JP6535077B2 - Method of producing concentrated tea extract and extract by freeze concentration method - Google Patents

Method of producing concentrated tea extract and extract by freeze concentration method Download PDF

Info

Publication number
JP6535077B2
JP6535077B2 JP2017245883A JP2017245883A JP6535077B2 JP 6535077 B2 JP6535077 B2 JP 6535077B2 JP 2017245883 A JP2017245883 A JP 2017245883A JP 2017245883 A JP2017245883 A JP 2017245883A JP 6535077 B2 JP6535077 B2 JP 6535077B2
Authority
JP
Japan
Prior art keywords
tea extract
concentration
extract
tea
brix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017245883A
Other languages
Japanese (ja)
Other versions
JP2018068310A (en
JP2018068310A5 (en
Inventor
拓也 西森
拓也 西森
優 荒木
優 荒木
秀弥 田中
秀弥 田中
瀬戸 龍太
龍太 瀬戸
田中 哲
哲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Norin Co Ltd
Original Assignee
Mitsui Norin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Norin Co Ltd filed Critical Mitsui Norin Co Ltd
Priority to JP2017245883A priority Critical patent/JP6535077B2/en
Publication of JP2018068310A publication Critical patent/JP2018068310A/en
Publication of JP2018068310A5 publication Critical patent/JP2018068310A5/ja
Application granted granted Critical
Publication of JP6535077B2 publication Critical patent/JP6535077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、デキストリンの添加によって茶抽出液をBrix7.3%以上に調整した後、凍結濃縮を行う、豊かな香味を維持した濃縮茶抽出液及び抽出物の製造方法に関する。   The present invention relates to a concentrated tea extract maintaining a rich flavor and a method for producing an extract, wherein the tea extract is adjusted to a Brix of 7.3% or more by addition of dextrin and then freeze-concentrated.

茶抽出液を濃縮する方法としては、加熱や減圧による蒸発を利用した旋回式真空蒸発装置による濃縮(フラッシュエバポレーター濃縮)、プレート式濃縮装置による濃縮(PHE濃縮)、遠心式薄膜真空蒸発装置による濃縮(TFE濃縮)、逆浸透膜や限外ろ過膜による濃縮(RO膜やUF膜濃縮)、凍結濃縮(FC)などが従来技術として知られている。
蒸発による濃縮は、香気成分が加熱により変性・分解・酸化等し易いため、風味の劣化や、香気成分の組成変化、蒸発に伴う香気成分の著しい減少が避けられない。膜による濃縮方法も香気成分が膜に吸着して香気成分の組成が変化したり、透過液と共に排出されて香味を損なったりしてしまう。
As a method of concentrating the tea extract, concentration by a rotary vacuum evaporator using evaporation by heating or reduced pressure (flash evaporator concentration), concentration by a plate type concentrator (PHE concentration), concentration by a centrifugal thin film vacuum evaporator (TFE concentration), concentration by reverse osmosis membrane or ultrafiltration membrane (RO membrane or UF membrane concentration), freeze concentration (FC), etc. are known as prior art.
The concentration by evaporation is such that the aroma component is easily denatured / decomposed / oxidized by heating, so that deterioration of the flavor, composition change of the aroma component, and significant reduction of the aroma component accompanying evaporation are inevitable. Also in the method of concentration with a membrane, the aroma component is adsorbed to the membrane to change the composition of the aroma component, or it is discharged together with the permeate to impair the flavor.

これらの濃縮方法に対し、凍結濃縮は、投入した溶液を冷却し、液中の水分を純粋な氷晶とし、この氷晶を液から分離するため、熱や減圧、膜などによる物理的な負荷を濃縮液に与えることがないので、濃縮前の香味バランスや、香気成分の量を保持した濃縮液を得ることができる。
しかしながら、通常、茶抽出液を凍結濃縮法により濃縮すると、茶固形分を含んだ氷の形成が急激に起こり、純粋な氷晶と濃縮液に分離することが出来ないという問題がある。
With respect to these concentration methods, freeze concentration involves cooling the input solution, converting the water content of the solution into pure ice crystals, and separating the ice crystals from the solution. Can be obtained, so it is possible to obtain a concentrate which retains the flavor balance before concentration and the amount of aroma components.
However, when the tea extract is concentrated by freeze concentration, there is a problem that the formation of ice containing tea solids rapidly occurs and it can not be separated into pure ice crystals and a concentrate.

上記問題を解決するために、特許文献1には、凍結濃縮工程の前に限外ろ過の形の分離方法を接続し、例えば重合体分子などの凍結濃縮中の濃縮物の粘度上昇の原因となり、ひいてはまたこの濃縮工程の能力も低下させる凍結濃縮法限定因子を除去する方法が開示されている。 In order to solve the above-mentioned problems, Patent Document 1 is connected with a separation method in the form of ultrafiltration before the freeze concentration step, which causes, for example, an increase in the viscosity of the concentrate during freeze concentration such as polymer molecules. There is disclosed a method of removing freeze concentration method limiting factors that also reduces the ability of this concentration step.

特許文献2には、ティークリームの生成により、従来凍結濃縮法に適さないとされてきた茶類抽出液を予めタンナーゼ処理してから凍結することにより速やかに氷晶が生成し、容易に凍結濃縮できる方法が開示されている。 In Patent Document 2, the formation of tea cream makes it possible to rapidly form ice crystals by tannizing the tea extract in advance, which has been considered unsuitable for the conventional freeze concentration method, and rapidly freezing it. Methods are disclosed.

特許文献3には、緑茶に対しては濃縮効率が悪く、実用的ではないとされていた凍結濃縮法において、苦味成分であるタンニンを予め除去することよって、凍結濃縮の濃縮効率を実用的レベルまで上げる方法が開示されている。 According to the freeze concentration method described in Patent Document 3 that the concentration efficiency is poor for green tea and is not practical, the concentration efficiency of freeze concentration is practically achieved by previously removing tannin which is a bitter component. A method of raising

しかしながら、上記文献記載の技術は、いずれも茶抽出液の成分を除去もしくは分解することを必須としており、凍結濃縮後の濃縮茶抽出液の香味への悪影響を避けることができなかった。 However, all the techniques described in the above-mentioned documents make it essential to remove or decompose the components of the tea extract, and the adverse effect on the flavor of the concentrated tea extract after freeze concentration could not be avoided.

したがって、効率よく濃縮前の茶抽出液と同等の香味を保持した濃縮茶抽出液を製造する方法の提供が求められていた。 Therefore, the provision of a method for efficiently producing a concentrated tea extract having a flavor equivalent to that of the tea extract before concentration has been sought.

特開昭56-089802JP-A-56-089802 特開平05-328901Japanese Patent Application Publication No. 05-328901 特開2002-238458Patent document 1: JP-A-2002-238458

凍結濃縮は、優れた香味を保持した濃縮液を調製することができる。しかしながら、通常、茶抽出液を凍結濃縮法により濃縮すると、茶固形分を含んだ氷の形成が急激に起こり、純粋な氷晶と濃縮液に分離することが出来ないという問題があった。 Freeze concentration can prepare a concentrated solution with excellent flavor. However, when the tea extract is concentrated by the freeze concentration method, the formation of ice containing tea solids rapidly occurs, and there is a problem that it can not be separated into pure ice crystals and a concentrate.

したがって、本発明の目的は、香味の優れた濃縮茶抽出液を効率的に製造する凍結濃縮法を提供することにある。 Therefore, an object of the present invention is to provide a freeze concentration method for efficiently producing a concentrated flavored tea extract.

本発明者は、茶抽出液が凍結濃縮法において正常に濃縮できない原因を検討したところ、ドブ漬抽出、向流抽出、シャワー式抽出など、一般工業的手法により得られる茶抽出液の濃度はBrix6.0%以下(1.0〜6.0%程度)と低いことが原因であることが明らかになった。
凍結濃縮の前に茶抽出液のBrixを高めるために、茶抽出液に対して予備濃縮工程としてTFE濃縮やRO膜濃縮を試みたところ、凍結濃縮は成功したが、この場合、予備濃縮工程における香味の損失、香気成分の組成変化や香気量減少が避けられないことや、予備濃縮装置を設備しなければならないこと、予備濃縮工程に要する時間的損失などが問題となった。
そこで、鋭意工夫を重ねた結果、デキストリンの添加によって茶類の抽出液をBrix7.3%以上に調整したところ、意外にも予備濃縮工程を必要としない茶抽出液の凍結濃縮が可能となった。よって、本製造方法によれば香味に優れた高品質な濃縮茶類抽出液を効率的に得ることができるという知見に至り本発明を完成した。
The present inventor examined the reason why the tea extract can not be normally concentrated in the freeze concentration method, but the concentration of the tea extract obtained by general industrial methods such as extraction with doubs, countercurrent extraction, shower type extraction is Brix 6 It became clear that the cause is as low as less than 0% (about 1.0 to 6.0%).
When TFE concentration or RO membrane concentration was attempted as a preconcentration step for the tea extract to increase Brix of the tea extract prior to freeze concentration, freeze concentration was successful, but in this case, in the preconcentration step The loss of flavor, the change in composition of aroma components and the reduction of aroma amount are inevitable, the need for equipping a preconcentrator, and the time loss required for the preconcentration step have become problems.
Therefore, as a result of intensive efforts, when the extract of teas was adjusted to Brix 7.3% or more by the addition of dextrin, it was possible to unexpectedly freeze and concentrate the tea extract which does not require the pre-concentration step . Therefore, according to the present production method, the present invention has been achieved with the finding that high-quality concentrated tea extracts having excellent flavor can be efficiently obtained, and the present invention has been completed.

即ち、本願請求範囲に係る発明は、デキストリンの添加によって茶抽出液をBrix13.7%以上20.0%以下に調整した後、凍結濃縮する濃縮茶抽出液の製造方法であって、前記デキストリンの添加量が茶固形分1重量部に対して2.0〜3.5重量部である濃縮茶抽出液の製造方法に関するものである。 That is, the invention according to the scope of the present invention is a method for producing a concentrated tea extract , which comprises freezing and concentrating the tea extract after adjusting the tea extract to 13.7% or more and 20.0% or less by adding dextrin. The present invention relates to a method for producing a concentrated tea extract, wherein the amount of the additive is 2.0 to 3.5 parts by weight with respect to 1 part by weight of tea solids .

本発明によれば、香味の損失が抑えられた効率的な凍結濃縮法、及び香味の損失が抑えられた濃縮茶抽出液が得られる。   According to the present invention, it is possible to obtain an efficient freeze concentration method in which loss of flavor is suppressed, and a concentrated tea extract in which loss of flavor is suppressed.

本発明は、デキストリンの添加によりBrixを7.3%以上に調整した茶抽出液を凍結濃縮により濃縮するものである。   The present invention is to concentrate by freeze concentration a tea extract whose Brix has been adjusted to 7.3% or more by the addition of dextrin.

茶抽出液とは、茶樹(Camellia sinensis var.sinensisやCamellia sinensis var.assamica、またはこれらの雑種)の生葉や生茎、あるいはこれらを一次原料として製造された茶葉(例えば、煎茶、玉露、かぶせ茶、番茶、釜炒り緑茶等の不発酵茶、不発酵茶に花の香りを移したジャスミン茶等の花茶、白茶等の弱発酵茶、烏龍茶等の半発酵茶、紅茶等の発酵茶、プアール茶等の後発酵茶等)を原料またはその一部として抽出した液を意味する。茶葉の他に、玄米、大麦、小麦、ハト麦、とうもろこし、アマランサス、キヌア、ナンバンキビ、モズク、甘草、ハス、シソ、マツ、オオバコ、ローズマリー、桑、ケツメイシ、大豆、昆布、霊芝、熊笹、柿、ゴマ、紅花、アシタバ、陳皮、グァバ、アロエ、ギムネマ、杜仲、ドクダミ、チコリー、月見草、ビワ等の各種植物の葉、茎、根、果実、種子等を併用して得られるものであっても良い。 Tea extract refers to the fresh leaves and stems of tea trees (Camellia sinensis var. Sinensis or Camellia sinensis var. Assamica, or hybrids thereof) or tea leaves produced using these as primary raw materials (eg, Sencha, Gyokuro, covered tea) Bancha, potted green tea and other infermented tea, Jasmine tea and other flower tea that transferred the smell of flowers to infermented tea, weakly fermented tea such as white tea, semi-fermented tea such as oolong tea, fermented tea such as black tea, and puar tea Etc. means the liquid which extracted the post-fermented tea etc. as a raw material or its part. In addition to brown leaves, brown rice, barley, wheat, pigeons, corn, amaranthus, quinoa, nanban kibi, mozuku, licorice, lotus, persimmon, pine, plantain, rosemary, persimmon, ketsumeishi, soy bean, kelp, ganoderma, kelp, It is obtained by using leaves, stems, roots, fruits, seeds, etc. in combination with various plants such as persimmon, sesame, safflower, cuttlefish, buckwheat, guava, aloe, gymnema, toboko, dokudami, chicory, evening primrose, loquat etc. Also good.

茶の抽出方法としては、ニーダーや抽出用タンク等を用いたバッチ式抽出法や抽出塔を用いたカラム式抽出法、シャワー式抽出法等の公知の方法が挙げられる。抽出の条件は原料茶葉の種類、抽出機の種類、風味等により適宜選択されるものであるが、例えば原料茶葉1重量部に対して3〜50重量部の抽出溶媒を用いれば良く、4〜30重量部が抽出効率、製造コストおよび品質等の点で好ましい。抽出溶媒は水、温水、熱水を用いるのが、安全上問題がなく好ましい。抽出温度は特に制限されないが、不発酵茶や弱発酵茶では50〜90℃が好ましく、60〜80℃がより好ましい。半発酵茶、発酵茶、後発酵茶では60〜100℃が好ましく、80〜100℃がより好ましい。抽出時間は抽出溶媒の量や抽出温度にも依存するが、30秒〜6時間、好ましくは3分〜3時間、さらに好ましくは4分〜1時間が良い。抽出時は常圧、加圧または減圧下で必要に応じて撹拌を行い、上記抽出工程の後にカートリッジフィルター、ネルろ布、ろ過板、ろ紙、ろ過助剤を併用したフィルタープレス等のろ過や遠心分離等により固液分離して茶抽出液を得るようにすれば良い。また、抽出工程においては茶抽出液の酸化を抑制するために酸化防止剤を添加しても良い。酸化防止剤としては、食品添加物として認められているアスコルビン酸、エリソルビン酸またはそれらの金属塩等が挙げられる。 Examples of the method for extracting tea include known methods such as a batch type extraction method using a kneader or an extraction tank, a column type extraction method using an extraction tower, and a shower type extraction method. The extraction conditions are appropriately selected according to the type of raw material tea leaves, the type of extractor, flavor, etc. For example, 3 to 50 parts by weight of an extraction solvent may be used with respect to 1 part by weight of raw material tea leaves. 30 parts by weight is preferable in terms of extraction efficiency, production cost and quality. It is preferable to use water, warm water, or hot water as the extraction solvent since there is no safety problem. The extraction temperature is not particularly limited, but it is preferably 50 to 90 ° C., and more preferably 60 to 80 ° C. for unfermented tea and weakly fermented tea. For semi-fermented tea, fermented tea and post-fermented tea, 60 to 100 ° C. is preferable, and 80 to 100 ° C. is more preferable. The extraction time depends on the amount of extraction solvent and the extraction temperature, but it is preferably 30 seconds to 6 hours, preferably 3 minutes to 3 hours, and more preferably 4 minutes to 1 hour. At the time of extraction, stirring is carried out as needed under normal pressure, pressure or reduced pressure, and filtration or centrifugation such as a filter press using a cartridge filter, filter cloth, filter plate, filter paper, filter aid and the like after the above extraction step It is recommended that a tea extract be obtained by solid-liquid separation by separation or the like. In addition, in the extraction step, an antioxidant may be added to suppress oxidation of the tea extract. Antioxidants include ascorbic acid, erythorbic acid or metal salts thereof which are recognized as food additives.

濃縮茶抽出液とは、茶抽出液の水分の一部を取り除いたものであり、濃縮処理によって濃縮された状態の茶抽出液を意味するものである。
濃縮の程度は特に制限しないが、濃縮茶抽出液のBrixは20.0%以上であることが好ましい。Brix25.0%以上がより好ましく、30.0%以上が最も好ましい。
なお、本発明におけるBrixは、振動式密度比重計(京都電子工業:DA−300)による測定で得た数値を表す。
The concentrated tea extract refers to a tea extract from which a part of the water of the tea extract has been removed and which is concentrated by the concentration treatment.
The degree of concentration is not particularly limited, but the Brix of the concentrated tea extract is preferably 20.0% or more. Brix 25.0% or more is more preferable, and 30.0% or more is the most preferable.
In addition, Brix in this invention represents the numerical value obtained by the measurement by a vibration type density gravimeter (Kyoto electronic industry: DA-300).

凍結濃縮とは、低温(氷点下)かつ密閉系で、母液から水分を氷の形で取り出すという原理により、温度上昇による原料の物理化学的変性と香気成分の損失が少ないことを特徴とした濃縮方法である。従って、低沸点・低分子成分の残存率が極めて高く、原料と同品質の高品質の濃縮液をつくることが可能である。本発明の凍結濃縮は、条件に特別の制約はなく、市販の一般的な凍結濃縮装置をそのまま利用することができるが、例えばグレンコ社製の場合、大きく分けて以下のような三つの装置で構成されている。
1)表面かき取り式熱交換器(Scraped Surface Heat Exchan
ger)
2)再結晶装置(Recrystallizer)
3)洗浄式分離筒(wash Column)
そして、表面かき取り式熱交換器で氷の核となる部分を作り、再結晶装置でその氷を成長させ、洗浄式分離筒で氷と濃縮液を分離する構造をとっている。
Freeze concentration is a low temperature (under freezing point) and closed system, and it is characterized by the fact that the loss of physicochemical denaturation of the raw material and the aroma component due to the temperature rise is small by the principle that water is taken out from the mother liquor in the form of ice. It is. Therefore, the residual ratio of low boiling point and low molecular weight components is extremely high, and it is possible to produce a high quality concentrate having the same quality as the raw material. In the freeze concentration of the present invention, conditions are not particularly limited, and a commercially available general freeze concentration device can be used as it is, but in the case of Glenco, for example, the following three devices can be broadly divided. It is configured.
1) Surface scraping type heat exchanger (Scraped Surface Heat Exchan
ger)
2) Recrystallizer
3) Washable separation column (wash column)
Then, a surface scraping type heat exchanger is used to form a core of ice, and the ice is grown by a recrystallization apparatus, and the ice and the concentrate are separated by a washing type separation column.

凍結濃縮に供する茶抽出液はその凝固点が純水よりも低いことが効率の良い凍結濃縮の要件である。純水との凝固点差(Δt℃)が0.4℃以上ある時に効率良く氷晶が形成されるため好ましい。Δtが0.4℃より小さいと、茶固形分を含んだ氷の形成が急激に起こり、液体全体が氷塊となるため、純粋な氷晶と濃縮液に分離することが出来ない。即ち、Δtが小さいと濃縮が出来ない。よって、Δtを大きくするためには、凍結濃縮に供する液体のBrixを高めることが必要である。 It is a requirement for efficient freeze concentration that the tea extract used for freeze concentration has a freezing point lower than that of pure water. When the freezing point difference (Δt ° C.) with pure water is 0.4 ° C. or more, it is preferable because ice crystals are efficiently formed. If Δt is less than 0.4 ° C., the formation of ice containing tea solids rapidly occurs, and the whole liquid becomes an ice block, so that it can not be separated into pure ice crystals and a concentrated liquid. That is, concentration can not be achieved if Δt is small. Therefore, in order to increase Δt, it is necessary to increase the Brix of the liquid to be subjected to freeze concentration.

デキストリンとは、澱粉を糊化して、もしくは糊化しながらα−アミラーゼ又は塩酸やシュウ酸等の酸で分解したものを称し、マルトデキストリンやサイクロデキストリン、分枝デキストリン等が挙げられる。
通常、澱粉加水分解物はその分解度をデキストロース当量(DE)で表し、DEが5〜21程度に分解されたものをマルトデキストリンと呼ぶ。本発明では、DE5〜21であるマルトデキストリンを使用することが価格、香味に対する悪影響がない点で好ましく、DE16〜21のものが保存安定性の観点からさらに好ましい。
Dextrin refers to gelatinized starch or starch which is decomposed by an acid such as α-amylase or hydrochloric acid or oxalic acid while gelatinizing, and includes maltodextrin, cyclodextrin, branched dextrin and the like.
In general, a starch hydrolyzate is expressed in terms of dextrose equivalent (DE) as the degree of degradation, and one in which DE is degraded to about 5 to 21 is called maltodextrin. In the present invention, it is preferable to use maltodextrin which is DE 5 to 21 in view of price and no adverse effect on flavor, and DE 16 to 21 is more preferable from the viewpoint of storage stability.

デキストリンは、凍結濃縮工程前であれば製造工程のどの段階で茶抽出液に添加してもよいが、水性溶媒にデキストリンを添加して抽出や濃縮を行う方が、工程中での香気成分の変性や損失による香味の損失を抑制できるため好ましい。 Dextrin may be added to the tea extract at any stage of the manufacturing process prior to the freeze concentration step, but it is better to add dextrin to the aqueous solvent to perform extraction and concentration as the aroma component in the process. It is preferable because loss of flavor due to denaturation or loss can be suppressed.

デキストリンはその他の炭水化物と組み合わせて添加してもよい。例えば、単糖、複合多糖、オリゴ糖、糖アルコール又はそれらの混合物を含むものである。単糖の例としてはテトロース、ペントース、ヘキソース及びケトヘキソースがある。ヘキソースの例は、ブドウ糖として知られるグルコースのようなアルドヘキソースである。果糖として知られるフルクトースはケトヘキソースである。単糖類としては、コーンシロップ、高フルクトースコーンシロップ、果糖ブドウ糖液糖、ブドウ糖果糖液糖、アガペエキス、蜂蜜等の混合単糖も使用できる。さらに、多価アルコール、例えばグリセロール類も本発明で用いることができる。 Dextrin may be added in combination with other carbohydrates. For example, it includes monosaccharides, complex polysaccharides, oligosaccharides, sugar alcohols or mixtures thereof. Examples of monosaccharides are tetrose, pentose, hexose and ketohexose. An example of a hexose is an aldohexose such as glucose known as glucose. Fructose, known as fructose, is a ketohexose. As monosaccharides, mixed monosaccharides such as corn syrup, high fructose corn syrup, fructose glucose syrup, glucose fructose syrup, agape extract and honey can also be used. In addition, polyhydric alcohols such as glycerol can also be used in the present invention.

デキストリンの添加により調整された茶抽出液のBrixは7.3%以上であることが好ましい。Brix12.0%以上がより好ましく。15.0%以上が更に好ましい。茶類の抽出液のBrixが7.3%以上であると凍結濃縮を開始した際に茶抽出液から純粋な氷晶が生成・分離し易くなるため、効率よく濃縮を開始することができる。Brixが7.3%未満であると茶抽出液全体が氷結し、純粋な氷晶ができないため凍結濃縮を開始することができない。デキストリンによりBrixが45.0%を超えると低温では高粘度となり凍結濃縮処理に不都合になる場合がある。 The Brix of the tea extract adjusted by the addition of dextrin is preferably 7.3% or more. Brix 12.0% or more is more preferable. 15.0% or more is more preferable. When the Brix of the tea extract is 7.3% or more, when the freeze concentration is started, pure ice crystals are easily generated and separated from the tea extract, so that the concentration can be efficiently started. If the Brix is less than 7.3%, the whole tea extract freezes and pure ice crystals can not be produced, so that freeze concentration can not be started. If Brix exceeds 45.0% due to dextrin, the viscosity may be high at low temperatures, which may be inconvenient for freeze concentration processing.

デキストリンの添加量は、茶抽出液のBrixを濃縮可能な濃度に調整する量であれば特に限定はしないが、茶固形分1重量部に対して0.4〜4.0重量部であることが好ましい。0.6〜3.0重量部がより好ましく、0.8〜2.0重量部がさらに好ましい。茶種や抽出条件にもよるがデキストリンの添加が0.4重量部に満たない量ではBrixが充分に高められず、4.0重量部を越えて多くなるとデキストリン自体がもつ特有の香味の影響で、茶抽出液の香味がデンプン臭く劣ったものになる場合がある。
なお、本発明における茶固形分とは、デキストリンなどの添加物を添加していない茶抽出
液のBrixから(Brix×液量/100)の式により導かれる値である。
The addition amount of dextrin is not particularly limited as long as it is an amount to adjust Brix of the tea extract to a concentration that can be concentrated, but it is 0.4 to 4.0 parts by weight with respect to 1 part by weight of tea solids. Is preferred. 0.6 to 3.0 parts by weight is more preferable, and 0.8 to 2.0 parts by weight is further preferable. If the amount of dextrin added is less than 0.4 parts by weight depending on the type of tea and extraction conditions, Brix will not be sufficiently enhanced, and if it exceeds 4.0 parts by weight, the effect of the unique flavor of dextrin itself will be affected In some cases, the flavor of the tea extract may be inferior to that of starch.
The solid content of tea in the present invention is a value derived from Brix of a tea extract to which no additive such as dextrin is added according to the formula (Brix × liquid amount / 100).

上記濃縮工程に先立って、茶抽出液をタンナーゼで処理してもよい。茶抽出液をタンナーゼで処理することにより、凍結濃縮装置内におけるクリームダウンの発生を防止でき、配管、バルブ、送液ポンプの閉塞、動作不良、フィルターの目詰まり等の機械的不具合を防止する他、氷晶と濃縮液の分離を容易にすることで、濃縮前後の茶抽出液の成分比を保った濃縮に寄与し、高濃度の濃縮を可能にし、氷晶の洗浄効率を上げることで生産効率の向上を生み、歩留まりの低下を防ぐこと等ができる。 The tea extract may be treated with tannase prior to the concentration step. By treating the tea extract with tannase, it is possible to prevent the occurrence of creamdown in the freeze-concentrator, and to prevent mechanical failure such as clogging of piping, valve, liquid feed pump, malfunction, clogging of filter, etc. By facilitating the separation of the ice crystals and the concentrate, it contributes to the concentration maintaining the component ratio of the tea extract before and after concentration, enabling concentration with high concentration, and raising the washing efficiency of ice crystals to produce It is possible to improve the efficiency and to prevent the decrease in yield.

凍結濃縮工程において、茶抽出液を凍結濃縮装置に連続的または間欠的に投入することで濃縮茶抽出液を連続的に製造することができる。デキストリンによりBrix7.3%以上に調整した茶抽出液を追加することにより、香味に優れた濃縮茶抽出液を連続的に製造することができる。また、デキストリンを添加した茶抽出液を連続して用いることで凍結濃縮装置内におけるクリームダウンの発生を防止でき、フィルターの目詰まり等の不具合を防止することができる。   In the freeze concentration step, a concentrated tea extract can be continuously produced by continuously or intermittently feeding the tea extract into the freeze concentration apparatus. The concentrated tea extract excellent in flavor can be continuously manufactured by adding the tea extract adjusted to Brix 7.3% or more with dextrin. Moreover, generation | occurrence | production of the cream down in a freeze concentration apparatus can be prevented by using the tea extract which added dextrin continuously, and problems, such as clogging of a filter, can be prevented.

上記した方法により得られる本発明の濃縮茶抽出液は、そのまま液体の状態として使用することもできるが、所望により適宜な乾燥処理を採用して粉末もしくはブロック状の茶抽出物の状態にすることもできる。乾燥処理においては、噴霧乾燥、真空乾燥、凍結乾燥等が挙げられ、コスト面では噴霧乾燥が好ましく、香気成分保持の観点からは茶抽出液を凍結させ、減圧によって氷を昇華させて水分を取り除く凍結乾燥が好ましい。 The concentrated tea extract of the present invention obtained by the above-described method can be used as it is in a liquid state, but if necessary, it should be put into a powder or block tea extract state by adopting an appropriate drying treatment. You can also. In the drying process, spray drying, vacuum drying, lyophilization, etc. may be mentioned, and in terms of cost, spray drying is preferable. From the viewpoint of aroma component retention, the tea extract is frozen and ice is sublimed by reduced pressure to remove water. Lyophilization is preferred.

濃縮茶抽出液および茶抽出物は、茶飲料等の飲食品を製造するために用いることができる。濃縮茶抽出液および茶抽出物は、多量の水分を含む前記茶抽出液をそのまま輸送したり保管したりするよりも輸送コストや保管コストの低減を容易に図れるという利点があり、主にその目的のために調製されるが、そのまま他の飲食品等に添加して用いることもできる。なお、前記茶飲料は、前記濃縮茶抽出液および茶抽出物を飲用に適した濃度まで還元(希釈)した後に殺菌処理等を行うことにより製品化することができる。 The concentrated tea extract and tea extract can be used to produce food and drink such as tea beverages. Concentrated tea extract and tea extract have an advantage that transportation cost and storage cost can be easily reduced rather than transporting or storing the tea extract containing a large amount of water as it is, mainly for the purpose However, it can also be used by adding it to other food and drink as it is. The tea beverage can be commercialized by performing sterilization treatment or the like after reducing (diluting) the concentrated tea extract and the tea extract to a concentration suitable for drinking.

本発明の実施形態によれば、凍結濃縮の前処理として他の濃縮工程を必要としないため、香気成分の減少が抑えられた茶類の抽出液を提供することができる。そのため、本発明の凍結濃縮処理を行った濃縮茶抽出液または茶抽出物を用いて香味に優れた飲食品を提供することができる。飲食品の例としては、茶類飲料、スポーツ飲料、炭酸飲料、果汁飲料、乳飲料、酒類、粉末飲料等の飲料類;アイスクリーム類、シャーベット類、アイスキャンディー類等の冷菓類;和・洋菓子、チューインガム類、チョコレート類、パン類等の嗜好品類;各種のスナック類等、各種の機能性が付与された飲食品類を提供することができる。 According to the embodiment of the present invention, it is possible to provide an extract of teas in which the reduction of the aroma component is suppressed since no other concentration step is required as a pretreatment for freeze concentration. Therefore, the concentrated tea extract or the tea extract subjected to the freeze concentration process of the present invention can be used to provide food and drink having excellent flavor. Examples of food and drink include beverages such as tea beverages, sports beverages, carbonated beverages, fruit juice beverages, milk beverages, liquors, powdered beverages and the like; ice confections such as ice creams, sherbets, ice candy and the like; Foods and beverages to which various functional properties such as chewing gums, chocolates, breads and the like; various snacks and the like can be provided.

以下に実施例を挙げ、本発明をさらに詳しく説明する。ただし、本発明はこれに限定されるものではない。 The present invention will be described in more detail by way of the following examples. However, the present invention is not limited to this.

<紅茶抽出液の製造>
10kgの紅茶葉(三井農林:ディンブラ90%+ブレンド10%)を85℃のイオン交換水90Lで40分抽出後、50メッシュろ過および遠心分離を行いBrix5.3%の紅茶抽出液を55kg得た。
<Production of black tea extract>
After extracting 10 kg of black tea leaves (Mitsui Norin: 90% dibrane + 10% blend) with 90 liters of ion-exchanged water at 85 ° C for 40 minutes, 50 mesh filtration and centrifugation were performed to obtain 55 kg of Brix 5.3% black tea extract .

<紅茶抽出液の濃縮>
比較品1 <TFE濃縮>
実施例1と同様の工程を3回繰り返し、Brix5.3%の紅茶抽出液を163kg得た。
この抽出液を遠心薄膜濃縮機(大川原製作所:CEP−5S)により、液温28〜32℃、加熱温度76〜84℃、回転数790rpm、真空度4〜5kPaの条件で濃縮し、Brix30.2%の濃縮液を20kg得た。
<Concentration of black tea extract>
Comparative product 1 <TFE concentration>
The same steps as in Example 1 were repeated three times to obtain 163 kg of a Brix 5.3% black tea extract.
The extract is concentrated by a centrifugal thin film concentrator (Ogawara Seisakusho: CEP-5S) at a liquid temperature of 28 to 32 ° C, a heating temperature of 76 to 84 ° C, a rotation speed of 790 rpm, and a vacuum degree of 4 to 5 kPa. 20 kg of a% concentrate was obtained.

比較品2 <RO膜濃縮>
実施例1と同様の工程を2回繰り返し、Brix5.4%の紅茶抽出液を110kg得た。
この抽出液を逆浸透膜(日東電工:NTR−759HG)により、液温35℃、圧力2.0MPa、循環流速10L/hrの条件下で濃縮し、Brix29.7%の濃縮液を15kg得た。
Comparative product 2 <RO membrane concentration>
The same steps as in Example 1 were repeated twice to obtain 110 kg of Brix 5.4% black tea extract.
This extract was concentrated by a reverse osmosis membrane (Nitto Denko: NTR-759 HG) at a liquid temperature of 35 ° C., a pressure of 2.0 MPa, and a circulation flow rate of 10 L / hr to obtain 15 kg of a Brix 29.7% concentrate .

比較品3 <FC>
実施例1と同様の工程を4回繰り返し、Brix5.2%の紅茶抽出液を220kg得た。
この抽出液を凍結濃縮機(GEA Niro:NFC−W6)により、装置内の抽出液温度と冷却溶媒温度の差が5〜7℃となる条件(抽出液温度−1.1℃、冷却溶媒温度−7.1℃程度)で濃縮を試みた。しかしながら、抽出液のBrixが低いため、氷晶が発生せず濃縮ができなかった。
Comparison product 3 <FC>
The same steps as in Example 1 were repeated four times to obtain 220 kg of a Brix 5.2% black tea extract.
The condition that the difference between the temperature of the extract in the device and the temperature of the cooling solvent becomes 5 to 7 ° C. by the freeze concentrator (GEA Niro: NFC-W6) (extract temperature-1.1 ° C., the temperature of the cooling solvent) An attempt was made to concentrate at -7.1 ° C). However, because the Brix of the extract was low, ice crystals were not generated and concentration was not possible.

比較品4 <TFE予備濃縮⇒FC>
実施例1と同様の工程を6回繰り返し、Brix5.2%の紅茶抽出液を338kg得た。
この抽出液を遠心薄膜濃縮機(大川原製作所:CEP−5S)により、液温28〜33℃、加熱温度76〜80℃、回転数803rpm、真空度4〜5kPaの条件で濃縮し、Brixを10.6%まで高めた濃縮液158kg得た。
ついで、この濃縮液を初期投入液とし凍結濃縮機(GEA Niro:NFC−W6)で濃縮を開始した。氷晶作製したあとの追加投入液は実施例1と同様の工程を6回繰り返し得たBrix5.2%の抽出液325kgを用いた。運転は、装置内の抽出液温度と冷却溶媒温度の差が5〜7℃となる条件で、装置内氷晶割合:30〜50%となるように行った。この濃縮によってBrix29.6%の濃縮液を70kg得た。
Comparative product 4 <TFE preconcentration → FC>
The same steps as in Example 1 were repeated six times to obtain 338 kg of a Brix 5.2% black tea extract.
The extract is concentrated by a centrifugal thin film concentrator (Ogawara Seisakusho: CEP-5S) at a liquid temperature of 28 to 33 ° C, a heating temperature of 76 to 80 ° C, a rotation speed of 803 rpm, and a vacuum degree of 4 to 5 kPa. It obtained 158 kg of the concentrate which had been raised to 6%.
Next, this concentrate was used as an initial input solution and concentration was started with a freeze concentrator (GEA Niro: NFC-W6). The additional solution after preparation of the ice crystals used was 325 kg of a Brix 5.2% extract obtained by repeating the same steps as in Example 1 six times. The operation was performed so that the ratio of ice crystals in the apparatus: 30 to 50%, under the condition that the difference between the temperature of the extract liquid and the temperature of the cooling solvent in the apparatus is 5 to 7 ° C. This concentration yielded 70 kg of a 29.6% Brix concentrate.

比較品5 <RO膜予備濃縮⇒FC>
実施例1と同様の工程を6回繰り返し、Brix5.2%の紅茶抽出液を331kg得た。
この抽出液を逆浸透膜(日東電工社製:NTR−759HG、液温35℃、圧力2.0MPa、循環流速10L/hr)で濃縮しBrix10.9%の濃縮液を150kg得た。
ついで、この濃縮液を初期投入液とし凍結濃縮機(GEA Niro:NFC−W6)で濃縮を開始した。氷晶作製したあとの追加投入液は実施例1と同様の工程を6回繰り返し得たBrix5.3%の抽出液340kgを用いた。凍結濃縮機の運転は、装置内の抽出液温度と冷却溶媒温度の差が5〜7℃となる条件で、装置内氷晶割合:30〜50%となるように行った。この濃縮によってBrix30.3%の濃縮液を80kg得た。
Comparative product 5 <RO membrane preconcentration → FC>
The same steps as in Example 1 were repeated six times to obtain 331 kg of a Brix 5.2% black tea extract.
The extract was concentrated with a reverse osmosis membrane (manufactured by Nitto Denko: NTR-759 HG, liquid temperature 35 ° C., pressure 2.0 MPa, circulation flow rate 10 L / hr) to obtain 150 kg of a 10.9% Brix concentrate.
Next, this concentrate was used as an initial input solution and concentration was started with a freeze concentrator (GEA Niro: NFC-W6). The additional solution after preparation of the ice crystals used was 340 kg of a Brix 5.3% extract obtained by repeating the same steps as in Example 1 six times. The operation of the freeze concentrator was carried out so that the ratio of in-apparatus ice crystals was 30 to 50% under the condition that the difference between the temperature of the extract solution in the apparatus and the temperature of the cooling solvent was 5 to 7 ° C. This concentration yielded 80 kg of a Brix 30.3% concentrate.

<デキストリン添加した紅茶抽出液の濃縮>
比較品6 <TFE濃縮>
実施例1と同様の工程を2回繰り返し、Brix5.3%の紅茶抽出液を111kg得た。この抽出液に、DE17〜21のマルトデキストリン(サンエイ糖化:NSD700)を茶固形分の2倍量加えて撹拌溶解した。溶液のBrixは14.0%、重量は123kgであった。この溶液を遠心薄膜濃縮機(大川原製作所:CEP−5S)により、液温30〜32℃、加熱温度76〜80℃、回転数803rpm、真空度4〜5kPaの条件で濃縮し、Brix31.7%の濃縮液を40kg得た。
<Concentration of black tea extract added with dextrin>
Comparative product 6 <TFE concentration>
The same steps as in Example 1 were repeated twice to obtain 111 kg of a Brix 5.3% black tea extract. To this extract, maltodextrin of DE 17-21 (Sanei saccharification: NSD 700) was added twice as much as the solid content of tea, stirred and dissolved. The solution had a Brix of 14.0% and a weight of 123 kg. This solution is concentrated by a centrifugal thin film concentrator (Ogawara Mfg. Co., Ltd .: CEP-5S) at a solution temperature of 30 to 32 ° C, a heating temperature of 76 to 80 ° C, a rotation speed of 803 rpm, and a vacuum degree of 4 to 5 kPa. 40 kg of a concentrated solution of

比較品7 <RO膜濃縮>
実施例1と同様の工程を2回繰り返し、Brix5.2%の紅茶抽出液を116kg得た。この抽出液に、DE17〜21のマルトデキストリン(サンエイ糖化:NSD700)を茶固形分の2倍量加えて撹拌溶解した。溶液のBrixは14.1%、重量は123kgであった。この溶液を逆浸透膜(日東電工:NTR−759HG、液温35℃、圧力2.0MPa、循環流速10L/hr)で濃縮し、Brix29.1%の濃縮液を55kg得た。
Comparative product 7 <RO membrane concentration>
The same steps as in Example 1 were repeated twice to obtain 116 kg of a Brix 5.2% black tea extract. To this extract, maltodextrin of DE 17-21 (Sanei saccharification: NSD 700) was added twice as much as the solid content of tea, stirred and dissolved. The solution had a Brix of 14.1% and a weight of 123 kg. This solution was concentrated with a reverse osmosis membrane (Nitto Denko: NTR-759 HG, liquid temperature 35 ° C., pressure 2.0 MPa, circulation flow rate 10 L / hr) to obtain 55 kg of a Brix 29.1% concentrated solution.

実施品1 <FC>
実施例1と同様の工程を4回繰り返し、Brix5.2%の紅茶抽出液を224kg得た。この抽出液に、DE17〜21のマルトデキストリン(サンエイ糖化:NSD700)を茶固形分の2倍量加えて撹拌溶解した。溶液のBrixは13.7%、重量は256kgであった。この溶液を凍結濃縮機(GEA Niro:NFC−W6)で濃縮した。凍結濃縮機の運転は、装置内の抽出液温度と冷却溶媒温度の差が5〜7℃となる条件で、装置内氷晶割合:30〜50%となるように行った。この濃縮によってBrix30.3%の濃縮液を80kg得た。
Implemented item 1 <FC>
The same steps as in Example 1 were repeated four times to obtain 224 kg of a Brix 5.2% black tea extract. To this extract, maltodextrin of DE 17-21 (Sanei saccharification: NSD 700) was added twice as much as the solid content of tea, stirred and dissolved. The solution had a Brix of 13.7% and a weight of 256 kg. This solution was concentrated with a freeze concentrator (GEA Niro: NFC-W6). The operation of the freeze concentrator was carried out so that the ratio of in-apparatus ice crystals was 30 to 50% under the condition that the difference between the temperature of the extract solution in the apparatus and the temperature of the cooling solvent was 5 to 7 ° C. This concentration yielded 80 kg of a Brix 30.3% concentrate.

<香気成分の測定方法>
上記実施例で得られた紅茶抽出液の香気成分の測定を行った。
水で茶抽出液もしくは濃縮茶抽出液を茶固形分100mg/10mLになるよう希釈した液10mL(内部標準物質としてシクロヘプタノールを終濃度で50ppbとなるように添加)を、予め3gの塩化ナトリウムを入れた20mLバイアルに入れ、固相マイクロ抽出法(SolidPhase Micro Extraction:SPME)を用いたGC/MS分析に供した。
(SPME−GC/MS条件)
装置:TRACE GC ULTRA、TSQ QUANTUM XLS(Thermo)SPMEファイバー:50/30μm Divinylbenzene/Carboxen/Polydimethylsiloxane StableFlex
抽出:60℃、30分
カラム:SUPELCO WAX10(0.25mmI.D.×60m×0.25μm、SUPELCO)
オーブンプログラム:40℃(2分保持)〜3℃/min〜160℃〜10℃/min〜280℃
キャリアーガス:ヘリウム(100kPa、一定圧力)
インジェクター:スプリットレス、240℃
イオン化:電子イオン化
イオン化電圧:70eV
数値はGC-MSピーク面積比(各香気成分/シクロヘプタノール50ppb)
測定した茶抽出液の香気成分の結果を表1に示す。
<Method of measuring aroma component>
The aroma components of the black tea extract obtained in the above example were measured.
10 g of a solution obtained by diluting a tea extract or concentrated tea extract with water to a solid content of 100 mg / 10 mL (adding cycloheptanol as an internal standard substance to a final concentration of 50 ppb), 3 g of sodium chloride in advance Into a 20 mL vial and subjected to GC / MS analysis using Solid Phase Micro Extraction (SPME).
(SPME-GC / MS conditions)
Device: TRACE GC ULTRA, TSQ QUANTUM XLS (Thermo) SPME fiber: 50/30 μm Divinylbenzene / Carboxen / Polydimethyl siloxane StableFlex
Extraction: 60 ° C., 30 minutes Column: SUPELCO WAX 10 (0.25 mm ID × 60 m × 0.25 μm, SUPELCO)
Oven program: 40 ° C. (hold for 2 minutes) to 3 ° C./min to 160 ° C. to 10 ° C./min to 280 ° C.
Carrier gas: Helium (100 kPa, constant pressure)
Injector: splitless, 240 ° C
Ionization: Electron Ionization Ionization voltage: 70 eV
The values are GC-MS peak area ratio (each aroma component / cycloheptanol 50 ppb)
The results of the measured aroma components of the tea extract are shown in Table 1.

表1では、実施例で得られた紅茶抽出液の香気成分量に基づき、n−hexanal、(E)−2−hexen−1−al、n−hexanol、(Z)−3−hexen−1−olおよび(E)−2−hexen−1−olについてはA:グリーン系香気成分として、β−myrcene、D−limonene、cis−β−ocimene、trans−β−ocimene、6−methyl−5−hepten−2−one、(E.Z)−3,5−octadien−2−one、(E,E)−3,5−octadien−2−one、β−cyclocitralおよびmethyl salicylateについてはB:フルーティー系香気成分として、linalool oxide(trans−franoid)、linalool oxide(cis−franoid)、linalool、α−terpineol、linalool oxide(cis−pyranoid)、linalool oxide(trans−pyranoid)、β−damascenone、geraniolおよびβ−iononeはC:フローラル系香気成分としてそれぞれの合計値を示した。
また、測定した全香気成分の合計値、および濃縮前の茶抽出液の香気成分量に対する濃縮工程後の香気成分の保持率(%)を表1に示す。
In Table 1, n-hexanal, (E) -2-hexen-1-al, n-hexanol, (Z) -3-hexen-1-, based on the amount of aroma components of the black tea extract obtained in the examples. As for ol and (E) -2-hexen-1-ol, A: As a greenish aroma component, β-myrcene, D-limonene, cis-β-ocimene, trans-β-ocimene, 6-methyl-5-heptene -2-one, (E.Z) -3,5-octadien-2-one, (E, E) -3,5-octadien-2-one, .beta.-cyclocitral and methyl salicylate B: fruity aroma As components, linalool oxide (trans-franoid), linalool oxide (ci s-franoid), linalool, α-terpineol, linalool oxide (cis-pyranoid), linalool oxide (trans-pyranoid), β-damascenone, geraniol and β-ionone show their respective total values as C: floral aroma components The
In addition, Table 1 shows the total value of all the aroma components measured and the retention (%) of the aroma components after the concentration step relative to the amount of aroma components of the tea extract before concentration.

<官能評価>
実施例1〜3で得られた茶抽出液および濃縮茶抽出液の官能評価を行った。
それぞれの茶抽出液および濃縮茶抽出物を蒸留水によりBrix0.5%に希釈し、飲用濃度にして官能評価を行った。その際、デキストリンを添加した濃縮茶抽出液に関しては、デキストリン添加分のBrixを差し引き、茶由来成分によるBrixが0.5%相当となるように調製した。濃縮前の抽出液を希釈した飲料をコントロールの5点として、パネラー5人で、香味について5段階評価(最も良い場合5点、最も悪い場合を1点)を行い、その平均値で表した。結果を表1に示す。
<Sensory evaluation>
The sensory evaluation of the tea extract and concentrated tea extract obtained in Examples 1 to 3 was performed.
Each tea extract and concentrated tea extract were diluted to 0.5% Brix with distilled water, and subjected to sensory evaluation at a drinking concentration. At that time, with respect to the concentrated tea extract solution to which dextrin was added, Brix of the dextrin added portion was subtracted to prepare so that Brix by the tea-derived component was equivalent to 0.5%. The beverage was prepared by diluting the extract prior to concentration as the control 5 points, and a panel of 5 people performed a 5-step evaluation (5 points in the best case, 1 point in the worst case) on the flavor and represented by the average value. The results are shown in Table 1.

表1の結果より、
TFE濃縮より得られた濃縮紅茶抽出液は、香気成分の保持率がデキストリン無添加の比較品1で3.7%、デキストリンを添加した比較品6で25.7%であり著しく減少していた。官能評価における評価点数は、それぞれ2.0および2.8であり、著しく香味が損失していることが確認された。
RO膜濃縮に関しては、香気成分の保持率は、デキストリン無添加の比較品2で64.7%、デキストリンを添加した比較品7で58.2%であり、TFE濃縮に比べれば高い結果であったが、官能評価が2.6および3.6でありコントロールである茶抽出液や実施品1に比べて明らかに香味が損失していた。また、デキストリンを添加した比較品7よりもデキストリン無添加の比較品2の方が、香気成分の保持率が高かった。これより、RO膜濃縮においては、デキストリンが濃縮工程における香気成分の保持に直接関与していないことが明らかになった。
抽出液のBrixを高めるためにTFE濃縮もしくはRO膜濃縮した後、凍結濃縮を行った比較品4および5は、いずれも予備濃縮工程において香気成分が損失していた。比較品5の香気成分の保持率が79.6%と実施品1の次に高い結果となったが、3.6という官能評価の点数からも予備濃縮工程によって香味が損失していることは明らかであり、実施品1に対し明らかに香味が優れなかった。
デキストリンによりBrixを調整せずに茶抽出液の凍結濃縮を試みた比較品3は、再結晶装置内で氷晶と濃縮液の分離が起こらず、正常に濃縮を行うことができなかった。
これら比較品に対し、デキストリンを添加して凍結濃縮を行った実施品1は、濃縮前の抽出液と比較しても98.3%の香気成分を保持しており、官能評価においても4.8とコントロールと比べてほとんど香味の損失が感じられなかった。また実施品1は、フローラル系香気成分が濃縮前の抽出液よりも増加しており、官能評価の際に華やかな香りが際立って感じられた。これより、デキストリンを添加して凍結濃縮を行う工程が最も優れた茶抽出液の濃縮手段であることが示された。
From the results in Table 1,
In the concentrated black tea extract obtained from TFE concentration, the retention rate of the aroma component was remarkably decreased by 3.7% with the comparative product 1 without dextrin addition and 25.7% with the comparative product 6 with dextrin added . The evaluation points in the sensory evaluation were 2.0 and 2.8, respectively, and it was confirmed that the flavor was significantly lost.
With regard to RO membrane concentration, the retention rate of the aroma component is 64.7% for the comparative product 2 with no added dextrin, 58.2% for the comparative product 7 with added dextrin, which is a higher result than TFE concentration However, the sensory evaluation was 2.6 and 3.6, and the flavor was clearly lost as compared with the control tea extract and the product 1. Moreover, the retention rate of the aroma component was higher in Comparative Product 2 in which no dextrin was added than in Comparative Product 7 in which dextrin was added. From this, it became clear that, in RO membrane concentration, dextrin is not directly involved in retention of the aroma component in the concentration step.
After TFE concentration or RO membrane concentration to enhance the Brix of the extract, the freeze-concentrated Comparative Products 4 and 5 both had lost aroma components in the pre-concentration step. The retention rate of the aroma component of Comparative product 5 was 79.6%, which is the second highest result of the practical product 1. However, from the score of sensory evaluation of 3.6, the fact that the flavor is lost by the pre-concentration step is It was clear, and the flavor was clearly inferior to that of Example 1.
Comparative product 3 in which the freeze-concentration of the tea extract was attempted without adjusting Brix with dextrin did not cause separation of the ice crystals and the concentrate in the recrystallization apparatus, and the concentration could not be performed normally.
The product 1 in which dextrin was added and freeze-concentrated to these comparative products retained 98.3% of the aroma components as compared to the extract before concentration, and it was also evaluated in sensory evaluation 4. Almost no loss of flavor was felt compared to 8 and the control. In addition, in the product 1, the floral aroma component was increased compared to the extract before concentration, and a colorful smell was felt prominent in the sensory evaluation. From this, it was shown that the step of adding dextrin and performing freeze concentration was the most excellent means for concentrating tea extract.

<茶抽出液のBrixの調整>
実施例1と同様の工程で得られたBrix5.3%の紅茶抽出液をデキストリン添加により、それぞれBrix6.3、7.3、9.0、15.0、20.0および25.0%に調整する以外は、実施品1と同じ凍結濃縮工程によって濃縮茶抽出液を調製した(比較品8、実施品2〜6)。茶固形分1重量部当たりのデキストリンの添加量(重量部)および官能評価の結果を表2に示す。
<Preparation of Brix of tea extract>
The Brix 5.3% black tea extract obtained by the same process as Example 1 was made into Brix 6.3, 7.3, 9.0, 15.0, 20.0 and 25.0% by adding dextrin, respectively. The concentrated tea extract was prepared by the same freeze-concentrating step as in the practical product 1 except that it was adjusted (comparative product 8, practical products 2 to 6). The addition amount (parts by weight) of dextrin per part by weight of tea solid content and the results of sensory evaluation are shown in Table 2.

表2より、茶抽出液をデキストリンによりBrix7.3%以上に調整した後に凍結濃縮を行うことで香味に優れた濃縮茶抽出液が製造できることが示された。抽出液のBrixが6.3%である比較品8は、比較品3と同様に抽出液のBrixが低いため、氷晶と濃縮液の分離が起こらず、濃縮ができなかった。
また、抽出液へのデキストリン添加量は、茶固形分1重量部当たり0.4から3.5重量部であれば優れた香味を有することが示された。一方、デキストリンを茶固形分1重量部当たり4.3重量部添加した実施品6は、デキストリンの風味が感じられたため、官能評価が4.2と他の実施品に比べて若干劣っていた。
It was shown from Table 2 that concentrated tea extract having excellent flavor can be produced by performing freeze concentration after adjusting the tea extract to 7.3% Brix or more with dextrin. Comparative product 8 in which the Brix of the extract was 6.3% was low in Brix of the extract as in Comparative product 3, so that separation of the ice crystals and the concentrate did not occur, and concentration was not possible.
Also, it was shown that the amount of dextrin added to the extract liquid was excellent when it was 0.4 to 3.5 parts by weight per 1 part by weight of tea solids. On the other hand, in the product 6 in which 4.3 parts by weight of dextrin was added per 1 part by weight of tea solids, the sensory evaluation was slightly inferior to that of the other products in sensory evaluation 4.2 because the flavor of dextrin was felt.

<FC⇒凍結乾燥による茶抽出物の製造>
実施例1と同様の工程を4回繰り返し、Brix5.3%の紅茶抽出液を218kg得た。この抽出液に、DE16〜19のマルトデキストリン(松谷化学工業:TK16)を茶固形分の2倍量加えて撹拌溶解した。溶液のBrixは14.3%、重量は241kgであった。この溶液を凍結濃縮機(GEA Niro:NFC−W6)で濃縮した。運転は、装置内の抽出液温度と冷却溶媒温度の差が5〜7℃となる条件で、装置内氷晶割合:30〜50%となるように行った。この濃縮によってBrix31.0の濃縮液を80kg得た。
この濃縮茶抽出液の一部を凍結乾燥機(EYELA社:FDU−2100)により乾燥させ茶抽出物を得た。
この茶抽出物を水で溶解し、前記紅茶抽出液と同様の方法で官能評価を行ったところ、実施品1と同様に香味に優れていた。
<Production of tea extract by freeze-drying>
The same steps as in Example 1 were repeated four times to obtain 218 kg of Brix 5.3% black tea extract. To this extract, maltodextrin of DE 16-19 (Matsutani Chemical Industry: TK16) was added twice as much as the solid content of tea, and dissolved with stirring. The solution had a Brix of 14.3% and a weight of 241 kg. This solution was concentrated with a freeze concentrator (GEA Niro: NFC-W6). The operation was performed so that the ratio of ice crystals in the apparatus: 30 to 50%, under the condition that the difference between the temperature of the extract liquid and the temperature of the cooling solvent in the apparatus is 5 to 7 ° C. This concentration yielded 80 kg of a Brix 31.0 concentrate.
A portion of the concentrated tea extract was dried by a lyophilizer (EYELA: FDU-2100) to obtain a tea extract.
The tea extract was dissolved in water and subjected to sensory evaluation in the same manner as in the black tea extract. As a result, the flavor was excellent in the same manner as Example 1.

<濃縮緑茶抽出液の製造>
緑茶葉5kgを60℃のイオン交換水50Lで30分抽出し、50メッシュ濾過、遠心分離を行う工程を4回繰り返し、Brix2.9%の緑茶抽出液を160kg得た。この抽出液に対し、Brixが10.2%となるようDE17〜21のマルトデキストリン(サンエイ糖化:NSD700)を加え撹拌溶解した。溶液重量は172kgであった。
この溶液を初期投入液とし凍結濃縮機(GEA Niro:NFC−W6)で濃縮を開始
した。運転は、装置内の抽出液温度と冷却溶媒温度の差が5〜7℃となる条件で、装置内氷晶割合:30〜50%となるように行った。氷晶作製した後の追加投入液は、上記と同様の工程を5回繰り返し得たBrix2.9%の緑茶抽出液203kgにBrixが7.5%になるようマルトデキストリンを添加したものを用いた。この濃縮によって、Brix26.0%の濃縮液を80kg得た。
前記濃縮紅茶抽出液と同様の方法で官能評価を行ったところ、実施品1と同様に香味に優れていた。
<Production of Concentrated Green Tea Extract>
The process of extracting 5 kg of green tea leaves with 50 liters of ion-exchanged water at 60 ° C. for 30 minutes, repeating 50 mesh filtration and centrifugation was repeated four times to obtain 160 kg of a Brix 2.9% green tea extract. To this extract, maltodextrin of DE 17-21 (San Saccharification: NSD 700) was added so as to have a Brix of 10.2%, and dissolved by stirring. The solution weight was 172 kg.
This solution was used as an initial input solution and concentration was started with a freeze concentrator (GEA Niro: NFC-W6). The operation was performed so that the ratio of ice crystals in the apparatus: 30 to 50%, under the condition that the difference between the temperature of the extract liquid and the temperature of the cooling solvent in the apparatus is 5 to 7 ° C. The additional solution after the preparation of ice crystals was prepared by adding maltodextrin to have a Brix of 7.5% added to 203 kg of Brix 2.9% green tea extract obtained by repeating the same steps as above five times. . This concentration yielded 80 kg of a Brix 26.0% concentrate.
When the sensory evaluation was performed by the method similar to the said concentrated black tea extract, it was excellent in the flavor similarly to the implementation goods 1.

<濃縮ジャスミン茶抽出液の製造>
ジャスミン茶葉8kgを85℃のイオン交換水70Lで40分抽出し、50メッシュ濾過、遠心分離を行う工程を6回繰り返しBrix3.7%のジャスミン茶抽出液を273kg得た。この抽出液に、DE17〜21のマルトデキストリン(サンエイ糖化:NSD700)を茶固形分の2倍量加えて撹拌溶解した。溶液のBrixは10.3%、重量は294kgであった。この溶液を凍結濃縮機(GEA Niro:NFC−W6)で濃縮した。凍結濃縮機の運転は、装置内の抽出液温度と冷却溶媒温度の差が5〜7℃となる条件で、装置内氷晶割合:30〜50%となるように行った。この濃縮によってBrix25.1%の濃縮液を90kg得た。
前記濃縮紅茶抽出液と同様の方法で官能評価を行ったところ、実施品1と同様に香味に優れていた。
<Production of Concentrated Jasmine Tea Extract>
8 kg of jasmine tea leaves were extracted with 70 liters of ion-exchanged water at 85 ° C. for 40 minutes, and 50 mesh filtration and centrifugation were repeated six times to obtain 273 kg of a 3.7% Brix jasmine tea extract. To this extract, maltodextrin of DE 17-21 (Sanei saccharification: NSD 700) was added twice as much as the solid content of tea, stirred and dissolved. The solution had a Brix of 10.3% and a weight of 294 kg. This solution was concentrated with a freeze concentrator (GEA Niro: NFC-W6). The operation of the freeze concentrator was carried out so that the ratio of in-apparatus ice crystals was 30 to 50% under the condition that the difference between the temperature of the extract solution in the apparatus and the temperature of the cooling solvent was 5 to 7 ° C. This concentration yielded 90 kg of a Brix 25.1% concentrate.
When the sensory evaluation was performed by the method similar to the said concentrated black tea extract, it was excellent in the flavor similarly to the implementation goods 1.

デキストリンの添加によって茶類の抽出液をBrix7.3%以上に調整することにより、香味の損失を伴うTFE濃縮やRO膜濃縮等の予備濃縮工程を必要としない凍結濃縮を実施することができる。

By adjusting the extract of teas to 7.3% or more of Brix by addition of dextrin, freeze concentration which does not require a preconcentration step such as TFE concentration or RO membrane concentration with loss of flavor can be performed.

Claims (6)

デキストリンの添加によって茶抽出液をBrix13.7%以上20.0%以下に調整した後、凍結濃縮する濃縮茶抽出液の製造方法であって、前記デキストリンの添加量が茶固形分1重量部に対して2.0〜3.5重量部である濃縮茶抽出液の製造方法。 A method for producing a concentrated tea extract liquid, which comprises adjusting a tea extract to 13.7% to 20.0% by addition of dextrin and then freeze-concentrating, wherein the amount of the dextrin added is 1 part by weight of tea solids. The manufacturing method of the concentrated tea extract which is 2.0-3.5 weight part with respect to. デキストリンが、DE16〜21のマルトデキストリンである請求項1に記載の製造方法。 The method according to claim 1, wherein the dextrin is maltodextrin of DE 16-21. 茶が紅茶である請求項1から2のいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 2, wherein the tea is black tea. 請求項1から3のいずれか一項に記載の製造方法により得られる濃縮茶抽出液を乾燥させる茶抽出物の製造方法。 The manufacturing method of the tea extract which dries the concentrated tea extract obtained by the manufacturing method as described in any one of Claims 1-3. 乾燥処理が凍結乾燥である請求項4に記載の製造方法。 The method according to claim 4, wherein the drying process is lyophilization. 請求項1から5記載のいずれか一項に記載の製造方法によって得られる濃縮茶抽出液または茶抽出物。 Concentrated red tea extract or red tea extract obtained by the production method according to any one of according claims 1-5.
JP2017245883A 2017-12-22 2017-12-22 Method of producing concentrated tea extract and extract by freeze concentration method Expired - Fee Related JP6535077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017245883A JP6535077B2 (en) 2017-12-22 2017-12-22 Method of producing concentrated tea extract and extract by freeze concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017245883A JP6535077B2 (en) 2017-12-22 2017-12-22 Method of producing concentrated tea extract and extract by freeze concentration method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013264978A Division JP6444028B2 (en) 2013-12-24 2013-12-24 Concentrated tea extract by freeze concentration method and method for producing extract

Publications (3)

Publication Number Publication Date
JP2018068310A JP2018068310A (en) 2018-05-10
JP2018068310A5 JP2018068310A5 (en) 2019-02-14
JP6535077B2 true JP6535077B2 (en) 2019-06-26

Family

ID=62112369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245883A Expired - Fee Related JP6535077B2 (en) 2017-12-22 2017-12-22 Method of producing concentrated tea extract and extract by freeze concentration method

Country Status (1)

Country Link
JP (1) JP6535077B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114176147A (en) * 2021-12-20 2022-03-15 婺源县聚芳永茶业有限公司 Preparation method of tea concentrated solution for concocting wine, tea concentrated solution and application thereof
KR102597301B1 (en) * 2022-04-07 2023-11-03 주식회사 하일코스메틱 Manufacturing method of powder type tea for alleviating symptom of skin damage, edema and constipation

Also Published As

Publication number Publication date
JP2018068310A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US4474822A (en) Process for the preparation of instant tea
JP6230382B2 (en) Method for producing low caffeine tea extract and low caffeine tea extract
CN102302070B (en) Method for processing instant Tieguanyin tea powder
NZ259358A (en) Preparation of an acidified tea product - black tea leaves extracted at less than 180 degrees f and a high methoxy pectin, at 50-500ppm, is added
JP2009017867A (en) Method for producing digestion-resistant dextrin-containing instant tea
CN101848645A (en) Process for manufacturing tea products and products obtainable thereby
KR102440334B1 (en) Low water coffee and tea beverage concentrates and method for making the same
CN103749799A (en) Processing method of alcohol taste tea concentrated solution
JP6444028B2 (en) Concentrated tea extract by freeze concentration method and method for producing extract
JP6535077B2 (en) Method of producing concentrated tea extract and extract by freeze concentration method
JP5649789B2 (en) Tea extract and method for producing the same
CN103999973B (en) A kind of preparation method clarifying tea juice concentrating
JP2009213419A (en) Method for producing purified plant extract hardly causing secondary precipitation
CN101366427B (en) Processing method for cold instant white tea powder
JP5213832B2 (en) Method for reducing acetic acid in roasted plant raw material aqueous extract
CA2093499C (en) Unsweetened, frozen, tea beverage concentrates
CA1230773A (en) Soluble or disolved tea product
US7022367B2 (en) Oolong tea beverage and process of producing the same
JP4673247B2 (en) Process for producing a processed tea extraction product with improved flavor
JP2939580B2 (en) Method for producing tea extract powder
JP2000253820A (en) Production of instant teas
CN107006853A (en) Heat the preparation method of vanilla extract
WO2009087014A1 (en) Solid water soluble tea composition
JPS61187747A (en) Method for preventing clouding of extracted tea
CN105410578A (en) High-clarity sugarcane juice powder and preparation method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190530

R150 Certificate of patent or registration of utility model

Ref document number: 6535077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees