JP6561539B2 - Single row ball bearing - Google Patents

Single row ball bearing Download PDF

Info

Publication number
JP6561539B2
JP6561539B2 JP2015075199A JP2015075199A JP6561539B2 JP 6561539 B2 JP6561539 B2 JP 6561539B2 JP 2015075199 A JP2015075199 A JP 2015075199A JP 2015075199 A JP2015075199 A JP 2015075199A JP 6561539 B2 JP6561539 B2 JP 6561539B2
Authority
JP
Japan
Prior art keywords
raceway groove
outer ring
ball
ring raceway
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015075199A
Other languages
Japanese (ja)
Other versions
JP2016194346A (en
Inventor
章 内田
章 内田
大井 三佳
三佳 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2015075199A priority Critical patent/JP6561539B2/en
Priority to CN201620269233.6U priority patent/CN205715287U/en
Publication of JP2016194346A publication Critical patent/JP2016194346A/en
Application granted granted Critical
Publication of JP6561539B2 publication Critical patent/JP6561539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

本発明は、単列玉軸受、特に、スクリューコンプレッサー等に使用され、軸方向両側からのアキシアル荷重とラジアル荷重を単列で受けることができる単列玉軸受に関する。   The present invention relates to a single-row ball bearing, and more particularly to a single-row ball bearing that is used in a screw compressor or the like and can receive an axial load and a radial load from both sides in an axial direction in a single row.

従来、軸方向両側からのアキシアル荷重と軽微なラジアル荷重とを単列で受ける軸受として、4点接触玉軸受が知られている。図5及び図6に示すように、4点接触玉軸受100では、一般に、外輪1と軸方向に二分割された2つの内輪2との間に、複数の玉3が保持器4により円周方向に所定の間隔で転動自在に保持される。外輪1の内周面と内輪2の外周面とには、異なる曲率中心を有する2つの円弧面1a1、1a2、2a1、2a2によって外輪軌道溝1a、内輪軌道溝2aがそれぞれ形成されている。   Conventionally, a four-point contact ball bearing is known as a bearing that receives an axial load and a slight radial load from both sides in the axial direction in a single row. As shown in FIGS. 5 and 6, in the four-point contact ball bearing 100, generally, a plurality of balls 3 are circumferentially arranged by the cage 4 between the outer ring 1 and the two inner rings 2 divided in the axial direction. It is held so as to roll freely at a predetermined interval in the direction. On the inner peripheral surface of the outer ring 1 and the outer peripheral surface of the inner ring 2, an outer ring raceway groove 1a and an inner ring raceway groove 2a are formed by two circular arc surfaces 1a1, 1a2, 2a1, 2a2 having different centers of curvature.

具体的に、図6に示すように、外輪軌道溝1aの2つの円弧面1a1、1a2は、曲率半径re1、re2が等しく、玉中心Oから2つの円弧面1a1、1a2の各曲率中心の軸方向位置ずれ量te1、te2が等しく、2つの円弧面1a1、1a2と玉3とがそれぞれ接触する2点で、軸方向両側に形成される接触角αe1、αe2が等しく設計されている(即ち、re1=re2、te1=te2、αe1=αe2)。   Specifically, as shown in FIG. 6, the two arcuate surfaces 1a1 and 1a2 of the outer ring raceway groove 1a have the same curvature radii re1 and re2, and the axes of the respective curvature centers of the two arcuate surfaces 1a1 and 1a2 from the ball center O. The azimuth displacement amounts te1 and te2 are equal, and the contact angles αe1 and αe2 formed on both sides in the axial direction are designed to be equal at two points where the two arcuate surfaces 1a1, 1a2 and the ball 3 are in contact with each other (ie, re1 = re2, te1 = te2, αe1 = αe2).

同様に、内輪軌道溝2aの2つの円弧面2a1、2a2も、曲率半径ri1、ri2が等しく、玉中心Oから2つの円弧面2a1、2a2の各曲率中心の軸方向位置ずれ量ti1、ti2が等しく、2つの円弧面2a1、2a2と玉3とがそれぞれ接触する2点で、軸方向両側に形成される接触角αi1、αi2が等しく設計されている(即ち、ri1=ri2、ti1=ti2、αi1=αi2)。
即ち、外輪軌道溝1aと内輪軌道溝2aは、軸方向中心に対して左右対称に形成されている。
Similarly, the two arc surfaces 2a1 and 2a2 of the inner ring raceway groove 2a have the same curvature radii ri1 and ri2, and the axial displacements ti1 and ti2 of the respective curvature centers of the two arc surfaces 2a1 and 2a2 from the ball center O are the same. Equally, the contact angles αi1 and αi2 formed on both sides in the axial direction are designed to be equal at two points where the two arcuate surfaces 2a1 and 2a2 and the ball 3 contact each other (ie, ri1 = ri2, ti1 = ti2, αi1 = αi2).
That is, the outer ring raceway groove 1a and the inner ring raceway groove 2a are formed symmetrically with respect to the axial center.

また、4点接触玉軸受が機械装置に組み付けられた状態では、静止状態において、図7(a)に示すように、4点接触玉軸受にはアキシアル荷重が作用している。この状態で、玉3は、外輪軌道溝1aの円弧面1a1と内輪軌道溝2aの円弧面2a1とそれぞれ1点で接触し、外輪1と玉3との接触角はθe、内輪2と玉3との接触角はθiとなる。
なお、図7(a)〜図7(c)では、外輪軌道溝1a及び内輪軌道溝2aの円弧形状を簡略化のため直線形状で表している。
In the state where the four-point contact ball bearing is assembled to the mechanical device, an axial load is applied to the four-point contact ball bearing as shown in FIG. In this state, the ball 3 contacts the arc surface 1a1 of the outer ring raceway groove 1a and the arc surface 2a1 of the inner ring raceway groove 2a at one point, the contact angle between the outer ring 1 and the ball 3 is θe, and the inner ring 2 and the ball 3 The contact angle with is θi.
In FIGS. 7A to 7C, the arc shapes of the outer ring raceway groove 1a and the inner ring raceway groove 2a are represented by linear shapes for simplification.

図7(a)の状態から回転されると、図7(b)に示すように、玉3に働く遠心力によって、玉3は外輪1に押付けられ、外輪軌道溝1aとの接触点は、外輪軌道溝1aの中央部へ移動し、外輪1と玉3のなす接触角βeはθeより小さくなり(θe>βe)、逆に、内輪軌道溝2aとの接触点は、内輪軌道溝2aの外側へ移動し、内輪2と玉3との接触角βiはθiより大きくなる(θi<βi)。   When rotated from the state of FIG. 7A, as shown in FIG. 7B, the ball 3 is pressed against the outer ring 1 by the centrifugal force acting on the ball 3, and the contact point with the outer ring raceway groove 1a is: The outer ring raceway groove 1a moves to the center, and the contact angle βe formed between the outer ring 1 and the ball 3 is smaller than θe (θe> βe). On the contrary, the contact point with the inner ring raceway groove 2a is the inner ring raceway groove 2a. Moving to the outside, the contact angle βi between the inner ring 2 and the ball 3 becomes larger than θi (θi <βi).

図7(b)の状態で更に高速回転になるか、若しくはアキシアル荷重が小さくなると、図7(c)に示すように、外輪1と玉3のなす接触角βe1は、βeより更に小さくなり(βe>βe1)、逆に、内輪2と玉3のなす接触角βi1は、βiより更に大きくなり(βi<βi1)、ついには、外輪1と玉3は、2点接触となる。また、外輪1と玉3とのなす接触角は、アキシアル荷重方向の接触角をβe1、反アキシアル荷重方向の接触角をβe2とすると、βe1>βe2となる。   When the rotation speed is further increased in the state of FIG. 7B or the axial load is reduced, as shown in FIG. 7C, the contact angle βe1 formed by the outer ring 1 and the ball 3 becomes smaller than βe ( βe> βe1), conversely, the contact angle βi1 formed by the inner ring 2 and the ball 3 is further larger than βi (βi <βi1). Finally, the outer ring 1 and the ball 3 are in two-point contact. The contact angle between the outer ring 1 and the ball 3 is βe1> βe2 where βe1 is the contact angle in the axial load direction and βe2 is the contact angle in the anti-axial load direction.

このように、玉3の運動は軸の回転数と共に変化する接触角によりコントロールされる。4点接触玉軸受がアキシアル荷重Faを受けると、玉3は外輪1及び内輪2におけるスピン摩擦の大小でコントロールされる。   Thus, the movement of the ball 3 is controlled by the contact angle that varies with the rotational speed of the shaft. When the four-point contact ball bearing receives the axial load Fa, the ball 3 is controlled by the magnitude of the spin friction in the outer ring 1 and the inner ring 2.

つまり、図7(b)に示すように、外輪1及び内輪2のうち、スピン摩擦が大きい軌道輪側では純転がり、他の軌道輪側ではスピン運動と転がり運動が共存する。一般的には、高速になると、外輪コントロールの自転軸O−Oeを中心に、外輪コントロールになる。なお、O−Oiは、内輪コントロールの自転軸を表している。   That is, as shown in FIG. 7B, of the outer ring 1 and the inner ring 2, pure rolling is performed on the side of the race ring where the spin friction is large, and spin motion and rolling motion coexist on the other race ring side. Generally, when the speed is increased, the outer ring control is performed around the rotation axis O-Oe of the outer ring control. O-Oi represents the rotation axis of the inner ring control.

また、図7(c)に示すように、高速回転では、外輪1は、接触面圧が高く、スピン摩擦が大きい円弧面側で純転がり、一方、接触面圧が低く、スピン摩擦が小さい他の円弧面側でスピン運動と転がり運動が共存する。すなわち、スピン摩擦の大きい円弧面1a1側では、外輪1の自転軸O−Oe1を中心とした純転がり運動が行われるが、スピン摩擦の小さい円弧面1a2側では、外輪1の自転軸O−Oe2を中心としたスピン運動と転がり運動が共存する。
なお、図8は、図7(c)の高速回転の状態を、円弧形状の外輪軌道溝1a及び内輪軌道溝2aで表している。
Further, as shown in FIG. 7 (c), at high speed rotation, the outer ring 1 is purely rolled on the arc surface side where the contact surface pressure is high and the spin friction is large, while the contact surface pressure is low and the spin friction is small. Spin motion and rolling motion coexist on the arc surface side. That is, on the side of the arc surface 1a1 where the spin friction is large, pure rolling motion is performed around the rotation axis O-Oe1 of the outer ring 1, but on the side of the arc surface 1a2 where the spin friction is small, the rotation axis O-Oe2 of the outer ring 1 is performed. Spin motion and rolling motion coexisting around
FIG. 8 shows the state of high-speed rotation in FIG. 7C as an arc-shaped outer ring raceway groove 1a and inner ring raceway groove 2a.

2点接触すること自体は特に異常な現象ではないが、それぞれの接触点である外輪軌道溝1aの2つの円弧面1a1、1a2と玉3との径方向接触位置が異なることより、玉3の接触部での周速が異なり、すべりが生じる。すべりが生じても軌道溝と玉間の潤滑状態が良好で油膜が充分形成されていれば軸受損傷には至らないものと考えられる。しかし、すべりが生じることにより発熱が大きくなり、軌道溝と玉間に油膜切れが生じ、早期に軸受損傷に至ることが考えられる。   Although the two-point contact itself is not a particularly abnormal phenomenon, the radial contact positions of the two arcuate surfaces 1a1, 1a2 of the outer ring raceway groove 1a, which are the respective contact points, and the ball 3 are different. The peripheral speed at the contact part is different and slipping occurs. Even if slippage occurs, it is considered that the bearing is not damaged if the lubrication between the raceway grooves and the balls is good and the oil film is sufficiently formed. However, it is conceivable that the occurrence of slip increases heat generation, causing an oil film breakage between the raceway groove and the ball, leading to bearing damage early.

従来の4点接触玉軸受としては、内輪軌道面に対して玉が2点で接触し、外輪軌道面に対して玉が2点で接触し、内輪軌道面及び外輪軌道面が軸受中心に関して、軸方向両側で異なる円弧面からなるものが知られている(例えば、特許文献1参照)。具体的には、各円弧面において、玉との接触点において曲率半径を互いに異ならせたり、軸方向両側の軌道面と玉との接触角が互いに異なるように設計することで、純ラジアル荷重だけが働いた場合でも玉にスピン運動を常に起こして、潤滑不良を防止している。   As a conventional 4-point contact ball bearing, the ball contacts the inner ring raceway surface at two points, the ball contacts the outer ring raceway surface at two points, and the inner ring raceway surface and the outer ring raceway surface are related to the bearing center. What consists of a circular arc surface which differs on both axial directions is known (for example, refer patent document 1). Specifically, in each arc surface, the radius of curvature is different from each other at the contact point with the ball, or the design is such that the contact angle between the raceway surface on both sides in the axial direction and the ball is different from each other. Even when is working, the ball always causes a spin motion to prevent poor lubrication.

特開2002−21855号公報JP 2002-21855 A

しかしながら、特許文献1によれば、あくまで4点での接触による使用を前提としており、アキシアル方向の荷重条件や潤滑状態が良好でないなど、場合によっては、上記と同様に、すべりが生じることにより発熱が大きくなり、軌道溝と玉間に油膜切れが生じ、早期に軸受損傷に至ることが考えられる。   However, according to Patent Document 1, it is premised on the use by contact at four points. In some cases, as in the above, the load condition in the axial direction and the lubrication state are not good. It is considered that the oil film is cut between the raceway groove and the ball, and the bearing is damaged early.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、高速運転における軌道溝と玉との多点当りを防止することにより、長寿命を達成することが可能な単列玉軸受を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a single row ball that can achieve a long life by preventing multiple hits between the raceway groove and the ball in high-speed operation. It is to provide a bearing.

本発明の上記目的は、下記の構成により達成される。
(1) 内周面に形成された外輪軌道溝を有する外輪と、
外周面に形成された内輪軌道溝を有する内輪と、
前記外輪軌道溝と前記内輪軌道溝の間に転動自在に配置された複数の玉と、
前記複数の玉を円周方向に所定の間隔で保持する保持器と、
を有し、
前記外輪軌道溝及び前記内輪軌道溝は、曲率中心が互いに異なる2つの円弧面を幅方向中央に対して両側にそれぞれ有し、
静止状態において、前記玉を前記外輪軌道溝に押し付けたときに、前記玉は前記外輪軌道溝に2点で接触し、且つ、前記玉を前記内輪軌道溝に押し付けたときに、前記玉は前記内輪軌道溝に2点で接触する単列玉軸受であって、
前記外輪又は前記内輪は、軸方向に二分割された2つの分割輪からなり、
前記外輪軌道溝において、前記2つの円弧面の曲率半径は互いに等しく、且つ、前記玉を前記外輪軌道溝に2点で接触するように押し付けたとき、前記玉の中心を通り前記単列玉軸受の径方向に延ばした線に対して、前記玉が前記外輪軌道溝に2点で接触するそれぞれの点と前記玉の中心とを結んだそれぞれの線がなす、軸方向両側に形成される接触角は、20°以上35°以下の互いに異なる角度であることを特徴とする単列玉軸受。
(2) 前記外輪軌道溝において、前記玉の中心から前記2つの円弧面の各曲率中心の軸方向位置ずれ量は、互いに異なることを特徴とする(1)に記載の単列玉軸受。
The above object of the present invention can be achieved by the following constitution.
(1) an outer ring having an outer ring raceway groove formed on the inner peripheral surface;
An inner ring having an inner ring raceway groove formed on the outer peripheral surface;
A plurality of balls arranged to roll freely between the outer ring raceway groove and the inner ring raceway groove;
A cage for holding the plurality of balls in a circumferential direction at a predetermined interval;
Have
The outer ring raceway groove and the inner ring raceway groove have two arc surfaces with different curvature centers on both sides with respect to the center in the width direction, respectively.
In a stationary state, when the ball is pressed against the outer ring raceway groove, the ball contacts the outer ring raceway groove at two points, and when the ball is pressed against the inner ring raceway groove, the ball is A single row ball bearing that contacts the inner ring raceway groove at two points,
The outer ring or the inner ring is composed of two divided wheels divided in the axial direction,
In the outer ring raceway groove, the curvature radii of the two arc surfaces are equal to each other, and when the ball is pressed against the outer ring raceway groove at two points, the single row ball bearing passes through the center of the ball. Contact formed on both sides in the axial direction formed by respective lines connecting the points where the balls contact the outer ring raceway groove at two points and the centers of the balls with respect to a line extending in the radial direction of The single row ball bearing characterized in that the angle is an angle different from each other between 20 ° and 35 ° .
(2) The single-row ball bearing according to (1), wherein in the outer ring raceway groove, axial displacement amounts of the respective curvature centers of the two arcuate surfaces from the ball center are different from each other.

本発明の単列玉軸受によれば、外輪軌道溝において、2つの円弧面の曲率半径は互いに等しく、且つ、軸方向両側に形成される接触角が互いに異なるように設計されているので、アキシアル荷重とラジアル荷重が作用し、高速回転で使用されたとしても、軌道溝と玉との多点当りを防止することにより、すべりによる早期軸受損傷が防止でき、長寿命を達成することができる。   According to the single row ball bearing of the present invention, the outer ring raceway grooves are designed such that the curvature radii of the two arc surfaces are equal to each other and the contact angles formed on both sides in the axial direction are different from each other. Even when a load and a radial load are applied and used at a high speed, by preventing multiple contact between the raceway groove and the ball, early bearing damage due to sliding can be prevented, and a long life can be achieved.

本発明の一実施形態に係る単列玉軸受の断面図である。It is sectional drawing of the single row ball bearing which concerns on one Embodiment of this invention. (a)は、図1の外輪軌道溝の2つの円弧面の設計寸法を説明するための図であり、(b)は、内輪軌道溝の2つの円弧面の設計寸法を説明するための図である。(A) is a figure for demonstrating the design dimension of two circular arc surfaces of the outer ring raceway groove | channel of FIG. 1, (b) is a figure for demonstrating the design dimension of two circular arc surfaces of an inner ring raceway groove | channel. It is. 図1の単列玉軸受を組み立てた状態を示す、軌道溝を簡略化した断面図である。It is sectional drawing which simplified the raceway groove | channel which shows the state which assembled the single row ball bearing of FIG. (a)〜(c)は、図1の単列玉軸受にアキシアル荷重が作用した状態での軌道溝と玉との接触状態を説明するための図である。(A)-(c) is a figure for demonstrating the contact state of a raceway groove | channel and a ball | bowl in the state where the axial load acted on the single row ball bearing of FIG. 従来の4点接触玉軸受の断面図である。It is sectional drawing of the conventional 4-point contact ball bearing. (a)は、図5の外輪軌道溝の2つの円弧面の設計寸法を説明するための図であり、(b)は、図5の内輪軌道溝の2つの円弧面の設計寸法を説明するための図である。(A) is a figure for demonstrating the design dimension of two circular arc surfaces of the outer ring raceway groove | channel of FIG. 5, (b) demonstrates the design dimension of two circular arc surfaces of the inner ring | wheel raceway groove | channel of FIG. FIG. (a)〜(c)は、従来の玉軸受にアキシアル荷重が作用した状態での軌道溝と玉との接触状態を説明するための図である。(A)-(c) is a figure for demonstrating the contact state of a raceway groove | channel and a ball in the state in which the axial load acted on the conventional ball bearing. 図5の4点接触玉軸受の断面図を用いて、図7(c)の状態を説明するための図である。It is a figure for demonstrating the state of FIG.7 (c) using sectional drawing of the 4-point contact ball bearing of FIG.

以下、本発明に係る単列玉軸受の一実施形態を図面に基づいて詳細に説明する。なお、図5に示した従来の転がり軸受と同一または同等部分については、同一符号を付して、説明を省略或いは簡略化する。   Hereinafter, one embodiment of a single row ball bearing concerning the present invention is described in detail based on a drawing. In addition, the same code | symbol is attached | subjected about the same or equivalent part as the conventional rolling bearing shown in FIG. 5, and description is abbreviate | omitted or simplified.

図1に示すように、本実施形態の単列玉軸受10は、内周面に外輪軌道溝1aを有する単一の外輪1と、外周面に内輪軌道溝2aをそれぞれ有し、軸方向中間部で軸方向に二分割された2つの分割輪からなる内輪2と、外輪1及び内輪2との間に所定の間隔で転動自在に配置される複数の玉3と、複数の玉3を円周方向に所定の間隔で保持する外輪案内方式の保持器4と、を備える。外輪軌道溝1a、内輪軌道溝2aは、異なる曲率中心を有する2つの円弧面1a1、1a2、2a1、2a2によってそれぞれ形成されている。   As shown in FIG. 1, a single row ball bearing 10 of the present embodiment has a single outer ring 1 having an outer ring raceway groove 1a on the inner peripheral surface and an inner ring raceway groove 2a on the outer peripheral surface, respectively. A plurality of balls 3, which are arranged between the outer ring 1 and the inner ring 2 so as to roll freely at a predetermined interval, and a plurality of balls 3. And an outer ring guide type retainer 4 that is retained at predetermined intervals in the circumferential direction. The outer ring raceway groove 1a and the inner ring raceway groove 2a are respectively formed by two arcuate surfaces 1a1, 1a2, 2a1, 2a2 having different centers of curvature.

保持器4の材質としては、黄銅や、ガラス繊維又は炭素繊維を添加した合成樹脂材料であってもよく、例えば、合成樹脂製保持器は、射出成形にて製作されてもよい。   The material of the cage 4 may be brass, a synthetic resin material to which glass fiber or carbon fiber is added. For example, the synthetic resin cage may be manufactured by injection molding.

ここで、本実施形態では、内輪軌道溝2aは、従来の内輪軌道溝と同様に、軸方向中心に対して左右対称に形成される一方、外輪軌道溝1aは、軸方向中心に対して左右非対称に形成されている。   Here, in the present embodiment, the inner ring raceway groove 2a is formed symmetrically with respect to the axial center as in the case of the conventional inner ring raceway groove, while the outer ring raceway groove 1a is left and right with respect to the axial center. It is formed asymmetrically.

具体的に、図2に示すように、外輪軌道溝1aの2つの円弧面1a1、1a2は、曲率半径re1、re2を等しくする一方、玉中心Oから2つの円弧面1a1、1a2の各曲率中心の軸方向位置ずれ量te1、te2、及び、静止状態において、玉3を外輪軌道溝1aに向け半径方向に押し付けた際、2つの円弧面1a1、1a2と玉3とがそれぞれ接触する2点で、軸方向両側に形成される接触角αe1、αe2を異ならせるように設計する(即ち、re1=re2、te1≠te2、αe1≠αe2)。   Specifically, as shown in FIG. 2, the two arc surfaces 1a1, 1a2 of the outer ring raceway groove 1a have the same radius of curvature re1, re2, while the center of curvature of each of the two arc surfaces 1a1, 1a2 from the ball center O. When the ball 3 is pressed in the radial direction toward the outer ring raceway groove 1a in the stationary state, the two arcuate surfaces 1a1, 1a2 and the ball 3 are in contact with each other in the axial direction displacement amount te1, te2, respectively. The contact angles αe1 and αe2 formed on both sides in the axial direction are designed to be different (that is, re1 = re2, te1 ≠ te2, αe1 ≠ αe2).

内輪軌道溝2aの2つの円弧面2a1、2a2は、曲率半径ri1、ri2が等しく、玉中心Oから2つの円弧面2a1、2a2の各曲率中心の軸方向位置ずれ量ti1、ti2が等しく、且つ、静止状態において、玉3を内輪軌道溝2aに向け半径方向に押し付けた際、2つの円弧面2a1、2a2と玉3とがそれぞれ接触する2点で、軸方向両側に形成される接触角αi1、αi2が等しくなるように設計されている(即ち、ri1=ri2、ti1=ti2、αi1=αi2)。   The two arc surfaces 2a1 and 2a2 of the inner ring raceway groove 2a have the same radius of curvature ri1 and ri2, the axial displacements ti1 and ti2 of the respective centers of curvature of the two arc surfaces 2a1 and 2a2 from the ball center O are equal, and In a stationary state, when the ball 3 is pressed in the radial direction toward the inner ring raceway groove 2a, the contact angles αi1 formed on both sides in the axial direction at two points where the two arcuate surfaces 2a1, 2a2 and the ball 3 come into contact with each other. , Αi2 are designed to be equal (ie, ri1 = ri2, ti1 = ti2, αi1 = αi2).

本実施形態では、外輪軌道溝1aの2つの円弧面1a1、1a2の曲率半径re1、re2は、玉径をDwとすると、
re1=re2、且つ、0.52Dw≦re1,re2≦0.56Dw
に設定される。
また、外輪軌道溝1aの2つの円弧面1a1、1a2と玉3との接触角αe1、αe2は、
αe1≠αe2、且つ、20°≦αe1,αe2≦35°
に設定される。
さらに、玉中心Oから外輪軌道溝1aの2つの円弧面1a1、1a2の各曲率中心の軸方向位置ずれ量te1、te2は、
te1≠te2、且つ、0.006Dw≦te1,te2≦0.04Dw
に設定される。
In this embodiment, the curvature radii re1 and re2 of the two arcuate surfaces 1a1 and 1a2 of the outer ring raceway groove 1a are:
re1 = re2 and 0.52Dw ≦ re1, re2 ≦ 0.56Dw
Set to
The contact angles αe1 and αe2 between the two arcuate surfaces 1a1 and 1a2 of the outer ring raceway groove 1a and the ball 3 are:
αe1 ≠ αe2 and 20 ° ≦ αe1, αe2 ≦ 35 °
Set to
Further, axial displacements te1 and te2 of the respective curvature centers of the two arcuate surfaces 1a1 and 1a2 of the outer ring raceway groove 1a from the ball center O are as follows:
te1 ≠ te2 and 0.006Dw ≦ te1, te2 ≦ 0.04Dw
Set to

ここで、図3及び図4を参照して、本実施形態の単列玉軸受10にアキシアル荷重が作用した状態での軌道溝と玉との接触状態を説明する。図3及び図4では、外輪軌道溝1a及び内輪軌道溝2aの円弧形状を簡略化のため直線形状で表している。また、ここでは、各円弧面の曲率半径をre1=re2=ri1=ri2とし、各円弧面の曲率中心の軸方向位置ずれ量をte2<te1=ti1=ti2とし、各接触角をαe2<αe1=αi1=αi2としている。   Here, with reference to FIG.3 and FIG.4, the contact state of a raceway groove | channel and a ball in the state which the axial load acted on the single row ball bearing 10 of this embodiment is demonstrated. 3 and 4, the arc shapes of the outer ring raceway groove 1 a and the inner ring raceway groove 2 a are represented by linear shapes for simplification. Here, the radius of curvature of each arc surface is set to re1 = re2 = ri1 = ri2, the amount of axial displacement of the center of curvature of each arc surface is set to te2 <te1 = ti1 = ti2, and each contact angle is set to αe2 <αe1. = Αi1 = αi2.

図3に示すように、単列玉軸受を組み立てた状態では、外輪軌道溝1aの円弧面1a1及び円弧面1a2と玉3との間のラジアルすきまをそれぞれΔre1、Δre2とすると、Δre2>Δre1となる。このため、玉3を外輪軌道溝1aに半径方向に押し付けた状態では、外輪1は玉3とラジアルすきまの小さい側(Δre1)で接触し、2点当たりとはならない。   As shown in FIG. 3, in a state where the single row ball bearing is assembled, if the radial clearances between the arc surface 1a1 and the arc surface 1a2 of the outer ring raceway groove 1a and the ball 3 are Δre1 and Δre2, respectively, Δre2> Δre1 Become. For this reason, in a state where the ball 3 is pressed against the outer ring raceway groove 1a in the radial direction, the outer ring 1 comes into contact with the ball 3 on the side having a small radial clearance (Δre1) and does not hit two points.

そして、図4(a)に示すように、単列玉軸受10にはアキシアル荷重Faが作用すると、玉3は、外輪軌道溝1aの円弧面1a1と内輪軌道溝2aの円弧面2a1とそれぞれ1点で接触し、外輪1と玉3との接触角はθe、内輪2と玉3との接触角はθiとなる。このとき、外輪軌道溝1aの円弧面1a2と玉3との間には、Δθのすきまが与えられる。   As shown in FIG. 4 (a), when an axial load Fa is applied to the single row ball bearing 10, the ball 3 is 1 each of the arc surface 1a1 of the outer ring raceway groove 1a and the arc surface 2a1 of the inner ring raceway groove 2a. Contact is made at a point, and the contact angle between the outer ring 1 and the ball 3 is θe, and the contact angle between the inner ring 2 and the ball 3 is θi. At this time, a clearance of Δθ is provided between the circular arc surface 1a2 of the outer ring raceway groove 1a and the ball 3.

図4(a)の状態から回転されると、図4(b)に示すように、玉3に働く遠心力によって、玉3は外輪1に押付けられ、外輪軌道溝1aとの接触点は、円弧面1a1の中央部へ移動し、外輪1と玉3のなす接触角βeはθeより小さくなる(θe>βe)。また、外輪軌道溝1aの円弧面1a2と玉3とは接触することはないが、接触角βeが小さくなる分、外輪軌道溝1aの円弧面1a2と玉3との間のすきまΔβは小さくなる(Δθ>Δβ)。
内輪軌道溝2aとの接触点は、円弧面2a1の外側へ移動し、内輪2と玉3との接触角βiはθiより大きくなる(θi<βi)。
このように、玉3の運動は、軸の回転数とともに変化する接触角によってコントロールされる。
When rotated from the state of FIG. 4A, as shown in FIG. 4B, the ball 3 is pressed against the outer ring 1 by the centrifugal force acting on the ball 3, and the contact point with the outer ring raceway groove 1a is: It moves to the center of the circular arc surface 1a1, and the contact angle βe formed by the outer ring 1 and the ball 3 is smaller than θe (θe> βe). Further, the arc surface 1a2 of the outer ring raceway groove 1a and the ball 3 are not in contact with each other, but the clearance Δβ between the arc surface 1a2 of the outer ring raceway groove 1a and the ball 3 is reduced as the contact angle βe is reduced. (Δθ> Δβ).
The contact point with the inner ring raceway groove 2a moves to the outside of the circular arc surface 2a1, and the contact angle βi between the inner ring 2 and the ball 3 becomes larger than θi (θi <βi).
Thus, the movement of the ball 3 is controlled by the contact angle that changes with the rotational speed of the shaft.

図4(b)の状態で更に高速回転になるか、若しくはアキシアル荷重Faが小さくなると、図4(c)に示すように、外輪1と玉3のなす接触角βe1は、βeより更に小さくなり(βe>βe1)、外輪軌道溝1aの円弧面1a2と玉3との間のすきまΔβ1はさらに小さくなる(Δβ>Δβ1)。
しかしながら、各曲率中心の軸方向位置ずれ量をte2<te1=ti1=ti2とし、各接触角をαe2<αe1=αi1=αi2としているので、外輪1と玉3とは2点当たりとはならない。なお、内輪2と玉3のなす接触角βi1は、βiより更に大きくなる(βi<βi1)。
When the rotating speed is further increased in the state of FIG. 4B or the axial load Fa is reduced, the contact angle βe1 formed by the outer ring 1 and the ball 3 becomes smaller than βe as shown in FIG. 4C. (Βe> βe1), the clearance Δβ1 between the circular arc surface 1a2 of the outer ring raceway groove 1a and the ball 3 is further reduced (Δβ> Δβ1).
However, since the axial displacement amount of each curvature center is te2 <te1 = ti1 = ti2 and each contact angle is αe2 <αe1 = αi1 = αi2, the outer ring 1 and the ball 3 do not reach two points. The contact angle βi1 formed by the inner ring 2 and the ball 3 is further larger than βi (βi <βi1).

このように外輪軌道溝1a及び内輪軌道溝2aを設計することで、高速回転においても、外輪1と玉3との2点当たりを回避することが出来、すべりによる早期軸受損傷が防止でき、長寿命を達成することができる。   By designing the outer ring raceway groove 1a and the inner ring raceway groove 2a in this way, it is possible to avoid contact between the outer ring 1 and the ball 3 even at high speed rotation, and prevent early bearing damage due to slipping. Lifespan can be achieved.

以下、内輪内径φ35mm、外輪外径φ62mm、幅17mmの図1に示す単列玉軸受、及び図5に示す4点接触玉軸受を例とし、以下の試験条件及び内部諸元にて、本発明の効果を確認した。即ち、本発明の実施例では、静止状態において、アキシアル荷重方向の外輪1と玉3の接触角αe1を反アキシアル荷重方向の外輪1と玉3の接触角αe2よりも大きくしている(αe1>αe2)。   Hereinafter, the present invention will be described with reference to the following test conditions and internal specifications, taking as an example the single-row ball bearing shown in FIG. 1 having an inner ring inner diameter of 35 mm, an outer ring outer diameter of 62 mm, and a width of 17 mm, and the four-point contact ball bearing shown in FIG. The effect of was confirmed. That is, in the embodiment of the present invention, in a stationary state, the contact angle αe1 between the outer ring 1 and the ball 3 in the axial load direction is larger than the contact angle αe2 between the outer ring 1 and the ball 3 in the anti-axial load direction (αe1> αe2).

※試験条件
回転数:22300min-1
アキシアル荷重130kgf
* Test conditions Rotation speed: 22300min -1
Axial load 130kgf

※図5の4点接触玉軸受の内部諸元(Dw:玉径)
ri1=ri2=re1=re2=0.52Dw
αi1=αi2=31.5°、αe1=αe2=31.5°
ti1=ti2=0.01Dw、te1=te2=0.01Dw
* Internal specifications of the 4-point contact ball bearing in Fig. 5 (Dw: ball diameter)
ri1 = ri2 = re1 = re2 = 0.52Dw
αi1 = αi2 = 31.5 °, αe1 = αe2 = 31.5 °
ti1 = ti2 = 0.01Dw, te1 = te2 = 0.01Dw

※図1の玉軸受の内部諸元
ri1=ri2=re1=re2=0.52Dw(Dw:玉径)
αi1=αi2=31.5°、αe1=31.5、αe2=20°
ti1=ti2=0.01Dw、te1=0.01Dw、te2=0.007Dw
* Internal specifications of the ball bearing in FIG. 1 ri1 = ri2 = re1 = re2 = 0.52Dw (Dw: ball diameter)
αi1 = αi2 = 31.5 °, αe1 = 31.5, αe2 = 20 °
ti1 = ti2 = 0.01Dw, te1 = 0.01Dw, te2 = 0.007Dw

上記の玉軸受を用いて解析した結果、図5の玉軸受では、外輪1に2点当たりが見られたが、図1の玉軸受では、高速回転においても外輪1に2点当たりは見られなかった。   As a result of the analysis using the above-described ball bearing, in the ball bearing shown in FIG. 5, the outer ring 1 showed two points, but in the ball bearing shown in FIG. There wasn't.

尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
例えば、上記実施形態では、単一の外輪1と、軸方向に二分割された2つの分割輪からなる内輪2を有しているため、保持器4は、外輪案内方式のものが採用されているが、軸方向に二分割された2つの分割輪からなる外輪1と、単一の内輪2を用いる場合には、保持器4は、内輪案内方式であってもよい。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
For example, in the above embodiment, the cage 4 has an outer ring guide type because it has a single outer ring 1 and an inner ring 2 composed of two divided rings divided in the axial direction. However, in the case of using the outer ring 1 composed of two divided wheels divided into two in the axial direction and the single inner ring 2, the cage 4 may be an inner ring guide system.

また、本実施形態では、外輪軌道溝1aを非対称形状としたが、本発明は、少なくとも外輪軌道溝が非対称形状であればよく、内輪軌道溝も非対称形状、即ち、2つの円弧面の曲率半径は互いに等しく、且つ、軸方向両側に形成される接触角が互いに異なるものであってもよい。   In the present embodiment, the outer ring raceway groove 1a has an asymmetrical shape. However, in the present invention, at least the outer ring raceway groove may be an asymmetrical shape, and the inner ring raceway groove also has an asymmetrical shape, that is, a radius of curvature of two arcuate surfaces. May be equal to each other and contact angles formed on both sides in the axial direction may be different from each other.

10 玉軸受
1 外輪
1a 外輪軌道溝
1a1,1a2 円弧面
2 内輪
2a 内輪軌道溝
2a1,2a2 円弧面
3 玉
4 保持器
DESCRIPTION OF SYMBOLS 10 Ball bearing 1 Outer ring 1a Outer ring raceway groove 1a1, 1a2 Arc surface 2 Inner ring 2a Inner ring raceway groove 2a1, 2a2 Arc surface 3 Ball 4 Cage

Claims (2)

内周面に形成された外輪軌道溝を有する外輪と、
外周面に形成された内輪軌道溝を有する内輪と、
前記外輪軌道溝と前記内輪軌道溝の間に転動自在に配置された複数の玉と、
前記複数の玉を円周方向に所定の間隔で保持する保持器と、
を有し、
前記外輪軌道溝及び前記内輪軌道溝は、曲率中心が互いに異なる2つの円弧面を幅方向中央に対して両側にそれぞれ有し、
静止状態において、前記玉を前記外輪軌道溝に押し付けたときに、前記玉は前記外輪軌道溝に2点で接触し、且つ、前記玉を前記内輪軌道溝に押し付けたときに、前記玉は前記内輪軌道溝に2点で接触する単列玉軸受であって、
前記外輪又は前記内輪は、軸方向に二分割された2つの分割輪からなり、
前記外輪軌道溝において、前記2つの円弧面の曲率半径は互いに等しく、且つ、前記玉を前記外輪軌道溝に2点で接触するように押し付けたとき、前記玉の中心を通り前記単列玉軸受の径方向に延ばした線に対して、前記玉が前記外輪軌道溝に2点で接触するそれぞれの点と前記玉の中心とを結んだそれぞれの線がなす、軸方向両側に形成される接触角は、20°以上35°以下の互いに異なる角度であることを特徴とする単列玉軸受。
An outer ring having an outer ring raceway groove formed on the inner peripheral surface;
An inner ring having an inner ring raceway groove formed on the outer peripheral surface;
A plurality of balls arranged to roll freely between the outer ring raceway groove and the inner ring raceway groove;
A cage for holding the plurality of balls in a circumferential direction at a predetermined interval;
Have
The outer ring raceway groove and the inner ring raceway groove have two arc surfaces with different curvature centers on both sides with respect to the center in the width direction, respectively.
In a stationary state, when the ball is pressed against the outer ring raceway groove, the ball contacts the outer ring raceway groove at two points, and when the ball is pressed against the inner ring raceway groove, the ball is A single row ball bearing that contacts the inner ring raceway groove at two points,
The outer ring or the inner ring is composed of two divided wheels divided in the axial direction,
In the outer ring raceway groove, the curvature radii of the two arc surfaces are equal to each other, and when the ball is pressed against the outer ring raceway groove at two points, the single row ball bearing passes through the center of the ball. Contact formed on both sides in the axial direction formed by respective lines connecting the points where the balls contact the outer ring raceway groove at two points and the centers of the balls with respect to a line extending in the radial direction of The single row ball bearing characterized in that the angle is an angle different from each other between 20 ° and 35 ° .
前記外輪軌道溝において、前記玉の中心から前記2つの円弧面の各曲率中心の軸方向位置ずれ量は、互いに異なることを特徴とする請求項1に記載の単列玉軸受。   2. The single row ball bearing according to claim 1, wherein in the outer ring raceway groove, axial displacement amounts of the respective curvature centers of the two arcuate surfaces differ from each other from the center of the ball.
JP2015075199A 2015-04-01 2015-04-01 Single row ball bearing Active JP6561539B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015075199A JP6561539B2 (en) 2015-04-01 2015-04-01 Single row ball bearing
CN201620269233.6U CN205715287U (en) 2015-04-01 2016-04-01 single-row ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015075199A JP6561539B2 (en) 2015-04-01 2015-04-01 Single row ball bearing

Publications (2)

Publication Number Publication Date
JP2016194346A JP2016194346A (en) 2016-11-17
JP6561539B2 true JP6561539B2 (en) 2019-08-21

Family

ID=57312737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015075199A Active JP6561539B2 (en) 2015-04-01 2015-04-01 Single row ball bearing

Country Status (2)

Country Link
JP (1) JP6561539B2 (en)
CN (1) CN205715287U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939831A (en) * 2017-12-27 2018-04-20 瓦房店轴承集团有限责任公司 New integrated-type hub bearing
CN111120520A (en) * 2019-12-23 2020-05-08 宁波市海曙凯大机械有限公司 Ball bearing raceway with heart-shaped curvature
DE102020213618A1 (en) 2020-10-29 2022-05-05 Robert Bosch Gesellschaft mit beschränkter Haftung Four-point bearing with adjustable friction torque

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1425933A1 (en) * 1964-01-13 1969-03-20 Rothe Erde Eisenwerk Single row slewing ring
US4215906A (en) * 1979-07-19 1980-08-05 General Dynamics Corporation Zero slip four-point contact thrust bearing
JPS58160621A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Bearing device for screw compressor
JP2522238Y2 (en) * 1989-11-09 1997-01-08 光洋精工株式会社 4-point contact ball bearing
JPH09324819A (en) * 1996-06-04 1997-12-16 Ntn Corp Ball bearing
JP3892213B2 (en) * 2000-07-06 2007-03-14 株式会社ジェイテクト 4-point contact ball bearing
JP2003322148A (en) * 2002-05-01 2003-11-14 Nsk Ltd Multi-point contacting radial ball bearing device, and bearing device with motor and cam
JP2005240898A (en) * 2004-02-26 2005-09-08 Koyo Seiko Co Ltd Pulley block
JP2008032169A (en) * 2006-07-31 2008-02-14 Nsk Ltd Angular ball bearing
JP2009053040A (en) * 2007-08-27 2009-03-12 Jtekt Corp Ultrasonic sensor and ball bearing device with sensor
FR2993332B1 (en) * 2012-07-12 2015-03-13 Skf Ab CAGE FOR BEARING BEARING, BEARING BEARING AND ELECTRIC DIRECTION OF MOTOR VEHICLE
DE102014205689A1 (en) * 2014-03-27 2015-10-01 Schaeffler Technologies AG & Co. KG Four point contact bearings

Also Published As

Publication number Publication date
JP2016194346A (en) 2016-11-17
CN205715287U (en) 2016-11-23

Similar Documents

Publication Publication Date Title
JP5436204B2 (en) Cage and rolling bearing assembly for ball bearing
JP5870563B2 (en) Roller bearing cage and rolling bearing
US6827496B2 (en) Four-point contact ball bearing
US8568035B2 (en) Rolling bearing and cage for such a bearing
US9593718B2 (en) Multipoint contact ball bearing
JP2007519860A (en) Double row type rolling bearing
US10047796B2 (en) Rolling Bearing
JP2008185107A (en) Ball bearing
JP6561539B2 (en) Single row ball bearing
EP1847725A1 (en) Comb-shaped cage for a ball row of a two row angular contact ball bearing
US11149787B2 (en) Thrust roller bearing
JP6874455B2 (en) Rolling bearing
JP2010025199A (en) Crown type retainer
JP2015102144A (en) Self-aligning roller bearing
JP5272737B2 (en) Crown type cage and ball bearing
JP2014105809A (en) Retainer for rolling bearing
JP2017020616A (en) Four-point ball bearing
JP7314701B2 (en) deep groove ball bearing
US20100166354A1 (en) Roller bearing
KR20010072804A (en) Pure Rolling Bearing
JP6610871B2 (en) Pulley structure using double-row six-point contact ball bearings
JP7483809B2 (en) Rolling bearings
JPH11336772A (en) Rolling bearing
JP2005061431A (en) Ball bearing
JP2008111505A (en) Thrust needle roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6561539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150