JP6554641B2 - Terahertz oscillator - Google Patents

Terahertz oscillator Download PDF

Info

Publication number
JP6554641B2
JP6554641B2 JP2015024271A JP2015024271A JP6554641B2 JP 6554641 B2 JP6554641 B2 JP 6554641B2 JP 2015024271 A JP2015024271 A JP 2015024271A JP 2015024271 A JP2015024271 A JP 2015024271A JP 6554641 B2 JP6554641 B2 JP 6554641B2
Authority
JP
Japan
Prior art keywords
light
photoconductive semiconductor
graphene nanoribbon
irradiated
terahertz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015024271A
Other languages
Japanese (ja)
Other versions
JP2016149398A (en
Inventor
宮本 良之
良之 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015024271A priority Critical patent/JP6554641B2/en
Publication of JP2016149398A publication Critical patent/JP2016149398A/en
Application granted granted Critical
Publication of JP6554641B2 publication Critical patent/JP6554641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はテラヘルツ領域の電磁波に関する。   The present invention relates to electromagnetic waves in the terahertz region.

テラヘルツ領域の電磁波応用が評価回析技術として注目されている。   The application of electromagnetic waves in the terahertz region is attracting attention as an evaluation diffraction technique.

有機物(爆薬や毒薬など)の同定や非破壊で構造体のモフォロジーを特定できるメリットから、テラヘルツ波の応用が研究されている。   The application of terahertz waves has been studied because of the merit of identifying the organic matter (explosives, poisons, etc.) and identifying the morphology of the structure without destruction.

一方、テラヘルツ波の発振そのものに適したデバイスの研究も並行して行われている(非特許文献1)。   On the other hand, research on devices suitable for terahertz wave oscillation itself is also being conducted in parallel (Non-Patent Document 1).

テラヘルツ波の発振には超電導材料によるもの(特許文献1)や、複数のアンテナ構造を用いたもの(特許文献2)などがある。   The terahertz wave oscillation includes a superconducting material (Patent Document 1) and a plurality of antenna structures (Patent Document 2).

特開2005−251863JP-A-2005-251863 特開2012−044688JP2012-044688

「テラヘルツ波技術の現状と展望」、斗内政吉、応用物理第75巻第2号160ページ(2006)“Current Status and Prospects of Terahertz Wave Technology”, Masayoshi Tonouchi, Applied Physics Vol. 75, No. 2, page 160 (2006) Kyoko Nakada and Mitsutaka Fujita, Gene Dresselhaus and Mildred S. Dresselhaus, Phys. Rev. B54, 17954 (1996)Kyoko Nakada and Mitsutaka Fujita, Gene Dresselhaus and Mildred S. Dresselhaus, Phys. Rev. B54, 17954 (1996) Young-Woo Son, Marvin L. Cohen, and Steven G. Louie, Phys. Rev. Lett. Vol.97, 文献番号216803 (2003)Young-Woo Son, Marvin L. Cohen, and Steven G. Louie, Phys. Rev. Lett. Vol. 97, ref. 216803 (2003) Hong Zhang and Yoshiyuki Miyamoto, Appl. Phys. Lett. 95, 053109 (2009)Hong Zhang and Yoshiyuki Miyamoto, Appl. Phys. Lett. 95, 053109 (2009) Susumu Okada, Phys. Rev. B Vol.77, 041408(R) (2008)Susumu Okada, Phys. Rev. B Vol.77, 041408 (R) (2008) Xiaolin Li, Xinran Wang, Li Zhiang, Sangwon Lee, and Hongjie Dai, Science Vol.319, 1229 (2008).Xiaolin Li, Xinran Wang, Li Zhiang, Sangwon Lee, and Hongjie Dai, Science Vol.319, 1229 (2008).

超電導材料を用いたものは素子構造や電極との接合などにおいて精密な加工が要求されている。   A material using a superconducting material is required to be precisely processed in the element structure and bonding with an electrode.

一方複数のアンテナ構造からなる素子においては、アンテナ同士の電磁波の発振と給電を経てテラヘルツ発振を実現する複雑な構造となっており、これも精度の良い加工、内部抵抗の除去など難易度の高い加工が必要となる。   On the other hand, an element having a plurality of antenna structures has a complex structure that realizes terahertz oscillation through the oscillation and feeding of electromagnetic waves between antennas, which are also highly difficult to process accurately and remove internal resistance. Processing is required.

光伝導を示す半導体上に設けられたグラフェンナノリボン膜を通して紫外線レーザーを照射し、膜により紫外線強度がテラヘルツの周波数で変調されることにより強弱変調された電流を半導体中に流すとテラヘルツ波が発振する。   Terahertz waves oscillate when an ultraviolet laser is irradiated through a graphene nanoribbon film provided on a semiconductor exhibiting photoconductivity, and the intensity of the ultraviolet light is modulated by the film at a frequency of terahertz, so that a current that is strongly modulated is passed through the semiconductor. .

(1)
光を照射すると電気伝導特性を生じ得る光伝導半導体と、光を入射するとその出射光強度が周期的に変調し得る光強度変調物質を近接配置してなる発振素子であって、
該光伝導半導体は長手方向にミクロンオーダーの長さを有することを特徴とする発振素子。
(2)
前記光伝導半導体の長手方向に電圧をかけ、
前記光強度変調物質の表面に光を照射すると、
前記光強度変調物質の裏面からその強度が周期的に変調された前記光が前記光伝導半導体に照射されて該変調された電流が流れて前記光伝導半導体がテラヘルツ波を発振することを特徴とする(1)に記載の発振素子。
(1)
An oscillation element comprising a photoconductive semiconductor capable of producing electrical conduction characteristics when irradiated with light, and a light intensity modulation material capable of periodically modulating the intensity of emitted light when incident on the light,
The oscillation element characterized in that the photoconductive semiconductor has a length of micron order in the longitudinal direction.
(2)
A voltage is applied in the longitudinal direction of the photoconductive semiconductor,
When light is irradiated on the surface of the light intensity modulating substance,
The light whose intensity is periodically modulated from the back surface of the light intensity modulating material is applied to the photoconductive semiconductor, the modulated current flows, and the photoconductive semiconductor oscillates a terahertz wave. The oscillation element according to (1).

(3)
前記光強度変調物質は幅端の炭素原子が水素原子で終端されたアームチェア型グラフェンナノリボンであり、
前記光は紫外線であることを特徴とする(2)に記載の発振素子。
(4)
前記紫外線は直線偏光しており、前記グラフェンナノリボンの長手方向に垂直であって且つ前記グラフェンナノリボンの幅方向に垂直偏光されて照射されたことを特徴とする(3)に記載の発振素子。
(3)
The light intensity modulation material is an armchair graphene nanoribbon in which carbon atoms at the width ends are terminated with hydrogen atoms,
The oscillation element according to (2), wherein the light is ultraviolet light.
(4)
The oscillation element according to (3), wherein the ultraviolet light is linearly polarized, and is irradiated with being polarized vertically to the longitudinal direction of the graphene nanoribbon and perpendicular to the width direction of the graphene nanoribbon .

本発明は、この光伝導性を示す半導体をアンテナ状にし、そのアンテナにテラヘルツの周波数で変調する電流を流してテラヘルツ輻射場の発振を実現したテラヘルツアンテナを提供できる。   The present invention can provide a terahertz antenna that realizes oscillation of a terahertz radiation field by making a semiconductor exhibiting photoconductivity into an antenna shape and passing a current modulated at a terahertz frequency through the antenna.

(5)
(4)に記載する発振素子を備えたテラヘルツアンテナであって、
前記光伝導半導体は断面が矩形状または円形状で棒状、輪状、またはU字状をして一部直線状の部分を有したアンテナ形状をしており、
該光伝導半導体の該一部直線状の部分の表面に前記グラフェンナノリボンが近接配置されていることを特徴とするテラヘルツアンテナ。
(6)
前記グラフェンナノリボンは、該光伝導半導体の該一部直線状の部分の表面にグラファイト片溶液を塗布し乾燥させて、または貼り付けて、もしくは転写して近接配置されたことを特徴とする(5)に記載のテラヘルツアンテナ。
(7)
前記グラフェンナノリボンは、前記塗布後乾燥する前に前記一部直線方向に機械的にこすって短冊状に近接配置されたことを特徴とする(6)に記載のテラヘルツアンテナ。
(5)
A terahertz antenna including the oscillation element described in (4),
The photoconductive semiconductor has a rectangular or circular cross section, a rod shape, a ring shape, or an U shape, and has an antenna shape with a part of a straight line,
The terahertz antenna, wherein the graphene nanoribbon is disposed in proximity to a surface of the partially linear portion of the photoconductive semiconductor.
(6)
The graphene nanoribbon is characterized in that a graphite piece solution is applied to the surface of the partially linear portion of the photoconductive semiconductor and dried, or pasted or transferred to be adjacently disposed (5 ) Terahertz antenna.
(7)
The terahertz antenna according to (6), wherein the graphene nanoribbons are mechanically rubbed in the partial linear direction before being dried after the application, and are arranged close to each other in a strip shape.

アームチェア型グラフェンナノリボンを利用し単純な構造で製造の容易なテラヘルツ発振素子が作製できた。   Using an armchair graphene nanoribbon, a terahertz oscillation device with a simple structure and easy manufacture was successfully fabricated.

光伝導半導体を含む回路に紫外線を照射することの概念図。The conceptual diagram of irradiating a circuit containing a photoconductive semiconductor with an ultraviolet-ray. 上段が紫外線強度の時間依存性、下段が光起電流の時間依存性を示す概念図。FIG. 4 is a conceptual diagram showing time dependence of ultraviolet intensity in the upper stage and time dependence of photovoltaic current in the lower stage. 紫外線が光強度変調物質を経由して光伝導半導体へ照射される様子の概念図。The conceptual diagram of a mode that a ultraviolet-ray is irradiated to a photoconductive semiconductor via a light intensity modulation substance. ある周期で強度が変調される光とその光が照射された場合の図3の回路に流れる電流の時間変化とを表し、上段が光強度で下段が電流値を表す。時間は任意単位だが上段下段で共通であるとする。The light whose intensity is modulated at a certain period and the time change of the current flowing in the circuit of FIG. 3 when the light is irradiated are shown, the upper part shows the light intensity and the lower part shows the current value. Time is an arbitrary unit, but it is common to the upper and lower stages. 図3の構成で、光伝導半導体を長さ数ミクロンのアンテナとし、光電流変調周期をテラヘルツとした場合に、アンテナよりテラヘルツ波が発信する様子を示す概念図。FIG. 4 is a conceptual diagram showing a state in which a terahertz wave is transmitted from an antenna when the photoconductive semiconductor is an antenna of several microns in length and the photocurrent modulation period is terahertz in the configuration of FIG. 3. アームチェア型グラフェンナノリボンの構造例(N=7の場合)。太双方向矢印は、照射する紫外線の電場の分極方向を示したものである。Example of armchair graphene nanoribbon structure (N = 7). A thick bidirectional arrow indicates the polarization direction of the electric field of the irradiated ultraviolet light. 光エネルギー6.20eV(上段)と6.53eV(下段)の紫外照射により発生するグラフェンナノリボン近傍の電場強度の変調を示すグラフ。The graph which shows the modulation | alteration of the electric field strength of the graphene nanoribbon vicinity generated by ultraviolet irradiation of light energy 6.20eV (upper stage) and 6.53eV (lower stage). ナノリボングラフェン膜の構成概念図。グレー値の異なる長方形それぞれが幅の異なるアームチェア型ナノリボンを示している。The conceptual diagram of a structure of a nanoribbon graphene film. Each rectangle with different gray values represents an armchair nanoribbon with a different width. 図5の回路構成の実装図。図中、光強度変調材料を含む直線状のアンテナの長さがμオーダーである。FIG. 6 is a mounting diagram of the circuit configuration of FIG. 5. In the figure, the length of the linear antenna including the light intensity modulating material is on the order of μ. 図5の回路構成の別の実装図。図中のU字のアンテナの光強度変調材料を含む直線部長さがμオーダーである。FIG. 6 is another mounting diagram of the circuit configuration of FIG. 5. The length of the straight portion including the light intensity modulation material of the U-shaped antenna in the figure is μ order. 図5の回路構成のさらに別の実装図。図中のU字の湾曲したアンテナの直径がμオーダーである。FIG. 6 is still another mounting diagram of the circuit configuration of FIG. 5. The diameter of the U-shaped curved antenna in the figure is μ order.

以下に紫外線レーザーからTHz発振を得る原理を説明する。
まず光伝導を示す半導体を構成する。
The principle of obtaining THz oscillation from an ultraviolet laser will be described below.
First, a semiconductor exhibiting photoconduction is formed.

半導体はそれ自体では電気伝導性がないが、不純物のドープにより伝導特性を示す材料である。
不純物をドープしない場合でも、光を照射することにより半導体内部に電子と正孔を生じ伝導特性を示すものを本発明では光伝導半導体と呼ぶ。
A semiconductor itself is not a material having electrical conductivity, but is a material that exhibits conductivity characteristics by doping with impurities.
Even in the case where impurities are not doped, a semiconductor that exhibits conduction characteristics by generating electrons and holes in the semiconductor by irradiating light is called a photoconductive semiconductor in the present invention.

図1のように光伝導半導体による回路構成に紫外線を照射する構造を考える。
図1の回路構成において紫外線照射のオンオフにより回路を流れる電流量のオンオフが決定される。
それを紫外線照射の時間依存として示したのが図2である。
Consider a structure in which ultraviolet rays are applied to a circuit configuration of a photoconductive semiconductor as shown in FIG.
In the circuit configuration of FIG. 1, on / off of the amount of current flowing through the circuit is determined by on / off of ultraviolet irradiation.
FIG. 2 shows this as time dependence of ultraviolet irradiation.

続いて、光伝導半導体に、光電場変調特性を有する材料を経由して紫外線を照射する場合を考える。
図3はその時の回路構成を示す。
Next, consider a case where the photoconductive semiconductor is irradiated with ultraviolet rays via a material having photoelectric field modulation characteristics.
FIG. 3 shows a circuit configuration at that time.

ここで、光強度変調物質について説明する。
物質に光を照射した場合、光は物質を透過し、通常はその強度が落ちるだけである。
Here, the light intensity modulation substance will be described.
When a material is irradiated with light, the light passes through the material and usually only decreases its intensity.

しかし、物質を光が透過する際に、物質内部の電子軌道が光によるエネルギーを受けて変調され、多くの電子軌道でその変調を生じた場合には物質内部、および物質表面近傍で変調電場が発生する。   However, when light passes through the material, the electron trajectory inside the material is modulated by the energy of the light, and when the modulation occurs in many electron orbits, the modulated electric field is generated inside the material and in the vicinity of the material surface. Occur.

入射した光の電場と重ね合わせることにより、物質表面近傍の電場の振幅強度が変調を受けることがある。   When superposed on the electric field of the incident light, the amplitude intensity of the electric field near the surface of the material may be modulated.

このようなメカニズムで入射した光を変調する性質が強い材料を、本発明では光強度変調物質と呼ぶ。   In the present invention, a material having a strong property of modulating incident light by such a mechanism is called a light intensity modulating substance.

このメカニズムは、量子力学的な電子の振る舞いを考えた第一原理計算によりシミュレーションすることが可能である。
時間に依存したシュレディンガー方程式を使って、光電場で物質内の電子の運動を数値計算することにより、上に述べたメカニズムにより物質表面近傍の電場変調の計算を可能とし、計算によって任意の物質の光電場変調特性を調べることが可能である。
This mechanism can be simulated by first-principles calculations considering quantum mechanical electron behavior.
Using the time-dependent Schrödinger equation, the motion of electrons in a material can be calculated numerically with a photoelectric field, allowing the calculation of electric field modulation near the surface of the material by the mechanism described above. It is possible to examine the photoelectric field modulation characteristics.

本発明では、光強度変調物質として、強度変調が周期的になる性質を持つ材料を選択する。
そのため回路を流れる電流強度も同じ周期で変調されることになる。その様子を図4に示した。
図4における変調周波数がテラヘルツになる場合、光伝導半導体部分をテラヘルツの波長と同等の長さ数μメータにすると、電流の変調による周波数のテラヘルツ波を発振する。
この様子を図5に示した。
In the present invention, a material having a property that intensity modulation is periodic is selected as the light intensity modulating substance.
Therefore, the current intensity flowing through the circuit is also modulated with the same period. This is shown in FIG.
When the modulation frequency in FIG. 4 is terahertz, if the photoconductive semiconductor portion is set to a length of several μm equivalent to the terahertz wavelength, a terahertz wave having a frequency due to current modulation is oscillated.
This is shown in FIG.

光伝導半導体はアンテナとして機能する。
アンテナの定義とは以下のものである。光伝導半導体を流れる電流は、交流電流が望ましいが、テラヘルツの輻射場の発振のためには、一方向の電流の周期的変調が生じることでも十分である。
The photoconductive semiconductor functions as an antenna.
The definition of an antenna is as follows. The current flowing through the photoconductive semiconductor is preferably an alternating current, but it is sufficient for the periodic modulation of the current in one direction to oscillate the terahertz radiation field.

本発明では、光変調特性を示す物質としてグラフェンナノリボンを用いる。グラフェンナノリボンを用いる理由は、上に述べた原理による効果が著しいという特徴を持つこと、膜状物質なので光伝導半導体への塗布が容易である。
塗布以外にも、貼り付けもしくは転写の方法でも良い。以下にグラフェンナノリボンについて説明する。
In the present invention, graphene nanoribbons are used as a material exhibiting light modulation characteristics. The reason why the graphene nanoribbon is used is that the effect by the principle described above is remarkable, and since it is a film-like substance, it can be easily applied to a photoconductive semiconductor.
In addition to application, a method of pasting or transferring may be used. The graphene nanoribbon will be described below.

グラフェンナノリボンとは、グラフェンを有限の幅でカットしたリボン状の物質であり、リボンの幅はナノメートルのオーダーである。ここで、グラフェンとは層状物質である黒鉛の原子層一層分よりなる2次元物質のことである。   The graphene nanoribbon is a ribbon-like material obtained by cutting graphene with a finite width, and the width of the ribbon is on the order of nanometers. Here, graphene refers to a two-dimensional material composed of one atomic layer of graphite, which is a layered material.

グラフェンナノリボンの構造は大きく分けて2種類あり、それぞれアームチェア型、ジグザグ型と呼ばれる。
その構造は非特許文献2の図1に示されているが、本発明ではアームチェアのグラフェンナノリボンのみを用いるのでその構造を図6に示す。
Graphene nanoribbon structures are roughly divided into two types, called armchair type and zigzag type, respectively.
Although the structure is shown in FIG. 1 of Non-Patent Document 2, the structure is shown in FIG. 6 because only the graphene nanoribbon of the armchair is used in the present invention.

図6のアームチェア型グラフェンナノリボンの特徴は、端の炭素原子が水素原子により終端されており、ナノリボンを構成するすべての炭素原子から3本の化学結合の腕が出ていること、端では2個の炭素原子よりなるC-C結合の方向がリボンの長手方向と平行であり、椅子の肘掛のような構造をなしていることである。   The feature of the armchair graphene nanoribbon in FIG. 6 is that the carbon atoms at the ends are terminated with hydrogen atoms, and three chemical bond arms come out from all the carbon atoms constituting the nanoribbon. The direction of the CC bond consisting of carbon atoms is parallel to the longitudinal direction of the ribbon, and it has a structure like an armrest of a chair.

また、アームチェア型ナノリボンの幅も定義されており、図6の場合にはリボンの幅あたり、リボンの長手方向に平行なC-C結合が合計7本存在するので、N=7のアームチェア型ナノリボンと呼ぶ。
この呼び方は非特許文献3に従ったものである。
Also, the width of the armchair nanoribbon is defined. In the case of FIG. 6, there are a total of seven CC bonds parallel to the longitudinal direction of the ribbon per ribbon width, so N = 7 armchair nanoribbon. Call it.
This designation is based on Non-Patent Document 3.

図6の構造において、リボンの長手方向に対して垂直に偏光した紫外線を照射すると、ナノリボンの膜近傍にて紫外線の強度の変調が生じる。   In the structure of FIG. 6, when ultraviolet light polarized perpendicular to the longitudinal direction of the ribbon is irradiated, the intensity of the ultraviolet light is modulated in the vicinity of the nanoribbon film.

照射電場とナノチューブ近傍で発生する電場の関係を図7に示した。
図7の結果は上に説明した第一原理計算によるシミュレーションを実行して得られた初めての知見である。
The relationship between the irradiation electric field and the electric field generated near the nanotube is shown in FIG.
The result of FIG. 7 is the first knowledge obtained by executing the simulation by the first principle calculation described above.

このようなグラフェンナノリボンにおける光電場増強効果は今まで知られていないが、上に述べた物質表面近傍の電場の振幅強度が変調を受けるメカニズムの理解と第一原理計算によるシミュレーションの方法にて初めて明らかとなった。   The photoelectric field enhancement effect of such graphene nanoribbons has not been known so far, but for the first time, the above-mentioned understanding of the mechanism by which the amplitude intensity of the electric field near the material surface is modulated and the simulation method based on first-principles calculations It became clear.

ただし、図6の説明に述べたように、紫外線は直線偏光しており、リボンの長手方向に垂直で且つリボンの幅方向に垂直偏光されていることが図7のような光電場変調を得る条件となる。 However, as described in the explanation of FIG. 6, the ultraviolet rays are linearly polarized , and the fact that they are perpendicularly polarized in the longitudinal direction of the ribbon and in the width direction of the ribbon obtains photoelectric field modulation as shown in FIG. 7. It becomes a condition.

更に、照射する紫外線の光エネルギーは5eVから7eVの範囲が光増強の条件となる。   Furthermore, the light energy of the irradiated ultraviolet light is in the range of 5 eV to 7 eV, which is the condition for light enhancement.

グラフェンナノリボンと同様に光電場増強効果はカーボンナノチューブでも報告されている(非特許文献4)が、カーボンナノチューブの場合には光電場増強はナノチューブの中空にて起きているので、光伝導半導体に隣接してもその電場増大効果は及ばず効果がない。   Similar to graphene nanoribbons, the photoelectric field enhancement effect has also been reported for carbon nanotubes (Non-Patent Document 4), but in the case of carbon nanotubes, the photoelectric field enhancement occurs in the hollow of the nanotubes, so it is adjacent to the photoconductive semiconductor. However, the effect of increasing the electric field does not reach and is ineffective.

このような光電場変調の様子はグラフェンの幅がやや増えてN=9、N=11になっても変わらないことが第一原理計算シミュレーションより明らかとなった。   The first-principles calculation simulation revealed that such a photoelectric field modulation did not change even when the width of graphene increased slightly to N = 9 and N = 11.

従って、図7のような光電場変調を引き起こすには、雑多な幅のアームチェア型グラフェンナノリボンからなる膜に紫外線を当て、膜近傍での変調電界を利用すれば良いことになる。   Therefore, in order to cause the photoelectric field modulation as shown in FIG. 7, it is only necessary to irradiate the film made of armchair graphene nanoribbons of various widths with ultraviolet rays and use the modulation electric field in the vicinity of the film.

最後にこのようなアームチェア型ナノリボンを、光伝導を示す半導体に塗布する方法について説明する。   Finally, a method for applying such an armchair nanoribbon to a semiconductor exhibiting photoconductivity will be described.

熱力学的にグラフェンからナノリボンを作成する場合にはアームチェア型が安定に生成されることは証明されている(非特許文献5)。   It has been proved that when a nanoribbon is thermodynamically produced from graphene, an armchair type is stably produced (Non-patent Document 5).

塗布方法は劈開したグラファイト片を有機溶剤中で超音波処理して遠心分離したものを塗布後、溶液の乾燥をすることによりグラフェンナノリボン膜を生成する(非特許文献6)。   As a coating method, a graphene nanoribbon film is formed by coating a cleaved graphite piece by ultrasonic treatment in an organic solvent and centrifuging, and then drying the solution (Non-patent Document 6).

この時、グラフェンナノリボンの幅はまちまちで良いが、できることならばグラフェンナノリボンの長手方向が配向するような操作で膜を作成すると良い。   At this time, the width of the graphene nanoribbon may vary, but if possible, the film may be formed by an operation in which the longitudinal direction of the graphene nanoribbon is oriented.

方法としては溶液を乾燥する前に、塗布膜を一方向にやわらかい材質のもので機械的にこする。
それにより図8のように様々な幅の配向したナノリボンが成膜内に敷き詰められる。
As a method, before the solution is dried, the coating film is mechanically rubbed with a soft material in one direction.
Thereby, as shown in FIG. 8, nanoribbons having various widths are spread in the film formation.

以上がテラヘルツ波発振の原理の説明である。   The above is the explanation of the principle of terahertz wave oscillation.

これより実施例を述べる。   Examples will now be described.

図9は、図5に説明した回路にてテラヘルツ波発振デバイスの実装イメージでアンテナは直線構造をしている。
グラフェン膜の塗布場所には特に制限はなく照射する紫外線レーザースポット径と同等にした場合最も効率が良い。
以下の例でも同様である。
FIG. 9 is an image of mounting a terahertz wave oscillation device in the circuit described in FIG. 5, and the antenna has a linear structure.
The application location of the graphene film is not particularly limited, and is most efficient when it is equivalent to the diameter of the ultraviolet laser spot to be irradiated.
The same applies to the following examples.

図10は、図5に説明した回路にてテラヘルツ波発振デバイスの実装イメージでアンテナはU字構造をしている。   FIG. 10 is a mounting image of the terahertz wave oscillation device in the circuit described in FIG. 5, and the antenna has a U-shaped structure.

図11は、図5に説明した回路にてテラヘルツ波発振デバイスの実装イメージでアンテナは輪のような構造をしている。   FIG. 11 is an image of mounting a terahertz wave oscillation device in the circuit described in FIG. 5, and the antenna has a ring-like structure.

図9から図11のような構造は、発生するテラヘルツ波の波長、発振方向などの用途に応じて任意に決めることができる。   The structure as shown in FIGS. 9 to 11 can be arbitrarily determined according to the application such as the wavelength of the generated terahertz wave and the oscillation direction.

図9から図11に示したように、光伝導半導体に光変調特性を示す物質を経由して紫外線を照射するには、光変調特性を示す物質を光伝導半導体表面の一部に塗布し、塗布された部分へ紫外線を照射すれば良い。   As shown in FIGS. 9 to 11, in order to irradiate the photoconductive semiconductor with ultraviolet rays via a substance exhibiting light modulation characteristics, a substance exhibiting light modulation characteristics is applied to a part of the surface of the photoconductive semiconductor, What is necessary is just to irradiate an ultraviolet-ray to the applied part.

1 光伝導半導体
2 光強度変調物質(光強度変調材料)
3 光
4 テラヘルツ波
5 電圧源
6 強度変調された光
7 紫外線
8 電流
10 長さ
1 Photoconductive semiconductor 2 Light intensity modulation material (light intensity modulation material)
3 Light 4 Terahertz wave 5 Voltage source
6 Intensity modulated light 7 Ultraviolet light 8 Current
10 length

Claims (4)

光を照射すると電気伝導特性を生じ得る光伝導半導体と、グラフェンナノリボンとを近接配置してなる発振素子であって、
前記光伝導半導体は長手方向にミクロンオーダーの長さを有し、
前記光伝導半導体の長手方向に電圧をかけ、前記グラフェンナノリボンに光を照射すると、強度が周期的に変調された透過光が前記光伝導半導体に照射されて、前記変調に応じた電流が流れる前記光伝導半導体がテラヘルツ波を発振する
ことを特徴とする発振素子。
An oscillating device in which a photoconductive semiconductor capable of producing electrical conduction characteristics when irradiated with light and a graphene nanoribbon are arranged close to each other,
The photoconductive semiconductor have a length of micron order in the longitudinal direction,
When a voltage is applied in the longitudinal direction of the photoconductive semiconductor and the graphene nanoribbon is irradiated with light, transmitted light whose intensity is periodically modulated is irradiated to the photoconductive semiconductor, and a current corresponding to the modulation flows. An oscillation element, wherein a photoconductive semiconductor oscillates a terahertz wave .
前記グラフェンナノリボンは幅端の炭素原子が水素原子で終端されたアームチェア型グラフェンナノリボンであり、
前記光は紫外線であることを特徴とする請求項に記載の発振素子。
The graphene nanoribbon is an armchair graphene nanoribbon in which carbon atoms at the width ends are terminated with hydrogen atoms,
2. The oscillation element according to claim 1 , wherein the light is ultraviolet light.
前記紫外線は直線偏光しており、前記グラフェンナノリボンの長手方向に垂直であって且つ前記グラフェンナノリボンの幅方向に垂直偏光されて照射されたことを特徴とする請求項に記載の発振素子。 3. The oscillation device according to claim 2 , wherein the ultraviolet light is linearly polarized, and is irradiated while being vertically polarized in the longitudinal direction of the graphene nanoribbon and perpendicularly polarized in the width direction of the graphene nanoribbon . 請求項に記載する発振素子を備えたテラヘルツアンテナであって、
前記光伝導半導体は断面が矩形状または円形状で棒状、輪状、またはU字状をして一部直線状の部分を有したアンテナ形状をしており、
前記光伝導半導体の前記一部直線状の部分の表面に前記グラフェンナノリボンが近接配置されていることを特徴とするテラヘルツアンテナ。
A terahertz antenna comprising the oscillation element according to claim 3 ,
The photoconductive semiconductor has a rectangular or circular cross section, a rod shape, a ring shape, or an U shape, and has an antenna shape with a part of a straight line,
Terahertz antenna, wherein the graphene nanoribbons are arranged close to the surface of the part straight portions of the photoconductive semiconductor.
JP2015024271A 2015-02-10 2015-02-10 Terahertz oscillator Active JP6554641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015024271A JP6554641B2 (en) 2015-02-10 2015-02-10 Terahertz oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015024271A JP6554641B2 (en) 2015-02-10 2015-02-10 Terahertz oscillator

Publications (2)

Publication Number Publication Date
JP2016149398A JP2016149398A (en) 2016-08-18
JP6554641B2 true JP6554641B2 (en) 2019-08-07

Family

ID=56688472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015024271A Active JP6554641B2 (en) 2015-02-10 2015-02-10 Terahertz oscillator

Country Status (1)

Country Link
JP (1) JP6554641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718836A (en) * 2019-11-04 2020-01-21 华东师范大学重庆研究院 Terahertz generation device based on nano-bubble induction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109193316B (en) * 2018-10-11 2020-11-06 华北水利水电大学 Multi-polarization period terahertz wave parametric oscillator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086227A (en) * 2004-09-14 2006-03-30 Osaka Univ Optical switch
JP5675219B2 (en) * 2010-08-27 2015-02-25 キヤノン株式会社 Optical pulse generator, terahertz spectrometer and tomography device
CN103337772B (en) * 2013-07-03 2016-07-06 中国科学院上海微系统与信息技术研究所 THz wave based on graphene nanobelt produces device
JP6705672B2 (en) * 2016-03-17 2020-06-03 パイオニア株式会社 Electromagnetic wave measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718836A (en) * 2019-11-04 2020-01-21 华东师范大学重庆研究院 Terahertz generation device based on nano-bubble induction
CN110718836B (en) * 2019-11-04 2020-06-30 华东师范大学重庆研究院 Terahertz generation device based on nano-bubble induction

Also Published As

Publication number Publication date
JP2016149398A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
Marini et al. Theory of graphene saturable absorption
EP2602821B1 (en) Graphene-based nanodevices for terahertz electronics
Batrakov et al. Terahertz processes in carbon nanotubes
Perebeinos et al. Impact excitation by hot carriers in carbon nanotubes
Stewart et al. Photocurrents in nanotube junctions
Ganichev et al. Terahertz electric field driven electric currents and ratchet effects in graphene
Jin et al. Terahertz detectors based on carbon nanomaterials
JP6554641B2 (en) Terahertz oscillator
Ren et al. Terahertz dynamics of quantum-confined electrons in carbon nanomaterials
Ryzhii et al. Real-space-transfer mechanism of negative differential conductivity in gated graphene-phosphorene hybrid structures: Phenomenological heating model
Avchyan et al. High harmonic generation in triangular graphene quantum dots
Xiao Electric field effect on state energies and transition frequency of a strong-coupling polaron in an asymmetric quantum dot
Banadaki et al. Graphene nanostructures: modeling, simulation, and applications in electronics and photonics
Mikki et al. Mean-field electrodynamic theory of aligned carbon nanotube composites
Bai et al. Effect of electron-electron interactions on the Klein paradox in graphene-based double-barrier structures
Yue et al. Terahertz radiation from armchair carbon nanotube dipole antenna
Belonenko et al. Tunneling through the carbon nanotube/graphene interface exposed to a strong oscillating electric field
Ghosh et al. Effects of strain on various properties and applications on one-dimensional nano-/microstructures
Esin et al. Generating coherent phonon waves in narrow-band materials: a twisted bilayer graphene phaser
Cupo et al. Floquet graphene antidot lattices
Dompreh et al. Hypersound Absorption of Acoustic Phonons in a degenerate Carbon Nanotube
Dompreh et al. Amplification of Hypersound in Graphene with degenerate energy dispersion
Dragoman et al. Terahertz Bloch oscillations in periodic graphene structures
Zhang et al. Optical field terahertz amplitude modulation by graphene nanoribbons
Tantiwanichapan et al. One-dimensional carbon nanostructures for terahertz electron-beam radiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190523

R150 Certificate of patent or registration of utility model

Ref document number: 6554641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250