JP6539639B2 - Column beam structure using square steel pipe and cross section determination method of column beam - Google Patents
Column beam structure using square steel pipe and cross section determination method of column beam Download PDFInfo
- Publication number
- JP6539639B2 JP6539639B2 JP2016252567A JP2016252567A JP6539639B2 JP 6539639 B2 JP6539639 B2 JP 6539639B2 JP 2016252567 A JP2016252567 A JP 2016252567A JP 2016252567 A JP2016252567 A JP 2016252567A JP 6539639 B2 JP6539639 B2 JP 6539639B2
- Authority
- JP
- Japan
- Prior art keywords
- column
- steel pipe
- cross
- square steel
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 38
- 239000010959 steel Substances 0.000 title claims description 38
- 238000000034 method Methods 0.000 title claims description 6
- 238000005520 cutting process Methods 0.000 claims description 37
- 238000005452 bending Methods 0.000 claims description 22
- 230000006835 compression Effects 0.000 claims description 16
- 238000007906 compression Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 description 10
- 238000009826 distribution Methods 0.000 description 6
- 238000011068 loading method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000036316 preload Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Rod-Shaped Construction Members (AREA)
Description
本発明は、角形鋼管を用いたコラム切梁構造およびコラム切梁の断面決定方法に関し、想定される荷重が作用したときのより現実に近い変形に基づいて前記角形鋼管の断面を決定することにより、信頼性が高く、経済的なコラム切梁構造およびコラム切梁断面決定方法を提供する。 The present invention relates to a column cross beam structure using a square steel pipe and a method of determining the cross section of the column cross beam, by determining the cross section of the square steel pipe based on a more realistic deformation when an assumed load is applied. To provide a reliable and economical column cut beam structure and a method of determining the cross section of the column cut beam.
山留め工事では、切梁として一般にH形鋼が用いられているが、スパンが長くなると弱軸方向(通常は水平方向)の曲げ剛性が小さくなるため、座屈止めとして中間杭が設置されることが多い。 H-shaped steel is generally used as a cutting beam in pile work, but since the bending rigidity in the weak axis direction (usually horizontal direction) decreases as the span becomes longer, an intermediate pile is installed as a buckling stopper. There are many.
一方、角形鋼管を用いたコラム切梁は、鉛直方向と水平方向の曲げ剛性に差がないため、座屈止め用の中間杭を低減もしくは省略できて現場施工の向上が可能なことから需要が拡大している。 On the other hand, column cut beams using square steel pipe have no difference in bending rigidity in the vertical direction and horizontal direction, so it is possible to reduce or omit intermediate piles for buckling and to improve site construction, so demand is needed. It is expanding.
いずれの切梁においても、架設の際は鉛直荷重として作用する自重および積載荷重と軸圧縮荷重として作用する土圧や水圧に対して安全性が検討され、通常、これらの荷重が同時に作用する場合に対して切梁の強度が上回るように設計されており、特にコラム切梁の使用可能な強度上の限界、すなわち、角形鋼管の断面は、従来、(7)式によって検討されていた。 In any of the cut beams, safety is examined against the self weight acting as a vertical load and the earth pressure or water pressure acting as an axial compression load at the time of erection, and usually, when these loads act simultaneously In contrast, the limit of usable strength of the cross-section beam, that is, the cross section of the square steel pipe has been conventionally examined by the equation (7).
ただし、式中、σcは切梁の軸圧縮応力度であり、腹起しを介して作用する土圧や水圧による応力度である。σbは切梁の曲げ圧縮応力度であり、鉛直荷重として作用する自重と積載荷重による曲げ応力度である。また、σcaは切梁の許容軸圧縮応力度であり、σbaは許容曲げ圧縮応力度である。そして、(1-σc/σea)は、軸圧縮力による切梁のたわみ増大を考慮して設定される拡大系数である。 However, in the equation, σ c is the axial compression stress degree of the cutting beam, and is the stress degree due to the earth pressure or water pressure acting through the ups and downs. σ b is the bending compressive stress degree of the cut beam, which is the bending stress degree due to its own weight acting as a vertical load and the load. Further, σ ca is an allowable axial compressive stress degree of the cutting beam, and σ ba is an allowable bending compressive stress degree. And, (1−σ c / σ ea ) is an expansion coefficient set in consideration of an increase in deflection of the cutting beam due to the axial compression force.
しかし、(7)式は、実際の変形を求める理論に基いて導かれたものではなく、許容圧縮応力度σcaや許容曲げ圧縮応力度σbaについて座屈の影響や軸力によるたわみ増大などを考慮して導かれたものであり、また、切梁の崩壊に至るまでを安全とみなす終局限界条件を元にした式であるため、信頼性に乏しく、安全率に頼った不経済な設計になりやすく、コラム切梁の設計には本来適さないものであった。 However, equation (7) is not derived based on the theory for determining actual deformation, but the effect of buckling or the increase of deflection due to axial force, etc., is permitted for allowable compressive stress σ ca and allowable bending compressive stress σ ba It is an equation that is derived by taking into account the factor and is based on the ultimate limit condition that considers the safety of the cutting beam as safety, so it is unreliable and uneconomical design that relies on the safety factor And was not originally suitable for the design of column cross beams.
本発明は、以上の課題を解決するためになされたもので、想定される荷重が作用したときのより現実に近い変形に基づいてコラム切梁に用いられる角形鋼管の断面を決定することにより、信頼性が高く、経済的なコラム切梁構造およびコラム切梁の断面決定方法を提供することを目的とするものである。 The present invention has been made to solve the above problems, and by determining the cross section of a square steel pipe used for column cross section beams based on a more realistic deformation when an assumed load is applied, It is an object of the present invention to provide a reliable and economical column cut beam structure and a method of determining the cross section of a column cut beam.
本発明は、鉛直荷重と軸圧縮荷重を受ける角形鋼管を用いたコラム切梁構造において、前記鉛直荷重と軸圧縮荷重に対して(1)式を満足するように前記角形鋼管の断面が形成されていることを特徴とするものである。 According to the present invention, in a column cross beam structure using a square steel pipe which receives vertical load and axial compression load, a cross section of the square steel pipe is formed to satisfy the equation (1) with respect to the vertical load and axial compression load. It is characterized by
ただし、Nは、腹起しを介してコラム切梁に作用する土圧や水圧などによる軸圧縮荷重である。Nyはコラム切梁の降伏軸力であり、コラム切梁に用いられる角形鋼管の素材鋼材の降伏応力に基いて定められる。 However, N is an axial compression load due to earth pressure, water pressure, etc. acting on the column cutting beam through ups and downs. N y is the yield axial force of the column cutting beam, which is determined based on the yield stress of the steel material of the square steel pipe used for the column cutting beam.
また、Mは、鉛直荷重と軸力作用に伴い生じる曲げモーメントであり、(6)式より求められる。Myは、コラム切梁の降伏曲げモーメントであり、コラム切梁に用いられる角形鋼管の素材鋼材の降伏応力に基いて求められる。そして、φcは安全率である。 Further, M is a bending moment generated with the vertical load and the axial force action, and is obtained from the equation (6). M y is a yield bending moment of the column cut beam, which is obtained based on the yield stress of the steel material of the square steel pipe used for the column cut beam. And, φ c is a safety factor.
安全率φcは、コラム切梁の素材鋼材や製造方法などにより残留応力や降伏点などにばらつきが生じることがあるため、これらを考慮して概ね1.2〜1.6の範囲で設定するのが適切であり、実験結果から1.6程度が望ましい。 The safety factor φ c may vary in residual stress, yield point, etc. depending on the material steel of column cut beam, manufacturing method, etc., so it is appropriate to set it within the range of 1.2 to 1.6 taking these into consideration Yes, about 1.6 is desirable from experimental results.
一般に、冷間ロール成形された角形鋼管を用いたコラム切梁は、その製造方法等により残留応力が生じやすいため、1.4≦φc≦1.6程度が適切であり、1.6を越えると安全性は高められるが不経済に陥りやすい。 Generally, column cut beams using cold roll-formed rectangular steel tubes are susceptible to residual stress due to the manufacturing method etc. Therefore, 1.4 ≦ φ c ≦ 1.6 or so is appropriate, and safety is enhanced when it exceeds 1.6 It is easy to fall into uneconomical circumstances.
また、複数の鋼板を材軸方向に沿わせ、鋼板どうしを材軸方向に溶接して矩形断面形に成形された角形鋼管を用いたコラム切梁は、1.2≦φc≦1.4程度が適切である。 In addition, column cut beams made of rectangular steel pipes formed by forming a plurality of steel plates in the material axis direction and welding the steel plates together in the material axis direction into a rectangular cross-sectional shape are suitably about 1.2 ≦ φ c ≦ 1.4. is there.
また、コラム切梁は、鉛直方向と水平方向の曲げ剛性に差がないため、座屈止め用の中間杭を低減もしくは省略できて現場施工の向上が可能であり、したがって支持スパンを10m以上とする場合に経済的である。 In addition, since there is no difference in flexural rigidity between the vertical and horizontal directions in the column cross beam, it is possible to reduce or omit the intermediate pile for buckling prevention and improve on-site construction. It is economical to do.
本発明によれば、想定される荷重が作用したときのより現実に近い変形に基づいて、コラム切梁に用いられる角形鋼管の断面が決定されていることで、信頼性が高く、経済的なコラム切梁構造を提供することができる。 According to the present invention, the cross section of the square steel pipe used for the column cutting beam is determined on the basis of a more realistic deformation when the assumed load is applied, which is highly reliable and economical. Column cut beam structure can be provided.
図1は、本発明で扱うコラム切梁構造の概要を図示したものであり、コラム切梁1とプレロードジャッキ2、火打ピース3および調整材4より構成され、各部材はそれぞれ互いにボルト接合されている。
FIG. 1 shows the outline of the column cutting beam structure dealt with in the present invention, which comprises the
また、コラム切梁1には冷間ロール成形された角形鋼管(STKR490)、調整材4にはコラム切梁1と外径が同じH形鋼を加工したものがそれぞれ用いられている。
Further, a cold-rolled rectangular steel pipe (STKR 490) is used as the
また、コラム切梁1の両端にピン支持が設けられ、その回転方向は図2(a)において上下方向であり、かつコラム切梁1の支持スパン(ピン中心間長さ)は13393mmとされている。
Also, pin supports are provided at both ends of the
このような構成において、コラム切梁1に鉛直荷重(等分布荷重)と軸圧縮荷重が作用した場合に、コラム切梁1に生じる曲げモーメントMを求めるための理論式を導出する。
In such a configuration, when the vertical load (uniform distribution load) and the axial compression load act on the
但し、両端の調整材4やプレロードジャッキ2は材長が短く、曲げ剛性も極端に低くないこと、材軸方向には圧縮荷重が常時作用することを勘案し、全長に渡って均質なコラム切梁、すなわち、角形鋼管の単一部材として扱う。
However, in consideration of the fact that the
コラム切梁1の曲げ剛性をEI、たわみをu、初期たわみをu0、そして、コラム切梁1に作用する軸圧縮力をN、等分布荷重をwとして微小要素の釣合いを考えると(2)式の関係が成立する。
Considering the balance of microelements with EI for bending rigidity of
また、初期たわみu0は載荷前のたわみであり、振幅k1である半波のsin波で与えられ(ただし、部材長(ピン間長さ)をlとする)、(3)式の関係が成立する。さらに、コラム切梁1の両端はピン支持であるから、z=0、z=lにおいて(4)式が成立する。
The initial deflection u 0 is the deflection before loading and is given by a half-wave sin wave having an amplitude k 1 (however, the member length (the length between pins) is l), and the relationship of the equation (3) Is established. Further, since both ends of the
そして、(2)〜(4)式より、コラム切梁1に軸圧縮力Nと等分布荷重wが作用したときのたわみ曲線uは(5)式で求められ、曲げモーメントMは(6)式で求められる。
Then, according to the equations (2) to (4), the deflection curve u when the axial compressive force N and the equally distributed load w act on the
また、図2に示す鉛直方向の一点集中荷重Pvを考慮するには、以下のようにすればよい。軸力Nが作用せず、Pvのみが作用したときに生じるたわみに初期たわみu0を加えた値を新たに初期たわみとして定義して、(2),(4)式よりたわみ曲線uを求めることができる。 Further, in order to take account of the single point concentrated load P v in the vertical direction shown in FIG. Axial force N is not applied, only the P v is defined as a new initial deflection values plus the initial deflection u 0 in deflection occurs when applied, (2), the curve u deflection from (4) It can be asked.
また、曲げモーメント分布は、(6)式の左辺にPvのみが作用したときの曲げモーメント分布を重ね合わせることで求めることができる。 The bending moment distribution can be obtained by superposing the bending moment distribution when only P v acts on the left side of the equation (6).
図2(a),(b)は、両端ピン支持として鉛直荷重と軸圧縮荷重を受けるコラム切梁の試験載荷方法の概要を図示したものである。また、図3は、コラム切梁に用いた角形鋼管の引張試験の結果を表したものである。 FIGS. 2 (a) and 2 (b) illustrate the outline of the test loading method of the column cross beam which receives vertical load and axial compression load as both-ends pin support. Moreover, FIG. 3 represents the result of the tension test of the square steel pipe used for column cross beam.
なお、コラム切梁には断面サイズ□-350×16のSTKR490を用いた。また、火打ピースは無視し、コラム切梁の両端にピン支持部材を設け、かつコラム切梁全体を水平に支えるための支え(図省略)を設けた。ピンの回転方向は図2(a)の上下方向であり、ピン中心間長さは13393mmである。 As the column cutting beam, STKR 490 having a sectional size of -350 × 16 was used. In addition, ignoring the blowout pieces, pin supporting members were provided at both ends of the column cutting beam, and a support (not shown) was provided to support the entire column cutting beam horizontally. The rotation direction of the pin is the vertical direction in FIG. 2A, and the pin center distance is 13393 mm.
このような構成において、コラム切梁を水平に支えている支えを外し、その後、水平油圧ジャッキによって1950kNの軸力を与え、これを保持した状態でコラム切梁中央の鉛直油圧ジャッキによって漸増載荷し、耐力が低下するまで載荷を継続した。 In such a configuration, the support for horizontally supporting the column cutting beam is removed, and then an axial force of 1950 kN is applied by the horizontal hydraulic jack, and incrementally loaded by the vertical hydraulic jack at the center of the column cutting beam while holding this. Continued loading until the load resistance decreased.
なお、切梁の設計では、一般に鉛直荷重は自重や積載荷重を想定した5kN/m程度の等分布荷重を仮定するが、これを実験で再現するのは容易でないことから1点集中荷重で代用した。 In addition, in the design of the cut beam, in general, the vertical load assumes an equally distributed load of about 5 kN / m assuming its own weight and loading load, but it is not easy to reproduce this by an experiment and substitute it with one point concentrated load. did.
図4は、図2(a),(b)におけるコラム切梁中央の鉛直ジャッキによる荷重Pv−鉛直変位uvの関係を表したものである。 FIG. 4 shows the relationship between the load P v -vertical displacement u v by the vertical jack in the center of the column cutting beam in FIGS. 2 (a) and 2 (b).
また、図5(a-1),(a-2),(a-3)は、鉛直荷重Pv=25kN、Pv=50kN、Pv=70kNの各荷重Pv(図4の▼)におけるコラム切梁の曲げモーメント分布を表したものである。ただし、曲げモーメントMはコラム切梁の上下面に貼付した歪ゲージ計測値から求めた曲率を用いて算出した。 Further, FIG. 5 (a-1), ( a-2), (a-3) is vertical load P v = 25kN, P v = 50kN, P v = 70kN each load P v of (in FIG. 4 ▼) Bending moment distribution of the column cutting beam in. However, the bending moment M was calculated using the curvature calculated | required from the strain gauge measurement value stuck on the upper and lower surface of the column cutting beam.
また、図5(b-1),(b-2),(b-3)は、鉛直荷重Pv=25kN、Pv=50kN、Pv=70kNの各荷重において(1)式より算出した値φの分布を表したものである。φc=1は降伏条件を表す。 Moreover, FIG. 5 (b-1), (b-2), (b-3) is calculated from (1) Formula in each load of vertical load Pv = 25kN, Pv = 50kN, Pv = 70kN. It represents the distribution of the value φ. φ c = 1 represents a yield condition.
なお、図5において実線は実験値、破線は(1)の理論式によって算出された計算値である。ただし、図3にみるように、コラム切梁素材は、早々に接線剛性が低下し始めており、ここではNyは接線剛性が初期剛性の1/2となるときの軸力(降伏応力が0.2%オフセット耐力の約7割=324N/mm2)と定義した。 In FIG. 5, the solid line is an experimental value, and the broken line is a calculated value calculated by the theoretical formula (1). However, as shown in FIG. 3, the column shear beam material has an early decrease in tangential stiffness, and here N y is the axial force (yield stress is 0.2 when the tangential stiffness is half of the initial stiffness). Approximately 70% of the% offset resistance = 324 N / mm 2 ).
図5よりPv=25kN、Pv=50kNにおいては(1)の理論式による計算値は実験結果を概ね捉えているといえる。計算結果と実験結果との差異は、計算で仮定している初期たわみと実験結果との差異、生じている変形モードの違い(計算では対称形の1次モードを仮定)に起因するものと考えられる。 5 from P v = 25 kN, values calculated using the theoretical expression of the P v = 50kN (1) can be said to capture generally the experimental results. The difference between the calculated result and the experimental result is considered to be due to the difference between the initial deflection assumed in the calculation and the experimental result, and the difference in the generated deformation mode (the calculation assumes a symmetric first-order mode) Be
また、Pv=70kNにおいては、φc=1を上回っており、コラム切梁1の曲げ剛性が低下し始めていることから、弾性保持を想定したたわみ計算値に対して実験値がやや上回っている。
Moreover, at P v = 70 kN, φ c = 1 is exceeded, and the bending rigidity of the
以上のことから、弾性範囲内では、コラム切梁1に用いられる角形鋼管の断面は、(1)式を用いて容易にかつ適切に決定することが可能であることが実証できた。
From the above, it has been proved that the cross section of the square steel pipe used for the
なお、FEMによる検証においても(1)式によって角形鋼管の断面を適切に決定することが可能であることが実証できた。 In addition, in the verification by FEM, it has been proved that it is possible to appropriately determine the cross section of the square steel pipe by the equation (1).
本発明は、想定される荷重が作用したときのより現実に近い変形に基づいてコラム切梁に用いられる角形鋼管の断面を決定することにより、信頼性が高く、経済的なコラム切梁構造を提供することができる。 The present invention determines the cross section of the square steel pipe used for the column cut beam based on the more realistic deformation when the assumed load is applied, thereby providing a highly reliable and economical column cut beam structure. Can be provided.
1 コラム切梁
2 プレロードジャッキ
3 火打ちピース
4 調整材
1
Claims (5)
………(1)式
………(6)式
ただし、Nは軸圧縮力、Nyは降伏軸力、Mは鉛直荷重と軸力作用に伴い生じる曲げモーメント、Myは降伏曲げモーメント、φcは安全率である。 In the column cutting beam structure using a square steel pipe receiving a vertical load and an axial compression load, the square steel pipe satisfies the equation (1) for the vertical load and the axial compression load and within the range of 1.2 ≦ φ c ≦ 1.6. Column cross beam structure characterized in that a cross section of the cross section is formed.
………(1 set
EQUATION 6 EQUATION 6 EQUATION 6 (6) Formula However, N is axial compression force, N y is yield axial force, M is a bending moment produced with a vertical load and axial force action, M y is yield bending moment, (phi) c is a safety factor .
………(1)式
………(6)式
ただし、Nは軸圧縮力、Nyは降伏軸力、Mは鉛直荷重と軸力作用に伴い生じる曲げモーメント、Myは降伏曲げモーメント、φcは安全率である。 In the method of determining the cross section of a column cut beam using a square steel pipe subjected to vertical load and axial compression load, the above equation (1) is satisfied for the vertical load and axial compression load , and within the range of 1.2 ≦ φ c ≦ 1.6. section determining method of a column switching beams and determining the cross-section of the square tube.
………(1 set
Where N is axial compression force, N y is yield axial force, M is bending moment generated with vertical load and axial force, M y is yield bending moment, and φ c is safety factor .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252567A JP6539639B2 (en) | 2016-12-27 | 2016-12-27 | Column beam structure using square steel pipe and cross section determination method of column beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252567A JP6539639B2 (en) | 2016-12-27 | 2016-12-27 | Column beam structure using square steel pipe and cross section determination method of column beam |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018104998A JP2018104998A (en) | 2018-07-05 |
JP6539639B2 true JP6539639B2 (en) | 2019-07-03 |
Family
ID=62785590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016252567A Active JP6539639B2 (en) | 2016-12-27 | 2016-12-27 | Column beam structure using square steel pipe and cross section determination method of column beam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6539639B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0468113A (en) * | 1990-07-07 | 1992-03-03 | Hirose & Co Ltd | Strut for landslide protection timbering |
-
2016
- 2016-12-27 JP JP2016252567A patent/JP6539639B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018104998A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Investigation of composite action on seismic performance of weak-axis column bending connections | |
Willibald et al. | Behaviour of gusset plate connections to ends of round and elliptical hollow structural section members | |
Balasubramanian et al. | Study on behaviour of angle shear connector in steel-concrete composite structures | |
Agheshlui et al. | Anchored blind bolted composite connection to a concrete filled steel tubular column | |
CN212478276U (en) | Self-resetting square concrete filled steel tube column base node with friction type anchoring device | |
Sangeetha et al. | A study on ultimate behaviour of composite space truss | |
Li et al. | Damage assessment of square RC bridge columns subjected to torsion combined with axial compression, flexure, and shear | |
Dundu | Base connections of single cold-formed steel portal frames | |
Chu et al. | Structural Performance of Steel-Concrete Sandwich Composite Beams with Channel Steel Connectors | |
JP6539639B2 (en) | Column beam structure using square steel pipe and cross section determination method of column beam | |
Cui | Shear behavior of exposed column base connections | |
JP4490853B2 (en) | Brace structure using shape memory alloy | |
Choe et al. | Experimental study on long-span composite floor beams subject to fire: baseline data at ambient temperature | |
JP4708295B2 (en) | Pile-column connection structure | |
Semko et al. | Determination of the bearing capacity of concrete-filled steel tubular structures coupled with dismountable joints | |
JP6987577B2 (en) | How to repair concrete structures | |
KR20210151970A (en) | brace material | |
Li et al. | Seismic behavior of outrigger truss-wall shear connections using multiple steel angles | |
Kim et al. | An experimental study on bending performance of Hybrid forming composite beam | |
Das et al. | Comparison of two different innovative solutions for IPE beam to CHS column connections | |
Gao et al. | Experimental study of concrete-filled steel tubular arches with corrugated steel webs | |
Jungil et al. | Non-contact Lap Splice Connection Of SC Wall-HSC Floor Slab | |
Araby et al. | The Analysis of Beam-Column Joint Reinforced with Cross Bars according to SK SNI T-15-1991-03 on Cyclic Loads | |
Hayashi et al. | Experimental Study on Cyclic Behaviors and Restoring Force Characteristics of Concrete Filled Steel Tube Columns Using Ultra-high Strength Steel | |
Sandy et al. | Experimental study on castellated beams with hexagonal variation using monotonic loading |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190610 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6539639 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |