 The reduced viscosity does not easily recover and remains unrecovered. That is, not only an index indicating that it has a high TI value but also an index indicating that the viscosity recovery property is excellent after being loaded with a high shear rate corresponding to such a printing simulation state is excellent in bonding strength. It became clear that it was important to obtain a conductive coating material.
このような指標が重要となることの理由は不明であるが、本発明者は、導電性塗布材料(ペースト)を印刷するにあたって、印刷前の粘度の値も印刷準備のために重要であるけれども、印刷時の粘度も印刷のために重要であり、それにもまして、印刷終了後の粘度の回復性が、印刷された導電性塗布材料(ペースト)が理想的な塗膜の状態を維持できるかどうかに影響して、結果として接合強度に影響を与えるのではないかと洞察している。 The reason why such an index is important is unclear, but the present inventor, when printing a conductive coating material (paste), the viscosity value before printing is also important for printing preparation. In addition, the viscosity at the time of printing is also important for printing, and moreover, the recovery of the viscosity after printing is completed, so that the printed conductive coating material (paste) can maintain the ideal coating state Insights into how it might affect the joint strength as a result.
本発明は、大面積の部材を比較的低温で接合する場合であっても、充分な接合強度を得ることができる導電性塗布材料を提供する。本発明は産業上有用な発明である。 The present invention provides a conductive coating material capable of obtaining sufficient bonding strength even when a large-area member is bonded at a relatively low temperature. The present invention is industrially useful.
Claims (14)
金属粉と、非加熱硬化型樹脂と、分散媒とを含み、
導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値であり、
金属粉のかさ密度が、3[g/cm 3 ]未満である、導電性塗布材料。 A conductive coating material for bonding a semiconductor element to a substrate,
Including metal powder, non-heat curable resin, and dispersion medium,
The conductive coating material was loaded at a shear rate of 0.05 [/ s] at 25 ° C. for 60 seconds, and then increased to 30 [/ s] and maintained for 10 seconds. Then, when the shear rate was reduced to 0.05 [/ s], the viscosity value 10 seconds after the shear rate was reduced to 0.05 [/ s] [/ s] in comparison with the value of the maximum viscosity at 60 seconds before increasing to, Ri 60% or more of the values der,
The bulk density of the metal powder, 3 [g / cm 3] Ru der below, conductive coating material.
金属粉と、非加熱硬化型樹脂と、分散媒とを含み、
導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値であり、
金属粉のBET比表面積が、1.5〜10.0[m 2 /g]の範囲にある、導電性塗布材料。 A conductive coating material for bonding a semiconductor element to a substrate,
Including metal powder, non-heat curable resin, and dispersion medium,
The conductive coating material was loaded at a shear rate of 0.05 [/ s] at 25 ° C. for 60 seconds, and then increased to 30 [/ s] and maintained for 10 seconds. Then, when the shear rate was reduced to 0.05 [/ s], the viscosity value 10 seconds after the shear rate was reduced to 0.05 [/ s] [/ s] in comparison with the value of the maximum viscosity at 60 seconds before increasing to, Ri 60% or more of the values der,
BET specific surface area of the metal powder, 1.5 to 10.0 area by the near of [m 2 / g], the conductive coating material.
金属粉と、非加熱硬化型樹脂と、分散媒とを含み、
導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値であり、
前記分散媒は、沸点が200℃以上300℃未満の低沸点溶媒と、沸点が300℃以上の高沸点溶媒とを含む、導電性塗布材料。 A conductive coating material for bonding a semiconductor element to a substrate,
Including metal powder, non-heat curable resin, and dispersion medium,
The conductive coating material was loaded at a shear rate of 0.05 [/ s] at 25 ° C. for 60 seconds, and then increased to 30 [/ s] and maintained for 10 seconds. Then, when the shear rate was reduced to 0.05 [/ s], the viscosity value 10 seconds after the shear rate was reduced to 0.05 [/ s] [/ s] in comparison with the value of the maximum viscosity at 60 seconds before increasing to, Ri 60% or more of the values der,
The said dispersion medium is a conductive coating material containing the low boiling point solvent whose boiling point is 200 degreeC or more and less than 300 degreeC, and the high boiling point solvent whose boiling point is 300 degreeC or more .
導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値であり、
導電性塗布材料を25μmアプリケーターで5cm/秒の速度で印刷し、120℃で10分間、乾燥させた後の塗膜を解砕して得られる粉を2vol%H2残部窒素雰囲気で昇温して体積収縮率が2%になるときの温度が350℃未満であり、
金属粉のかさ密度が、3[g/cm 3 ]未満である、導電性塗布材料。 A conductive coating material containing a metal powder, a non-heat curable resin, and a dispersion medium,
The conductive coating material was loaded at a shear rate of 0.05 [/ s] at 25 ° C. for 60 seconds, and then increased to 30 [/ s] and maintained for 10 seconds. Then, when the shear rate was reduced to 0.05 [/ s], the viscosity value 10 seconds after the shear rate was reduced to 0.05 [/ s] Compared to the value of the maximum viscosity in 60 seconds before increasing to [/ s], the value is 60% or more,
The conductive coating material was printed with a 25 μm applicator at a speed of 5 cm / sec, and the powder obtained by crushing the coating film after drying at 120 ° C. for 10 minutes was heated in a 2 vol% H 2 balance nitrogen atmosphere. temperature 350 ° C. below der when volume shrinkage is 2% Te is,
The bulk density of the metal powder, 3 [g / cm 3] Ru der below, conductive coating material.
導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値であり、
導電性塗布材料を25μmアプリケーターで5cm/秒の速度で印刷し、120℃で10分間、乾燥させた後の塗膜を解砕して得られる粉を2vol%H2残部窒素雰囲気で昇温して体積収縮率が2%になるときの温度が350℃未満であり、
金属粉のBET比表面積が、1.5〜10.0[m 2 /g]の範囲にある、導電性塗布材料。 A conductive coating material containing a metal powder, a non-heat curable resin, and a dispersion medium,
The conductive coating material was loaded at a shear rate of 0.05 [/ s] at 25 ° C. for 60 seconds, and then increased to 30 [/ s] and maintained for 10 seconds. Then, when the shear rate was reduced to 0.05 [/ s], the viscosity value 10 seconds after the shear rate was reduced to 0.05 [/ s] Compared to the value of the maximum viscosity in 60 seconds before increasing to [/ s], the value is 60% or more,
The conductive coating material was printed with a 25 μm applicator at a speed of 5 cm / sec, and the powder obtained by crushing the coating film after drying at 120 ° C. for 10 minutes was heated in a 2 vol% H 2 balance nitrogen atmosphere. temperature 350 ° C. below der when volume shrinkage is 2% Te is,
BET specific surface area of the metal powder, 1.5 to 10.0 area by the near of [m 2 / g], the conductive coating material.
導電性塗布材料は、25℃において、せん断速度0.05[/s]で60秒間負荷を与えた後に、せん断速度を30[/s]へと増大させて10秒間維持して負荷を与えて、その後せん断速度を0.05[/s]へと減少させたときに、せん断速度を0.05[/s]へと減少させた直後から10秒後の粘度の値が、せん断速度を30[/s]へと増大させる前の60秒間における最大粘度の値と比較して、60%以上の値であり、
導電性塗布材料を25μmアプリケーターで5cm/秒の速度で印刷し、120℃で10分間、乾燥させた後の塗膜を解砕して得られる粉を2vol%H2残部窒素雰囲気で昇温して体積収縮率が2%になるときの温度が350℃未満であり、
前記分散媒は、沸点が200℃以上300℃未満の低沸点溶媒と、沸点が300℃以上の高沸点溶媒とを含む、導電性塗布材料。 A conductive coating material containing a metal powder, a non-heat curable resin, and a dispersion medium,
The conductive coating material was loaded at a shear rate of 0.05 [/ s] at 25 ° C. for 60 seconds, and then increased to 30 [/ s] and maintained for 10 seconds. Then, when the shear rate was reduced to 0.05 [/ s], the viscosity value 10 seconds after the shear rate was reduced to 0.05 [/ s] Compared to the value of the maximum viscosity in 60 seconds before increasing to [/ s], the value is 60% or more,
The conductive coating material was printed with a 25 μm applicator at a speed of 5 cm / sec, and the powder obtained by crushing the coating film after drying at 120 ° C. for 10 minutes was heated in a 2 vol% H 2 balance nitrogen atmosphere temperature 350 ° C. below der when volume shrinkage is 2% Te is,
The said dispersion medium is a conductive coating material containing the low boiling point solvent whose boiling point is 200 degreeC or more and less than 300 degreeC, and the high boiling point solvent whose boiling point is 300 degreeC or more .
含有される(分散媒)/(金属粉)の比率が、0.07〜0.25の範囲にある、請求項1〜10のいずれかに記載の導電性塗布材料。 The ratio of (non-heat curable resin) / (metal powder) contained is in the range of 0.0005 to 0.08,
The ratio of the contained (dispersion medium) / (metal powder) is in the range of 0.07 to 0.25, a conductive coating material according to any one of claims 1-10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019003890A JP6563618B1 (en) | 2019-01-11 | 2019-01-11 | Conductive coating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019003890A JP6563618B1 (en) | 2019-01-11 | 2019-01-11 | Conductive coating material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6563618B1 true JP6563618B1 (en) | 2019-08-21 |
JP2020113660A JP2020113660A (en) | 2020-07-27 |
Family
ID=67692164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019003890A Active JP6563618B1 (en) | 2019-01-11 | 2019-01-11 | Conductive coating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6563618B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021064826A1 (en) * | 2019-09-30 | 2021-04-08 | 昭和電工マテリアルズ株式会社 | Copper paste for joining, method for manufacturing joined body, and joined body |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014067492A (en) * | 2012-09-24 | 2014-04-17 | Hitachi Chemical Co Ltd | Composition for forming conductive part and manufacturing method of conductive part |
JP6072117B2 (en) * | 2015-03-30 | 2017-02-01 | Jx金属株式会社 | Copper fine particle paste and method for producing the same |
JP2017228363A (en) * | 2016-06-20 | 2017-12-28 | 住友ベークライト株式会社 | Conductive paste |
-
2019
- 2019-01-11 JP JP2019003890A patent/JP6563618B1/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021064826A1 (en) * | 2019-09-30 | 2021-04-08 | 昭和電工マテリアルズ株式会社 | Copper paste for joining, method for manufacturing joined body, and joined body |
JPWO2021064826A1 (en) * | 2019-09-30 | 2021-04-08 | ||
JP7392728B2 (en) | 2019-09-30 | 2023-12-06 | 株式会社レゾナック | Copper paste for bonding, method for manufacturing bonded body, and bonded body |
Also Published As
Publication number | Publication date |
---|---|
JP2020113660A (en) | 2020-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI707485B (en) | Manufacturing method of semiconductor device | |
JP2007042301A (en) | Conductive composition, conductive paste, and conductive film | |
EP3431216B1 (en) | Joint manufacturing method | |
US20180273808A1 (en) | Sheet and Composite Sheet | |
JP2011240406A (en) | Bonding material and bonding method using the same | |
WO2015060173A1 (en) | Silver paste and semiconductor device using same | |
TWI829633B (en) | Resin composition, manufacturing method and structure of resin composition | |
KR20200081266A (en) | Method for manufacturing semiconductor device | |
KR101522117B1 (en) | Precious metal paste for bonding semiconductor element | |
JP6563618B1 (en) | Conductive coating material | |
JP6563617B1 (en) | Conductive coating material | |
US10821558B2 (en) | Bonding material and bonding method using same | |
CN113421693A (en) | Conductive paste and preparation method and application thereof | |
TW202208568A (en) | Conductive composition, conductive sintered part, and member having conductive sintered part | |
JP6869275B2 (en) | Conductive coating material | |
CN104148823A (en) | Novel gold alloy material and method for manufacturing same | |
JP6869274B2 (en) | Conductive coating material | |
US11801556B2 (en) | Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing bonded body using said paste-like metal particle aggregate composition | |
CN110400651B (en) | Conductive silver paste and preparation method thereof | |
JP2016056288A (en) | Adhesive composition and semiconductor device using the same | |
WO2024219297A1 (en) | Silver oxide particles, silver oxide powder, bonding composition, silver oxide paste, method for producing semiconductor device using said bonding composition or said silver oxide paste, and method for producing silver oxide particles or silver oxide powder | |
JP2022093965A (en) | Metal material and joint body including metal material and base material | |
JP6360313B2 (en) | Manufacturing method of polarizable electrode | |
WO2024225196A1 (en) | Joining material and method for producing joining body | |
TWI789698B (en) | Copper oxide paste and method for producing electronic parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190319 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190319 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190409 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6563618 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |