JP6555511B2 - Use of early lung adenocarcinoma malignancy diagnostic markers focusing on epithelial-mesenchymal transition - Google Patents

Use of early lung adenocarcinoma malignancy diagnostic markers focusing on epithelial-mesenchymal transition Download PDF

Info

Publication number
JP6555511B2
JP6555511B2 JP2015094599A JP2015094599A JP6555511B2 JP 6555511 B2 JP6555511 B2 JP 6555511B2 JP 2015094599 A JP2015094599 A JP 2015094599A JP 2015094599 A JP2015094599 A JP 2015094599A JP 6555511 B2 JP6555511 B2 JP 6555511B2
Authority
JP
Japan
Prior art keywords
tyrosine
phosphorylated
phosphorylation
met
lung adenocarcinoma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015094599A
Other languages
Japanese (ja)
Other versions
JP2016211928A (en
Inventor
明子 岡山
明子 岡山
弥生 堀内
弥生 堀内
明秀 梁
明秀 梁
平野 久
久 平野
洋平 宮城
洋平 宮城
治彦 中山
治彦 中山
宏之 伊藤
宏之 伊藤
文浩 尾下
文浩 尾下
智之 横瀬
智之 横瀬
耕三 山田
耕三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWA PREFECTURAL HOSPITAL ORGANIZATION
Yokohama City University
Original Assignee
KANAGAWA PREFECTURAL HOSPITAL ORGANIZATION
Yokohama City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWA PREFECTURAL HOSPITAL ORGANIZATION, Yokohama City University filed Critical KANAGAWA PREFECTURAL HOSPITAL ORGANIZATION
Priority to JP2015094599A priority Critical patent/JP6555511B2/en
Publication of JP2016211928A publication Critical patent/JP2016211928A/en
Application granted granted Critical
Publication of JP6555511B2 publication Critical patent/JP6555511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、上皮間葉系転換に着目した早期肺腺癌悪性度診断マーカーの利用に関し、より詳細には、上皮間葉系転換に着目した早期肺腺癌悪性度診断マーカーを用いた検査方法およびそのキットに関する。   The present invention relates to the use of an early lung adenocarcinoma malignancy diagnostic marker focusing on epithelial-mesenchymal transition, and more specifically, an inspection method using an early lung adenocarcinoma malignancy diagnostic marker focusing on epithelial-mesenchymal transition And the kit.

肺腺癌は一般的に転移や再発がし易いために悪性度の高い癌として知られており、I期肺腺癌症例において、外科的に切除しても20%は再発する。そのため、その群には、再発・転移予防のための術後療法が必要である。しかし、I期肺腺癌症例の全員に必要な治療ではない。そのため、切除癌組織を用いて再発・転移のリスクを予測することができれば、予後不良の患者群にのみ、的確な術後療法を行える一方、予後良好な患者群には不必要な治療を行うリスクを軽減することができる。癌の診断にはX線CTやMRIなどの画像診断のほか、18F(フッ素18)を標識したフルオロデオキシグルコース(18F-FDG)を用いたPET(Positron Emission Tomography)検査、特定の癌に特異的に発現する癌マーカーを組織免疫染色で検出する方法や血液、組織中に漏出する癌マーカーなどを検出する方法が用いられている。肺腺癌予後予測マーカーに関する特許としては、肺癌手術組織のesRAGE(Endogenous Secretory Receptor for Advanced Glycation End products)発現を測定する方法(特許第4779115号:特許文献1)、I期肺腺癌組織の細胞におけるACTN4のmRNAコピー数を測定する方法(WO2011122634 A1:特許文献2)などがある。   Lung adenocarcinoma is generally known as a highly malignant cancer because it easily metastasizes and recurs, and 20% of patients with stage I lung adenocarcinoma recur even after surgical resection. Therefore, the group needs postoperative therapy to prevent recurrence and metastasis. However, it is not a necessary treatment for all patients with stage I lung adenocarcinoma. Therefore, if the risk of recurrence / metastasis can be predicted using resected cancer tissue, only appropriate postoperative therapy can be given to patients with poor prognosis, while unnecessary treatment is given to patients with good prognosis. Risk can be reduced. In addition to diagnostic imaging such as X-ray CT and MRI for cancer diagnosis, PET (Positron Emission Tomography) using 18F (fluorine-18) -labeled fluorodeoxyglucose (18F-FDG), specific for specific cancers There are used a method of detecting a cancer marker expressed in the tissue by tissue immunostaining and a method of detecting a cancer marker leaking into blood or tissue. Patents relating to prognostic markers for lung adenocarcinoma include methods for measuring esRAGE (Endogenous Secretory Receptor for Advanced Glycation End products) expression in lung cancer surgical tissues (Patent No. 4779115: Patent Document 1), cells of stage I lung adenocarcinoma There is a method for measuring the mRNA copy number of ACTN4 (WO2011122634 A1: Patent Document 2).

従来の胸部レントゲン写真や CT, MRI では、癌が転移・再発する可能性を診断するための正確な情報を得ることは困難である。PET検査は、人体に影響が出るほどの量ではないが放射線をおびた検査薬を体内に注射するので放射線被曝があり、そのため、妊産婦や授乳中の女性は検査を受けることができない。組織免疫染色は、固定した組織標本に適した特異性の高い抗体が必要である上、組織を固定する段階での抗原性の減弱や失活・消失、固定ムラによる抗原への反応性の違いなどにより、正確に診断できない場合がある。特に免疫染色でのリン酸化タンパク質の検出は困難である。CEA、CYFRA21-1、Pro-GRPは肺癌診断に使用されている分子マーカーであるが、早期癌では感度が不十分である上、予後予測マーカーとしては十分ではない。また、予後予測マーカーを利用して、予後診断のために市販されている診断薬はまだない。   It is difficult to obtain accurate information for diagnosing the possibility of cancer metastasis or recurrence using conventional chest radiographs, CT, and MRI. A PET test is a dose that does not affect the human body, but it is exposed to radiation because it is injected with a radiation-examined test drug, so pregnant women and breastfeeding women cannot receive the test. Tissue immunostaining requires highly specific antibodies suitable for fixed tissue specimens, as well as antigenic attenuation and inactivation / disappearance at the stage of tissue fixation, and differences in antigen reactivity due to fixation unevenness In some cases, accurate diagnosis may not be possible. In particular, it is difficult to detect phosphorylated proteins by immunostaining. CEA, CYFRA21-1, and Pro-GRP are molecular markers used for lung cancer diagnosis, but they are not sufficient as prognostic prediction markers in addition to insufficient sensitivity in early stage cancer. In addition, there are no diagnostic agents on the market for prognosis diagnosis using prognostic markers.

特許第4779115号Patent No. 4779115 WO2011122634 A1WO2011122634 A1

本発明は、早期肺腺癌の再発・転移の予測に有効な悪性度診断マーカーを用いた検査方法およびそのキットを提供することを目的とする。   An object of the present invention is to provide a test method using a malignancy diagnostic marker effective for predicting recurrence and metastasis of early lung adenocarcinoma and a kit thereof.

また、本発明は、早期肺腺癌の再発・転移の予測に有効な悪性度診断マーカーを用いた検査に利用可能な抗体を提供することも目的とする。   Another object of the present invention is to provide an antibody that can be used in a test using a malignancy diagnostic marker that is effective in predicting recurrence and metastasis of early lung adenocarcinoma.

さらに、本発明は、早期肺腺癌の再発・転移の予測に有効な悪性度診断マーカーを用いた検査に利用可能な内部標準ペプチドを提供することも目的とする。   Another object of the present invention is to provide an internal standard peptide that can be used for examination using a malignancy diagnostic marker that is effective in predicting recurrence and metastasis of early lung adenocarcinoma.

本発明者らは、I期肺腺癌症例において、癌組織が再発・転移しやすい細胞を含むかどうかを指標として予後を予測することを検討した。そのような細胞を含む癌組織の場合、再発・転移する(している)可能性が非常に高く、そのような細胞を検出する方法を確立することで、I期肺腺癌症例の予後を的確に予測することができる。具体的には、癌の悪性化、特に癌細胞の浸潤や転移の促進にかかわる上皮間葉系転換(EMT)誘導細胞で発現が亢進しているタンパク質のリン酸化(肝細胞増殖因子受容体[Hepatocyte growth factor receptor, c-Met]の1234/1235番目のチロシン、NT3受容体チロシンキナーゼ [Neurotrophic Tyrosine Kinase Receptor , TrkC]の516番目のチロシン、テンシン-1 [tensin 1, TNS1]の1404番目のチロシン、精子特異的抗原 2 [Sperm-specific antigen 2, SSFA2]の92番目のセリンのリン酸化)を診断マーカーとし、それを指標として、切除癌組織を用いて診断する。診断法としては、組織標本から抽出したタンパク質を用い、診断マーカーの発現量についてはリン酸化特異的抗体を用いたイムノブロット分析、もしくは質量分析装置を用いた多重反応モニタリング(MRM)分析により行う方法を見出した。さらに、多重反応モニタリング(MRM)分析に必要な内部標準用ペプチドの合成やイムノブロット分析で92番目のセリンでリン酸化されたSSFA2を検出するための抗体を作成した。これにより、より簡便かつ高感度にI期肺腺癌の予後を予測することが可能になった。I期肺腺癌症例において、予後不良群(術後5年以内に再発した患者群)9症例と予後良好群(術後5年以内に再発しなかった)9症例の外科切除癌組織を用いて多重反応モニタリング(MRM)分析を行った結果、c-Metの1234/1235番目のチロシンリン酸化、TrkCの516番目のチロシンリン酸化、TNS1の1404番目のチロシンリン酸化全てにおいて、予後不良群と予後良好群間の発現量に統計的に有意な差(p<0.0001)を認めた。また、c-Metの1234/1235番目のチロシンリン酸化、TrkCの516番目のチロシンリン酸化については、各リン酸化部位特異的抗体を用いたイムノブロット分析によっても発現量の違いを確認することができた。一方、SSFA2の92番目のセリンのリン酸化についても、I期肺腺癌症例において、予後不良群20症例と予後良好群31症例の外科切除癌組織を用いた多重反応モニタリング(MRM)分析の結果、予後不良群と予後良好群間の発現量に統計的に有意な差(p<0.005)を認め、SSFA2の92番目のセリンのリン酸化に対する特異的抗体を用いたイムノブロット分析によっても発現量の差を確認することができた。また、SSFA2は予後不良および予後良好群の癌部でのみ発現していた。本発明は、これらの知見に基づいて完成されたものである。   The present inventors examined predicting prognosis in patients with stage I lung adenocarcinoma using as an index whether the cancer tissue contains cells that are likely to relapse or metastasize. In the case of cancer tissues containing such cells, the possibility of recurrence / metastasis is very high, and by establishing a method for detecting such cells, the prognosis of stage I lung adenocarcinoma cases can be improved. Can be predicted accurately. Specifically, phosphorylation of a protein (hepatocyte growth factor receptor) that is up-regulated in epithelial-mesenchymal transition (EMT) -induced cells involved in cancer malignancy, particularly invasion and metastasis of cancer cells [ Hepatocyte growth factor receptor, c-Met] 1234/1235 tyrosine, NT3 receptor tyrosine kinase [Neurotrophic Tyrosine Kinase Receptor, TrkC] 516th tyrosine, tensin-1 [tensin 1, TNS1] 1404th tyrosine Diagnosis using excised cancer tissue using as a diagnostic marker the phosphorylation of the 92nd serine of sperm-specific antigen 2 [Sperm-specific antigen 2, SSFA2]. The diagnostic method uses a protein extracted from a tissue sample, and the expression level of a diagnostic marker is determined by immunoblot analysis using a phosphorylation specific antibody or multiple reaction monitoring (MRM) analysis using a mass spectrometer I found. Furthermore, an antibody for detecting SSFA2 phosphorylated at the 92nd serine was prepared by synthesis of an internal standard peptide required for multiple reaction monitoring (MRM) analysis and immunoblot analysis. As a result, the prognosis of stage I lung adenocarcinoma can be predicted more easily and with high sensitivity. In patients with stage I lung adenocarcinoma, surgically resected cancer tissues of 9 cases with poor prognosis (group of patients who relapsed within 5 years after surgery) and 9 cases with good outcome (no recurrence within 5 years after surgery) As a result of multiple reaction monitoring (MRM) analysis, c-Met 1234/1235 tyrosine phosphorylation, TrkC 516 tyrosine phosphorylation, TNS1 1404 tyrosine phosphorylation, A statistically significant difference (p <0.0001) was observed in the expression level between the groups with good prognosis. In addition, regarding t-phosphorylation of 1234/1235 of c-Met and 516 tyrosine phosphorylation of TrkC, the difference in the expression level can also be confirmed by immunoblot analysis using each phosphorylation site-specific antibody. did it. On the other hand, regarding the phosphorylation of the 92nd serine of SSFA2, the results of multiple reaction monitoring (MRM) analysis using surgically resected cancer tissues in 20 cases with poor prognosis and 31 cases with good prognosis in stage I lung adenocarcinoma cases There was a statistically significant difference (p <0.005) in the expression level between the poor prognosis group and the good prognosis group, and the expression level was also determined by immunoblot analysis using a specific antibody against the phosphorylation of the 92nd serine of SSFA2. We were able to confirm the difference. SSFA2 was expressed only in the cancer part of poor prognosis and good prognosis groups. The present invention has been completed based on these findings.

本発明の要旨は以下の通りである。
(1)被検者由来の検体について、TrkCの516番目のチロシン、TNS1の1404番目のチロシン、SSFA2の92番目のセリンからなる群より選択される少なくとも1つの部位のリン酸化を検出することを含む、早期肺腺癌の悪性度検査法。
(2)TrkCの516番目のチロシン、TNS1の1404番目のチロシン、SSFA2の92番目のセリンからなる群より選択される少なくとも1つの部位のリン酸化が亢進している場合に、早期肺腺癌が転移及び/又は再発する可能性が高いと判定する(1)記載の方法。
(3)さらに、c-Metの1234/1235番目の一方又は両方のチロシンのリン酸化を検出することを含む(1)又は(2)記載の方法。
(4)c-Metの1234/1235番目の一方又は両方のチロシンのリン酸化が亢進している場合に、早期肺腺癌が転移及び/又は再発する可能性が高いと判定する(3)記載の方法。
(5)被検者由来の検体が、肺腺癌組織、血清、全血又は尿である(1)〜(4)のいずれかに記載の方法。
(6)TrkCの516番目のチロシンがリン酸化されたTrkCに対する抗体、TNS1の1404番目のチロシンがリン酸化されたTNS1に対する抗体、SSFA2の92番目のセリンがリン酸化されたSSFA2に対する抗体からなる群より選択される少なくとも1つの抗体を用いた抗原抗体反応により、リン酸化されたタンパク質の発現量を測定する(1)〜(5)のいずれかに記載の方法。
(7)さらに、c-Metの1234番目のチロシンがリン酸化されたc-Metに対する抗体及び/又はc-Metの1235番目のチロシンがリン酸化されたc-Metに対する抗体を用いた抗原抗体反応により、リン酸化されたc-Metの発現量を測定する(6)記載の方法。
(8)多重反応モニタリング(MRM)分析により、TrkCの516番目のチロシン、TNS1の1404番目のチロシン、SSFA2の92番目のセリンからなる群より選択される少なくとも1つの部位のリン酸化を検出する(1)〜(5)のいずれかに記載の方法。
(9)さらに、c-Metの1234/1235番目の一方又は両方のチロシンのリン酸化を多重反応モニタリング(MRM)分析により検出する(8)記載の方法。
(10)下記の表に示す条件で多重反応モニタリング(MRM)分析を行う(9)記載の方法。
The gist of the present invention is as follows.
(1) Detecting phosphorylation of at least one site selected from the group consisting of TrkC at 516 tyrosine, TNS1 at 1404 tyrosine, and SSFA2 at 92th serine for the subject-derived specimen Including early lung adenocarcinoma malignancy test.
(2) If the phosphorylation of at least one site selected from the group consisting of TrkC 516th tyrosine, TNS1 1404th tyrosine, SSFA2 92th serine is enhanced, early lung adenocarcinoma The method according to (1), wherein it is determined that the possibility of metastasis and / or recurrence is high.
(3) The method according to (1) or (2), further comprising detecting phosphorylation of one or both of tyrosine at 1234/1235 of c-Met.
(4) When the phosphorylation of one or both tyrosine at 1234/1235 of c-Met is increased, it is determined that there is a high possibility that early lung adenocarcinoma will metastasize and / or recur (3) the method of.
(5) The method according to any one of (1) to (4), wherein the subject-derived specimen is lung adenocarcinoma tissue, serum, whole blood, or urine.
(6) A group consisting of an antibody against TrkC in which the 516th tyrosine of TrkC is phosphorylated, an antibody against TNS1 in which the 1404th tyrosine of TNS1 is phosphorylated, and an antibody against SSFA2 in which the 92nd serine of SSFA2 is phosphorylated The method according to any one of (1) to (5), wherein the expression level of the phosphorylated protein is measured by an antigen-antibody reaction using at least one antibody selected from the above.
(7) Furthermore, an antigen-antibody reaction using an antibody against c-Met phosphorylated on the 1234th tyrosine of c-Met and / or an antibody against c-Met phosphorylated on the 1235th tyrosine of c-Met The method according to (6), wherein the expression level of phosphorylated c-Met is measured by
(8) Phosphorylation of at least one site selected from the group consisting of 516th tyrosine of TrkC, 1404th tyrosine of TNS1 and 92nd serine of SSFA2 is detected by multiple reaction monitoring (MRM) analysis ( The method according to any one of 1) to (5).
(9) The method according to (8), wherein phosphorylation of one or both of the 1234 / 1235th tyrosine of c-Met is further detected by multiple reaction monitoring (MRM) analysis.
(10) The method according to (9), wherein a multiple reaction monitoring (MRM) analysis is performed under the conditions shown in the following table.

(11)検査は手術前及び/又は手術後に行われる(1)〜(10)のいずれかに記載の方法。
(12)TrkCの516番目のチロシンのリン酸化を検出できる試薬、TNS1の1404番目のチロシンのリン酸化を検出できる試薬、及びSSFA2の92番目のセリンのリン酸化を検出できる試薬からなる群より選択される少なくとも1つの試薬を含む、早期肺腺癌の悪性度検査キット。
(13)さらに、c-Metの1234及び/又は1235番目のチロシンのリン酸化を検出できる試薬を含む、(12)記載のキット。
(14)試薬が抗体である(12)又は(13)記載のキット。
(15)SSFA2の92番目のセリンがリン酸化されたSSFA2に対する抗体であって、C+TPLGA(pS)LDEQSを免疫原として得られた抗体。
(16)N末端にCysが付加されていてもよいTPLGA(pS)LDEQSのアミノ酸配列からなるペプチド。
(17)7番目のチロシンがリン酸化及び/又は13C6, 15N2同位体標識されていてもよいAGSLPNYATINGK、7番目のチロシンがリン酸化及び/又は13C6, 15N2同位体標識されていてもよいDMYDKEYYSVHNK、9番目のチロシンがリン酸化及び/又は13C6, 15N4同位体標識されていてもよいIPVIENPQYFR、6番目のセリンがリン酸化及び/又は13C6, 15N2同位体標識されていてもよいTPLGASLDEQSSSTLKからなる群より選択されるアミノ酸配列からなるペプチド。
(18)AGSLPNYATINGK、DMYDKEYYSVHNK、IPVIENPQYFR及びTPLGASLDEQSSSTLKからなる群より選択されるアミノ酸配列からなるペプチドであって、前記アミノ酸配列中のいずれかのアミノ酸がリン酸化及び/又は標識されていてもよい前記ペプチド。
(19)被験者由来の検体について、SSFA2のレベルを測定することを含む、肺腺癌の検査方法。
(20)SSFA2について、被験者由来の検体中のレベルが高い場合に、肺腺癌に罹患している可能性が高いと判定し、前記レベルが低い場合に、肺腺癌に罹患している可能性が低いと判定する(19)記載の方法。
(21)被験者が肺腺癌の治療を受けている患者であり、SSFA2について、被験者由来の検体中のレベルを異なる時期に複数回測定し、前記レベルが低下した場合に、治療により肺腺癌から回復したと判定し、前記レベルが低下しない場合に、治療により肺腺癌から回復していない、あるいは、回復が不十分であると判定する(19)記載の方法。
(22)被験者由来の検体が、癌組織、血清、全血又は尿である(19)〜(21)のいずれかに記載の方法。
(23)SSFA2を特異的に検出できる試薬を含む、肺腺癌の検査キット。
(24)試薬が抗体である(23)記載のキット。
(11) The method according to any one of (1) to (10), wherein the inspection is performed before and / or after the operation.
(12) Selected from the group consisting of a reagent capable of detecting phosphorylation of the 516th tyrosine of TrkC, a reagent capable of detecting the phosphorylation of the 1404th tyrosine of TNS1, and a reagent capable of detecting the phosphorylation of the 92nd serine of SSFA2. An early lung adenocarcinoma malignancy test kit comprising at least one reagent that is used.
(13) The kit according to (12), further comprising a reagent capable of detecting phosphorylation of the 1234th and / or 1235th tyrosine of c-Met.
(14) The kit according to (12) or (13), wherein the reagent is an antibody.
(15) An antibody against SSFA2 in which the 92nd serine of SSFA2 is phosphorylated, and obtained using C + TPLGA (pS) LDEQS as an immunogen.
(16) A peptide consisting of an amino acid sequence of TPLGA (pS) LDEQS to which Cys may be added to the N-terminus.
(17) 7 th tyrosine phosphorylation and / or 13 C 6, 15 N 2 isotopically labeled which may be AGSLPNYATINGK, seventh tyrosine phosphorylation and / or 13 C 6, 15 N 2 isotopically labeled DMYDKEYYSVHNK, which may be phosphorylated, IPVIENPQYFR in which the ninth tyrosine is phosphorylated and / or 13 C 6 , 15 N 4 isotope-labeled, and the sixth serine is phosphorylated and / or 13 C 6 , 15 N A peptide comprising an amino acid sequence selected from the group consisting of TPLGASLDEQSSSTLK, which may be labeled with two isotopes.
(18) A peptide comprising an amino acid sequence selected from the group consisting of AGSLPNYATINGK, DMYDKEYYSVHNK, IPVIENPQYFR, and TPLGASLDEQSSSTLK, wherein any amino acid in the amino acid sequence may be phosphorylated and / or labeled.
(19) A method for examining lung adenocarcinoma, comprising measuring the level of SSFA2 for a subject-derived specimen.
(20) For SSFA2, when the level in the subject-derived specimen is high, it is determined that there is a high possibility of having lung adenocarcinoma, and when the level is low, the patient may be suffering from lung adenocarcinoma The method according to (19), wherein it is determined that the property is low.
(21) The subject is a patient undergoing treatment for lung adenocarcinoma, and the level of SSFA2 in the subject-derived specimen is measured several times at different times, and when the level decreases, lung adenocarcinoma is treated. (19) The method according to (19), wherein it is determined that the patient has recovered from lung cancer, and when the level does not decrease, it is determined that treatment has not recovered from lung adenocarcinoma or recovery is insufficient.
(22) The method according to any one of (19) to (21), wherein the subject-derived specimen is cancer tissue, serum, whole blood, or urine.
(23) A test kit for lung adenocarcinoma comprising a reagent capable of specifically detecting SSFA2.
(24) The kit according to (23), wherein the reagent is an antibody.

本発明は、早期肺腺癌、特に、I期(IA期及びIB期)非小細胞肺癌に対して、有効である。   The present invention is effective for early stage lung adenocarcinoma, particularly stage I (stage IA and stage IB) non-small cell lung cancer.

本発明により、早期肺腺癌患者に対して、予後予測のための悪性度スクリーニング検査を正確かつ、高い感度で行うことができるようになる。   According to the present invention, a malignancy screening test for prognosis prediction can be performed accurately and with high sensitivity for patients with early lung adenocarcinoma.

TGF-β処理によるA549細胞におけるEMT誘導イムノブロット分析により細胞溶解物中のE-カドヘリンおよびビメンチン量を調べた結果、βアクチンの発現量は同じだが、TGF-β処理に応答してE-カドヘリン量は減少し、ビメンチン量は増加することを確認した(A)。また、形態学的変化を調べた結果、TGF-β処理によりA549細胞は上皮細胞様形態から紡錘状線維芽細胞様の形態への変化することを確認した(B)。TGF-β( - ):TGF-β非処理細胞、 TGF-β(+): TGF-β処理細胞The amount of E-cadherin and vimentin in cell lysates was examined by EMT-induced immunoblot analysis in A549 cells treated with TGF-β, but the expression level of β-actin was the same, but E-cadherin in response to TGF-β treatment. It was confirmed that the amount decreased and the vimentin amount increased (A). As a result of examining morphological changes, it was confirmed that A549 cells changed from epithelial cell-like to spindle-like fibroblast-like by TGF-β treatment (B). TGF-β (-): TGF-β non-treated cells, TGF-β (+): TGF-β treated cells TGF-β処理した細胞中での各タンパク質量各特異的抗体を用いたイムノブロット分析の結果、TGF-β処理により、細胞中のTrkC、TNS1、c-Metのタンパク質量は変化しないが、516番目のチロシンでリン酸化されたTrkC量と1234および/又は1235番目のチロシンでリン酸化されたc-Met量は増加することを確認した。TGF-β( - ):TGF-β非処理細胞、 TGF-β(+): TGF-β処理細胞The amount of each protein in cells treated with TGF-β As a result of immunoblot analysis using each specific antibody, the amount of TrkC, TNS1, and c-Met proteins in the cells was not changed by TGF-β treatment. It was confirmed that the amount of TrkC phosphorylated by the 1st tyrosine and the amount of c-Met phosphorylated by the 1234th and / or 1235th tyrosine increased. TGF-β (-): TGF-β non-treated cells, TGF-β (+): TGF-β treated cells TGF-β処理した細胞中での各ペプチド量TNS1の1404番目のチロシンがリン酸化されたペプチド量(A)、c-Metの1234/1235番目のチロシンがリン酸化されたペプチド量(B)、TrkCの516番目のチロシンがリン酸化されたペプチド量(C)は、多重反応モニタリング(MRM)分析の結果、全てにおいてTGF-β非処理細胞とTGF-β処理細胞間で統計的に有意な差(p<0.001)を示した。一方、脱リン酸化処理した試料におけるこれらの非リン酸化ペプチド量に統計的に有意な差はなかった(D、E、F)。TGF-β( - ):TGF-β非処理細胞、 TGF-β(+): TGF-β処理細胞In the TGF-β-treated cells, the amount of each peptide amount TNS1 in which the 1404th tyrosine was phosphorylated (A), the amount of peptide in which the 1234 / 1235th tyrosine of c-Met was phosphorylated (B), The amount of peptide (C) phosphorylated at the 516th tyrosine of TrkC is a statistically significant difference between TGF-β-untreated cells and TGF-β-treated cells as a result of multiple reaction monitoring (MRM) analysis. (P <0.001). On the other hand, there was no statistically significant difference in the amount of these non-phosphorylated peptides in the dephosphorylated sample (D, E, F). TGF-β (-): TGF-β non-treated cells, TGF-β (+): TGF-β treated cells I期肺腺癌外科切除癌組織中でのタンパク質量またはそれに由来するペプチド量予後不良群9症例と予後良好群9症例のI期肺腺癌外科切除癌組織を用いた多重反応モニタリング(MRM)分析の結果、TNS1の1404番目のチロシンがリン酸化されたペプチド量(A左)、c-Metの1234/1235番目のチロシンがリン酸化されたペプチド量(B左)、TrkCの516番目のチロシンがリン酸化されたペプチド量(C左)は、全てにおいて予後良好群と予後不良群間で統計的に有意な差(p<0.0001)を認めた。一方、脱リン酸化処理した試料におけるこれらの非リン酸化ペプチド量に統計的に有意な差はなかった(D左、E左、F左)。また、イムノブロット分析により、組織中のTrkC、TNS1、c-Metのタンパク質量は変化しないが(D右、E右、F右)、1234および/又は1235番目のチロシンでリン酸化されたc-Met量(B右)と516番目のチロシンでリン酸化されたTrkC量(C右)は増加することを確認した。GP:予後良好群、PP:予後不良群、Y[Pho]:リン酸化チロシンMultiple reaction monitoring (MRM) using stage I lung adenocarcinoma surgically resected cancer tissue in 9 cases with poor prognosis and 9 cases with good prognosis As a result of analysis, the amount of peptide in which 1404 tyrosine of TNS1 was phosphorylated (A left), the amount of peptide in which tyrosine 1234/1235 of c-Met was phosphorylated (B left), 516 tyrosine of TrkC In all cases, there was a statistically significant difference (p <0.0001) between the good prognosis group and the poor prognosis group. On the other hand, there was no statistically significant difference in the amount of these non-phosphorylated peptides in the dephosphorylated sample (D left, E left, F left). In addition, the amount of TrkC, TNS1, and c-Met proteins in the tissue was not changed by immunoblot analysis (D right, E right, F right), but c-phosphorylated at the 1234th and / or 1235th tyrosine. It was confirmed that the amount of Met (B right) and the amount of TrkC phosphorylated at the 516th tyrosine (C right) increased. GP: good prognosis group, PP: poor prognosis group, Y [Pho]: phosphorylated tyrosine 無再発生存期間I期肺腺癌の予後不良群9症例と予後良好群9症例について、多重反応モニタリング(MRM)分析によって得られた3種類のリン酸化ペプチド量を平均値以上と以下で分類した場合、平均値以下の群に比べて平均値以上の群は統計的に有意に術後生存期間が短いことを確認した(p<0.0001, Kaplan-Meier法)。 Phospho-Low:リン酸化ペプチド量が平均値以下の群、Phospho-High:リン酸化ペプチド量が平均値以上の群Three types of phosphopeptides obtained by multiple reaction monitoring (MRM) analysis were classified as above average and below according to 9 cases with poor prognosis and 9 cases with good prognosis of relapse-free survival stage I lung adenocarcinoma In this case, it was confirmed that the survival period after the operation was statistically significantly shorter than the average value group (p <0.0001, Kaplan-Meier method). Phospho-Low: a group with a phosphorylated peptide amount below the average value, Phospho-High: a group with a phosphorylated peptide amount above the average value 受信者動作特性 (ROC) 曲線I期肺腺癌の予後不良群9症例と予後良好群9症例について、多重反応モニタリング(MRM)分析によって得られた3種類のリン酸化ペプチド量を基に、y 軸に感度 (sensitivity)、x 軸に特異度 (specificity) を使用してグラフ化し、これらのタンパク質のリン酸化が診断マーカーとして有用であることを示した。GP:予後良好群、PP:予後不良群、AUC:area under the curve(ROC曲線下面積)Receiver operating characteristics (ROC) curve Y stage 9 lung adenocarcinoma group with poor prognosis group and 9 cases with good prognosis group based on 3 types of phosphopeptides obtained by multiple reaction monitoring (MRM) analysis A graph was drawn using sensitivity on the axis and specificity on the x-axis, indicating that phosphorylation of these proteins is useful as a diagnostic marker. GP: good prognosis group, PP: poor prognosis group, AUC: area under the curve (ROC curve area) アルカリホスファターゼによる脱リン酸化効率抗リン酸化チロシン抗体(PY20)(Santa Cruz Biotechnology)を用いて、脱リン酸化処理前後の細胞内リン酸化タンパク質を検出し、多くのタンパク質が脱リン酸化されていることを確認した。CIAP+:脱リン酸化処理した細胞抽出タンパク質CIAP-:脱リン酸化処理しなかった細胞抽出タンパク質Dephosphorylation efficiency by alkaline phosphatase Antiphosphorylated tyrosine antibody (PY20) (Santa Cruz Biotechnology) is used to detect intracellular phosphorylated proteins before and after dephosphorylation, and many proteins are dephosphorylated It was confirmed. CIAP +: Cell extract protein that has been dephosphorylated CIAP-: Cell extract protein that has not been dephosphorylated TGF-β処理した細胞中で各タンパク質量の測定。各特異的抗体を用いたイムノブロット分析の結果TGF-β処理により、細胞中のSSFA2のタンパク質量は変化しないが、92番目のセリンでリン酸化されたSSFA2量は増加することを確認した。TGF-β( - ):TGF-β非処理細胞、 TGF-β(+): TGF-β処理細胞Measurement of the amount of each protein in cells treated with TGF-β. As a result of immunoblot analysis using each specific antibody, it was confirmed that the amount of SSFA2 protein in cells was not changed by TGF-β treatment, but the amount of SSFA2 phosphorylated by the 92nd serine increased. TGF-β (-): TGF-β non-treated cells, TGF-β (+): TGF-β treated cells I期肺腺癌外科切除癌組織中でのタンパク質量各特異的抗体を用いたイムノブロット分析結果、予後不良群と予後良好群両患者群の癌部でのみSSFA2が発現していることが確認できた(A)。さらに、SSFA2の92番目のセリンがリン酸化されたタンパク質量をリン酸化部位特異的抗体を用いたイムノブロット分析により調べた結果、予後良好群の癌部に比べて、予後不良群の癌部で発現量が増加していることがわかった(B)。Immunoblotting analysis using specific antibodies for protein levels in surgically resected cancer tissues of stage I lung adenocarcinoma confirmed that SSFA2 is expressed only in the cancerous part of both poor prognosis group and good prognosis group (A). Furthermore, as a result of examining the amount of protein phosphorylated at the 92nd serine of SSFA2 by immunoblot analysis using a phosphorylation site-specific antibody, it was found in the cancer part of the poor prognosis group compared to the cancer part of the good prognosis group. It was found that the expression level increased (B). I期肺腺癌外科切除組織中での各ペプチド量予後不良群は20症例または17症例、予後良好群は31症例または32症例のI期肺腺癌外科切除癌組織を、それぞれ用いて多重反応モニタリング(MRM)分析によりリン酸化ペプチド量または非リン酸化ペプチド量の定量を行った。その結果、SSFA2の92番目のセリンがリン酸化されたペプチド量(左)は予後良好群と予後不良群間で統計的に有意な差(p<0.005)を認めた。一方、脱リン酸化処理した試料におけるこれらの非リン酸化ペプチド量に統計的に有意な差はなかった(右)。GP:予後良好群、PP:予後不良群、S[Pho]:リン酸化セリン、N.S.:non-significantIn the surgically resected tissue of stage I lung adenocarcinoma, 20 or 17 cases of poor peptide prognosis group, 31 or 32 cases of good prognosis group using multiple resected cancer tissues of stage I lung adenocarcinoma, multiple reactions respectively The amount of phosphorylated peptide or non-phosphorylated peptide was quantified by monitoring (MRM) analysis. As a result, there was a statistically significant difference (p <0.005) between the good prognosis group and the poor prognosis group in the amount of peptide in which the 92nd serine of SSFA2 was phosphorylated (left). On the other hand, there was no statistically significant difference in the amount of these non-phosphorylated peptides in the dephosphorylated sample (right). GP: good prognosis group, PP: poor prognosis group, S [Pho]: phosphorylated serine, N.S .: non-significant 無再発生存期間I期肺腺癌の予後不良群20症例と予後良好群31症例について、多重反応モニタリング(MRM)分析によって得られたリン酸化ペプチド量を平均値以上と以下で分類した場合、平均値以下の群に比べて平均値以上の群は統計的に有意に術後生存期間が短いことを確認した(p<0.005, カプラン・マイヤー法)。 Phospho-Low:リン酸化ペプチド量が平均値以下の群、Phospho-High:リン酸化ペプチド量が平均値以上の群Relapse-free survival period In stage I lung adenocarcinoma 20 cases with poor prognosis group and 31 cases with good prognosis group, when the amount of phosphopeptides obtained by multiple reaction monitoring (MRM) analysis is classified as above average or below, the average It was confirmed that the postoperative survival time was statistically significantly shorter in the group above the average than the group below the value (p <0.005, Kaplan-Meier method). Phospho-Low: a group with a phosphorylated peptide amount below the average value, Phospho-High: a group with a phosphorylated peptide amount above the average value 受信者動作特性 (ROC) 曲線I期肺腺癌の予後不良群20症例と予後良好群31症例について、多重反応モニタリング(MRM)分析によって得られたリン酸化ペプチド量を基に、y 軸に感度 (sensitivity)、x 軸に特異度 (specificity) を使用してグラフ化し、これらのタンパク質のリン酸化が診断マーカーとして有用であることを示した。GP:予後良好群、PP:予後不良群、AUC:area under the curve(ROC曲線下面積)Receiver operating characteristics (ROC) curve Sensitivity on the y-axis based on the amount of phosphorylated peptide obtained by multiple reaction monitoring (MRM) analysis in 20 cases with poor prognosis and 31 cases with good prognosis in stage I lung adenocarcinoma (sensitivity), graphed using specificity on the x-axis, showing that phosphorylation of these proteins is useful as a diagnostic marker. GP: good prognosis group, PP: poor prognosis group, AUC: area under the curve (ROC curve area)

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、被検者由来の検体について、TrkCの516番目のチロシン、TNS1の1404番目のチロシン、SSFA2の92番目のセリンからなる群より選択される少なくとも1つの部位のリン酸化を検出することを含む、早期肺腺癌の悪性度検査法を提供する。   The present invention detects phosphorylation of at least one site selected from the group consisting of TrkC at 516 tyrosine, TNS1 at 1404 tyrosine, SSFA2 at 92th serine, from a subject-derived specimen. To provide a malignancy test for early lung adenocarcinoma, including

TrkCの516番目のチロシン、TNS1の1404番目のチロシン、SSFA2の92番目のセリンからなる群より選択される少なくとも1つの部位のリン酸化が亢進している場合に、早期肺腺癌が転移及び/又は再発する可能性が高いと判定することができる。   When the phosphorylation of at least one site selected from the group consisting of 516th tyrosine of TrkC, 1404th tyrosine of TNS1 and 92nd serine of SSFA2 is enhanced, early lung adenocarcinoma is metastasized and / or Alternatively, it can be determined that the possibility of recurrence is high.

本発明の方法において、さらに、c-Metの1234/1235番目の一方又は両方のチロシンのリン酸化を検出してもよい。   In the method of the present invention, phosphorylation of one or both tyrosine at the 1234 / 1235th position of c-Met may be detected.

c-Metの1234/1235番目の一方又は両方のチロシンのリン酸化が亢進している場合に、早期肺腺癌が転移及び/又は再発する可能性が高いと判定することができる。   When phosphorylation of one or both tyrosine at 1234/1235 of c-Met is enhanced, it can be determined that there is a high possibility that early lung adenocarcinoma will metastasize and / or recur.

被検者由来の検体としては、肺腺癌組織、血清、全血、尿などを例示することができる。   Examples of the specimen derived from the subject include lung adenocarcinoma tissue, serum, whole blood, urine and the like.

TrkCの516番目のチロシンがリン酸化されたTrkCに対する抗体、TNS1の1404番目のチロシンがリン酸化されたTNS1に対する抗体、SSFA2の92番目のセリンがリン酸化されたSSFA2に対する抗体からなる群より選択される少なくとも1つの抗体を用いた抗原抗体反応により、TrkCの516番目のチロシン、TNS1の1404番目のチロシン、SSFA2の92番目のセリンからなる群より選択される少なくとも1つの部位のリン酸化を検出することができる。   TrkC antibody against TrkC phosphorylated at 516th tyrosine, TNS1 antibody against TNS1 phosphorylated at 1404th tyrosine, SSFA2 antibody against SSFA2 phosphorylated at serine 92th And at least one site selected from the group consisting of TrkC at 516 tyrosine, TNS1 at 1404 tyrosine, and SSFA2 at 92th serine. be able to.

さらに、c-Metの1234番目のチロシンがリン酸化されたc-Metに対する抗体及び/又はc-Metの1235番目のチロシンがリン酸化されたc-Metに対する抗体を用いた抗原抗体反応により、リン酸化されたc-Metの発現量を測定してもよい。   Furthermore, an antigen-antibody reaction using an antibody against c-Met in which the 1234th tyrosine of c-Met was phosphorylated and / or an antibody against c-Met in which the 1235th tyrosine of c-Met was phosphorylated was used to produce phosphorylation. The expression level of oxidized c-Met may be measured.

抗原抗体反応を利用して、ELISAやイムノブロットにより、リン酸化タンパク質の発現量を測定することができる。   Using the antigen-antibody reaction, the expression level of phosphorylated protein can be measured by ELISA or immunoblotting.

また、多重反応モニタリング(MRM)分析により、TrkCの516番目のチロシン、TNS1の1404番目のチロシン、SSFA2の92番目のセリンからなる群より選択される少なくとも1つの部位のリン酸化を検出することもできる。   In addition, multiple reaction monitoring (MRM) analysis can detect phosphorylation of at least one site selected from the group consisting of TrkC at 516 tyrosine, TNS1 at 1404 tyrosine, and SSFA2 at 92th serine. it can.

さらに、c-Metの1234/1235番目の一方又は両方のチロシンのリン酸化を多重反応モニタリング(MRM)分析により検出してもよい。   Furthermore, phosphorylation of one or both tyrosine 1234/1235 of c-Met may be detected by multiple reaction monitoring (MRM) analysis.

本発明の一実施態様において、下記の表に示す条件で多重反応モニタリング(MRM)分析を行うことができる。
In one embodiment of the present invention, multiple reaction monitoring (MRM) analysis can be performed under the conditions shown in the table below.

*Y[Pho]またはS[Pho];リン酸化チロシンまたはリン酸化セリンを表す
*[13C6,15N2]; 13Cを6個と15Nを2個で安定同位体標識されたK(リシン)を含むペプチド
*[13C6,15N4]; 13Cを6個と15Nを4個で安定同位体標識されたR(アルギニン)を含むペプチド
* Y [Pho] or S [Pho]; represents phosphorylated tyrosine or phosphorylated serine
* [ 13 C 6 , 15 N 2 ]; Peptide containing 6 ( 13 C) and 2 ( 15 N) and stable isotope-labeled K (lysine)
* [ 13 C 6 , 15 N 4 ]; Peptide containing 6 ( 13 C) and 4 ( 15 N) and stable isotope-labeled R (arginine)

また、検査は、手術前及び/又は手術後に行うことができる。   The examination can be performed before and / or after the operation.

本発明は、TrkCの516番目のチロシンのリン酸化を検出できる試薬、TNS1の1404番目のチロシンのリン酸化を検出できる試薬、SSFA2の92番目のセリンのリン酸化を検出できる試薬からなる群より選択される少なくとも1つの試薬を含む、早期肺腺癌の悪性度検査キットも提供する。   The present invention is selected from the group consisting of a reagent capable of detecting phosphorylation of the 516th tyrosine of TrkC, a reagent capable of detecting phosphorylation of the 1404th tyrosine of TNS1, and a reagent capable of detecting phosphorylation of the 92nd serine of SSFA2. There is also provided an early lung adenocarcinoma malignancy test kit comprising at least one of the reagents described above.

本発明のキットは、さらに、c-Metの1234及び/又は1235番目のチロシンのリン酸化を検出できる試薬を含んでもよい。   The kit of the present invention may further contain a reagent capable of detecting phosphorylation of the 1234th and / or 1235th tyrosine of c-Met.

試薬としては、抗体が好ましく、516番目のチロシンがリン酸化されたTrkCに特異的に結合する抗体、1404番目のチロシンがリン酸化されたTNS1に特異的に結合する抗体、92番目のセリンがリン酸化されたSSFA2に特異的に結合する抗体、1234及び/又は1235番目のチロシンがリン酸化されたc-Metに特異的に結合する抗体であるとよい。516番目のチロシンがリン酸化されたTrkCに特異的に結合する抗体、1404番目のチロシンがリン酸化されたTNS1に特異的に結合する抗体、1234及び/又は1235番目のチロシンがリン酸化されたc-Metに特異的に結合する抗体は市販されており、利用可能である。92番目のセリンがリン酸化されたSSFA2に特異的に結合する抗体は、C+TPLGA(pS)LDEQSを免疫原として動物に接種した後、この動物から採取することにより、本発明者らが自作した。よって、本発明は、SSFA2の92番目のセリンがリン酸化されたSSFA2に対する抗体であって、C+TPLGA(pS)LDEQSを免疫原として得られた抗体を提供する。   The reagent is preferably an antibody, an antibody that specifically binds to TrkC phosphorylated at the 516th tyrosine, an antibody that specifically binds to TNS1 phosphorylated at the 1404th tyrosine, and the serine at the 92nd phosphorylate. An antibody that specifically binds to oxidized SSFA2 or an antibody that specifically binds to c-Met phosphorylated at the 1234th and / or 1235th tyrosine. An antibody that specifically binds to TrkC phosphorylated at the 516th tyrosine, an antibody that specifically binds to TNS1 phosphorylated at the 1404th tyrosine, c that is phosphorylated at the 1234th and / or 1235th tyrosine Antibodies that specifically bind to -Met are commercially available and available. An antibody that specifically binds to SSFA2 phosphorylated at the 92nd serine was inoculated to the animal using C + TPLGA (pS) LDEQS as an immunogen, and then collected from this animal. did. Therefore, the present invention provides an antibody against SSFA2 in which the 92nd serine of SSFA2 is phosphorylated, and obtained using C + TPLGA (pS) LDEQS as an immunogen.

抗体は、放射性同位元素、酵素、発光物質、蛍光物質、ビオチンなどで標識されてもよい。また、ターゲット分子(本発明では、516番目のチロシンがリン酸化されたTrkC、1404番目のチロシンがリン酸化されたTNS1、92番目のセリンがリン酸化されたSSFA2、1234及び/又は1235番目のチロシンがリン酸化されたc-Met)に特異的に結合する一次抗体の反応後、この一次抗体に結合する二次抗体を反応させて、ターゲット分子の検出を行う場合には、二次抗体を標識するとよい(一次抗体は標識しない)。   The antibody may be labeled with a radioisotope, enzyme, luminescent material, fluorescent material, biotin, and the like. In addition, the target molecule (in the present invention, TrkC phosphorylated at the 516th tyrosine, TNS1 phosphorylated at the 1404th tyrosine, SSFA2, 1234 and / or the 1235th tyrosine phosphorylated at the 92nd serine) When the target antibody is detected by reacting the secondary antibody that binds to the primary antibody after the reaction of the primary antibody that specifically binds to phosphorylated c-Met), label the secondary antibody. It is preferable (the primary antibody is not labeled).

この他、本発明のキットには、標準タンパク質(ELISAやイムノブロットによる分析の場合、516番目のチロシンがリン酸化されたTrkC、1404番目のチロシンがリン酸化されたTNS1、92番目のセリンがリン酸化されたSSFA2、1234及び/又は1235番目のチロシンがリン酸化されたc-Met)、内部標準ペプチド(多重モニタリング(MRM)分析の場合、516番目のチロシンがリン酸化されたTrkCの部分ペプチド、1404番目のチロシンがリン酸化されたTNS1の部分ペプチド、92番目のセリンがリン酸化されたSSFA2の部分ペプチド、1234及び/又は1235番目のチロシンがリン酸化されたc-Metの部分ペプチドなど)、バッファー、基質(抗体が酵素標識されている場合)、反応停止液、洗浄液、反応容器、使用手引書などを含めてもよい。   In addition, the kit of the present invention contains standard proteins (TrkC phosphorylated at the 516th tyrosine, TNS1 phosphorylated at the 1404th tyrosine, and the 92nd serine phosphorylated by ELISA and immunoblot analysis). Oxidized SSFA2, 1234 and / or c-Met phosphorylated at 1235th tyrosine), internal standard peptide (for multiple monitoring (MRM) analysis, TrkC partial peptide phosphorylated at 516th tyrosine, A partial peptide of TNS1 phosphorylated at the 1404th tyrosine, a partial peptide of SSFA2 phosphorylated at the 92th serine, a partial peptide of c-Met phosphorylated at the 1234 and / or 1235th tyrosine), A buffer, a substrate (when the antibody is labeled with an enzyme), a reaction stop solution, a washing solution, a reaction vessel, a user manual, and the like may be included.

さらに、本発明は、N末端にCysが付加されていてもよいTPLGA(pS)LDEQSのアミノ酸配列からなるペプチドも提供する。これらのペプチドは、SSFA2の92番目のセリンがリン酸化されたSSFA2に対する抗体を得るための免疫原として利用可能である。   Furthermore, the present invention also provides a peptide consisting of the amino acid sequence of TPLGA (pS) LDEQS, to which Cys may be added at the N-terminus. These peptides can be used as an immunogen for obtaining an antibody against SSFA2 in which the 92nd serine of SSFA2 is phosphorylated.

さらにまた、本発明は、7番目のチロシンがリン酸化及び/又は13C6, 15N2同位体標識されていてもよいAGSLPNYATINGK、7番目のチロシンがリン酸化及び/又は13C6, 15N2同位体標識されていてもよいDMYDKEYYSVHNK、9番目のチロシンがリン酸化及び/又は13C6, 15N4同位体標識されていてもよいIPVIENPQYFR、6番目のセリンがリン酸化及び/又は13C6, 15N2同位体標識されていてもよいTPLGASLDEQSSSTLKからなる群より選択されるアミノ酸配列からなるペプチドを提供する。もしくは、AGSLPNYATINGK、DMYDKEYYSVHNK、IPVIENPQYFR及びTPLGASLDEQSSSTLKからなる群より選択されるアミノ酸配列からなるペプチドであって、前記アミノ酸配列中のいずれかのアミノ酸がリン酸化及び/又は標識されていてもよい前記ペプチドを提供する。これらのペプチドは、多重モニタリング(MRM)分析における内部標準用のペプチドとして利用可能である。
さらに、本発明は、被験者由来の検体について、SSFA2のレベルを測定することを含む、肺腺癌の検査方法を提供する。
Furthermore, the present invention relates to AGSLPNYATINGK in which the seventh tyrosine may be phosphorylated and / or 13 C 6 , 15 N 2 isotope-labeled, and the seventh tyrosine is phosphorylated and / or 13 C 6 , 15 N DMYDKEYYSVHNK, which may be labeled with 2 isotopes, IPVIENPQYFR where 9th tyrosine is phosphorylated and / or 13 C 6 , 15 N 4 isotope labeled, and 6th serine is phosphorylated and / or 13 C Provided is a peptide consisting of an amino acid sequence selected from the group consisting of TPLGASLDEQSSSTLK optionally labeled with 6 , 15 N 2 isotope. Alternatively, the present invention provides a peptide comprising an amino acid sequence selected from the group consisting of AGSLPNYATINGK, DMYDKEYYSVHNK, IPVIENPQYFR and TPLGASLDEQSSSTLK, wherein any amino acid in the amino acid sequence may be phosphorylated and / or labeled To do. These peptides are available as peptides for internal standards in multiplex monitoring (MRM) analysis.
Furthermore, the present invention provides a method for examining lung adenocarcinoma, comprising measuring the level of SSFA2 for a specimen derived from a subject.

SSFA2について、被験者由来の検体中のレベルが高い場合に、肺腺癌に罹患している可能性が高いと判定し、前記レベルが低い場合に、肺腺癌に罹患している可能性が低いと判定することができる。よって、本発明の方法は、肺腺癌の診断(肺腺癌への罹患の有無の判定)に利用できる。   Regarding SSFA2, when the level in the subject-derived specimen is high, it is determined that the possibility of having lung adenocarcinoma is high, and when the level is low, the possibility of having lung adenocarcinoma is low Can be determined. Therefore, the method of the present invention can be used for diagnosis of lung adenocarcinoma (determination of presence or absence of lung adenocarcinoma).

また、被験者が肺腺癌の治療を受けている患者であれば、SSFA2について、被験者由来の検体中のレベルを異なる時期に複数回測定し、前記レベルが低下した場合に、治療により肺腺癌から回復したと判定し、前記レベルが低下しない場合に、治療により肺腺癌から回復していない、あるいは、回復が不十分であると判定することができる。よって、本発明の方法は、肺腺癌の病状の変化、現在の病状、予後の検査や肺腺癌の治療効果の確認にも利用できる。   In addition, if the subject is a patient undergoing treatment for lung adenocarcinoma, the SSFA2 is measured multiple times at different times in the subject-derived specimen, and if the level decreases, the lung adenocarcinoma is treated by treatment. If the level does not decrease, it can be determined that the treatment has not recovered from lung adenocarcinoma or the recovery has been insufficient. Therefore, the method of the present invention can also be used for changes in the pathology of lung adenocarcinoma, current pathological conditions, prognostic examination, and confirmation of the therapeutic effect of lung adenocarcinoma.

被験者由来の検体としては、癌組織、血清、全血、尿などを例示することができる。   Examples of the subject-derived specimen include cancer tissue, serum, whole blood, urine and the like.

本発明は、SSFA2を特異的に検出できる試薬を含む、肺腺癌の検査キットも提供する。   The present invention also provides a test kit for lung adenocarcinoma comprising a reagent capable of specifically detecting SSFA2.

試薬としては、抗体が好ましく、SSFA2に特異的に結合する抗体であるとよい。このような抗体は、市販されており、利用可能である。抗体は、モノクローナル抗体、ポリクローナル抗体のいずれであってもよい。抗体は、放射性同位元素、酵素、発光物質、蛍光物質、ビオチンなどで標識されてもよい。また、ターゲット分子(SSFA2)に特異的に結合する一次抗体の反応後、この一次抗体に結合する二次抗体を反応させて、ターゲット分子の検出を行う場合には、二次抗体を標識するとよい(一次抗体は標識しない)。抗原抗体反応を利用して、ELISAやイムノブロットにより、SSFA2の発現量を測定することができる。   The reagent is preferably an antibody, and is preferably an antibody that specifically binds to SSFA2. Such antibodies are commercially available and can be used. The antibody may be either a monoclonal antibody or a polyclonal antibody. The antibody may be labeled with a radioisotope, enzyme, luminescent material, fluorescent material, biotin, and the like. In addition, when a target antibody is detected by reacting a secondary antibody that binds to the primary antibody after the reaction of the primary antibody that specifically binds to the target molecule (SSFA2), the secondary antibody may be labeled. (Primary antibody is not labeled). Using the antigen-antibody reaction, the expression level of SSFA2 can be measured by ELISA or immunoblotting.

この他、本発明のキットには、標準タンパク質(SSFA2)、バッファー、基質(抗体が酵素標識されている場合)、反応停止液、洗浄液、反応容器、使用手引書などを含めてもよい。
In addition, the kit of the present invention may contain a standard protein (SSFA2), a buffer, a substrate (when the antibody is labeled with an enzyme), a reaction stop solution, a washing solution, a reaction vessel, a user manual, and the like.

以下、実施例により本発明を更に詳細に説明する。
〔実施例1〕
緒 言
現在の癌医療において、その多くは、早期に発見し外科的に切除することにより、良好な治療成績が得られる。しかし、転移や再発がしやすいために一般に悪性度の高い癌として知られ、先進国の癌による死亡の主要な原因になっている肺腺癌では、早期に肺腺癌患者から罹患部を外科的に切除した場合でも20%は再発し手術後5年以内に死亡している1,2。このことは、早期の癌でも、より進行した癌と同様、術後すぐに化学療法などの補助療法が必要であることを示している。しかし、残り80%には、このような治療は不要であり、このような状況から、様々な補助治療を必要とする再発のリスクをもった患者を、的確に見分けることができる診断マーカーの開発が求められている。これまで、肺腺癌においては手術直後に採取した肺腺癌組織を用いて予後良好群および予後不良群間で発現量が異なるタンパク質を特定して、予後予測マーカー候補タンパク質をいくつか見いだしている3-5。しかし、上皮間葉系転換(Epithelial-Mesenchymal Transition, EMT)誘導に関連したリン酸化の変動に着目して予後予測マーカーを探索する研究が行われたことはない。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example 1]
INTRODUCTION In current cancer medicine, many of them can be detected early and surgically removed to achieve good therapeutic results. However, lung adenocarcinoma, which is generally known as a high-grade cancer because of its easy metastasis and recurrence, and is the leading cause of death from cancer in developed countries, is an early surgical treatment of affected areas from patients with lung adenocarcinoma Even if surgically removed, 20% have relapsed and died within 5 years after surgery1,2 . This shows that adjuvant therapy such as chemotherapy is necessary immediately after surgery, even in early cancers, as in more advanced cancers. However, in the remaining 80%, such treatment is not necessary, and development of diagnostic markers that can accurately identify patients at risk of recurrence that require various adjuvant treatments in this situation Is required. So far, in lung adenocarcinoma, using lung adenocarcinoma tissues collected immediately after surgery, we have identified proteins with different expression levels between good prognosis group and poor prognosis group, and have found several prognostic marker marker proteins 3-5 . However, no research has been conducted to search for prognostic markers by focusing on changes in phosphorylation associated with induction of epithelial-mesenchymal transition (EMT).

EMTは、上皮細胞が細胞間接着を失い、間葉系様(非上皮)細胞に形態変化する現象であり、その誘導にTGF-β(β型変異増殖因子)が関与することがわかっている6-11。EMTが誘導された細胞は、運動能・浸潤能をもつようになり、癌の浸潤や転移が引き起されることが示唆されている6-11。そのため、TGF-βが引き起こすEMT誘導に関連するリン酸化タンパク質を検出し、腫瘍組織におけるEMT誘導細胞の存在を検出することができる分子を発見することは、EMT誘導(癌細胞の浸潤や転移のしやすさ)を指標にして予後を予測する新規悪性度診断マーカーの開発につながる可能性が高い。 EMT is a phenomenon in which epithelial cells lose cell-cell adhesion and transform into mesenchymal-like (non-epithelial) cells, and it is known that TGF-β (β-type mutant growth factor) is involved in its induction 6-11 . It has been suggested that cells in which EMT has been induced have motility and invasive ability, leading to cancer invasion and metastasis 6-11 . Therefore, detecting phosphorylated proteins related to EMT induction caused by TGF-β, and discovering molecules that can detect the presence of EMT-induced cells in tumor tissue, are considered EMT induction (invasion and metastasis of cancer cells). It is highly likely to lead to the development of a novel malignancy diagnostic marker that predicts prognosis using easiness).

そこで、本研究では、癌の悪性化に関与するEMT誘導細胞におけるリン酸化タンパク質の特異的な変動をとらえ、それらが早期肺腺癌患者由来の組織検体においても、予後良好および不良と相関して変動するかどうかをイムノブロット分析と多重反応モニタリング(MRM)分析によって確認した。   Therefore, in this study, we captured specific changes in phosphorylated proteins in EMT-induced cells involved in cancer malignancy, and these correlated with good and poor prognosis in tissue samples from patients with early lung adenocarcinoma. Whether it fluctuated was confirmed by immunoblot analysis and multiple reaction monitoring (MRM) analysis.

材料および方法
細胞培養
A549細胞(ヒト肺腺癌細胞株)は10%(w / v)ウシ胎児血清(FBS)を添加したRPMI-1640培地(ナカライテスク、京都、日本)を用いて、37℃に固定した5% CO2インキュベーター内で培養した。TGF-β処理は、細胞を低血清(0.1%FBS)培地中で24時間培養した後、TGF-β(HumanZyme, Chicago, IL, USA、最終濃度5 ng / mL)を添加した培地で48時間培養することで行った。一方、 TGF-β非処理は、TGF-βを溶解した溶媒(DMSO)のみを添加した培地で48時間培養することで行った。
Materials and Methods Cell Culture
A549 cells (human lung adenocarcinoma cell line) were fixed at 37 ° C using RPMI-1640 medium (Nacalai Tesque, Kyoto, Japan) supplemented with 10% (w / v) fetal bovine serum (FBS). Cultivation was performed in a CO 2 incubator. TGF-β treatment involves culturing cells in low serum (0.1% FBS) medium for 24 hours, followed by 48 hours in medium supplemented with TGF-β (HumanZyme, Chicago, IL, USA, final concentration 5 ng / mL) This was done by culturing. On the other hand, TGF-β non-treatment was performed by culturing for 48 hours in a medium to which only a solvent (DMSO) in which TGF-β was dissolved was added.

組織検体
組織検体を研究等に用いることに同意した、早期段階(Ia又はIb)肺腺癌患者18人から摘出した癌組織で、本研究に使用するまで-80℃で保存した凍結組織検体を神奈川県立がんセンターから入手した(表1)。内訳は、摘出後5年以内に再発を呈した予後不良な患者群9症例と手術後5年以内に再発を示さなかった予後良好な患者群9症例である。
Tissue samples Cancer tissues removed from 18 early stage (Ia or Ib) lung adenocarcinoma patients who agreed to use tissue samples for research, etc., and frozen tissue samples stored at -80 ° C until use in this study Obtained from Kanagawa Cancer Center (Table 1). The breakdown consists of 9 patients with poor prognosis who relapsed within 5 years after excision and 9 patients with good prognosis who did not relapse within 5 years after surgery.

タンパク質調製
採取した細胞または組織を、Sample Grinding Kit(GE Healthcare, Piscataway, NJ, USA)を使用して、8 M尿素、4%(w/v) デオキシコール酸ナトリウム、Protease Inhibitor Mix(GE Healthcare)およびPhosphatase Inhibitor Cocktail 2と3(Sigma, Madison, WI, USA)を含む50 mM重炭酸アンモニウム溶液中で破砕した。破砕物はUR-21P(TOMY、東京、日本)で5回(1秒間隔)超音波処理した後、15,000g (4℃)で15分間遠心分離して上清を回収し、これをタンパク質抽出液とした。脱リン酸化処理については、50μg相当の タンパク質に対して、10 unit アルカリホスファターゼ(CIAP、宝酒造、東京、日本)を37℃で1時間反応させることで行った。
Protein preparation Collected cells or tissues using Sample Grinding Kit (GE Healthcare, Piscataway, NJ, USA), 8 M urea, 4% (w / v) sodium deoxycholate, Protease Inhibitor Mix (GE Healthcare) And disrupted in 50 mM ammonium bicarbonate solution containing Phosphatase Inhibitor Cocktail 2 and 3 (Sigma, Madison, WI, USA). The crushed material was sonicated 5 times (1 second interval) with UR-21P (TOMY, Tokyo, Japan), then centrifuged at 15,000g (4 ° C) for 15 minutes to recover the supernatant, and this was extracted with protein Liquid. The dephosphorylation treatment was carried out by reacting 10 units of alkaline phosphatase (CIAP, Takara Shuzo, Tokyo, Japan) for 1 hour at 37 ° C. with respect to 50 μg of protein.

イムノブロット分析
タンパク質抽出液は、SuperSepTMAce (10%T, 17ウェル)(和光純薬)を用いて分離し、Trans-Blot(登録商標) TurboTM Transfer System (Bio-Rad Laboratories, Hercules, CA, USA)を使用してPVDF膜に転写した。その後PVDF膜を、5%(w/v) スキムミルク(森永乳業、日本)を含むT-PBS(最終濃度 10 mM Na2HPO4・12H2O, 1.8 mM KH2PO4, 0.137 M NaCl, 2.7 mM KCl, 0.05%[v/v] Tween20)と1時間反応させることで非特異的反応を抑制するためのブロッキング操作を行った。一次抗体については、ウサギ抗テンシン1抗体 (Abcam, MA, USA)、ウサギ抗c-Met抗体(MBL、名古屋、日本)、ウサギ抗リン酸化c-Met[Tyr1234/1235]抗体(Cell Signaling Technology)、ウサギ抗TrkC抗体(R&D, Minneapolis, MN, USA)、ウサギ抗リン酸化TrkC[Tyr516]抗体 (EnoGene, New York, NY, USA)、マウス抗E-カドヘリン抗体(BD Biosciences, San Jose, CA, USA)、ウサギ抗ビメンチン抗体(Cell Signaling Technology)、ウサギ抗アクチンβ抗体(H-196, Santa Cruz Biotechnology, Dallas, TX, USA)、抗リン酸化チロシン抗体(PY20, Santa Cruz Biotechnology)を5%(w/v)スキムミルクを含むT-PBSで1,000倍希釈したものを使用し、12時間以上反応させた。反応後、PVDF膜をT-PBSで洗浄後、二次抗体としてペルオキシダーゼ(HRP)標識したヤギ抗ウサギIgG抗体もしくはヤギ抗マウスIgG抗体(Santa Cruz Biotechnology)を5%(w/v) スキムミルクを含むT-PBSで5,000倍希釈したものを使用し、1時間反応させた。反応後、PVDF膜はT-PBSで洗浄し、HRP基質であるECL Plus Western Blotting Detection Reagents(GE Healthcare)と5分間反応させた。各タンパク質のシグナルはLAS4000mini発光イメージアナライザ(GE Healthcare)を用いて検出した。
Immunoblot analysis Protein extracts were separated using SuperSep Ace (10% T, 17 wells) (Wako Pure Chemicals) and Trans-Blot® Turbo Transfer System (Bio-Rad Laboratories, Hercules, CA). , USA). After that, PVDF membrane was added to T-PBS (final concentration 10 mM Na 2 HPO 4 · 12H 2 O, 1.8 mM KH 2 PO 4 , 0.137 M NaCl, 2.7) containing 5% (w / v) skim milk (Morinaga Milk Industry, Japan). Blocking operation to suppress non-specific reaction was performed by reacting with mM KCl, 0.05% [v / v] Tween20) for 1 hour. For primary antibodies, rabbit anti-tensin 1 antibody (Abcam, MA, USA), rabbit anti-c-Met antibody (MBL, Nagoya, Japan), rabbit anti-phosphorylated c-Met [Tyr1234 / 1235] antibody (Cell Signaling Technology) Rabbit anti-TrkC antibody (R & D, Minneapolis, MN, USA), rabbit anti-phosphorylated TrkC [Tyr516] antibody (EnoGene, New York, NY, USA), mouse anti-E-cadherin antibody (BD Biosciences, San Jose, CA, USA), rabbit anti-vimentin antibody (Cell Signaling Technology), rabbit anti-actin β antibody (H-196, Santa Cruz Biotechnology, Dallas, TX, USA), anti-phosphotyrosine antibody (PY20, Santa Cruz Biotechnology) 5% ( w / v) A 1000-fold diluted solution of T-PBS containing skim milk was used and allowed to react for 12 hours or more. After the reaction, the PVDF membrane is washed with T-PBS, and 5% (w / v) skim milk containing goat anti-rabbit IgG antibody or goat anti-mouse IgG antibody (Santa Cruz Biotechnology) labeled with peroxidase (HRP) as a secondary antibody A 5,000-fold diluted solution with T-PBS was used and allowed to react for 1 hour. After the reaction, the PVDF membrane was washed with T-PBS, and reacted with HCL substrate ECL Plus Western Blotting Detection Reagents (GE Healthcare) for 5 minutes. The signal of each protein was detected using LAS4000mini luminescence image analyzer (GE Healthcare).

ペプチド溶液の調製
タンパク質抽出液に終濃度が10 mMになるようにDTTを添加し、室温に45分間置いて還元した。還元後、終濃度が5 mMになるようにヨードアセトアミドを添加して、室温で30分間反応させシステイン残基をアルキル化した。その後、15分間10,000gで遠心分離を行い上清を回収し、50 mM重炭酸アンモニウムを上清の3倍量添加して、尿素の終濃度が2 Mとなるよう希釈した。NanoDrop 2000c(Thermo Fisher Scientific, Bremen, Germany)を用いてタンパク質定量を行った後、1 mg相当のタンパク質に対して、トリプシン(Sigma)を、タンパク質:トリプシン(酵素)の比20:1(w/w)になるように添加し、16時間37℃で温置した。消化物の1/20 量の20%(v/v) TFAを添加後、5分間15,000g (4℃)で遠心分離を行い上清を回収し、添加相間移動溶解法(PTS法)によりペプチド溶液中に含まれるデオキシコール酸ナトリウムを除去した12。回収したペプチド溶液は一旦乾燥させた後、0.1 % トリフルオロ酢酸に再溶解してから、Sep-PakR C18 Plus Short Cartridge (Waters, Milford, MA, USA)を用いて脱塩し、乾燥させた。トリプシン消化物(1mg)中のチロシンリン酸化ペプチドの濃縮には、Phospho-Tyrosine Mouse mAb (P-Tyr-100) beads (Cell Signaling Technology, Boston, USA)を用いた抗原抗体反応を利用した13。その後、回収したペプチドについては、C18 フィルターを用いたチップカラム(C18 Stage Tip)を使用してペプチドを濃縮・脱塩した14。各ペプチドは質量分析まで、乾燥させた状態で-20℃で保存した。
Preparation of peptide solution DTT was added to the protein extract so as to have a final concentration of 10 mM, followed by reduction at room temperature for 45 minutes. After the reduction, iodoacetamide was added to a final concentration of 5 mM, and the reaction was carried out at room temperature for 30 minutes to alkylate cysteine residues. Thereafter, the mixture was centrifuged at 10,000 g for 15 minutes to recover the supernatant, and 3 times the amount of 50 mM ammonium bicarbonate was added to dilute the final concentration of urea to 2 M. After protein quantification using NanoDrop 2000c (Thermo Fisher Scientific, Bremen, Germany), trypsin (Sigma) and protein: trypsin (enzyme) ratio of 20: 1 (w / w) and incubated at 37 ° C. for 16 hours. After adding 20% (v / v) TFA of 1/20 of the digest, centrifuge for 5 minutes at 15,000 g (4 ° C), collect the supernatant, and add peptide by phase transfer dissolution method (PTS method) The sodium deoxycholate contained in the solution was removed 12 . The collected peptide solution was once dried, then redissolved in 0.1% trifluoroacetic acid, desalted using Sep-PakR C18 Plus Short Cartridge (Waters, Milford, MA, USA), and dried. Antigen-antibody reaction using Phospho-Tyrosine Mouse mAb (P-Tyr-100) beads (Cell Signaling Technology, Boston, USA) 13 was used for concentration of tyrosine phosphorylated peptide in trypsin digest (1 mg) 13 . Thereafter, the recovered peptide was concentrated and desalted using a chip column (C18 Stage Tip) using a C18 filter 14 . Each peptide was stored at −20 ° C. in a dried state until mass spectrometry.

多重反応モニタリング(MRM)分析によるペプチド定量
多重反応モニタリング(MRM)分析についてはDiNa-AP (KYA Technologies, 東京, 日本)を連結したTripleTOF5600システム(AB Sciex, Foster City, CA, USA)を用いて行った。DiNa-APに接続する濃縮カラムは、HiQ sil C18W-3, 500 μm id × 1mm (KYA Technologies)を、分離カラムはnanoscale HiQ sil C18W-3, 100 μm id × 10 cm (KYA Technologies)を使用し、流速は200 nL/分とした。Aバッファーには、2%(v/v)アセトニトリルを含む0.1%(v/v) ギ酸溶液を、Bバッファーには、80%(v/v) アセトニトリルを含む0.1%(v/v) ギ酸溶液を用いた。ペプチドの吸着は、Aバッファー98%(v/v)、Bバッファー2%(v/v)で行い、溶出は、Bバッファー の濃度を2%から40%に42分間かけて連続的に高くするプログラムを使用して行った。多重反応モニタリング(MRM)スキャンは、イオンスプレー電圧2300Vのポジティブモード、20に設定されたカーテンガスとスプレーガスモードで実行され、分解能はunitに設定、測定質量 (m/z)範囲は 100 から1,600 Daとし、 MS2 accumulation timesは0.1秒に設定した。リン酸化ペプチドおよび安定同位体標識-リン酸化ペプチドの合成はスクラム(東京、日本)で行った(表2)。MRMPilot v2.0(AB Sciex)ソフトウエアを用いて、標的ペプチドのプリカーサーイオン/フラグメントイオン対(MRMトランジション)および衝突エネルギーを自動的に算出した。その中から、最終的に、再現性のあるyイオンとMRMトランジションを選択した(表2)。各ペプチド試料については、各25 fmol濃度の安定同位体標識-リン酸化ペプチドを添加し、定量の際の内部標準として用いた。検量線については0.5、1、5、10、及び50fmolのペプチドを用いて作成し、検量線の精度は20%以内に収めた(%CV<20)。質量分析の結果得られた質量分析データはMultiQuant v.2.1(AB Sciex)を用いて解析し、ペプチド量を算出した。
Peptide quantification by multiple reaction monitoring (MRM) analysis Multiple reaction monitoring (MRM) analysis is performed using the TripleTOF5600 system (AB Sciex, Foster City, CA, USA) coupled with DiNa-AP (KYA Technologies, Tokyo, Japan). It was. The concentration column connected to DiNa-AP is HiQ sil C18W-3, 500 μm id × 1 mm (KYA Technologies), and the separation column is nanoscale HiQ sil C18W-3, 100 μm id × 10 cm (KYA Technologies). The flow rate was 200 nL / min. A buffer contains 0.1% (v / v) formic acid solution containing 2% (v / v) acetonitrile, and B buffer contains 0.1% (v / v) formic acid solution containing 80% (v / v) acetonitrile. Was used. Peptide adsorption is performed with A buffer 98% (v / v) and B buffer 2% (v / v), and elution is continuously increased from 2% to 40% over 42 minutes. Made using the program. Multiple reaction monitoring (MRM) scans are performed in positive mode with ion spray voltage 2300V, curtain gas and spray gas mode set to 20, resolution set to unit, measured mass (m / z) range from 100 to 1,600 Da and MS2 accumulation times were set to 0.1 seconds. Phosphorylated peptides and stable isotope-labeled-phosphorylated peptides were synthesized at Scrum (Tokyo, Japan) (Table 2). MRMPilot v2.0 (AB Sciex) software was used to automatically calculate the precursor ion / fragment ion pair (MRM transition) and collision energy of the target peptide. Finally, reproducible y ions and MRM transitions were selected (Table 2). For each peptide sample, a stable isotope labeled-phosphorylated peptide at a concentration of 25 fmol was added and used as an internal standard for quantification. The calibration curve was prepared using 0.5, 1, 5, 10, and 50 fmol peptides, and the accuracy of the calibration curve was kept within 20% (% CV <20). Mass spectrometry data obtained as a result of mass spectrometry was analyzed using MultiQuant v.2.1 (AB Sciex), and the amount of peptide was calculated.

統計解析
2群間の差の統計的有意性を示すためのマン・ホイットニー検定、無再発生存期間解析を行うためのカプラン・マイヤー法、受信者動作特性(ROC)曲線解析などの統計解析はGraphPadプリズム5(V. 5.04, GraphPad Software, San Diego, CA, USA)を用いて行った。
Statistical analysis
Statistical analysis such as Mann-Whitney test to show statistical significance of differences between two groups, Kaplan-Meier method to perform recurrence-free survival analysis, receiver operating characteristic (ROC) curve analysis, etc. GraphPad prism 5 (V. 5.04, GraphPad Software, San Diego, CA, USA).

結 果
1.TGF-β処理によるA549細胞におけるEMT誘導
各タンパク質特異的抗体を用いたイムノブロット分析の結果からTGF-β処理に応答してA549肺腺癌培養細胞中のE-カドヘリン量が減少し、ビメンチン量が増加することがわかった(図1A)。また、形態学的変化を調べた結果、TGF-β処理によりA549細胞が上皮細胞様形態から紡錘状線維芽細胞様の形態に変化していることを確認した(図1B)。これらの結果はTGF-β処理によるEMT誘導に関する既報7、15と同様の結果であり、本研究に用いたA549細胞もTGF-β処理によりEMT誘導されていると判断した。
2.TGF-β処理したA549細胞中で特異的に変動するチロシンリン酸化タンパク質の検出
質量分析装置を用いたチロシンリン酸化ペプチドの網羅的な相対定量解析から、A549細胞においてTGF−β処理により著しく発現量が増加するリン酸化ペプチドとして、TNS1の1404番目のチロシンがリン酸化されたペプチド、c-Metの1234/1235番目のチロシンがリン酸化されたペプチド、TrkCの516番目のチロシンがリン酸化されたペプチドを見出した。TrkC、TNS1、c-Metに対する特異的抗体および516番目のチロシンがリン酸化されたTrkCと1234及び/又は1235番目のチロシンがリン酸化されたc-Metに特異的な抗体を用いたイムノブロット分析の結果、これらのタンパク質の細胞内での発現量はTGF−β処理によって変動しないが、各部位でのリン酸化は亢進することが確認された(図2)。また、質量分析装置としてTripleTOF 5600システムを用いた多重反応モニタリング(MRM)分析により、細胞中の各リン酸化ペプチド量および脱リン酸化処理した各試料(図7)に由来する非リン酸化ペプチド量(総ペプチド量)の変動を調べた(図3)。その結果、イムノブロット分析と同様に多重反応モニタリング(MRM)分析によっても、総ペプチド量に有意な差異はなかったが(図3D、E、F)、TNS1の1404番目のチロシンがリン酸化されたペプチド量(図3A)、c-Metの1234/1235番目のチロシンがリン酸化されたペプチド量(図3B)、TrkCの516番目のチロシンがリン酸化されたペプチド量(図3C)については、全てTGF-β処理に応答して統計的に有意に増加(p<0.001)することが確認された。
3.早期段階(Ia又はIb)肺腺癌患者の予後良好群と予後不良群患者術後組織間でのリン酸化タンパク質量の違い
外科的手術によって摘出した18名の患者の凍結保存した肺腺癌組織を用いて、5年後に肺腺癌を再発した患者9名(予後不良群,PP)と再発のない患者9名(予後良好群,GP)の組織中のリン酸化タンパク質量について、質量分析装置を用いた多重反応モニタリング(MRM)分析と各特異的抗体を用いたイムノブロット分析により比較した(図4)。多重反応モニタリング(MRM)分析の結果、TNS1の1404番目のチロシンがリン酸化されたペプチド量(図4A左)、c-Metの1234/1235番目のチロシンがリン酸化されたペプチド量(図4B左)、TrkCの516番目のチロシンがリン酸化されたペプチド量(図4C左)については、全て予後良好群と予後不良群間で統計的に有意な差(p<0.0001)を認めた。一方、脱リン酸化処理した試料におけるこれらの非リン酸化ペプチド量に有意な差はなかった(図4D左、E左、F左)。また、各特異的抗体を用いたイムノブロット分析により、組織中のTrkC、TNS1、c-Metのタンパク質量は変化しないが(図4D右、E右、F右)、1234および/又は1235番目のチロシンでリン酸化されたc-Met量(図4B右)と516番目のチロシンでリン酸化されたTrkC量(図4C右)は増加することを確認した。
さらに、多重反応モニタリング(MRM)分析によって得られた結果を基に、リン酸化ペプチド量毎の無再発生存曲線を作成した。その結果、I期肺腺癌の予後不良群9症例と予後良好群9症例について、多重反応モニタリング(MRM)分析によって得られた3種類のリン酸化ペプチド量を平均値以上と以下で分類した場合、平均値以下の群に比べて平均値以上の群は統計的に有意に術後生存期間が短い(p<0.0001)ことを確認した(図5)。また、受信者動作特性 (ROC) 曲線解析の結果は、これらの部位でリン酸化されたタンパク質が診断マーカーとして有用であることを示した(図6)。
Results 1. EMT induction in A549 cells by TGF-β treatment From the results of immunoblot analysis using each protein-specific antibody, the amount of E-cadherin in cultured A549 lung adenocarcinoma cells decreased in response to TGF-β treatment, and the amount of vimentin Was found to increase (FIG. 1A). Further, as a result of examining morphological changes, it was confirmed that A549 cells were changed from epithelial cell-like morphology to spindle-like fibroblast-like morphology by TGF-β treatment (FIG. 1B). These results are the same as the previous reports 7 and 15 on EMT induction by TGF-β treatment, and it was judged that the A549 cells used in this study were also induced by TGF-β treatment.
2. Detection of tyrosine phosphorylated protein specifically changing in AGF cells treated with TGF-β From the comprehensive relative quantitative analysis of tyrosine phosphorylated peptides using a mass spectrometer, the expression level was significantly increased by TGF-β treatment in A549 cells As a phosphorylated peptide in which TNS1 is increased, a peptide in which the 1404th tyrosine of TNS1 is phosphorylated, a peptide in which the 1234 / 1235th tyrosine of c-Met is phosphorylated, and a peptide in which the 516th tyrosine of TrkC is phosphorylated I found. Immunoblot analysis using specific antibodies against TrkC, TNS1, c-Met and TrkC phosphorylated at 516th tyrosine and antibodies specific to c-Met phosphorylated at 1234 and / or 1235th tyrosine As a result, it was confirmed that the expression level of these proteins in the cells was not changed by TGF-β treatment, but phosphorylation at each site was enhanced (FIG. 2). In addition, by multiplex reaction monitoring (MRM) analysis using a TripleTOF 5600 system as a mass spectrometer, the amount of each phosphorylated peptide in the cell and the amount of non-phosphorylated peptide derived from each dephosphorylated sample (FIG. 7) ( Changes in the total peptide amount were examined (FIG. 3). As a result, the multiple reaction monitoring (MRM) analysis as well as the immunoblot analysis showed no significant difference in the total peptide amount (Fig. 3D, E, F), but TNS1 1404 tyrosine was phosphorylated. For peptide amount (Fig. 3A), c-Met 1234/1235 tyrosine phosphorylated (Fig. 3B), TrkC 516 tyrosine phosphorylated (Fig. 3C), all A statistically significant increase (p <0.001) was confirmed in response to TGF-β treatment.
3. Differences in phosphoprotein levels between postoperative tissues in patients with good prognosis and poor prognosis in early stage (Ia or Ib) lung adenocarcinoma patients Cryopreserved lung adenocarcinoma tissues of 18 patients removed by surgery Mass spectrometer for the amount of phosphorylated protein in the tissues of 9 patients who relapsed lung adenocarcinoma 5 years later (poor prognosis group, PP) and 9 patients who did not relapse (good prognosis group, GP) The reaction was compared by multiple reaction monitoring (MRM) analysis using and immunoblot analysis using each specific antibody (FIG. 4). As a result of multiple reaction monitoring (MRM) analysis, the amount of TNS1 1404 tyrosine phosphorylated (Figure 4A left), c-Met 1234/1235 tyrosine phosphorylated peptide (Figure 4B left) ), The amount of peptide phosphorylated at the 516th tyrosine of TrkC (FIG. 4C left) was all statistically significant (p <0.0001) between the good prognosis group and the poor prognosis group. On the other hand, there was no significant difference in the amount of these non-phosphorylated peptides in the dephosphorylated sample (FIG. 4D left, E left, F left). In addition, the amount of TrkC, TNS1, and c-Met proteins in the tissues did not change by immunoblot analysis using each specific antibody (FIG. 4D right, E right, F right), but the 1234 and / or 1235th protein It was confirmed that the amount of c-Met phosphorylated by tyrosine (FIG. 4B right) and the amount of TrkC phosphorylated by the 516th tyrosine (FIG. 4C right) increased.
Furthermore, based on the results obtained by multiple reaction monitoring (MRM) analysis, a recurrence-free survival curve for each phosphopeptide amount was prepared. As a result, for the 9 cases with poor prognosis and 9 cases with good prognosis in stage I lung adenocarcinoma, the three types of phosphopeptides obtained by multiple reaction monitoring (MRM) analysis were classified as above average and below As a result, it was confirmed that the survival rate after the operation was statistically significantly shorter (p <0.0001) in the group above the average value compared to the group below the average value (FIG. 5). Moreover, the results of receiver operating characteristic (ROC) curve analysis showed that proteins phosphorylated at these sites were useful as diagnostic markers (Fig. 6).

考 察
EMTは、癌の浸潤や転移と関係しており6-11、EMTが誘導される際、発現量が変動するタンパク質は、癌の悪性度に関連するタンパク質である可能性が高い。EMT誘導におけるタンパク質の量的変動について質量分析装置を用いて解析した例はあるが15,16、細胞内情報伝達において重要な役割を担っているリン酸化に着目してタンパク質の変動を調べた例は少ない17,18。本研究において、私たちは、TGF-β処理に応答してTNS1の1404番目のチロシンのリン酸化、c-Metの1234/1235番目のチロシンのリン酸化、TrkCの516番目のチロシンリン酸化が亢進されることを見出した。これらチロシンリン酸化の変動については、特異的抗体を用いた従来型のイムノブロット分析と同様に、多重反応モニタリング(MRM)分析によっても高感度、高精度に検出可能であることが明らかになった。抗体を使った標的タンパク質の検出は高感度で優れた手法ではあるが、検出は特異性の高い抗体の入手に依存してしまう上、新規に抗体を作成するためには数か月もの時間が必要である。一方、多重反応モニタリング(MRM)分析による定量解析では、修飾部位特異的に認識する抗体を作出する必要がなく、翻訳後修飾されたタンパク質の発現量を迅速に評価することができる上、複数のタンパク質を同時に定量することも可能である19,20。また、本研究で多重反応モニタリング(MRM)分析に用いたTripleTOF 5600システムについては、検出に飛行時間(TOF)型質量分析計を用いているために分解能が良く、定量的な分析に適していた。したがって、TripleTOF 5600システムを用いた多重反応モニタリング(MRM) 分析は、本診断マーカーを検出する方法として優れた方法である。
本研究でEMT誘導に関連するリン酸化タンパク質として検出されたTNS1は、アクチンフィラメントに結合してリン酸化チロシンを含むタンパク質と相互作用する細胞接着分子である21,22。TNS1がインテグリンを介して細胞外マトリックスの接着タンパク質に結合すると、FAKの自己リン酸化が起こる。その結果、生じたリン酸化チロシン残基にSrcファミリーのチロシンキナーゼが結合することにより、p130Cas, Shc, paxillin, TNSなどのドッキングタンパク質やアダプタータンパク質のチロシンリン酸化が二次的に誘導される22。このようなタンパク質チロシンリン酸化のカスケードを介して、PI3KからAktに至る経路やGrb2/Sos/RasからMAPKに至る経路が活性化され、細胞の生存が維持され、細胞周期が進行することが、これまで示唆されている21,22。また、TNS1のリン酸化解析についてはHEK293細胞を用いた解析から、多くのセリン/トレオニン/チロシン部位でのリン酸化が検出されているが、各部位でのリン酸化の役割については、ほとんど解明されていない23。本研究で検出された1404番目のチロシンに関しても、これまでリン酸化されるとの報告はあったが、機能に関しては明らかになっておらず、EMT誘導や早期肺腺癌の予後との関連性が示された例は今回が初めてである。また、TrkCは神経栄養因子(ニューロトロフィン)受容体として知られており、この受容体に関しては、他にTrkAやTrkBが知られている24。TrkCとTrkAのアミノ酸配列相同性検索の結果から、本研究で検出されたTrkCのリン酸化部位である516番目のチロシンは、TrkAの490番目のチロシンに相当することがわかった。このTrkAの490番目のチロシンでのリン酸化は、ShcやFrs2と相互作用に関係し、 Ras-MAP キナーゼカスケードを活性化して癌の増殖に関与していることが報告されている25。また、TrkCを抑制した場合に乳癌が肺へ転移することを抑制することや26、乳癌細胞でTrkCがETV6とキメラチロシンキナーゼを形成し、これが直接II型TGF-β受容体に結合することで、I型TGF-β受容体との相互作用を防ぎ、結果としてTGF-bata/Smad signalingを抑制してTGF-βの腫瘍抑制活性を阻害する役割があることも示唆されている27。しかしながら、本研究で検出された516番目のチロシンにおけるリン酸化のEMT誘導や早期肺腺癌の予後との関連性が示された例はなく今回が初めての発見である。一方、c-Metに関しては、すでに肺癌との関わりが報告されている。c-Metは、受容体型チロシンキナーゼであり28-30、リガンドである肝細胞増殖因子(HGF)が結合した場合にチロシンキナーゼ活性を活性化し、それを介して血管新生や細胞の運動性、増殖、浸潤、分化などに関与することが報告されている32,33。本研究でEMT誘導に応答してリン酸化が亢進した1234番目のチロシンは、c-Metの活性化ループ(A loop)に位置しており、1235番目のチロシンと共に自己リン酸化されることでc-Metを活性化する。この1234番目および/又は1235の番目のチロシンでのリン酸化が過剰になった場合には、癌の増殖および浸潤をもたらすことや34,35、肺腺癌において、1235の番目のチロシンでのリン酸化c-Met高発現群は低発現群と比較して生存率が低い傾向にあることも報告されている29。これらの研究結果は、本研究により得られた結果と一致している。
以上のように、各タンパク質は癌の悪性度とのかかわりが深く、本研究で見出したTrkCの516番目のチロシン、TNS1の1404番目のチロシン、c-Metの1234番目および/又は1235の番目のチロシンの少なくとも1つの部位のリン酸化を診断マーカーとして利用する方法は、早期肺腺癌の悪性度検査法として有用であると考える。
Discussion
EMT is related to cancer invasion and metastasis 6-11 . When EMT is induced, the protein whose expression level varies is highly likely to be related to the malignancy of cancer. There are examples of quantitative analysis of protein in EMT induction using a mass spectrometer 15,16 , but examples of investigating protein fluctuations focusing on phosphorylation, which plays an important role in intracellular signal transduction There are few 17,18 . In this study, in response to TGF-β treatment, we enhanced phosphorylation of the 1404 tyrosine of TNS1, phosphorylation of the 1234/1235 tyrosine of c-Met, and the 516th tyrosine phosphorylation of TrkC. I found out that These tyrosine phosphorylation changes were found to be detectable with high sensitivity and high accuracy by multiple reaction monitoring (MRM) analysis as well as conventional immunoblot analysis using specific antibodies. . Detection of target proteins using antibodies is a highly sensitive and excellent technique, but detection depends on the acquisition of highly specific antibodies, and it takes several months to create new antibodies. is necessary. On the other hand, quantitative analysis by multiple reaction monitoring (MRM) analysis eliminates the need to generate antibodies that specifically recognize modified sites, and allows rapid evaluation of the expression level of post-translationally modified proteins. It is also possible to quantify proteins simultaneously 19,20 . In addition, the TripleTOF 5600 system used for multiple reaction monitoring (MRM) analysis in this study had good resolution and was suitable for quantitative analysis because it uses a time-of-flight (TOF) mass spectrometer for detection. . Therefore, multiple reaction monitoring (MRM) analysis using the TripleTOF 5600 system is an excellent method for detecting this diagnostic marker.
TNS1, detected in this study as a phosphorylated protein associated with EMT induction, is a cell adhesion molecule that binds to actin filaments and interacts with proteins containing phosphorylated tyrosine 21,22 . Autophosphorylation of FAK occurs when TNS1 binds to extracellular matrix adhesion proteins via integrins. As a result, by the tyrosine kinase of the Src family phosphorylated tyrosine residues resulting binds, p130Cas 22 which, Shc, paxillin, tyrosine phosphorylation of docking proteins or adapter proteins such as TNS is induced secondarily. Through this cascade of protein tyrosine phosphorylation, the pathway from PI3K to Akt and the pathway from Grb2 / Sos / Ras to MAPK are activated, and cell survival is maintained and the cell cycle proceeds, It has been suggested 21, 22 . As for the phosphorylation analysis of TNS1, phosphorylation at many serine / threonine / tyrosine sites has been detected from the analysis using HEK293 cells, but the role of phosphorylation at each site has been clarified. Not 23 . The 1404th tyrosine detected in this study has also been reported to be phosphorylated, but its function has not been clarified, and is related to EMT induction and early prognosis of lung adenocarcinoma. This is the first time this is shown. TrkC is also known as a neurotrophic factor (neurotrophin) receptor, and TrkA and TrkB are also known for this receptor 24 . From the results of the amino acid sequence homology search between TrkC and TrkA, it was found that the 516th tyrosine, which is the TrkC phosphorylation site detected in this study, corresponds to the 490th tyrosine of TrkA. This phosphorylation of TrkA at the 490th tyrosine has been reported to be involved in cancer growth by interacting with Shc and Frs2 and activating the Ras-MAP kinase cascade 25 . Also, by that or 26 to suppress the breast cancer metastasize to the lungs when suppressed TrkC, TrkC in breast cancer cells form a ETV6 the chimeric tyrosine kinases, which binds directly to type II TGF-beta receptor prevents interaction between the type I TGF-beta receptor, resulting TGF-bata / Smad signaling by suppressing has also been suggested that there is a role in inhibiting tumor suppression activity of TGF-beta 27. However, this is the first discovery as there is no example of the relationship between EMT induction of phosphorylation at the 516th tyrosine detected in this study and the prognosis of early lung adenocarcinoma. On the other hand, c-Met has already been reported to be associated with lung cancer. c-Met is a receptor tyrosine kinase 28-30 , which activates tyrosine kinase activity when bound to the ligand hepatocyte growth factor (HGF), via which angiogenesis, cell motility, and proliferation 32,33 have been reported to be involved in invasion and differentiation. In this study, the 1234th tyrosine whose phosphorylation was enhanced in response to EMT induction is located in the activation loop (A loop) of c-Met, and is autophosphorylated together with the 1235th tyrosine. -Activate Met. Excessive phosphorylation at the 1234th and / or 1235th tyrosine can lead to cancer growth and invasion, 34,35 and in lung adenocarcinoma, phosphorylation at the 1235th tyrosine 29 oxide c-Met-overexpressing group has also been reported that they tend lower survival rate compared to the low expression group. These research results are consistent with the results obtained by this study.
As described above, each protein is deeply related to the malignancy of cancer, and the 516th tyrosine of TrkC, 1404th tyrosine of TNS1, the 1234th and / or 1235th of c-Met found in this study A method of using phosphorylation of at least one site of tyrosine as a diagnostic marker is considered useful as a malignancy test method for early lung adenocarcinoma.

参考論文
1. Naruke, T.; Tsuchiya, R.; Kondo, H.; Asamura, H. Prognosis and survival after resection for bronchogenic carcinoma based on the 1997 TNM-staging classification: the Japanese experience. Ann Thorac Surg. 2001;71:1759-64.
2. Kondo, T.; Yamada, K.; Noda, K.; Nakayama, H.; Kameda, Y. Radiologic-prognostic correlation in patients with small pulmonary adenocarcinomas. Lung Cancer. 2002;36:49-57.
3. Pernemalm, M.; De Petris, L.; Branca, RM.; Forshed, J.; Kanter, L.; Soria, JC.; Girard, P.; Validire, P.; Pawitan, Y.; van den Oord, J.; Lazar, V.; Pahlman, S.; Lewensohn, R.; Lehtio, J. Quantitative proteomics profiling of primary lung adenocarcinoma tumors reveals functional perturbations in tumor metabolism. J Proteome Res. 2013 Sep 6;12(9):3934-43.
4.Kikuchi, T.; Hassanein, M.; Amann, JM.; Liu, Q.; Slebos, RJ.; Rahman, SM.; Kaufman, JM.; Zhang, X.; Hoeksema, MD.; Harris, BK.; Li, M.; Shyr, Y.; Gonzalez, AL.; Zimmerman, LJ.; Liebler, DC.; Massion, PP.; Carbone, DP. In-depth proteomic analysis of nonsmall cell lung cancer to discover molecular targets and candidate biomarkers. Mol Cell Proteomics. 2012 Oct;11(10):916-32.
5. Okayama, A.; Miyagi, Y.; Oshita, F.; Nishi, M.; Nakamura, Y.; Nagashima, Y.; Akimoto, K.; Ryo, A.; Hirano, H. Proteomic analysis of proteins related to prognosis of lung adenocarcinoma. J Proteome Res. 2014 Nov 7;13(11):4686-94.
6. Thiery, JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002 Jun;2(6):442-54.
7. Kim, KK.; Kugler, MC.; Wolters, PJ.; Robillard, L.; Galvez, MG.; Brumwell, AN.; Sheppard, D.; Chapman, HA. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13180-5.
8. de Caestecker, MP.; Piek, E.; Roberts, AB. Role of transforming growth factor-beta signaling in cancer. J Natl Cancer Inst. 2000 Sep 6;92(17):1388-402.
9. Wrana, JL.; Attisano, L.; Carcamo, J.; Zentella, A.; Doody, J.; Laiho, M.; Wang, XF.; Massague, J. TGF beta signals through a heteromeric protein kinase receptor complex. Cell. 1992 Dec 11;71(6):1003-14.
10. Zavadil, J.; Bottinger, EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005 Aug 29;24(37):5764-74
11. Kondo, M.; Cubillo, E.; Tobiume, K.; Shirakihara, T.; Fukuda, N.; Suzuki, H.; Shimizu, K.; Takehara, K.; Cano, A.; Saitoh, M.; Miyazono, K. A role for Id in the regulation of TGF-beta-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ. 2004 Oct;11(10):1092-101.
12. Masuda, T.; Tomita, M.; Ishihama, Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7:731-40.
13. Nagata, K.; Kawakami, T.; Kurata, Y.; Kimura, Y.; Suzuki, Y.; Nagata, T.; Sakuma, Y.; Miyagi, Y.; Hirano, H. Augmentation of multiple protein kinase activities associated with secondary imatinib resistance in gastrointestinal stromal tumors as revealed by quantitative phosphoproteome analysis. J Proteomics. 2015;115:132-142.
14. Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896-906.
15. Keshamouni, VG.; Michailidis, G.; Grasso, CS.; Anthwal, S.; Strahler, JR.; Walker, A.; Arenberg, DA.; Reddy, RC.; Akulapalli, S.; Thannickal, VJ.; Standiford, TJ.; Andrews, PC.; Omenn, GS. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J Proteome Res. 2006
16. Sitek, B.; Waldera-Lupa, DM.; Poschmann, G.; Meyer, HE.; Stuhler, K. Application of label-free proteomics for differential analysis of lung carcinoma cell line A549. Methods Mol Biol. 2012; 893:241-8.
17. Chen, YX.; Li, Y.; Wang WM, Zhang, W.; Chen, XN.; Xie, YY.; Lu, J.; Huang, QH.; Chen, N. Phosphoproteomic study of human tubular epithelial cell in response to transforming growth factor-beta-1-induced epithelial-to-mesenchymal transition. Am J Nephrol. 2010;31:24-35.
18. Ali, NA.; Molloy, MP. Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells. Proteomics. 2011;11:3390-3401.
19. Gerber, SA.; Rush, J.; Stemman, O.; Kirschner, MW.; Gygi, SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A, 100 (2003), pp. 6940-6945
20. Ohtsuki, S.; Uchida, Y.; Kubo, Y.; Terasaki, T. Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci. 2011 Sep;100(9):3547-59.
21. Schwartz, MA. Integrin signaling revisited. Trends Cell Biol. 2001 Dec;11(12):466-70.
22. Petch, LA.; Bockholt, SM.; Bouton, A.; Parsons, JT.; Burridge, K. Adhesion-induced tyrosine phosphorylation of the p130 src substrate. J Cell Sci. 1995 Apr;108 ( Pt 4):1371-9.
23. Qian, X.; Li, G.; Asmussen, HK.; Asnaghi, L.; Vass, WC.; Braverman, R.; Yamada, KM.; Popescu, NC.; Papageorge, AG.; Lowy, DR. Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proc. Natl. Acad. Sci. U.S.A. 104, 9012-9017
24. Hallbook, F. Evolution of the vertebrate neurotrophin and Trk receptor gene families. Curr Opin Neurobiol. 1999 Oct;9(5):616-21.
25. Huang, EJ.; Reichardt, LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609-42. Epub 2003 Mar 27.
26. Jin, W.; Kim, GM.; Kim, MS.; Lim, MH.; Yun, C.; Jeong, J.; Nam, JS.; Kim, SJ. TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis. 2010 Nov;31(11):1939-47.
27. Jin, W.; Yun, C.; Kwak, MK.; Kim, TA.; Kim, SJ. TrkC binds to the type II TGF-beta receptor to suppress TGF-beta signaling. Oncogene. 2007 Dec 6;26(55):7684-91.
28. Yano, S.; Wang, W.; Li, Q.; Matsumoto, K.; Sakurama, H.; Nakamura, T.; Ogino, H.; Kakiuchi, S.; Hanibuchi, M.; Nishioka, Y.; Uehara, H.; Mitsudomi, T.; Yatabe, Y.; Nakamura, T.; Sone, S. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res. 2008 Nov 15;68(22):9479-87.
29. Koga, K.; Hamasaki, M.; Kato, F.; Aoki, M.; Hayashi, H.; Iwasaki, A.; Kataoka, H.; Nabeshima, K. Association of c-Met phosphorylation with micropapillary pattern and small cluster invasion in pT1-size lung adenocarcinoma. Lung Cancer. 2013 Dec;82(3):413-9.
30. Bottaro, DP.; Rubin, JS.; Faletto, DL.; Chan, AM.; Kmiecik, TE.; Vande Woude, GF.; Aaronson, SA. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251: 802-4.
32. Birchmeier, C.; Birchmeier, W.; Gherardi, E.; Vande Woude, GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915-25.
33. Nakamura, T.; Matsumoto, K.; Kiritoshi, A.; Tano, Y.; Nakamura, T. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res 1997; 57: 3305-13.
34. Longati, P.; Bardelli, A.; Ponzetto, C.; Naldini, L.; Comoglio, PM. Tyrosines1234-1235 are critical for activation of the tyrosine kinase encoded by the MET proto-oncogene (HGF receptor). Oncogene. 1994 Jan;9(1):49-57.
35. Schiering, N.; Knapp, S.; Marconi, M.; Flocco, MM.; Cui, J.; Perego, R.; Rusconi, L.; Cristiani, C. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12654-9.
Reference paper
1. Naruke, T .; Tsuchiya, R .; Kondo, H .; Asamura, H. Prognosis and survival after resection for bronchogenic carcinoma based on the 1997 TNM-staging classification: the Japanese experience. Ann Thorac Surg. 2001; 71: 1759-64.
2. Kondo, T .; Yamada, K .; Noda, K .; Nakayama, H .; Kameda, Y. Radiologic-prognostic correlation in patients with small pulmonary adenocarcinomas. Lung Cancer. 2002; 36: 49-57.
3. Pernemalm, M .; De Petris, L .; Branca, RM .; Forshed, J .; Kanter, L .; Soria, JC .; Girard, P .; Validire, P .; Pawitan, Y .; van den Oord, J .; Lazar, V .; Pahlman, S .; Lewensohn, R .; Lehtio, J. Quantitative proteomics profiling of primary lung adenocarcinoma tumors reveals functional perturbations in tumor metabolism.J Proteome Res. 2013 Sep 6; 12 (9 ): 3934-43.
4. Kikuchi, T .; Hassanein, M .; Amann, JM .; Liu, Q .; Slebos, RJ .; Rahman, SM .; Kaufman, JM .; Zhang, X .; Hoeksema, MD .; Harris, BK .; Li, M .; Shyr, Y .; Gonzalez, AL .; Zimmerman, LJ .; Liebler, DC .; Massion, PP .; Carbone, DP.In-depth proteomic analysis of nonsmall cell lung cancer to discover molecular targets and candidate biomarkers. Mol Cell Proteomics. 2012 Oct; 11 (10): 916-32.
5. Okayama, A .; Miyagi, Y .; Oshita, F .; Nishi, M .; Nakamura, Y .; Nagashima, Y .; Akimoto, K .; Ryo, A .; Hirano, H. Proteomic analysis of proteins related to prognosis of lung adenocarcinoma. J Proteome Res. 2014 Nov 7; 13 (11): 4686-94.
6. Thiery, JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002 Jun; 2 (6): 442-54.
7. Kim, KK .; Kugler, MC .; Wolters, PJ .; Robillard, L .; Galvez, MG .; Brumwell, AN .; Sheppard, D .; Chapman, HA. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix.Proc Natl Acad Sci US A. 2006 Aug 29; 103 (35): 13180-5.
.. 8. de Caestecker, MP .; Piek, E .; Roberts, AB Role of transforming growth factor-beta signaling in cancer J Natl Cancer Inst 2000 Sep 6; 92 (17):. 1388-402.
9. Wrana, JL .; Attisano, L .; Carcamo, J .; Zentella, A .; Doody, J .; Laiho, M .; Wang, XF .; Massague, J. TGF beta signals through a heteromeric protein kinase receptor complex. Cell. 1992 Dec 11; 71 (6): 1003-14.
10. Zavadil, J .; Bottinger, EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005 Aug 29; 24 (37): 5764-74
11. Kondo, M .; Cubillo, E .; Tobiume, K .; Shirakihara, T .; Fukuda, N .; Suzuki, H .; Shimizu, K .; Takehara, K .; Cano, A .; Saitoh, M .; Miyazono, K. A role for Id in the regulation of TGF-beta-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ. 2004 Oct; 11 (10): 1092-101.
12. Masuda, T .; Tomita, M .; Ishihama, Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008; 7: 731-40.
13. Nagata, K .; Kawakami, T .; Kurata, Y .; Kimura, Y .; Suzuki, Y .; Nagata, T .; Sakuma, Y .; Miyagi, Y .; Hirano, H. Augmentation of multiple protein kinase activities associated with secondary imatinib resistance in gastrointestinal stromal tumors as revealed by quantitative phosphoproteome analysis.J Proteomics. 2015; 115: 132-142.
14. Rappsilber, J .; Mann, M .; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007; 2: 1896-906.
15. Keshamouni, VG .; Michailidis, G .; Grasso, CS .; Anthwal, S .; Strahler, JR .; Walker, A .; Arenberg, DA .; Reddy, RC .; Akulapalli, S .; Thannickal, VJ .; Standiford, TJ .; Andrews, PC .; Omenn, GS. Differential protein expression profiling by iTRAQ-2DLC-MS / MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory / invasive phenotype. J Proteome Res. 2006
16. Sitek, B .; Waldera-Lupa, DM .; Poschmann, G .; Meyer, HE .; Stuhler, K. Application of label-free proteomics for differential analysis of lung carcinoma cell line A549. Methods Mol Biol. 2012; 893: 241-8.
17, Chen, YX .; Li, Y .; Wang WM, Zhang, W .; Chen, XN .; Xie, YY .; Lu, J .; Huang, QH .; Chen, N. Phosphoproteomic study of human tubular epithelial cell in response to transforming growth factor-beta-1-induced epithelial-to-mesenchymal transition. Am J Nephrol. 2010; 31: 24-35.
18. Ali, NA .; Molloy, MP.Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells.Proteomics. 2011; 11: 3390-3401.
19. Gerber, SA .; Rush, J .; Stemman, O .; Kirschner, MW .; Gygi, SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA, 100 (2003), pp. 6940-6945
20. Ohtsuki, S .; Uchida, Y .; Kubo, Y .; Terasaki, T. Quantitative targeted targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. Sci. 2011 Sep; 100 (9): 3547-59.
21. Schwartz, MA.Integrin signaling revisited.Trends Cell Biol. 2001 Dec; 11 (12): 466-70.
22. Petch, LA .; Bockholt, SM .; Bouton, A .; Parsons, JT .; Burridge, K. Adhesion-induced tyrosine phosphorylation of the p130 src substrate.J Cell Sci. 1995 Apr; 108 (Pt 4): 1371-9.
23. Qian, X .; Li, G .; Asmussen, HK .; Asnaghi, L .; Vass, WC .; Braverman, R .; Yamada, KM .; Popescu, NC .; Papageorge, AG .; Lowy, DR Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities.Proc. Natl. Acad. Sci. USA 104, 9012-9017
24. Hallbook, F. Evolution of the vertebrate neurotrophin and Trk receptor gene families. Curr Opin Neurobiol. 1999 Oct; 9 (5): 616-21.
25. Huang, EJ .; Reichardt, LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003; 72: 609-42. Epub 2003 Mar 27.
26. Jin, W .; Kim, GM .; Kim, MS .; Lim, MH .; Yun, C .; Jeong, J .; Nam, JS .; Kim, SJ. TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis. 2010 Nov; 31 (11): 1939-47.
27. Jin, W .; Yun, C .; Kwak, MK .; Kim, TA .; Kim, SJ. TrkC binds to the type II TGF-beta receptor to suppress TGF-beta signaling. Oncogene. 2007 Dec 6; 26 (55): 7684-91.
28. Yano, S .; Wang, W .; Li, Q .; Matsumoto, K .; Sakurama, H .; Nakamura, T .; Ogino, H .; Kakiuchi, S .; Hanibuchi, M .; Nishioka, Y .; Uehara, H .; Mitsudomi, T .; Yatabe, Y .; Nakamura, T .; Sone, S. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res. 2008 Nov 15 ; 68 (22): 9479-87.
29. Koga, K .; Hamasaki, M .; Kato, F .; Aoki, M .; Hayashi, H .; Iwasaki, A .; Kataoka, H .; Nabeshima, K. Association of c-Met phosphorylation with micropapillary pattern and small cluster invasion in pT1-size lung adenocarcinoma. Lung Cancer. 2013 Dec; 82 (3): 413-9.
30. Bottaro, DP .; Rubin, JS .; Faletto, DL .; Chan, AM .; Kmiecik, TE .; Vande Woude, GF .; Aaronson, SA. Identification of the hepatocyte growth factor receptor as the c-met proto -oncogene product. Science 1991; 251: 802-4.
32. Birchmeier, C .; Birchmeier, W .; Gherardi, E .; Vande Woude, GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915-25.
33. Nakamura, T .; Matsumoto, K .; Kiritoshi, A .; Tano, Y .; Nakamura, T. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor -stromal interactions. Cancer Res 1997; 57: 3305-13.
34. Longati, P .; Bardelli, A .; Ponzetto, C .; Naldini, L .; Comoglio, PM.Tyrosines1234-1235 are critical for activation of the tyrosine kinase encoded by the MET proto-oncogene (HGF receptor). 1994 Jan; 9 (1): 49-57.
35. Schiering, N .; Knapp, S .; Marconi, M .; Flocco, MM .; Cui, J .; Perego, R .; Rusconi, L .; Cristiani, C. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a.Proc Natl Acad Sci US A. 2003 Oct 28; 100 (22): 12654-9.

実施例1に用いた組織検体の患者情報を下記の表に示す。   The patient information of the tissue sample used in Example 1 is shown in the following table.

各ペプチドの多重反応モニタリング(MRM)分析による定量解析のための実施例1の測定条件を下記の表に示す。   The measurement conditions of Example 1 for quantitative analysis by multiple reaction monitoring (MRM) analysis of each peptide are shown in the following table.

〔実施例2〕
TGF-β処理材料および方法
細胞培養
A549細胞(ヒト肺腺癌細胞株)は10%(w / v)ウシ胎児血清(FBS)を添加したRPMI-1640培地(ナカライテスク、京都、日本)を用いて、37℃に固定した5% CO2インキュベーター内で培養した。TGF-β処理は、細胞を低血清(0.1%FBS)培地中で24時間培養した後、TGF-β(HumanZyme, Chicago, IL, USA、最終濃度5 ng / mL)を添加した培地で48時間培養することで行った。一方、 TGF-β非処理は、TGF-βを溶解した溶媒(DMSO)のみを添加した培地で48時間培養することで行った。
[Example 2]
TGF-β treated materials and methods Cell culture
A549 cells (human lung adenocarcinoma cell line) were fixed at 37 ° C using RPMI-1640 medium (Nacalai Tesque, Kyoto, Japan) supplemented with 10% (w / v) fetal bovine serum (FBS). Cultivation was performed in a CO 2 incubator. TGF-β treatment involves culturing cells in low serum (0.1% FBS) medium for 24 hours, followed by 48 hours in medium supplemented with TGF-β (HumanZyme, Chicago, IL, USA, final concentration 5 ng / mL) This was done by culturing. On the other hand, TGF-β non-treatment was performed by culturing for 48 hours in a medium to which only a solvent (DMSO) in which TGF-β was dissolved was added.

組織検体
組織検体を研究等に用いることに同意した、早期段階(Ia又はIb)肺腺癌患者58人から摘出した癌組織で、本研究に使用するまで-80℃で保存した凍結組織検体を神奈川県立がんセンターおよび横浜市立大学付属病院から入手した(表3)。内訳は、摘出後5年以内に再発を呈した予後不良な患者群22症例と手術後5年以内に再発を示さなかった予後良好な患者群36症例である。
Tissue specimens Cancer tissues removed from 58 early stage (Ia or Ib) lung adenocarcinoma patients who agreed to use tissue specimens for research, etc., and frozen tissue specimens stored at -80 ° C until used in this study They were obtained from Kanagawa Cancer Center and Yokohama City University Hospital (Table 3). The breakdown is 22 patients with poor prognosis who relapsed within 5 years after excision and 36 patients with good prognosis who did not relapse within 5 years after surgery.

タンパク質調製
凍結組織を、Sample Grinding Kitを使用して、8 M尿素、4%(w/v) デオキシコール酸ナトリウム、Protease Inhibitor MixおよびPhosphatase Inhibitor Cocktail 2と3を含む50 mM重炭酸アンモニウム溶液中で破砕した。破砕物はUR-21P(TOMY、東京、日本)で5回(1秒間隔)超音波処理した後、15,000g (4℃)で15分間遠心分離して上清を回収し、これをタンパク質抽出液とした。脱リン酸化処理については、50μg相当の タンパク質に対して、10 unit アルカリホスファターゼを37℃で1時間反応させることで行った。
Protein Preparation Frozen tissue was prepared in 50 mM ammonium bicarbonate solution containing 8 M urea, 4% (w / v) sodium deoxycholate, Protease Inhibitor Mix and Phosphatase Inhibitor Cocktail 2 and 3 using the Sample Grinding Kit. It was crushed. The crushed material was sonicated 5 times (1 second interval) with UR-21P (TOMY, Tokyo, Japan), then centrifuged at 15,000g (4 ° C) for 15 minutes to recover the supernatant, and this was extracted with protein Liquid. The dephosphorylation treatment was performed by reacting 10 unit alkaline phosphatase at 37 ° C. for 1 hour to 50 μg of protein.

イムノブロット分析
タンパク質抽出液は、SuperSepTMAce (7.5%T, 17ウェル)を用いて分離し、Trans-Blot(登録商標) TurboTM Transfer Systemを使用してPVDF膜に転写した。その後PVDF膜を、5%(w/v) スキムミルクを含むT-PBS(最終濃度 10 mM Na2HPO4・12H2O, 1.8 mM KH2PO4, 0.137 M NaCl, 2.7 mM KCl, 0.05%[v/v] Tween20)と1時間反応させることで非特異的反応を抑制するためのブロッキング操作を行った。一次抗体については、ウサギ抗SSFA2抗体(Proteintech, Chicago, IL, USA)、ウサギ抗リン酸化SSFA2[Ser92]抗体(自作 スクラム依頼)、抗体ウサギ抗アクチンβ抗体を5%(w/v)スキムミルクを含むT-PBSで1,000倍希釈したものを使用し、12時間以上反応させた。反応後、PVDF膜をT-PBSで洗浄後、二次抗体としてペルオキシダーゼ(HRP)標識したヤギ抗ウサギIgG抗体を5%(w/v) スキムミルクを含むT-PBSで5,000倍希釈したものを使用し、1時間反応させた。反応後、PVDF膜はT-PBSで洗浄し、HRP基質であるECL Plus Western Blotting Detection Reagents(GE Healthcare)と5分間反応させた。各タンパク質のシグナルはLAS4000mini発光イメージアナライザ(GE Healthcare)を用いて検出した。
Immunoblot analysis Protein extracts were separated using SuperSep Ace (7.5% T, 17 wells) and transferred to PVDF membrane using the Trans-Blot® Turbo Transfer System. Then, PVDF membrane was added to T-PBS containing 5% (w / v) skim milk (final concentration 10 mM Na 2 HPO 4 · 12H 2 O, 1.8 mM KH 2 PO 4 , 0.137 M NaCl, 2.7 mM KCl, 0.05% [ v / v] Tween20) was allowed to react for 1 hour to perform a blocking operation to suppress nonspecific reactions. As for primary antibodies, rabbit anti-SSFA2 antibody (Proteintech, Chicago, IL, USA), rabbit anti-phosphorylated SSFA2 [Ser92] antibody (self-made scrum request), antibody rabbit anti-actin β antibody 5% (w / v) skim milk The solution diluted 1,000 times with T-PBS was used and allowed to react for 12 hours or more. After the reaction, the PVDF membrane was washed with T-PBS, and a peroxidase (HRP) -labeled goat anti-rabbit IgG antibody was diluted 5,000 times with T-PBS containing 5% (w / v) skim milk as the secondary antibody. And allowed to react for 1 hour. After the reaction, the PVDF membrane was washed with T-PBS, and reacted with HCL substrate ECL Plus Western Blotting Detection Reagents (GE Healthcare) for 5 minutes. The signal of each protein was detected using LAS4000mini luminescence image analyzer (GE Healthcare).

ペプチド溶液の調製
タンパク質抽出液に終濃度が10 mMになるようにDTTを添加し、室温に45分間置いて還元した。還元後、終濃度が5 mMになるようにヨードアセトアミドを添加して、室温で30分間反応させシステイン残基をアルキル化した。その後、15分間10,000gで遠心分離を行い上清を回収し、50 mM重炭酸アンモニウムを上清の3倍量添加して、尿素の終濃度が2 Mとなるよう希釈した。NanoDrop 2000cを用いてタンパク質定量を行った後、100 μg相当のタンパク質に対して、トリプシンを、タンパク質:トリプシン(酵素)の比20:1(w/w)になるように添加し、16時間37℃で温置した。消化物の1/20 量の20%(v/v) TFAを添加後、5分間15,000g (4℃)で遠心分離を行い上清を回収し、添加相間移動溶解法(PTS法)によりペプチド溶液中に含まれるデオキシコール酸ナトリウムを除去した(引用)1。回収したペプチド溶液は一旦乾燥させた後、0.1 % トリフルオロ酢酸に再溶解してから、C18 Stage Tipを使用してペプチドを濃縮・脱塩した2。その後のリン酸化ペプチド濃縮については、Titansphere TiO2 bulk beads (GL Sciences, Tokyo, Japan)を用いて行った3。濃縮したリン酸化ペプチドについては、再度C18 Stage Tipを使用して脱塩濃縮し、各ペプチドは質量分析まで、乾燥させた状態で-20℃で保存した。
Preparation of peptide solution DTT was added to the protein extract so as to have a final concentration of 10 mM, followed by reduction at room temperature for 45 minutes. After the reduction, iodoacetamide was added to a final concentration of 5 mM, and the reaction was carried out at room temperature for 30 minutes to alkylate cysteine residues. Thereafter, the mixture was centrifuged at 10,000 g for 15 minutes to recover the supernatant, and 3 times the amount of 50 mM ammonium bicarbonate was added to dilute the final concentration of urea to 2 M. After protein quantification using NanoDrop 2000c, trypsin was added to a protein equivalent to 100 μg at a protein: trypsin (enzyme) ratio of 20: 1 (w / w) for 16 hours 37 Incubated at 0 ° C. After adding 20% (v / v) TFA of 1/20 of the digest, centrifuge for 5 minutes at 15,000 g (4 ° C), collect the supernatant, and add peptide by phase transfer dissolution method (PTS method) The sodium deoxycholate contained in the solution was removed (quoted) 1 . The collected peptide solution was once dried and then redissolved in 0.1% trifluoroacetic acid, and then the peptide was concentrated and desalted using C18 Stage Tip 2 . Subsequent phosphopeptide enrichment was performed using Titansphere TiO2 bulk beads (GL Sciences, Tokyo, Japan) 3 . The concentrated phosphorylated peptide was desalted and concentrated again using C18 Stage Tip, and each peptide was stored in a dried state at −20 ° C. until mass spectrometry.

多重反応モニタリング(MRM)分析によるペプチド定量
多重反応モニタリング(MRM)分析についてはcHiPLC nanoflex system(AB Sciex)を連結したTripleTOF5600システムを用いて行った。cHiPLC nanoflex systemに接続する分離カラムはChromXP C18-CL, 75 μm id × 15 cmを使用し、流速は300 nL/分とした。Aバッファーには、2%(v/v)アセトニトリルを含む0.1%(v/v) ギ酸溶液を、Bバッファーには、80%(v/v) アセトニトリルを含む0.1%(v/v) ギ酸溶液を用いた。ペプチドの吸着は、Aバッファー98%(v/v)、Bバッファー2%(v/v)で行い、溶出は、Bバッファー の濃度を2%から40%に42分間かけて連続的に高くするプログラムを使用して行った。多重反応モニタリング(MRM)スキャンは、イオンスプレー電圧2300Vのポジティブモード、20に設定されたカーテンガスとスプレーガスモードで実行され、分解能はunitに設定、測定質量 (m/z)範囲は 100 から1600Daとし、 MS2 accumulation timesは0.1秒に設定した。リン酸化ペプチドおよび安定同位体標識-リン酸化ペプチドの合成はスクラムで行った(表4)。MRMPilot v2.0ソフトウエアを用いて、標的ペプチドのプリカーサーイオン/フラグメントイオン対(MRMトランジション)および衝突エネルギーを自動的に算出した。その中から、最終的に、再現性のあるyイオンとMRMトランジションを選択した(表4)。各ペプチド試料については、各25 fmol濃度の安定同位体標識-リン酸化ペプチドを添加し、定量の際の内部標準として用いた。検量線については1、5、10、及び50fmolのペプチドを用いて作成し、検量線の精度は20%以内に収めた(%CV<20)。質量分析の結果得られた質量分析データはMultiQuant v.2.1を用いて解析し、ペプチド量を算出した。
Peptide quantification by multiple reaction monitoring (MRM) analysis Multiple reaction monitoring (MRM) analysis was performed using TripleTOF5600 system connected with cHiPLC nanoflex system (AB Sciex). The separation column connected to the cHiPLC nanoflex system was ChromXP C18-CL, 75 μm id × 15 cm, and the flow rate was 300 nL / min. A buffer contains 0.1% (v / v) formic acid solution containing 2% (v / v) acetonitrile, and B buffer contains 0.1% (v / v) formic acid solution containing 80% (v / v) acetonitrile. Was used. Peptide adsorption is performed with A buffer 98% (v / v) and B buffer 2% (v / v), and elution is continuously increased from 2% to 40% over 42 minutes. Made using the program. Multiple reaction monitoring (MRM) scans are performed in positive mode with ion spray voltage 2300V, curtain gas and spray gas mode set to 20, resolution set to unit, measured mass (m / z) range from 100 to 1600 Da MS2 accumulation times was set to 0.1 seconds. The synthesis of phosphorylated peptides and stable isotope-labeled phosphorylated peptides was performed with scram (Table 4). MRMPilot v2.0 software was used to automatically calculate the precursor peptide / fragment ion pair (MRM transition) and collision energy of the target peptide. Finally, reproducible y ions and MRM transitions were selected (Table 4). For each peptide sample, a stable isotope labeled-phosphorylated peptide at a concentration of 25 fmol was added and used as an internal standard for quantification. The calibration curve was prepared using peptides of 1, 5, 10, and 50 fmol, and the accuracy of the calibration curve was kept within 20% (% CV <20). Mass spectrometry data obtained as a result of mass spectrometry was analyzed using MultiQuant v.2.1, and the amount of peptide was calculated.

統計解析
2群間の差の統計的有意性を示すためのマン・ホイットニー検定、無再発生存期間解析を行うためのカプラン・マイヤー法、受信者動作特性(ROC)曲線解析などの統計解析はGraphPadプリズム5(V. 5.04, GraphPad Software, San Diego, CA, USA)を用いて行った。
Statistical analysis
Statistical analysis such as Mann-Whitney test to show statistical significance of differences between two groups, Kaplan-Meier method to perform recurrence-free survival analysis, receiver operating characteristic (ROC) curve analysis, etc. GraphPad prism 5 (V. 5.04, GraphPad Software, San Diego, CA, USA).

結果
質量分析装置を用いたリン酸化ペプチドの網羅的な相対定量解析から、A549細胞においてTGF−β処理に応答して著しく発現量が増加するリン酸化ペプチドとして、SSFA2の92番目のセリンがリン酸化されたペプチドを見出した。SSFA2に対する特異的抗体および92番目のセリンがリン酸化されたSSFA2に特異的な抗体を用いたイムノブロット分析の結果、これらのタンパク質の細胞内での発現量はTGF−β処理によって変動しないが、92番目のセリンでのリン酸化は亢進することが確認された(図8)。
次に、外科的手術によって摘出した58名の患者の凍結保存した肺腺癌組織を用いて、5年後に肺腺癌を再発した患者22名(予後不良群,PP)と再発のない患者36名(予後良好群,GP)の癌組織を用いて、各特異的抗体を用いたイムノブロット分析と質量分析装置を用いた多重反応モニタリング(MRM)分析を行った。まず、組織検体を癌部と非癌部に分けてタンパク質を抽出した場合の組織中のSSFA2量をSSFA2特異的抗体を用いたイムノブロット分析により調べた結果、予後不良群と予後良好群両患者群の癌部でのみSSFA2が発現していることが確認できた(図9A)。さらに、SSFA2の92番目のセリンがリン酸化されたタンパク質量についてリン酸化部位特異的抗体を用いたイムノブロット分析により調べた結果、予後良好群の癌部に比べて、予後不良群の癌部で発現量が増加していることがわかった(図9B)。
さらに、多重反応モニタリング(MRM)分析によって、予後良好群と予後不良群の癌部におけるSSFA2の92番目のセリンがリン酸化されたペプチド量を調べた結果、予後良好群と予後不良群間で統計的に有意な差(p<0.005)が認められた(図10)。また、得られた結果を基に、リン酸化ペプチド量毎の無再発生存期間曲線を作成した結果、I期肺腺癌の予後不良群20症例と予後良好群31症例について、多重反応モニタリング(MRM)分析によって得られたリン酸化ペプチド量を平均値以上と以下で分類した場合、平均値以下の群に比べて平均値以上の群は統計的に有意に術後生存期間が短い(p<0.005)ことを確認した(図11)。また、受信者動作特性 (ROC) 曲線解析の結果は、SSFA2の92番目のセリンがリン酸化されたタンパク質が診断マーカーとして有用であることを示した(図12)。
Results From the comprehensive relative quantitative analysis of phosphorylated peptides using a mass spectrometer, the 92nd serine of SSFA2 is phosphorylated as a phosphorylated peptide whose expression level is markedly increased in response to TGF-β treatment in A549 cells. Was found. As a result of immunoblot analysis using an antibody specific to SSFA2 and an antibody specific to SSFA2 phosphorylated at the 92nd serine, the expression level of these proteins in cells does not vary with TGF-β treatment. It was confirmed that phosphorylation at the 92nd serine was enhanced (FIG. 8).
Next, using cryopreserved lung adenocarcinoma tissue of 58 patients removed by surgery, 22 patients who had relapsed lung adenocarcinoma 5 years later (poor prognosis group, PP) and 36 patients who had no recurrence Using the name (good prognosis group, GP) of cancer tissue, immunoblot analysis using each specific antibody and multiple reaction monitoring (MRM) analysis using a mass spectrometer were performed. First of all, SSFA2 content in tissues when tissue samples were divided into cancerous and non-cancerous parts was extracted by immunoblot analysis using SSFA2-specific antibody. Both patients with poor prognosis and good prognosis It was confirmed that SSFA2 was expressed only in the cancerous part of the group (FIG. 9A). Furthermore, as a result of examining the amount of protein in which the 92nd serine of SSFA2 was phosphorylated by immunoblotting analysis using a phosphorylation site-specific antibody, it was found in the cancer part of the poor prognosis group compared with the cancer part of the good prognosis group. It was found that the expression level increased (FIG. 9B).
Furthermore, as a result of investigating the amount of peptide in which the 92nd serine of SSFA2 was phosphorylated in the cancer part of the good prognosis group and poor prognosis group by multiple reaction monitoring (MRM) analysis, it was found that the Significant difference (p <0.005) was observed (FIG. 10). Based on the obtained results, a relapse-free survival curve for each phosphopeptide level was prepared. As a result, multiple response monitoring (MRM) was performed for 20 cases with poor prognosis in stage I lung adenocarcinoma and 31 cases with good prognosis. ) When the amount of phosphopeptide obtained by analysis is classified as above average or below, the group above average value has a statistically significantly shorter postoperative survival time than the group below average value (p <0.005). (Fig. 11). Moreover, the result of the receiver operating characteristic (ROC) curve analysis showed that the protein in which the 92nd serine of SSFA2 was phosphorylated was useful as a diagnostic marker (FIG. 12).

考察
SSFA2は、結腸癌細胞株において活性化K-rasにより発現が上昇する遺伝子として同定され、K-ras-induced actin-interacting protein(KRAP)とも呼ばれている4。SSFA2の機能としては、小胞体や核膜上に存在するイノシトール3リン酸受容体(IP3R)と結合することによりカルシウムイオンの放出を制御し、細胞内の様々な生理作用を調節しているとの報告がある5。 更に、SSFA2はビメンチンと共にMDCK細胞(イヌ腎臓尿細管上皮細胞由来の細胞株)の分化の際に、タイトジャンクション (細胞間接着構造)近傍でのIP3Rの蓄積に関与しており、上皮細胞を含む様々な細胞型のIP3Rの局在を制御することが示唆されている6。また、IP3Rの作用については、EMTとの関連が示唆されており7、乳がん細胞におけるEMT誘導はカルシウムシグナルに依存的であることも報告されている8。以上の報告から、SSFA2はEMT誘導に関連している可能性が高いことが示唆される。一方、SSFA2のリン酸化は役割については未だ解明されていないことが多い。今回のSSFA2の92番目のセリンにおけるリン酸化がEMT誘導および早期肺腺癌の予後と密接に関係しているとの報告は今回が初めてである。以上の結果から、SSFA2の92番目のセリンのリン酸化を検出することは、早期肺腺癌の悪性度を検査する方法として有用であると考える。
さらに、SSFA2は結腸癌細胞株および肺扁平上皮癌組織において、腫瘍特異的な遺伝子として同定されている4, 9。本研究でも、イムノブロット分析の結果から、SSFA2は癌部に特異的に発現しているタンパク質であり、肺腺癌検出マーカーとして利用可能ということが確認された。また、このことは正常組織に作用することなく、癌部でのみ特異的に作用する治療標的として利用できる可能性を秘めている。
Consideration
SSFA2 has been identified as a gene whose expression is increased by activated K-ras in colon cancer cell lines and is also called K-ras-induced actin-interacting protein (KRAP) 4 . The function of SSFA2 is to regulate the release of calcium ions by binding to inositol triphosphate receptor (IP3R) present on the endoplasmic reticulum and nuclear membrane, and to regulate various physiological actions in the cell. There are reports of 5 . Furthermore, SSFA2 is involved in the accumulation of IP3R in the vicinity of tight junctions (cell-cell adhesion structures) during differentiation of MDCK cells (cell line derived from canine kidney tubular epithelial cells) together with vimentin, including epithelial cells It has been suggested to regulate the localization of IP3R in various cell types 6 . Also, the operation of the IP3R is 7 has associated with EMT is suggested, EMT induction in breast cancer cells has also been reported to be dependent on calcium signaling 8. These reports suggest that SSFA2 is likely related to EMT induction. On the other hand, the role of SSFA2 phosphorylation has not yet been elucidated. This is the first report that phosphorylation of SSFA2 at the 92nd serine is closely related to EMT induction and prognosis of early lung adenocarcinoma. Based on the above results, it is considered that detecting the phosphorylation of the 92nd serine of SSFA2 is useful as a method for examining the malignancy of early lung adenocarcinoma.
Furthermore, SSFA2 in colon cancer cell lines and lung squamous carcinoma tissues, 4 has been identified as a tumor-specific genes, 9. In this study as well, the results of immunoblot analysis confirmed that SSFA2 is a protein specifically expressed in the cancerous part and can be used as a lung adenocarcinoma detection marker. This also has the potential to be used as a therapeutic target that acts specifically only in the cancerous part without acting on normal tissues.

参考論文
1. Masuda, T.; Tomita, M.; Ishihama, Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7:731-740.
2. Nagata, K.; Kawakami, T.; Kurata, Y.; Kimura, Y.; Suzuki, Y.; Nagata, T.; Sakuma, Y.; Miyagi, Y.; Hirano, H. Augmentation of multiple protein kinase activities associated with secondary imatinib resistance in gastrointestinal stromal tumors as revealed by quantitative phosphoproteome analysis. J Proteomics. 2015;115:132-142.
3. Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896-1906.
4. Inokuchi, J.; Komiya, M.; Baba, I.; Naito, S.; Sasazuki, T.; Shirasawa, S. Deregulated expression of KRAP, a novel gene encoding actin-interacting protein, in human colon cancer cells. J Hum Genet. 2004;49:46-52.
5. Fujimoto, T.; Machida, T.; Tsunoda, T.; Doi, K.; Ota, T.; Kuroki, M.; Shirasawa, S. KRAS-induced actin-interacting protein regulates inositol 1,4,5-trisphosphate-receptor-mediated calcium release. Biochem Biophys Res Commun. 2011;408:214-217.
6. Dingli, F.; Parys, JB.; Loew, D.; Saule, S.; Mery, L. Vimentin and the K-Ras-induced actin-binding protein control inositol-(1,4,5)-trisphosphate receptor redistribution during MDCK cell differentiation. J Cell Sci. 2012;125:5428-5440.
7. Davis, FM.; Parsonage, MT.; Cabot, PJ.; Parat, MO.; Thompson, EW.; Roberts-Thomson, SJ.; Monteith, GR. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell Int. 2013;13:76.
8. Davis, FM.; Azimi, I.; Faville, RA.; Peters, AA.; Jalink, K.; Putney, JW Jr.; Goodhill, GJ.; Thompson, EW.; Roberts-Thomson, SJ.; Monteith, GR. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene. 2014;33:2307-2316.
9. Amatschek, S.; Koenig, U.; Auer, H.; Steinlein, P.; Pacher, M.; Gruenfelder, A.; Dekan, G.; Vogl, S.; Kubista, E.; Heider, KH.; Stratowa, C.; Schreiber, M.; Sommergruber, W. Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res. 2004;64:844-856.
Reference paper
1. Masuda, T .; Tomita, M .; Ishihama, Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008; 7: 731-740.
2. Nagata, K .; Kawakami, T .; Kurata, Y .; Kimura, Y .; Suzuki, Y .; Nagata, T .; Sakuma, Y .; Miyagi, Y .; Hirano, H. Augmentation of multiple protein kinase activities associated with secondary imatinib resistance in gastrointestinal stromal tumors as revealed by quantitative phosphoproteome analysis.J Proteomics. 2015; 115: 132-142.
.. 3 Rappsilber, J .; Mann , M .; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips Nat Protoc 2007; 2:. 1896-1906.
4. Inokuchi, J .; Komiya, M .; Baba, I .; Naito, S .; Sasazuki, T .; Shirasawa, S. Deregulated expression of KRAP, a novel gene encoding actin-interacting protein, in human colon cancer cells J Hum Genet. 2004; 49: 46-52.
5. Fujimoto, T .; Machida, T .; Tsunoda, T .; Doi, K .; Ota, T .; Kuroki, M .; Shirasawa, S. KRAS-induced actin-interacting protein regulates inositol 1,4,5 -trisphosphate-receptor-mediated calcium release. Biochem Biophys Res Commun. 2011; 408: 214-217.
6. Dingli, F .; Parys, JB .; Loew, D .; Saule, S .; Mery, L. Vimentin and the K-Ras-induced actin-binding protein control inositol- (1,4,5) -trisphosphate receptor redistribution during MDCK cell differentiation. J Cell Sci. 2012; 125: 5428-5440.
7. Davis, FM .; Parsonage, MT .; Cabot, PJ .; Parat, MO .; Thompson, EW .; Roberts-Thomson, SJ .; Monteith, GR. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line.Cancer Cell Int. 2013; 13: 76.
8. Davis, FM .; Azimi, I .; Faville, RA .; Peters, AA .; Jalink, K .; Putney, JW Jr .; Goodhill, GJ .; Thompson, EW .; Roberts-Thomson, SJ .; Monteith, GR.Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent.Oncogene. 2014; 33: 2307-2316.
9. Amatschek, S .; Koenig, U .; Auer, H .; Steinlein, P .; Pacher, M .; Gruenfelder, A .; Dekan, G .; Vogl, S .; Kubista, E .; Heider, KH .; Stratowa, C .; Schreiber, M .; Sommergruber, W. Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes.Cancer Res. 2004; 64: 844-856.

実施例2に用いた組織検体の患者情報を下記の表に示す。   The patient information of the tissue specimen used in Example 2 is shown in the following table.

各ペプチドの多重反応モニタリング(MRM)分析による定量解析のための実施例2の測定条件を下記の表に示す。   The measurement conditions of Example 2 for quantitative analysis by multiple reaction monitoring (MRM) analysis of each peptide are shown in the following table.

本発明は、早期肺腺癌患者の予後予測初期スクリーニング検査として利用できる。   The present invention can be used as an early screening test for predicting prognosis of patients with early lung adenocarcinoma.

<配列番号1〜16>
配列番号1〜16は、実施例1及び2の多重反応モニタリング(MRM)分析で用いた内部標準ペプチドのアミノ酸配列を示す。
Phospho-TNS1 (pY1404):AGSLPNY[Pho]ATINGK(配列番号1)
Isotope-labeled phospho-TNS1 (pY1404):AGSLPNY[Pho]ATINGK(13C6, 15N2) (配列番号2)
Phospho-c-Met(pY1234):DMYDKEY[Pho]YSVHNK(配列番号3)
Isotope-labeled phospho-c-Met(pY1234):DMYDKEY[Pho]YSVHNK(13C6, 15N2) (配列番号4)
Phospho-TrkC(pY516):IPVIENPQY[Pho]FR(配列番号5)
Isotope-labeled phospho-TrkC(pY516):IPVIENPQY[Pho]FR(13C6, 15N4) (配列番号6)
Phospho-SSFA2 (pS92):TPLGAS[Pho]LDEQSSSTLK(配列番号7)
Isotope-labeled Phospho-SSFA2 (pS92):TPLGAS[Pho]LDEQSSSTLK(13C6, 15N2) (配列番号8)
TNS1(Y1404):AGSLPNYATINGK(配列番号9)
Isotope-labeled TNS1(Y1404):AGSLPNYATINGK(13C6, 15N2) (配列番号10)
c-Met(Y1234):DMYDKEYYSVHNK(配列番号11)
Isotope-labeled c-Met(Y1234):DMYDKEYYSVHNK(13C6, 15N2) (配列番号12)
TrkC(Y516):IPVIENPQYFR(配列番号13)
Isotope-labeled TrkC(Y516):IPVIENPQYFR(13C6, 15N2) (配列番号14)
SSFA2 (S92):TPLGASLDEQSSSTLK(配列番号15)
Isotope-labeled SSFA2 (S92):TPLGASLDEQSSSTLK(13C6, 15N2) (配列番号16)
<配列番号17>
配列番号17は、TPLGA(pS)LDEQSのアミノ酸配列である。キャリアタンパク質に結合させるためN末端にCysを付加したもの(C+TPLGA(pS)LDEQS)を抗体(SSFA2の92番目のセリンがリン酸化されたSSFA2に対する抗体)作製のための免疫原として用いた。
<SEQ ID NOS: 1-16>
SEQ ID NOs: 1 to 16 show the amino acid sequences of internal standard peptides used in the multiple reaction monitoring (MRM) analysis of Examples 1 and 2.
Phospho-TNS1 (pY1404): AGSLPNY [Pho] ATINGK (SEQ ID NO: 1)
Isotope-labeled phospho-TNS1 (pY1404): AGSLPNY [Pho] ATINGK ( 13 C 6 , 15 N 2 ) (SEQ ID NO: 2)
Phospho-c-Met (pY1234): DMYDKEY [Pho] YSVHNK (SEQ ID NO: 3)
Isotope-labeled phospho-c-Met (pY1234): DMYDKEY [Pho] YSVHNK ( 13 C 6 , 15 N 2 ) (SEQ ID NO: 4)
Phospho-TrkC (pY516): IPVIENPQY [Pho] FR (SEQ ID NO: 5)
Isotope-labeled phospho-TrkC (pY516): IPVIENPQY [Pho] FR ( 13 C 6 , 15 N 4 ) (SEQ ID NO: 6)
Phospho-SSFA2 (pS92): TPLGAS [Pho] LDEQSSSTLK (SEQ ID NO: 7)
Isotope-labeled Phospho-SSFA2 (pS92): TPLGAS [Pho] LDEQSSSTLK ( 13 C 6 , 15 N 2 ) (SEQ ID NO: 8)
TNS1 (Y1404): AGSLPNYATINGK (SEQ ID NO: 9)
Isotope-labeled TNS1 (Y1404) : AGSLPNYATINGK ( 13 C 6 , 15 N 2 ) (SEQ ID NO: 10)
c-Met (Y1234): DMYDKEYYSVHNK (SEQ ID NO: 11)
Isotope-labeled c-Met (Y1234): DMYDKEYYSVHNK ( 13 C 6 , 15 N 2 ) (SEQ ID NO: 12)
TrkC (Y516): IPVIENPQYFR (SEQ ID NO: 13)
Isotope-labeled TrkC (Y516): IPVIENPQYFR ( 13 C 6 , 15 N 2 ) (SEQ ID NO: 14)
SSFA2 (S92): TPLGASLDEQSSSTLK (SEQ ID NO: 15)
Isotope-labeled SSFA2 (S92): TPLGASLDEQSSSTLK ( 13 C 6 , 15 N 2 ) (SEQ ID NO: 16)
<SEQ ID NO: 17>
SEQ ID NO: 17 is the amino acid sequence of TPLGA (pS) LDEQS. Cys added at the N-terminus to bind to carrier protein (C + TPLGA (pS) LDEQS) was used as an immunogen for antibody production (antibody against SSFA2 in which the 92nd serine of SSFA2 was phosphorylated) .

Claims (14)

被検者由来の検体について、早期肺腺癌の悪性度を検査するために、TrkCの516番目のチロシン、TNS1の1404番目のチロシン、SSFA2の92番目のセリンからなる群より選択される少なくとも1つの部位のリン酸化を検出する方法。 At least one selected from the group consisting of TrkC 516 tyrosine, TNS1 1404 tyrosine, SSFA2 92 serine for examining the malignancy of early lung adenocarcinoma in a subject-derived specimen A method to detect phosphorylation at one site. TrkCの516番目のチロシン、TNS1の1404番目のチロシン、SSFA2の92番目のセリンからなる群より選択される少なくとも1つの部位のリン酸化が亢進していることが、早期肺腺癌が転移及び/又は再発する可能性が高いことを示す請求項1記載の方法。 Early lung adenocarcinoma is metastasized and / or has an increased phosphorylation of at least one site selected from the group consisting of TrkC at 516 tyrosine, TNS1 at 1404 tyrosine, and SSFA2 at 92nd serine. Or the method of Claim 1 which shows that possibility of recurrence is high. さらに、c-Metの1234/1235番目の一方又は両方のチロシンのリン酸化を検出することを含む請求項1又は2記載の方法。 The method according to claim 1 or 2, further comprising detecting phosphorylation of one or both tyrosine at 1234/1235 of c-Met. c-Metの1234/1235番目の一方又は両方のチロシンのリン酸化が亢進していることが、早期肺腺癌が転移及び/又は再発する可能性が高いことを示す請求項3記載の方法。 4. The method according to claim 3, wherein phosphorylation of one or both tyrosine at 1234/1235 of c-Met is increased, indicating that there is a high possibility that early lung adenocarcinoma metastasizes and / or recurs. 被検者由来の検体が、肺腺癌組織、血清、全血又は尿である請求項1〜4のいずれかに記載の方法。 The method according to claim 1, wherein the subject-derived specimen is lung adenocarcinoma tissue, serum, whole blood, or urine. TrkCの516番目のチロシンがリン酸化されたTrkCに対する抗体、TNS1の1404番目のチロシンがリン酸化されたTNS1に対する抗体、SSFA2の92番目のセリンがリン酸化されたSSFA2に対する抗体からなる群より選択される少なくとも1つの抗体を用いた抗原抗体反応により、リン酸化されたタンパク質の発現量を測定する請求項1〜5のいずれかに記載の方法。 TrkC antibody against TrkC phosphorylated at 516th tyrosine, TNS1 antibody against TNS1 phosphorylated at 1404th tyrosine, SSFA2 antibody against SSFA2 phosphorylated at serine 92th The method according to any one of claims 1 to 5, wherein the expression level of the phosphorylated protein is measured by an antigen-antibody reaction using at least one antibody. さらに、c-Metの1234番目のチロシンがリン酸化されたc-Metに対する抗体及び/又はc-Metの1235番目のチロシンがリン酸化されたc-Metに対する抗体を用いた抗原抗体反応により、リン酸化されたc-Metの発現量を測定する請求項6記載の方法。 Furthermore, an antigen-antibody reaction using an antibody against c-Met in which the 1234th tyrosine of c-Met was phosphorylated and / or an antibody against c-Met in which the 1235th tyrosine of c-Met was phosphorylated was used to produce phosphorylation. The method according to claim 6, wherein the expression level of oxidized c-Met is measured. 多重反応モニタリング(MRM)分析により、TrkCの516番目のチロシン、TNS1の1404番目のチロシン、SSFA2の92番目のセリンからなる群より選択される少なくとも1つの部位のリン酸化を検出する請求項1〜5のいずれかに記載の方法。 Multiple reaction monitoring (MRM) analysis detects phosphorylation of at least one site selected from the group consisting of 516th tyrosine of TrkC, 1404th tyrosine of TNS1 and 92th serine of SSFA2. 6. The method according to any one of 5. さらに、c-Metの1234/1235番目の一方又は両方のチロシンのリン酸化を多重反応モニタリング(MRM)分析により検出する請求項8記載の方法。 Furthermore, the method of Claim 8 which detects phosphorylation of the 1234 / 1235th tyrosine of c-Met by multiple reaction monitoring (MRM) analysis. 下記の表に示す条件で多重反応モニタリング(MRM)分析を行う請求項9記載の方法。
The method of Claim 9 which performs a multiple reaction monitoring (MRM) analysis on the conditions shown in the following table | surface.
検査が手術前及び/又は手術後に行われる請求項1〜10のいずれかに記載の方法。 The method according to claim 1, wherein the examination is performed before and / or after the operation. TrkCの516番目のチロシンのリン酸化を検出できる試薬、TNS1の1404番目のチロシンのリン酸化を検出できる試薬、SSFA2の92番目のセリンのリン酸化を検出できる試薬からなる群より選択される少なくとも1つの試薬を含む、早期肺腺癌の検査キット。 At least one selected from the group consisting of a reagent capable of detecting phosphorylation of the 516th tyrosine of TrkC, a reagent capable of detecting phosphorylation of the 1404th tyrosine of TNS1, and a reagent capable of detecting the phosphorylation of the 92nd serine of SSFA2. Early lung adenocarcinoma test kit containing two reagents. さらに、c-Metの1234及び/又は1235番目のチロシンのリン酸化を検出できる試薬を含む、請求項12記載のキット。 The kit according to claim 12 , further comprising a reagent capable of detecting phosphorylation of 1234th and / or 1235th tyrosine of c-Met. 試薬が抗体である請求項12又は13記載のキット。 The kit according to claim 12 or 13, wherein the reagent is an antibody.
JP2015094599A 2015-05-07 2015-05-07 Use of early lung adenocarcinoma malignancy diagnostic markers focusing on epithelial-mesenchymal transition Expired - Fee Related JP6555511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015094599A JP6555511B2 (en) 2015-05-07 2015-05-07 Use of early lung adenocarcinoma malignancy diagnostic markers focusing on epithelial-mesenchymal transition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015094599A JP6555511B2 (en) 2015-05-07 2015-05-07 Use of early lung adenocarcinoma malignancy diagnostic markers focusing on epithelial-mesenchymal transition

Publications (2)

Publication Number Publication Date
JP2016211928A JP2016211928A (en) 2016-12-15
JP6555511B2 true JP6555511B2 (en) 2019-08-07

Family

ID=57550030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015094599A Expired - Fee Related JP6555511B2 (en) 2015-05-07 2015-05-07 Use of early lung adenocarcinoma malignancy diagnostic markers focusing on epithelial-mesenchymal transition

Country Status (1)

Country Link
JP (1) JP6555511B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2062377A1 (en) * 1991-03-21 1992-09-22 Mariano Barbacid Method for detection of neuroactive substances
JPWO2008102870A1 (en) * 2007-02-23 2010-05-27 エーザイ・アール・アンド・ディー・マネジメント株式会社 Pyridine derivatives or pyrimidine derivatives exhibiting excellent cell growth inhibitory and antitumor effects in HGFR gene amplified cell lines
JP2009210355A (en) * 2008-03-03 2009-09-17 Shionogi & Co Ltd Lung adenocarcinoma convalescence diagnostic marker

Also Published As

Publication number Publication date
JP2016211928A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
Cho et al. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation
Jotzu et al. Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors
JP5677450B2 (en) Biochemical serum marker
EP2494359B1 (en) Podxl protein in colorectal cancer
EP2176665B1 (en) Tumor cell-derived microvesicles
Leiphrakpam et al. Ezrin expression and cell survival regulation in colorectal cancer
Hembrough et al. Selected reaction monitoring (SRM) analysis of epidermal growth factor receptor (EGFR) in formalin fixed tumor tissue
EP2157971A2 (en) Egfr inhibitors for treatment and diagnosis of metastatic prostate cancer
Liu et al. Eradication of EGFR-positive circulating tumor cells and objective tumor response with lapatinib and capecitabine
EP2652502A1 (en) Biomarkers, uses of biomarkers and a method of identifying biomarkers for colorectal carcinoma (crc) liver metastasis
Faktor et al. Identification and characterisation of pro-metastatic targets, pathways and molecular complexes using a toolbox of proteomic technologies
Guo et al. Hepatoma-derived growth factor: a novel prognostic biomarker in intrahepatic cholangiocarcinoma
EP2318841B1 (en) Anln protein as an endocrine treatment predictive factor
Taheri‐Kadkhoda et al. Expression modes and clinical manifestations of latent membrane protein 1, Ki‐67, cyclin‐B1, and epidermal growth factor receptor in nonendemic nasopharyngeal carcinoma
Yasodha et al. Exosomes from metastatic colon cancer cells drive the proliferation and migration of primary colon cancer through increased expression of cancer stem cell markers CD133 and DCLK1
JP6555511B2 (en) Use of early lung adenocarcinoma malignancy diagnostic markers focusing on epithelial-mesenchymal transition
WO2016086560A1 (en) Marker for diagnosing liver cancer, melanoma cell adhesion molecule, and uses thereof
Shimada et al. Presence of serum p53 antibodies is associated with decreased in vitro chemosensitivity in patients with esophageal cancer
US20160341733A1 (en) Detection and treatment of cancer
Zhang et al. Clinicopathologic Characteristics and Yes-Associated Protein 1 Overexpression and its Relationship to Tumor Biomarkers in Gastric Cancer
JP2006525962A5 (en)
Li et al. GPRIN1 promotes gallbladder cancer progression through the CDK1 pathway
Hayashi et al. A Novel High-Throughput Screening Method for a Human Multicentric Osteosarcoma-Specific Antibody and Biomarker Using a Phage Display-Derived Monoclonal Antibody. Cancers 2022, 14, 5829
Gärtner Protein level analyses in tumor cell metastasis
Li et al. NF‐κB correlates with epithelial‐mesenchymal transition and metastatic ability in oral squamous cell carcinoma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190626

R150 Certificate of patent or registration of utility model

Ref document number: 6555511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees