JP6539907B2 - Biological communication device, biological communication system - Google Patents

Biological communication device, biological communication system Download PDF

Info

Publication number
JP6539907B2
JP6539907B2 JP2014243802A JP2014243802A JP6539907B2 JP 6539907 B2 JP6539907 B2 JP 6539907B2 JP 2014243802 A JP2014243802 A JP 2014243802A JP 2014243802 A JP2014243802 A JP 2014243802A JP 6539907 B2 JP6539907 B2 JP 6539907B2
Authority
JP
Japan
Prior art keywords
human body
biological
body communication
communication
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014243802A
Other languages
Japanese (ja)
Other versions
JP2016111381A (en
Inventor
建青 王
建青 王
巧 加藤
巧 加藤
安在大祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2014243802A priority Critical patent/JP6539907B2/en
Publication of JP2016111381A publication Critical patent/JP2016111381A/en
Application granted granted Critical
Publication of JP6539907B2 publication Critical patent/JP6539907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は、一対(2枚)の電極を、生体信号検出と人体通信による送信に共用させ、心電図などの生体信号を検出し、リアルタイムで人体を経由して伝送する生体通信装置、生体通信システムに関するものである。 The present invention shares a pair of (two) electrodes for transmission by biological signal detection and human body communication, detects a biological signal such as an electrocardiogram, and transmits it via the human body in real time, a biological communication system It is about

生体通信システムは、生体信号検出センサと人体を通信路とする人体通信技術を組み合わせて、心電図や筋電位や血圧などの生体信号を検出し、人体を通して伝送するという手法であり、ヘルスケアのための生体信号リアルタイムモニターリング技術として期待される。人体通信技術による生体信号の伝送は、人体自身を経由して行うため、利便性が高い上に、外部への電磁放射が極めて低く、高秘匿性を有し、電磁環境にも優しい。   The biocommunication system is a method of detecting biosignals such as an electrocardiogram, myoelectric potential and blood pressure by combining a biosignal detection sensor and a human body communication technology using a human body as a communication channel, and transmitting it through the human body. Is expected as a biosignal real-time monitoring technology. The transmission of biological signals by human body communication technology is highly convenient because it is performed via the human body itself, has extremely low electromagnetic radiation to the outside, has high secrecy, and is friendly to the electromagnetic environment.

従来の生体通信システム102の構成を図11に示す。生体通信システム102は、生体通信システム104と人体通信受信部140からなる。生体通信システム104は、生体信号検出部120と人体通信送信部130からなる。生体信号検出部120には、人体に貼付する検出用電極(一対、検出電極Aの112、検出電極Bの114)および検出用グラウンド電極116から検出された生体信号が入力される。生体信号検出部120から人体通信送信部130に生体信号が送られ、人体通信送信部130から人体に貼付してある人体通信受信部140へ、人体通信技術即ち人体Hを通して生体信号が通信される(以下、人体通信)。この際、生体信号検出用電極(一対112、114の2枚)および検出用グラウンド電極116に加え、人体通信をするために、送信電極A(送信部信号用)118, 送信電極B(送信部グラウンド用)119の2枚の電極が必要である。また、通信方式としては、一般に狭帯域の変調方式を使用している。
よって、従来の生体通信システム102には、検出用電極3枚と、通信用電極2枚、合計5枚の電極が必要である。
The configuration of a conventional biological communication system 102 is shown in FIG. The biological communication system 102 includes a biological communication system 104 and a human body communication reception unit 140. The biological communication system 104 includes a biological signal detection unit 120 and a human body communication transmission unit 130. The biological signal detected by the detection electrode (pair, 112 of detection electrode A, 114 of detection electrode B) and detection ground electrode 116 to be attached to the human body is input to the biological signal detection unit 120. A biological signal is sent from the biological signal detection unit 120 to the human body communication transmission unit 130, and from the human body communication transmission unit 130 to the human body communication reception unit 140 affixed to the human body, the biological signal is communicated through human body communication technology, that is, the human body H (Hereafter, human body communication). At this time, in addition to the biosignal detection electrodes (two of the pair 112 and 114) and the detection ground electrodes 116, the transmitter electrode A (for transmitter signal) 118, the transmitter electrode B (transmitter) for human body communication. For ground) Two electrodes of 119 are required. In addition, as a communication method, a narrow band modulation method is generally used.
Therefore, the conventional biological communication system 102 requires three electrodes for detection and two electrodes for communication, for a total of five electrodes.

送信電極Aは生体信号検出用電極A、送信電極Bはグラウンド電極と共用し,生体信号検出用電極Bを含め、計3枚の電極とすることもできる(特許文献1)。検出用電極と通信用電極が共用されるため、生体信号検出部と人体通信送信部を切り替える必要が生じる。この切り替えは、検出部・通信部のそれぞれの間に、電気的スイッチ回路を設けるか、互いに通過帯域の異なるフィルタを導入するかで、対応しなければならない。これは信号が干渉するからである。 The transmitting electrode A is shared with the biological signal detecting electrode A and the transmitting electrode B with the ground electrode, and can be a total of three electrodes including the biological signal detecting electrode B (Patent Document 1). Since the detection electrode and the communication electrode are shared, it is necessary to switch between the biological signal detection unit and the human body communication transmission unit. This switching must be dealt with by providing an electrical switch circuit between each of the detection unit and the communication unit, or by introducing filters having different pass bands. This is because the signals interfere.

特開2011−224085公報JP 2011-224085 A

本発明は、生体通信システムの人体に貼付する5枚または3枚の電極を削減し、人体の複数の生体信号を計測する場合などの、電極の貼付の作業性を改善することと、生体信号検出部と人体通信送信部の切り替えを、電気的スイッチ回路やフィルタを用いないで改善し、小型簡易化することある。併せて、小型化することで、被験者の負担を減らし、コストダウンを図ることが第1の課題である。
また、広帯域インパルスラジオ(IR)変調方式を用いて、人体を通して生体信号を伝送することで、信号が外部への干渉が小さく、外部からの干渉やノイズに強いすることが第2の課題である。
The present invention reduces the number of electrodes attached to the human body of a biological communication system to five or three electrodes, and improves the workability of attaching electrodes, such as when measuring a plurality of biological signals of the human body, and a biological signal Switching between the detection unit and the human body communication transmission unit may be improved without using an electrical switch circuit or a filter, and may be miniaturized and simplified. At the same time, the first task is to reduce the burden on the subject and reduce the cost by downsizing.
In addition, by transmitting a biosignal through the human body using a wide band impulse radio (IR) modulation method, the second problem is that the signal has less interference to the outside and is resistant to external interference and noise. .

以上の課題を解決するために、発明1は、人体に貼付する一対の電極と、生体通信装置と、人体通信受信部と、を有する生体通信システムにおいて、生体通信装置は、電極からの生体信号を検出する生体信号検出部と、生体信号を信号化して人体通信を行うAD変換部及び人体通信受信部とを有し、生体信号検出時と人体通信時に時分割方式にて動作し、一方の電極は、生体信号検出時に信号電極、人体通信時に信号電極として動作、他方の電極は、生体信号検出時に信号電極、人体通信時にグラウンド電極として動作を行う人体通信送信部を有することを特徴とする生体通信システムである。
発明2は、人体通信はインパルスラジオ方式であることを特徴とする発明1に記載する生体通信システムである。
発明3は、生体信号検出部の入力側と人体通信送信部の送信側の間に、コンデンサを有し容量結合することを特徴とする発明1または発明2に記載する生体通信装置である。
発明4は、時分割方式は、生体信号をAD変換する間に人体通信を行う人体通信送信部を有することを特徴とする発明1乃至発明3の何れかに記載する生体通信装置である。
In order to solve the above problems, according to the invention 1, in a biological communication system having a pair of electrodes attached to a human body, a biological communication device, and a human body communication receiving unit, the biological communication device comprises a biological signal from the electrodes And an AD conversion unit and a human body communication reception unit for performing human body communication by converting the biological signal into a signal, and operating according to a time division system at the time of biological signal detection and human body communication, The electrode is characterized in that it has a human body communication transmitter that operates as a signal electrode when detecting a biological signal and as a signal electrode during human body communication, and operates as a signal electrode when detecting a biological signal and as a ground electrode when human body communication. It is a biological communication system.
An invention 2 is the biological communication system described in the invention 1 characterized in that the human body communication is an impulse radio method.
A third aspect of the present invention is the biological communication device according to the first or the second aspect, wherein a capacitor is provided between the input side of the biological signal detection unit and the transmission side of the human body communication transmission unit to perform capacitive coupling.
A fourth aspect of the present invention is the biological communication apparatus according to any one of the first to third aspects, wherein the time division system includes a human body communication transmission unit that performs human body communication while AD converting a biological signal.

発明1によれば、人体の1個所に2枚の電極を貼付し、生体信号検出時と人体通信時に時分割方式への人体通信をおこなうことで、電極を共用する。よって、よって、使用していた電極の枚数を、従来の3〜5枚から、第1実施形態の2枚へと削減できるので、電極部を簡素化し小型化できる。小型化により、被験者の負担を減らすことができると共に、計測者の人体への電極の貼付作業が簡素化できる。また、生体通信システムの簡素化によりコストダウンもできる。
発明2によれば、人体通信に広帯域のインパルスラジオ方式高速通信を用いるので、人体通信を高速に行うことができる生体通信システムにできる。インパルスラジオ広帯域高速通信方式を導入することで、生体信号検出電極と人体通信送信電極を電気的スイッチやフィルタなしで時分割での共用が可能となり、システム構成の簡易化に寄与する。また、広帯域通信の特徴となる耐干渉性と高秘匿性を生かすこともでき、ノイズに強く、通信品質が向上できる。
発明3によれば、生体信号検出部の入力側と人体通信送信部の送信側の間に、コンデンサを有し容量結合するので、生体信号検出時と人体通信時の電極共用の課題を解決することができる。よって、電気的スイッチ回路やフィルタを用いる必要がなくなる。
つまり、人体通信が動作するときの2枚の電極は、人体通信時の信号線とグラウンドにそれぞれ接続される。一方、生体信号検出時には、共に検出回路の信号線に接続する。この信号とグラウンド線との電位が異なる問題を、コンデンサを入れることで解消する
発明4によれば、時分割方式は、生体信号をAD変換部でAD変換する間に人体通信を行う。AD変換する間人体通信を行うことで、電気的スイッチやフィルタによる信号分離の必要がなくなり、共用電極での人体通信をより確実に行うことができる。
According to the first aspect, two electrodes are attached to one place of a human body, and the electrodes are shared by performing human body communication to a time division system at the time of biological signal detection and human body communication. Therefore, the number of electrodes used can be reduced from three to five in the prior art to two in the first embodiment, so that the electrode portion can be simplified and miniaturized. The downsizing can reduce the burden on the subject and simplify the work of attaching the electrodes to the human body of the measurer. In addition, cost reduction can be achieved by simplifying the biological communication system.
According to the second aspect of the invention, since broadband impulse radio high-speed communication is used for human body communication, it is possible to provide a biological communication system capable of performing human body communication at high speed. By introducing the impulse radio broadband high-speed communication method, it becomes possible to share the biological signal detection electrode and the human body communication transmission electrode in a time division manner without an electrical switch or filter, which contributes to simplification of the system configuration. In addition, interference resistance and high secrecy, which are the characteristics of broadband communication, can also be utilized, so that the communication quality can be improved against noise.
According to the invention 3, since the capacitor is provided between the input side of the biological signal detecting unit and the transmitting side of the human body communication transmitting unit and capacitively coupled, the problem of electrode sharing at the time of biological signal detection and human body communication is solved. be able to. Therefore, it is not necessary to use an electrical switch circuit or a filter.
That is, the two electrodes when human body communication operates are respectively connected to the signal line and the ground at the time of human body communication. On the other hand, when detecting a biological signal, both are connected to the signal line of the detection circuit. According to the fourth aspect of the present invention, the problem that the potential of this signal and the ground line are different is eliminated by inserting a capacitor. By performing human body communication during AD conversion, it is possible to eliminate the need for signal separation by an electrical switch or a filter, and to more reliably perform human body communication at the shared electrode.

本発明の第1実施形態の生体通信システム2を人体Hに取り付けた状態を示す。The state which attached the biocommunication system 2 of 1st Embodiment of this invention to the human body H is shown. 第1実施形態の生体通信システム2の構成を示す。1 shows a configuration of a biological communication system 2 of a first embodiment. 人体Hと第1実施形態の一対の電極10と生体通信装置4との関係を示す。The relationship between the human body H, a pair of electrodes 10 of 1st Embodiment, and the biological communication apparatus 4 is shown. 生体信号検出部20の構成を示す。2 shows a configuration of a biological signal detection unit 20. 人体通信送信部30の構成を示す。6 shows a configuration of a human body communication transmission unit 30. 人体通信受信部40の構成を示す。7 shows a configuration of a human body communication reception unit 40. 信号検出電極と人体通信電極の共用を可能とする、生体信号検出と人体通信を時分割で行うための概念図である。It is a conceptual diagram for performing biosignal detection and human-body communication by time division which enables shared use of a signal detection electrode and a human-body communication electrode. 発明により取得した人体心電図信号と市販心電図計より取得した心電図の心拍間隔RRIの相関特性である。It is a correlation characteristic of the heart rate interval RRI of the human body electrocardiogram acquired by invention and the electrocardiogram acquired from the commercially available electrocardiograph. 本発明により取得した人体心電図信号と市販心電図計より取得した心電図の心拍間隔RRIのパワースペクトルの比較である。It is a comparison of the power spectrum of heart rate interval RRI of the human body electrocardiogram acquired by this invention, and the electrocardiogram acquired from the commercially available electrocardiograph. 本発明の第2実施形態の概略を示す図であるIt is a figure which shows the outline of 2nd Embodiment of this invention. 従来の生体通信システムの構成を示す。1 shows the configuration of a conventional biological communication system.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be made without departing from the scope of the invention.

(第1実施形態)
図1に、本発明の第1実施形態の生体通信システム2を人体に取り付けた状態を示す。一対の電極10は、人体の診断をしたい部位の表面に貼付される。人体の部位は、頭部に貼付されて脳波、眼球に貼付されて眼球電図、心臓部に貼付されて心電図、腕等に貼付されて血糖や血圧などの生体信号が測定され診断に用いられる。
生体通信装置4に一対の電極10の測定値が集められる。生体通信装置4から人体通信受信部40へ人体通信信号として送信される。生体通信装置4および人体通信受信部40は、主に人体に取り付けられる。
人体に取り付けられた一対の電極10(生体センサ)で日常の生体信号を検出し、生体通信装置4へ集約され、人体を通して、身体に取り付けられた人体通信受信部40に送られる。この人体通信受信部40は、スマートフォンやタブレットに装着されるものとし、人体通信受信部40で受信された生体信号は、そのままスマートフォンやタブレットで表示・解析され、日常のヘルスケアに用いられる。また、必要に応じて、スマートフォンやタブレットの無線機能により、自宅PCや病院に送られる。
First Embodiment
FIG. 1 shows a state in which the biological communication system 2 of the first embodiment of the present invention is attached to a human body. The pair of electrodes 10 is attached to the surface of the site where it is desired to diagnose the human body. The part of the human body is attached to the head and applied to the brain wave, the eyeball, the electrooculogram, and the heart, attached to the electrocardiogram, the arm, etc. and biological signals such as blood glucose and blood pressure are measured and used for diagnosis. .
The measured values of the pair of electrodes 10 are collected in the biological communication device 4. It is transmitted from the biological communication device 4 to the human body communication receiving unit 40 as a human body communication signal. The biological communication device 4 and the human body communication reception unit 40 are mainly attached to the human body.
A daily living body signal is detected by a pair of electrodes 10 (biosensors) attached to the human body, collected in the biocommunication device 4, and sent to the human body communication receiving unit 40 attached to the body through the human body. The human body communication reception unit 40 is attached to a smartphone or a tablet, and the biological signal received by the human body communication reception unit 40 is displayed and analyzed as it is on the smartphone or the tablet and used for daily health care. Also, if necessary, it can be sent to a home PC or a hospital by the wireless function of a smartphone or tablet.

図2に、第1実施形態の生体通信システム2の構成を示す。生体通信システム2は、一対の電極10、生体通信装置4、および人体通信受信部40を有する。一対の電極10は、第1電極12と第2電極14から成る。生体通信装置4は、生体信号検出部20、人体通信送信部30を有する。生体信号は、人体通信送信部30から人体通信受信部40へ送信される。 FIG. 2 shows the configuration of the biological communication system 2 of the first embodiment. The biological communication system 2 includes a pair of electrodes 10, a biological communication device 4, and a human body communication reception unit 40. The pair of electrodes 10 comprises a first electrode 12 and a second electrode 14. The biological communication device 4 includes a biological signal detection unit 20 and a human body communication transmission unit 30. The biological signal is transmitted from the human body communication transmission unit 30 to the human body communication reception unit 40.

図3に、人体Hと第1実施形態の一対の電極10と生体通信装置4との関係を示す。
人体Hの表面に第1電極12と第2電極14が貼付される。第1電極12と第2電極14で検出された生体信号(電圧などのアナログ信号)は、生体通信装置4の生体信号検出部20へ送られる。生体信号検出部20では、2つのアナログ信号は1つにまとめ、1つの生体信号(アナログ)を、アナログ・ディジタル変換器(以下、A/D変換器)50でディジタル信号に変換され人体通信送信部30へ送られる。
FIG. 3 shows the relationship between the human body H, the pair of electrodes 10 of the first embodiment, and the biological communication device 4.
The first electrode 12 and the second electrode 14 are attached to the surface of the human body H. The biological signal (analog signal such as voltage) detected by the first electrode 12 and the second electrode 14 is sent to the biological signal detection unit 20 of the biological communication device 4. In the biological signal detection unit 20, two analog signals are integrated into one, and one biological signal (analog) is converted into a digital signal by an analog / digital converter (hereinafter, A / D converter) 50 and human body communication transmission It is sent to section 30.

図4に示す様に生体信号検出部20は、低域通過フィルタ22、高域通過フィルタ24、帯域遮断フィルタ26、差動増幅回路28により構成される。低域通過フィルタ22は、人体通信信号の侵入や数百Hz 以下に集中する生体信号の抽出に用いられ、高域通過フィルタ24は、ドリフトノイズの侵入を防ぐものである。また、帯域遮断フィルタ26は、50/60Hz のコモンモードノイズとして重畳される商用電源周波数を遮断するものである。生体信号は、差動増幅回路28により、A/D変換器50の入力範囲まで増幅される。 As shown in FIG. 4, the biological signal detection unit 20 includes a low pass filter 22, a high pass filter 24, a band cut filter 26, and a differential amplifier circuit 28. The low pass filter 22 is used for intrusion of a human body communication signal or extraction of a biological signal concentrated on several hundred Hz or less, and the high pass filter 24 prevents entry of drift noise. Further, the band cutoff filter 26 is for blocking a commercial power frequency superimposed as 50/60 Hz common mode noise. The biological signal is amplified to the input range of the A / D converter 50 by the differential amplifier circuit 28.

差動増幅回路28により増幅された生体信号は、生体通信装置4のA/D変換器50に入力され、fs=500Hz以上のサンプリング周波数(T=2ms以下のサンプリング周期)、n=10bit以上の量子化で、ディジタル信号に変換され,シリアルデータとして人体通信送信部30に入力される。 The biological signal amplified by the differential amplifier circuit 28 is input to the A / D converter 50 of the biological communication device 4, and a sampling frequency of fs = 500 Hz or more (T = 2 ms or less sampling period), n = 10 bits or more It is converted into a digital signal by quantization and is input to the human body communication transmission unit 30 as serial data.

人体通信送信部の構成図を図5に示す。人体通信送信部30は、ディジタル生体データ32、OOK/PPM IR変調機34、スペクトル成形帯域通過フィルタ36、パルス発生器38からなる。人体通信送信部30においては、パルス発生器38から中心周波数f0 [MHz]、帯域B[MHz]のパルス信号を発生させる。このパルス信号を用いて、A/D変換器50で生成された、2値のディジタル生体信号データに対し、OOK/PPM IR変調器34において、OOK(On-Off Keying) またPPM(Pulse Position Modulation)のインパルスラジオ変調を行う。つぎに、スペクトル整形帯域通過フィルタ36で、所要帯域に応じてパルス信号に整形された後、インパルスラジオ信号として送信電極から送信される。このとき、中心周波数f0は人体通信に適する1MHz〜60MHzの範囲内のものとする。また、帯域Bは1Mbps以上の高速伝送を達成させることと、一定の信号エネルギーを広い帯域に拡散し、各周波数での信号レベルを小さく、ライセンス不要の微弱電波法を満たすように、できるだけ広く(10MHz以上)確保する。 A configuration diagram of the human body communication transmission unit is shown in FIG. The human body communication transmitter unit 30 comprises digital biometric data 32, an OOK / PPM IR modulator 34, a spectrum shaping band pass filter 36, and a pulse generator 38. In the human body communication transmission unit 30, the pulse generator 38 generates a pulse signal of the center frequency f 0 [MHz] and the band B [MHz]. The OOK / PPM IR modulator 34 performs OOK (On-Off Keying) and PPM (Pulse Position Modulation) on binary digital biomedical signal data generated by the A / D converter 50 using this pulse signal. Perform impulse radio modulation). Next, the signal is shaped into a pulse signal according to the required band by the spectrum shaping band-pass filter 36 and then transmitted from the transmitting electrode as an impulse radio signal. At this time, the center frequency f 0 is in the range of 1 MHz to 60 MHz suitable for human body communication. In addition, band B achieves high-speed transmission of 1 Mbps or more, spreads a certain amount of signal energy to a wide band, reduces the signal level at each frequency, and is as wide as possible so as to satisfy license-less weak radio law 10 MHz or more).

図6に、人体通信受信部40の構成を示す。人体通信受信部40は、帯域通過フィルタ42、自動利得制御増幅器44、およびIR復調器46からなる。
これは受信電極とともに身体に取り付けられたスマートフォンやタブレット等に装着される。受信電極で受信された生体信号は、帯域通過フィルタ42で抽出され、自動利得制御増幅器44で適正レベルまで増幅された後、IR復調器46において包絡線検波またエネルギー検波等で復調される。復調された生体信号は、スマートフォンやタブレット等のUSB端子から入力され、そこで表示・解析されたり、またスマートフォンやタブレットの無線機能を用いて自宅PCや病院等に送られたり、健康状態のモニターリングや健康管理に用いられる。
FIG. 6 shows the configuration of the human body communication receiving unit 40. The human body communication receiver 40 comprises a band pass filter 42, an automatic gain control amplifier 44, and an IR demodulator 46.
This is attached to a smartphone, a tablet or the like attached to the body together with the receiving electrode. The biological signal received by the receiving electrode is extracted by the band pass filter 42, amplified to an appropriate level by the automatic gain control amplifier 44, and then demodulated by envelope detection or energy detection in the IR demodulator 46. The demodulated biological signal is input from a USB terminal such as a smartphone or tablet, displayed or analyzed there, sent to a home PC or hospital using the wireless function of the smartphone or tablet, or monitored for health status And used for health care.

(生体信号検出電極と人体通信の送信電極の共用)
図7に、信号検出電極と人体通信電極の共用を可能とする、生体信号検出と人体通信を時分割で行うための概念図を示す。
本来、生体信号検出電極と人体通信の送信電極は、それぞれ別のものを用いるが、生体信号検出電極と人体通信の送信電極を共用化して、生体通信システム1の小型化することで人体への貼付作業の低減や電極を貼付された人の負荷の低減を図る。
これを実現させるために、図3に示すように、一対(2枚)の電極を生体信号検出時には両枚ともに信号電極として動作させ、人体通信時にはそれぞれ信号電極とグラウンド電極として動作させる。その切り替えは時分割で行う。
生体信号の変動周波数が一般に数百Hz以下であることを考慮し、例えば、生体信号fsを、500Hz以上とすれば、このサンプリング周波数(サンプリング周期T=2ms以下のサンプリング間隔)で検出する。図7では、上図は、横軸を時間、縦軸を生体信号(電圧:アナログ信号)で生体信号を示す。サンプリング周期T(2ms)ごとに、生体信号を黒丸60の点(時間)で計測する。
それをアナログ・ディジタル(AD)変換し、ディジタル信号(n=10ビット以上)を、T=2ms以下のサンプリング時間間隔の間に伝送する。これを図7の下図に模式的に示す。生体信号を黒丸60の点(時間)で計測後、AD変換所用時間TADの間にAD変換する。変換されたディジタル信号は、人体通信所用時間THBCをかけて、人体通信送信部30から人体通信受信部へ人体通信される。即ち、サンプリング周期T(2ms以下)の間に、nビットのディジタル生体信号データを送信する時分割方式を用いる。一つのアナログサンプルデータをnビットのディジタルデータにAD変換するための所要時間をTADとすると、人体通信所用時間THBCは、T−TADの間に、nビットのデータを伝送できるように高速な伝送速度fbを設定する必要がある。
ここで、高速な伝送速度fbは、インパルスラジオ方式で実現する。なお、生体信号の変動周波数が一般に数百Hz以下であることを考えると、高速な伝送速度fbは、1Mb/s(以下、Mbps)以上あれば十分である。
また、インパルスラジオ方式を採用することで、伝送信号が数十MHzの広帯域に拡散されて伝送される。このとき、ある特定の周波数に外部からの干渉を受けても、その他の周波数がまだ通信できるため、外部からの干渉には強い。
よって、使用していた電極の枚数を、従来の3〜5枚から、第1実施形態の2枚へと削減できるので、電極部を簡素化し小型化できる。小型化により、被験者の負担を減らすことができると共に、計測者の人体への電極の貼付作業が簡素化できる。また、生体通信システムの簡素化によりコストダウンもできる。
(Common use of biological signal detection electrode and transmitting electrode of human body communication)
FIG. 7 is a conceptual diagram for performing biological signal detection and human body communication in a time-division manner, which enables sharing of the signal detection electrode and the human body communication electrode.
Essentially, different biomedical signal detection electrodes and human body communication transmission electrodes are used. However, by sharing the biomedical signal detection electrodes and the human body communication transmission electrodes, the size of the biological communication system 1 can be reduced to the human body. Reduce the work of sticking and reduce the load on the person who attached the electrode.
In order to realize this, as shown in FIG. 3, a pair of (two) electrodes are operated as signal electrodes at the time of biological signal detection, and are operated as a signal electrode and a ground electrode at the time of human body communication. The switching is done by time division.
Considering that the fluctuation frequency of the biological signal is generally several hundred Hz or less, for example, if the biological signal fs is 500 Hz or more, detection is performed at this sampling frequency (sampling interval of sampling cycle T = 2 ms or less). In FIG. 7, the upper diagram shows the biosignal with time on the abscissa and biosignal (voltage: analog signal) on the ordinate. The biological signal is measured at the point (time) of the black circle 60 every sampling period T (2 ms).
It is analog-to-digital (AD) converted and digital signals (n = 10 bits or more) are transmitted during sampling time intervals of T = 2 ms or less. This is schematically shown in the lower part of FIG. After measuring the biological signal at the point (time) of the black circle 60, AD conversion is performed during the time TAD for AD conversion. The converted digital signal is subjected to human-body communication from the human-body communication transmitter 30 to the human-body communication receiver from the human-body communication station time THBC. That is, a time division system for transmitting n-bit digital biological signal data during the sampling period T (2 ms or less) is used. Assuming that the time required for AD conversion of one analog sample data to n-bit digital data is TAD, human-body communication-use time THBC performs high-speed transmission so that n-bit data can be transmitted during T-TAD. It is necessary to set the speed fb.
Here, the high-speed transmission rate fb is realized by an impulse radio method. In addition, considering that the fluctuation frequency of the biological signal is generally several hundred Hz or less, the high-speed transmission rate fb is sufficient if it is 1 Mb / s (hereinafter, Mbps) or more.
Moreover, by adopting the impulse radio system, the transmission signal is spread and transmitted in a wide band of several tens of MHz. At this time, even if external interference is applied to a specific frequency, other frequencies can still be communicated, and thus the external interference is strong.
Therefore, since the number of electrodes used can be reduced from three to five in the prior art to two in the first embodiment, the electrode portion can be simplified and miniaturized. The downsizing can reduce the burden on the subject and simplify the work of attaching the electrodes to the human body of the measurer. In addition, cost reduction can be achieved by simplifying the biological communication system.

また、人体通信が動作するときの2枚の電極は、人体通信送信部30の信号線とグラウンドにそれぞれ接続される。一方、生体信号検出時には、共に生体信号検出部20の信号線に接続する。しかし、人体通信送信部のグラウンドと生体信号検出部の信号線とは電位が異なるため、両者を直接に接続できない。
この生体信号検出時と人体通信時の電極共用の課題、即ち、生体信号検出時には、検出部の信号線、また人体通信時はグラウンド線との電位が異なる問題を解消するために、図3に示すようにコンデンサ52による容量結合での接続方式を採用する。コンデンサ52の導入により、両者は直流上で分離されるため、電位の異なる問題がなくなる。
Further, two electrodes when human body communication is operated are respectively connected to the signal line of the human body communication transmission unit 30 and the ground. On the other hand, at the time of biological signal detection, both are connected to the signal line of the biological signal detector 20. However, since the ground of the human body communication transmission unit and the signal line of the biological signal detection unit have different potentials, both can not be connected directly.
In order to solve the problem of the potential difference between the signal line of the detection unit at the time of biological signal detection, that is, the signal line of the detection unit at the time of biological signal detection, and the ground line at the time of human communication, As shown, a connection method of capacitive coupling by a capacitor 52 is adopted. The introduction of the capacitor 52 separates the two in direct current, thereby eliminating the problem of different potentials.

(検証)
図8は、第1実施形態で検出・伝送された心電図信号から求めた心拍間隔(RRI)と従来品の市販の無線型心電図計を用いて、同時に心拍間隔を計測した相関関係を示す。横軸が第1実施形態、縦軸が従来の例によるものである。この計測結果は原点を通る1次関数で係数は1と見なせる。よって、同じデータを計測でき、第1実施形態は、電極を2枚として小型化したにもかかわらず、従来品と同じ性能を有する。
(Verification)
FIG. 8 shows the correlation between the heartbeat interval (RRI) determined from the electrocardiogram signal detected and transmitted in the first embodiment and the heartbeat interval at the same time using a conventional radio-type electrocardiogram on the market. The horizontal axis corresponds to the first embodiment, and the vertical axis corresponds to the conventional example. The measurement result is a linear function passing through the origin and the coefficient can be regarded as 1. Therefore, the same data can be measured, and the first embodiment has the same performance as that of the conventional product despite the miniaturization of two electrodes.

図9は、心拍間隔の時系列データをフーリエ変換して求めたパワースペクトル特性の比較結果である。第1実施形態による計測結果は、周波数に対してピークを含め従来品の計測結果と良い一致をしている。
図8および図9から、第1実施形態により取得した心電図情報は、良好な信頼性を有し、ヘルスケアに十分に利用可能であるといえる。
FIG. 9 is a comparison result of power spectrum characteristics obtained by Fourier-transforming time series data of heartbeat intervals. The measurement result according to the first embodiment is in good agreement with the measurement result of the conventional product including the peak with respect to the frequency.
From FIGS. 8 and 9, it can be said that the electrocardiogram information acquired according to the first embodiment has good reliability and can be sufficiently used for health care.

(第2実施形態)
図10に本発明の第2実施形態の概略図を示す。自動車運転時の生体信号を、運転者の身体に取り付けられた一対の電極(生体センサ)10で検出し、運転者の身体を通して、例えばハンドル部に埋め込まれた自動車の人体通信受信部(制御部)40に送り、運転者の健康状態をリアルタイムでモニターリングする。このとき、生体通信装置4(生体信号検出部20、AD変換部50、人体通信送信部30)は、第1実施形態と同じである。人体通信受信部40は、ハンドル部に埋め込まれた受信電極により生体信号を受信し、第1実施形態と同じ受信部で復調した後、そのまま自動車制御部で解析され、運転者の健康状態の変化に応じて、警告や自動運転制御を行う。
Second Embodiment
FIG. 10 shows a schematic view of a second embodiment of the present invention. A biosignal at the time of driving a car is detected by a pair of electrodes (biosensors) 10 attached to the driver's body, and through the driver's body, for example, a human body communication receiver (control unit) of the car embedded in the steering wheel 40) to monitor the driver's health in real time. At this time, the biological communication device 4 (the biological signal detection unit 20, the AD conversion unit 50, the human body communication transmission unit 30) is the same as that in the first embodiment. The human body communication receiving unit 40 receives the biosignal by the receiving electrode embedded in the handle unit, demodulates it by the same receiving unit as the first embodiment, and then analyzes it as it is by the vehicle control unit, and changes the driver's health condition Depending on the situation, perform warning and automatic operation control.

以上、第1実施形態および第2実施形態より、以下の発明と効果がある。
発明1は、人体に貼付する一対の電極10と、生体通信装置4と、人体通信受信部40と、を有する生体通信システム2において、生体通信装置4は、電極10からの生体信号を検出する生体信号検出部20と、生体信号を信号化して人体通信を行うAD変換部50及び人体通信受信部40とを有し、生体信号検出時と人体通信時に時分割方式にて動作し、一方の電極10は、生体信号検出時に信号電極、人体通信時に信号電極として動作、他方の電極10は、生体信号検出時に信号電極、人体通信時にグラウンド電極として動作を行う人体通信送信部40を有することを特徴とする生体通信システム2である。
発明1によれば、人体の1個所に2枚の電極を貼付し、生体信号検出時と人体通信時に時分割方式への人体通信をおこなうことで、電極を共用する。よって、使用していた電極の枚数を、従来の3〜5枚から、第1実施形態および第2実施形態の2枚へと削減できるので、電極部を簡素化し小型化できる。小型化により、被験者の負担を減らすことができると共に、計測者の人体への電極の貼付作業が簡素化できる。また、生体通信システムの簡素化によりコストダウンもできる。
発明2は、人体通信はインパルスラジオ方式であることを特徴とする発明1に記載する生体通信システム2である。
発明2によれば、人体通信に広帯域のインパルスラジオ方式高速通信を用いるので、人体通信を高速に行うことができる生体通信システムにできる。インパルスラジオ広帯域高速通信方式を導入することで、生体信号検出電極と人体通信送信電極を電気的スイッチやフィルタなしで時分割での共用が可能となり、システム構成の簡易化に寄与する。また、広帯域通信の特徴となる耐干渉性と高秘匿性を生かすこともでき、ノイズに強く、通信品質が向上できる。
発明3は、生体信号検出部20の入力側と人体通信送信部30の送信側の間に、コンデンサ52を有することを特徴とする発明1または発明2に記載する生体通信装置である。
発明3によれば、生体信号検出部の入力側と人体通信送信部の送信側の間に、コンデンサを有し容量結合するので、生体信号検出時と人体通信時の電極共用の課題を解決することができる。よって、電気的スイッチ回路やフィルタを用いる必要がなくなる。
つまり、人体通信が動作するときの2枚の電極は、人体通信時の信号線とグラウンドにそれぞれ接続される。一方、生体信号検出時には、共に検出回路の信号線に接続する。この信号とグラウンド線との電位が異なる問題を、コンデンサを入れることで解消する
発明4は、時分割方式は、生体信号をAD変換する間に人体通信を行う人体通信送信部を有することを特徴とする発明1乃至発明3の何れかに記載する生体通信装置である。
発明4によれば、時分割方式は、生体信号をAD変換部でAD変換する間に人体通信を行う。AD変換する間人体通信を行うことで、電気的スイッチやフィルタによる信号分離の必要がなくなり、共用電極での人体通信をより確実に行うことができる。
As described above, the following invention and advantageous effects can be obtained from the first embodiment and the second embodiment.
Invention 1 detects a biological signal from electrode 10 in a biological communication system 2 including a pair of electrodes 10 to be attached to a human body, a biological communication device 4 and a human body communication receiving unit 40. It has a biological signal detection unit 20, an AD conversion unit 50 that performs human body communication by converting a biological signal into a signal, and a human body communication reception unit 40, and operates according to a time division system at the time of biological signal detection and human body communication The electrode 10 has a human body communication transmitter 40 that operates as a signal electrode when detecting a biological signal and as a signal electrode during human body communication, and the other electrode 10 as a signal electrode when detecting a biological signal and as a ground electrode when human body communication. It is a biological communication system 2 characterized by the present invention.
According to the first aspect, two electrodes are attached to one place of a human body, and the electrodes are shared by performing human body communication to a time division system at the time of biological signal detection and human body communication. Therefore, since the number of electrodes used can be reduced from three to five in the prior art to two in the first embodiment and the second embodiment, the electrode part can be simplified and miniaturized. The downsizing can reduce the burden on the subject and simplify the work of attaching the electrodes to the human body of the measurer. In addition, cost reduction can be achieved by simplifying the biological communication system.
The invention 2 is the biological communication system 2 described in the invention 1 characterized in that the human body communication is an impulse radio system.
According to the second aspect of the invention, since broadband impulse radio high-speed communication is used for human body communication, it is possible to provide a biological communication system capable of performing human body communication at high speed. By introducing the impulse radio broadband high-speed communication method, it becomes possible to share the biological signal detection electrode and the human body communication transmission electrode in a time division manner without an electrical switch or filter, which contributes to simplification of the system configuration. In addition, interference resistance and high secrecy, which are the characteristics of broadband communication, can also be utilized, so that the communication quality can be improved against noise.
The invention 3 is the biological communication apparatus described in the invention 1 or the invention 2 characterized in that a capacitor 52 is provided between the input side of the biological signal detection unit 20 and the transmission side of the human body communication transmission unit 30.
According to the invention 3, since the capacitor is provided between the input side of the biological signal detecting unit and the transmitting side of the human body communication transmitting unit and capacitively coupled, the problem of electrode sharing at the time of biological signal detection and human body communication is solved. be able to. Therefore, it is not necessary to use an electrical switch circuit or a filter.
That is, the two electrodes when human body communication operates are respectively connected to the signal line and the ground at the time of human body communication. On the other hand, when detecting a biological signal, both are connected to the signal line of the detection circuit. Invention 4 solves the problem that the potential of this signal and the ground line is different by inserting a capacitor. The time division system is characterized by having a human body communication transmitter that performs human body communication while AD converting a biological signal. The biological communication device according to any one of the first to third aspects of the present invention.
According to the fourth aspect, in the time division system, human body communication is performed while AD converting the biomedical signal by the AD converter. By performing human body communication during AD conversion, it is possible to eliminate the need for signal separation by an electrical switch or a filter, and to more reliably perform human body communication at the shared electrode.

2 生体通信システム
4 生体通信装置
10 一対の電極
12 第1電極
14 第2電極
20 生体信号検出部
22 低域通過フィルタ
24 高域通過フィルタ
26 帯域遮断フィルタ
28 差動増幅回路
30 人体通信送信部
32 ディジタル生体データ
34 OOK/PPM IR変調器
36 スペクトル整形帯域通過フィルタ
38 パルス発生器
40 人体通信受信部
42 帯域通過フィルタ
44 自動利得制御増幅器
46 IR復調器
50 AD変換部
52 コンデンサ
60 生体信号検出時間
H 人体
T サンプリング周期
TAD AD変換所用時間
THBC 人体通信所用時間

Reference Signs List 2 biological communication system 4 biological communication device 10 pair of electrodes 12 first electrode 14 second electrode 20 biological signal detection unit 22 low pass filter 24 high pass filter 26 band cutoff filter 28 differential amplification circuit 30 human body communication transmission unit 32 Digital biometric data 34 OOK / PPM IR modulator 36 Spectrum shaping band pass filter 38 Pulse generator 40 Human body communication receiver 42 Band pass filter 44 Automatic gain control amplifier 46 IR demodulator 50 AD converter 52 Condenser 60 Biological signal detection time H Human body T sampling cycle TAD AD conversion time THBC Human body communication time

Claims (1)

人体に貼付する一対の電極と、
生体通信装置と、
人体通信受信部と、を有する生体通信システムにおいて、
前記生体通信装置は、
前記電極からの生体信号を検出する生体信号検出部と、
前記生体信号を信号化して人体通信を行うAD変換部及び人体通信信部と、を有し、
生体信号検出時と人体通信時に時分割方式にて動作し、
一方の前記電極は、生体信号検出時に信号電極、人体通信時に信号電極として動作、
他方の前記電極は、生体信号検出時に信号電極、人体通信時にグラウンド電極として動作、
を行う前記人体通信送信部、を有し
さらに、前記生体信号検出部の入力側と前記人体通信送信部の送信側の間に、コンデンサを有し容量結合する生体通信システムであって、
前記一対の電極である2枚の電極は、前記人体通信時に前記人体通信送信部の信号線とグラウンドにそれぞれ接続され、
前記生体信号検出時には、共に前記生体信号検出部の信号線に接続し、
前記時分割方式は、前記生体信号をAD変換するためのサンプリング周期Tと次のサンプリング周期Tの間に前記人体通信を行い、
前記人体通信はインパルスラジオ方式であることを特徴とする生体通信システム。
A pair of electrodes attached to the human body,
A biological communication device,
A human body communication receiving unit;
The biological communication device is
A biological signal detection unit that detects a biological signal from the electrode;
Anda AD converter and the human body communication transmit unit for performing human body communication by signaling the biological signal,
Operates according to time division system at the time of biological signal detection and human body communication,
One of the electrodes operates as a signal electrode at the time of biological signal detection and as a signal electrode at the time of human body communication,
The other electrode operates as a signal electrode when detecting a biological signal, and as a ground electrode during human body communication,
Anda the human body communication transmitting unit that performs,
Further, the present invention is a biological communication system having a capacitor and capacitively coupling between an input side of the biological signal detection unit and a transmission side of the human body communication transmission unit,
The two electrodes which are the pair of electrodes are respectively connected to the signal line and the ground of the human body communication transmission unit at the time of the human body communication,
At the time of detection of the biological signal, both are connected to the signal line of the biological signal detection unit,
The time division system performs the human body communication between a sampling period T for AD converting the biological signal and a next sampling period T.
The human body communication biological communication system, wherein the impulse radio scheme der Rukoto.
JP2014243802A 2014-12-02 2014-12-02 Biological communication device, biological communication system Active JP6539907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014243802A JP6539907B2 (en) 2014-12-02 2014-12-02 Biological communication device, biological communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014243802A JP6539907B2 (en) 2014-12-02 2014-12-02 Biological communication device, biological communication system

Publications (2)

Publication Number Publication Date
JP2016111381A JP2016111381A (en) 2016-06-20
JP6539907B2 true JP6539907B2 (en) 2019-07-10

Family

ID=56124673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014243802A Active JP6539907B2 (en) 2014-12-02 2014-12-02 Biological communication device, biological communication system

Country Status (1)

Country Link
JP (1) JP6539907B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4234177B2 (en) * 2004-12-08 2009-03-04 セイコーインスツル株式会社 Information transmission system and transmitter / receiver via human body
JP5395600B2 (en) * 2009-09-30 2014-01-22 アルプス電気株式会社 Biological information measuring device
JP2011224085A (en) * 2010-04-16 2011-11-10 Alps Electric Co Ltd Living body communication device and living body communication system

Also Published As

Publication number Publication date
JP2016111381A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
Fensli et al. A wearable ECG-recording system for continuous arrhythmia monitoring in a wireless tele-home-care situation
CA2544952C (en) Device for monitoring hypoglycaemic condition
EP2298164B1 (en) Cardiac monitoring circuit with adaptive sampling
US20070244370A1 (en) Miniature wireless apparatus for collecting physiological signals of animals
EP2327360B1 (en) Method and apparatus for improving signal to noise ratio of ECG signals to facilitate cardiac beat detection
EP2710546A1 (en) Wireless, ultrasonic personal health monitoring system
JP2008507335A5 (en)
TW200800103A (en) Earphone sensor system for measuring electrocardiogram signals
Besnoff et al. Battery-free multichannel digital ECG biotelemetry using UHF RFID techniques
CN101422362A (en) Wireless cardiac bioelectricity monitoring system with motion artifact elimination function
KR20130064473A (en) Bio-signal transfer device, vehicle control device ,vehicle automatic control system and method using thereof
CN102160785B (en) 12-lead wireless realtime Electrocardiograph monitoring and analysis system
KR20160107390A (en) Apparatus for measuring bio-signal
Manivannan et al. Evaluation of a behind-the-ear ECG device for smartphone based integrated multiple smart sensor system in health applications
JP6539907B2 (en) Biological communication device, biological communication system
JP5395600B2 (en) Biological information measuring device
KR101596274B1 (en) Remote health check system using mobile devices
Tomasic et al. Smart Wireless Sensor for Physiological Monitoring.
JP2011072452A (en) Potential difference measuring device
KR20170101358A (en) Apparatus and system for measuring bio-signal of animals
KR20020078327A (en) Wireless body signal transfer system for medical diagonostics
EP1608265A1 (en) Apparatus for processing an ecg signal
KR101490395B1 (en) Sensor node for measuring an electroencephalogram and electroencephalogram process system including the sensor node
CN113259891B (en) Bioelectric signal monitoring system and method based on compressed sensing and networking transmission
CN214434253U (en) Recovered wearing formula equipment of upper limbs and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190523

R150 Certificate of patent or registration of utility model

Ref document number: 6539907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150