JP6531263B2 - Surface treatment apparatus and surface treatment method - Google Patents

Surface treatment apparatus and surface treatment method Download PDF

Info

Publication number
JP6531263B2
JP6531263B2 JP2016037742A JP2016037742A JP6531263B2 JP 6531263 B2 JP6531263 B2 JP 6531263B2 JP 2016037742 A JP2016037742 A JP 2016037742A JP 2016037742 A JP2016037742 A JP 2016037742A JP 6531263 B2 JP6531263 B2 JP 6531263B2
Authority
JP
Japan
Prior art keywords
workpiece
chip
surface treatment
tip
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016037742A
Other languages
Japanese (ja)
Other versions
JP2017154196A (en
Inventor
亨 立花
亨 立花
敏 小林
敏 小林
親 村越
親 村越
一徳 小池
一徳 小池
常元 厨川
常元 厨川
正義 水谷
正義 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Micron Machinery Co Ltd
Original Assignee
Tohoku University NUC
Micron Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Micron Machinery Co Ltd filed Critical Tohoku University NUC
Priority to JP2016037742A priority Critical patent/JP6531263B2/en
Publication of JP2017154196A publication Critical patent/JP2017154196A/en
Application granted granted Critical
Publication of JP6531263B2 publication Critical patent/JP6531263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は、鋳鉄または炭素鋼などの鉄鋼からなる被加工物の表面を処理するための装置および方法に関する。   The present invention relates to an apparatus and method for treating the surface of a workpiece made of steel such as cast iron or carbon steel.

摺動部品であるタペットの摩耗特性向上のため、そのカム摺動面をチル鋳鉄で構成し、このチル鋳鉄に対して比較的低温度のPVD処理によりTiNなどからなる硬質皮膜を成形する技術的手法が提案されている(たとえば、特許文献1参照)。   In order to improve the wear characteristics of the tappet, which is a sliding part, its cam sliding surface is made of chilled iron, and this chilled iron is technically formed with a relatively low temperature PVD process to form a hard coating made of TiN etc. A method has been proposed (see, for example, Patent Document 1).

特開2004−204762号公報JP 2004-204762

本発明は、被加工物の耐摩耗性の向上を図りうるように当該被加工物の表面を処理する装置および方法を提供することを目的とする。   An object of the present invention is to provide an apparatus and method for treating the surface of a workpiece so as to improve the wear resistance of the workpiece.

本発明の表面処理装置は、Ti、V、Zr、Nb、Mo、TaおよびWからなる群から選ばれる少なくとも1つの金属またはその炭化物を含むチップと、前記チップと鉄鋼からなる被加工物とを相対的に運動させる第1駆動装置と、前記チップと前記被加工物との間に導電性ナノパーティクルが水または水溶液に分散されている加工液を供給する加工液供給装置と、前記チップと前記被加工物との間に前記加工液を介してアーキングを発生させる高周波パルス電圧を出力する高周波電源装置と、前記チップを前記被加工物に対して相対的に振動または運動させることにより、前記加工液に含まれている水の電気分解により発生する気泡をナノバブルに変化させる第2駆動装置と、を備えていることを特徴とする。
The surface treatment apparatus of the present invention comprises: a chip containing at least one metal selected from the group consisting of Ti, V, Zr, Nb, Mo, Ta, and W, or a carbide thereof; A first driving device to move relatively, a working fluid supply device for supplying a working fluid in which conductive nanoparticles are dispersed in water or an aqueous solution between the tip and the workpiece, the tip and the tip A high frequency power supply device for outputting a high frequency pulse voltage generating arcing between the workpiece and the workpiece via the working fluid, and the processing by vibrating or moving the chip relative to the workpiece. And a second driving device configured to change bubbles generated by electrolysis of water contained in the liquid into nano bubbles .

本発明の表面処理方法は、Ti、V、Zr、Nb、Mo、TaおよびWからなる群から選ばれる少なくとも1つの金属またはその炭化物を含むチップと、鉄鋼からなる被加工物とを対向配置する工程と、前記チップと前記被加工物との間に導電性ナノパーティクルが水または水溶液に分散されている加工液を供給する工程と、前記チップを前記被加工物に対して相対的に振動または運動させることにより前記チップと前記被加工物との間隙に存在する前記加工液に含まれている水の電気分解により発生する気泡をナノバブルに変化させる工程と、前記チップと前記被加工物との間に高周波パルス電圧を印加してアーキングを発生させて、前記チップを構成する金属またはその炭化物と前記加工液に分散されている前記導電性ナノパーティクルとのうち少なくとも一方に由来する粒子を前記被加工物の表面にドーピングすることによりその局所的な加工表面に耐摩耗性を向上させた改質層を生成する工程と、を含んでいることを特徴とする。
In the surface treatment method of the present invention, a chip containing at least one metal selected from the group consisting of Ti, V, Zr, Nb, Mo, Ta and W or a carbide thereof is placed opposite to a workpiece made of steel. And supplying a working fluid in which conductive nanoparticles are dispersed in water or an aqueous solution between the chip and the work, and vibrating or vibrating the chip relative to the work. Changing the bubbles generated by the electrolysis of the water contained in the working fluid present in the gap between the chip and the workpiece by moving into nano bubbles, and the chip and the workpiece The high frequency pulse voltage is applied between them to generate arcing, and the conductive nano particles dispersed in the metal or its carbide constituting the chip and the working fluid Forming a modified layer with improved wear resistance on the locally processed surface by doping particles derived from at least one of the above into the surface of the workpiece. I assume.

当該構成の表面処理装置および表面処理方法によれば、Ti、V、Zr、Nb、Mo、TaおよびWからなる群から選ばれる少なくとも1つの金属またはその炭化物(TiC、VC、ZrC、NbC、Mo2C、TaCおよびWCのうち少なくとも1つ)の粒子が、鉄鋼からなる被加工物の表面にドーピングされることで、当該被加工物の耐摩耗性の向上が図られる。 According to the surface treatment apparatus and the surface treatment method of the configuration, at least one metal selected from the group consisting of Ti, V, Zr, Nb, Mo, Ta and W or a carbide thereof (TiC, VC, ZrC, NbC, Mo By doping particles of at least one of 2 C, TaC and WC on the surface of a workpiece made of steel, the wear resistance of the workpiece can be improved.

本発明の一実施形態としての表面処理装置の構成説明図。Structure explanatory drawing of the surface treatment apparatus as one Embodiment of this invention. 本発明の一実施形態としての表面処理方法に関する説明図。Explanatory drawing regarding the surface treatment method as one Embodiment of this invention. 実施例および比較例の被加工物の表面層の元素分析結果に関する説明図。Explanatory drawing regarding the elemental-analysis result of the surface layer of the to-be-processed object of an Example and a comparative example.

(表面処理装置の構成)
図1に概要的に示されている本発明の一実施形態としての表面処理装置は、チップ1と、加工液供給装置10と、第1駆動装置11と、第2駆動装置12と、高周波電源装置13と、制御装置2と、を備えている。
(Configuration of surface treatment device)
The surface treatment apparatus as one embodiment of the present invention schematically shown in FIG. 1 comprises a chip 1, a working fluid supply device 10, a first drive device 11, a second drive device 12, and a high frequency power supply. A device 13 and a control device 2 are provided.

チップ1は、Ti、V、Zr、Nb、Mo、TaおよびWからなる群から選ばれる少なくとも1つの金属またはその炭化物(TiC、VC、ZrC、NbC、Mo2C、TaCおよびWCのうち少なくとも1つ)を表面に含んでいる。例えば、チップ1のうち、被加工物W(鋳鉄または炭素鋼などの鉄鋼からなる。)に対向する領域のみが当該金属またはその炭化物からなっていてもよい。 The tip 1 is made of at least one metal or its carbide selected from the group consisting of Ti, V, Zr, Nb, Mo, Ta and W (at least one of TiC, VC, ZrC, NbC, Mo 2 C, TaC and WC) H) on the surface. For example, only the area of the chip 1 facing the workpiece W (made of cast iron or steel such as carbon steel) may be made of the metal or its carbide.

加工液供給装置10は、チップ1による被加工物Wの加工領域に加工液Qを供給する。例えば、加工液Qは、チップ1の内部に形成された経路(図示略)を通じて、チップ1の外部に供給されてもよい。加工液Qは、溶媒(たとえば水またはアルコール水溶液などの水溶液)に導電性ナノパーティクル(ナノカーボンなど、1〜100ナノオーダーの大きさを有する導電性粒子)を分散させたものである。加工液Qには、分散剤または増粘剤(たとえばグリコール系添加剤)のほか、防錆剤および金属(銅など)の腐食抑制剤が添加されていてもよい。加工液Qには、活性化ガスが混入されていてもよい。   The processing liquid supply device 10 supplies the processing liquid Q to the processing area of the workpiece W by the chip 1. For example, the working fluid Q may be supplied to the outside of the chip 1 through a path (not shown) formed inside the chip 1. The working fluid Q is one in which conductive nanoparticles (conductive particles having a size of about 1 to 100 nano order, such as nano carbon) are dispersed in a solvent (for example, an aqueous solution such as water or an aqueous alcohol solution). In the processing fluid Q, in addition to a dispersant or a thickener (for example, a glycol additive), a rust inhibitor and a metal (such as copper) corrosion inhibitor may be added. The processing fluid Q may be mixed with an activation gas.

第1駆動装置11は、チップ1と被加工物Wとを相対的に運動させるように構成されている。第1駆動装置11は、例えば、チップ1を昇降する昇降装置と、被加工物Wが載置されたYテーブルおよび当該Yテーブルが載置されたXテーブルと、により構成される。   The first drive device 11 is configured to move the chip 1 and the workpiece W relative to each other. The first drive device 11 is configured of, for example, a lifting and lowering device that lifts and lowers the chip 1, a Y table on which the workpiece W is placed, and an X table on which the Y table is loaded.

第2駆動装置12は、チップ1と被加工物Wとを相対的に振動または運動させるように構成されている。第2駆動装置12が、チップ1を被加工物Wの表面に平行な方向に超音波振動(例えば20kHz以上の周波数での振動)させる超音波振動子(圧電素子)を備えていてもよい。第2駆動装置12が、チップ1が略円柱状である場合、チップ1をその軸線回りに回転させるスピンドル等の回動装置を備えていてもよい。   The second drive device 12 is configured to relatively vibrate or move the tip 1 and the workpiece W. The second drive device 12 may include an ultrasonic transducer (piezoelectric element) that ultrasonically vibrates (for example, vibrates at a frequency of 20 kHz or more) in a direction parallel to the surface of the workpiece W. When the tip 1 has a substantially cylindrical shape, the second drive device 12 may be provided with a pivoting device such as a spindle that rotates the tip 1 about its axis.

高周波電源装置13は、対向配置されているチップ1と被加工物Wとの間に高周波パルス電圧を印加する。   The high frequency power supply device 13 applies a high frequency pulse voltage between the chip 1 and the workpiece W which are disposed opposite to each other.

制御装置2は、コンピュータ(CPU(演算処理装置)、ROMまたはRAMなどのメモリ(記憶装置)およびI/F回路等により構成されている。)により構成されている。制御装置2は、加工液供給装置10、第1駆動装置11、第2駆動装置12および高周波電源装置13のそれぞれの動作を制御する。制御装置2による制御は、その構成要素である演算処理装置が、記憶装置から必要なデータおよびソフトウェア(プログラム)を読み取り、当該読み取りデータおよびソフトウェアにしたがって演算処理を実行することにより、当該制御処理が実行される。   The control device 2 is configured by a computer (composed of a CPU (arithmetic processing unit), a memory (storage device) such as a ROM or a RAM, an I / F circuit, etc.). The control device 2 controls the operations of the machining fluid supply device 10, the first drive device 11, the second drive device 12, and the high frequency power supply device 13. The control processing by the control device 2 is performed by the arithmetic processing device which is the constituent element reading necessary data and software (program) from the storage device and executing arithmetic processing in accordance with the read data and software. To be executed.

(表面処理方法)
前記構成の表面処理装置を用いて実行される表面処理方法に関して説明する。
(Surface treatment method)
The surface treatment method implemented using the surface treatment apparatus of the said structure is demonstrated.

まず、第1駆動装置11の動作が制御されることによって、チップ1を被加工物Wに対して対向配置させる(図2/STEP02)。チップ1と被加工物Wとの間隔Dは、たとえば0.002〜0.02[mm]の範囲に調節される。   First, by controlling the operation of the first drive device 11, the chip 1 is disposed to face the workpiece W (FIG. 2 / STEP 02). The distance D between the tip 1 and the workpiece W is adjusted, for example, in the range of 0.002 to 0.02 [mm].

次に、加工液供給装置10の動作が制御されることによって、チップ1および被加工物Wの間隙に加工液Qが供給される(図2/STEP04)。   Next, by controlling the operation of the working fluid supply device 10, the working fluid Q is supplied to the gap between the chip 1 and the workpiece W (FIG. 2 / STEP 04).

さらに、第2駆動装置12の動作が制御されることによって、チップ1を被加工物Wに対して間隔Dを変化させないように振動または運動させる(図2/STEP06)。これにより、チップ1および被加工物Wの間隙に存在する加工液Qに含まれている水が電気分解されること等に応じて、当該間隙にナノバブルが発生する。   Furthermore, by controlling the operation of the second drive device 12, the tip 1 is vibrated or moved so as not to change the distance D with respect to the workpiece W (FIG. 2 / STEP 06). Thereby, in response to the water contained in the working fluid Q present in the gap between the chip 1 and the workpiece W being electrolyzed, nano bubbles are generated in the gap.

そして、高周波電源装置13の動作が制御されることによって、チップ1および被加工物Wの間に高周波パルス電圧が印可される(図2/STEP08)。これにより、チップ1および被加工物Wの間に断続的または周期的にアーキングが発生する。パルス電圧の振幅は、たとえば100〜200[V]の範囲に調節される。パルス電圧の周波数は、たとえば1[MHz]に調節される。チップ1および被加工物Wの間への電圧印加時間は、たとえば5[min]以上、10[min]以上など、任意に調節される。   Then, by controlling the operation of the high frequency power supply device 13, a high frequency pulse voltage is applied between the chip 1 and the workpiece W (FIG. 2 / STEP 08). Thereby, arcing occurs intermittently or periodically between the chip 1 and the workpiece W. The amplitude of the pulse voltage is adjusted, for example, in the range of 100 to 200 [V]. The frequency of the pulse voltage is adjusted to, for example, 1 [MHz]. The voltage application time between the chip 1 and the workpiece W is arbitrarily adjusted, for example, 5 [min] or more, 10 [min] or more.

その結果、Ti、V、Zr、Nb、Mo、TaおよびWからなる群から選ばれる少なくとも1つの金属またはその炭化物(TiC、VC、ZrC、NbC、Mo2C、TaCおよびWCのうち少なくとも1つ)の粒子が、被加工物Wの表面に5wt%以上、好ましくは10wt%、さらに好ましくは15wt%以上ドーピングされる。被加工物の表面に対する当該金属またはその炭化物のドープ量は、パルス電圧の印可回数が多くなるほど(さらにパルス電圧が大きくなるほど)多くなる。 As a result, at least one metal or its carbide selected from the group consisting of Ti, V, Zr, Nb, Mo, Ta and W (TiC, VC, ZrC, NbC, NbC, Mo 2 C, TaC and WC) ) Are doped in the surface of the workpiece W by 5 wt% or more, preferably 10 wt%, more preferably 15 wt% or more. The doping amount of the metal or its carbide on the surface of the workpiece increases as the number of times of application of the pulse voltage increases (and as the pulse voltage increases).

(実施例)
Tiからなるチップ1と、鋳鉄からなる被加工物Wとが間隔D=0.01[mm]で対向配置された。ナノカーボン粒子(粒径:300〜800[nm])を溶媒である水に0.1〜1.0%の範囲に含まれる量(ここでは0.5%)だけ分散させることにより加工液Qが調整された。加工液Qの動粘度が2〜5[mm2/s]の範囲に含まれるように(ここでは2.5[mm2/s]になるように)、適当な増粘剤(PEG(ポリエチレングリコール)など)が加工液Qに添加された。高周波電源装置13によってチップ1および被加工物Wの間に10[min]にわたって最大値200[V]のパルス電圧(パルス周波数1[MHz])が形成された。
(Example)
The tip 1 made of Ti and the workpiece W made of cast iron were disposed to face each other at a distance D = 0.01 [mm]. The processing fluid Q is dispersed by dispersing nanocarbon particles (particle size: 300 to 800 nm) in water as a solvent in an amount (0.5% in this case) included in the range of 0.1 to 1.0%. Was adjusted. An appropriate thickener (PEG (polyethylene) so that the kinematic viscosity of the working fluid Q is included in the range of 2 to 5 [mm 2 / s] (here, 2.5 [mm 2 / s]) Glycol) etc. were added to the processing fluid Q. A pulse voltage (pulse frequency 1 [MHz]) having a maximum value of 200 [V] was formed between the chip 1 and the workpiece W by the high frequency power supply device 13 for 10 [min].

(比較例)
(比較例1)
チップ1および被加工物Wの間に加工液Qに代えて純水を介在させたほかは実施例と同一の条件下で被加工物Wの表面加工が試みられた。
(Comparative example)
(Comparative example 1)
Surface processing of the workpiece W was attempted under the same conditions as in the example except that pure water was interposed between the chip 1 and the workpiece W instead of the processing fluid Q.

(比較例2)
チップ1および被加工物Wの間に加工液Qに代えて金属加工用の切削油を介在させたほかは実施例と同一の条件下で被加工物Wの表面加工が試みられた。
(Comparative example 2)
Surface processing of the workpiece W was attempted under the same conditions as in the example except that a cutting oil for metal processing was interposed between the tip 1 and the workpiece W in place of the working fluid Q.

(評価)
実施例、比較例1および比較例2のそれぞれにおける被加工物Wの表面をEDX(エネルギー分散型X線分光法)により観察した。観察結果が、図3A〜図3Cのそれぞれに示されている。図3A〜図3Cから、実施例の表面処理方法により得られた被加工物Wの表面には、比較例1および2の表面処理方法により得られた被加工物Wの表面と比較して、Ti粒子(またはTiC粒子)が多量にドープされていることがわかる。
(Evaluation)
The surface of the workpiece W in each of the example, the comparative example 1 and the comparative example 2 was observed by EDX (energy dispersive X-ray spectroscopy). The observation results are shown in each of FIGS. 3A to 3C. From FIGS. 3A to 3C, the surface of the workpiece W obtained by the surface treatment method of the embodiment is compared with the surface of the workpiece W obtained by the surface treatment methods of Comparative Examples 1 and 2; It can be seen that Ti particles (or TiC particles) are heavily doped.

各被加工物Wの表面における主要な元素の質量濃度が、EDX分析結果に基づき、FP法(ファンダメンタルパラメータ法)にしたがって定量分析された。各被加工物の表面層のビッカース硬度がJIS Z 2244に準拠して測定された。表1にはこれらの試験結果がまとめて示されている。   The mass concentration of the main element on the surface of each workpiece W was quantitatively analyzed according to the FP method (fundamental parameter method) based on the EDX analysis result. The Vickers hardness of the surface layer of each workpiece was measured in accordance with JIS Z 2244. Table 1 summarizes these test results.

表1から、次のことがわかる。すなわち、実施例の表面処理方法により得られた被加工物Wの表面層(改質層)におけるTi含有量が、比較例1および比較例2の表面処理方法により得られた被加工物Wの表面層におけるTi含有量よりも多い。実施例の表面処理方法により得られた被加工物Wの表面層のビッカース硬度が、比較例1および比較例2の表面処理方法により得られた被加工物Wの表面層のビッカース硬度よりも高い。   Table 1 shows the following. That is, the Ti content of the surface layer (modified layer) of the workpiece W obtained by the surface treatment method of the embodiment is the same as that of the workpiece W obtained by the surface treatment method of Comparative Example 1 and Comparative Example 2. More than the Ti content in the surface layer. The Vickers hardness of the surface layer of the workpiece W obtained by the surface treatment method of the example is higher than the Vickers hardness of the surface layer of the workpiece W obtained by the surface treatment method of Comparative Example 1 and Comparative Example 2 .

(本発明の他の実施形態)
前記実施形態の表面処理装置から第2駆動装置12が省略され、被加工物Wの表面処理に際してチップ1と被加工物Wとの間隙におけるナノバブルの形成(図2/STEP06参照)が省略されてもよい。
(Other embodiments of the present invention)
The second driving device 12 is omitted from the surface treatment apparatus of the embodiment, and the formation of nanobubbles in the gap between the chip 1 and the workpiece W (see FIG. 2 / STEP 06) is omitted in the surface treatment of the workpiece W. It is also good.

1‥チップ、2‥制御装置、10‥加工液供給装置、11‥第1駆動装置、12‥第2駆動装置、13‥高周波電源装置、Q‥加工液、W‥被加工物。 1. chip, 2. control device, 10. working fluid supply device, 11. first drive device, 12. second drive device, 13. high frequency power supply device, Q working fluid, W. workpiece.

Claims (2)

Ti、V、Zr、Nb、Mo、TaおよびWからなる群から選ばれる少なくとも1つの金属またはその炭化物を含むチップと、
前記チップと鉄鋼からなる被加工物とを相対的に運動させる第1駆動装置と、
前記チップと前記被加工物との間に導電性ナノパーティクルが水または水溶液に分散されている加工液を供給する加工液供給装置と、
前記チップと前記被加工物との間に前記加工液を介してアーキングを発生させる高周波パルス電圧を出力する高周波電源装置と、
前記チップを前記被加工物に対して相対的に振動または運動させることにより、前記加工液に含まれている水の電気分解により発生する気泡をナノバブルに変化させる第2駆動装置と、を備えていることを特徴とする表面処理装置。
A tip comprising at least one metal selected from the group consisting of Ti, V, Zr, Nb, Mo, Ta and W or a carbide thereof
A first drive device for relatively moving the tip and a workpiece made of steel;
A processing fluid supply device for supplying a processing fluid in which conductive nanoparticles are dispersed in water or an aqueous solution between the chip and the workpiece;
A high frequency power supply device for outputting a high frequency pulse voltage that generates arcing between the chip and the workpiece via the working fluid;
And a second driving device that changes bubbles generated by electrolysis of water contained in the processing fluid into nano bubbles by vibrating or moving the chip relative to the workpiece. Surface treatment apparatus characterized in that
Ti、V、Zr、Nb、Mo、TaおよびWからなる群から選ばれる少なくとも1つの金属またはその炭化物を含むチップと、鉄鋼からなる被加工物とを対向配置する工程と、
前記チップと前記被加工物との間に導電性ナノパーティクルが水または水溶液に分散されている加工液を供給する工程と、
前記チップを前記被加工物に対して相対的に振動または運動させることにより前記チップと前記被加工物との間隙に存在する前記加工液に含まれている水の電気分解により発生する気泡をナノバブルに変化させる工程と、
前記チップと前記被加工物との間に高周波パルス電圧を印加してアーキングを発生させて、前記チップを構成する金属またはその炭化物と前記加工液に分散されている前記導電性ナノパーティクルとのうち少なくとも一方に由来する粒子を前記被加工物の表面にドーピングすることによりその局所的な加工表面に耐摩耗性を向上させた改質層を生成する工程と、を含んでいることを特徴とする表面処理方法。
Oppositely arranging a chip containing at least one metal or its carbide selected from the group consisting of Ti, V, Zr, Nb, Mo, Ta and W, and a workpiece made of steel;
Supplying a working fluid in which conductive nanoparticles are dispersed in water or an aqueous solution between the chip and the workpiece;
The bubbles generated by the electrolysis of the water contained in the working fluid present in the gap between the tip and the workpiece by vibrating or moving the tip relative to the workpiece are nanobubbles Changing to
A high frequency pulse voltage is applied between the chip and the workpiece to generate arcing, and of the metal or its carbide constituting the chip and the conductive nanoparticles dispersed in the processing fluid And D. producing a modified layer with improved wear resistance on the locally processed surface by doping particles derived from at least one on the surface of the object to be processed. Surface treatment method.
JP2016037742A 2016-02-29 2016-02-29 Surface treatment apparatus and surface treatment method Active JP6531263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037742A JP6531263B2 (en) 2016-02-29 2016-02-29 Surface treatment apparatus and surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037742A JP6531263B2 (en) 2016-02-29 2016-02-29 Surface treatment apparatus and surface treatment method

Publications (2)

Publication Number Publication Date
JP2017154196A JP2017154196A (en) 2017-09-07
JP6531263B2 true JP6531263B2 (en) 2019-06-19

Family

ID=59807630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037742A Active JP6531263B2 (en) 2016-02-29 2016-02-29 Surface treatment apparatus and surface treatment method

Country Status (1)

Country Link
JP (1) JP6531263B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH670785A5 (en) * 1987-04-03 1989-07-14 Charmilles Technologies
JP3376174B2 (en) * 1995-07-04 2003-02-10 三菱電機株式会社 Surface treatment method and apparatus by electric discharge machining
JP2000160361A (en) * 1998-11-30 2000-06-13 Mitsubishi Electric Corp Surface treatment by discharge and surface treating device by discharge
JP2004237413A (en) * 2003-02-07 2004-08-26 Mitsubishi Electric Corp Electric discharge machine
JP4144669B2 (en) * 2004-03-05 2008-09-03 独立行政法人産業技術総合研究所 Method for producing nanobubbles
JP3672918B1 (en) * 2004-08-06 2005-07-20 資源開発株式会社 Ionized water generator and bubble generating nozzle used in the same
JP2009241238A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Electric discharge machining device, electric discharge machining method, and working liquid for electric discharge machining device
JP5829635B2 (en) * 2013-01-31 2015-12-09 株式会社Rsテクノロジー Micro-bubble nano-bubble device

Also Published As

Publication number Publication date
JP2017154196A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
Prakash et al. Micro-electrical discharge machining of difficult-to-machine materials: a review
Ageeva et al. X-ray analisis of the powder of micro-and nanometer fractions, obtained from wastes of alloy T15K6 in aqueous medium
Rathi et al. Study on effect of powder mixed dielectric in EDM of Inconel 718
Nahak et al. A review on optimization of machining performances and recent developments in electro discharge machining
Tailor et al. Evolution of electrochemical finishing processes through cross innovations and modeling
Jadam et al. Study of surface integrity and machining performance during main/rough cut and trim/finish cut mode of WEDM on Ti–6Al–4V: effects of wire material
Singh et al. Effect of rotating magnetic field and ultrasonic vibration on micro-EDM process
Manikandan et al. Investigations on wire spark erosion machining of aluminum-based metal matrix composites
Rathod et al. Performance evaluation of electric discharge machining of titanium alloy-a review
Goyal et al. Machinability of Inconel 625 aerospace material using cryogenically treated WEDM
Mishra et al. Experimental investigations into electric discharge grinding and ultrasonic vibration-assisted electric discharge grinding of Inconel 601
Kumar et al. The state of Art: Revolutionary 5-Axis CNC Wire EDM & its recent developments
JP6531263B2 (en) Surface treatment apparatus and surface treatment method
Gaikwad et al. Investigation on effect of process parameter on surface integrity during electrical discharge machining of NiTi 60
Singh et al. Investigation into the surface quality in wire-cut EDM of M42 HSS: an experimental study and modeling using RSM
Ramver et al. On improvement in surface integrity of µ-EDMed Ti–6Al–4V alloy by µ-ECM process
Phipon et al. Sustainable processing of Inconel 718 super alloy in electrical discharge machining process
Panda et al. Comparative performance evaluation and economic assessment between traditional and vibration assisted EDM during machining of Inconel 718
Laad et al. Investigation into application of electrical discharge machining as a surface treatment process
Jaiswal et al. Effect of peak current and pulse-on time on MRR and TWR in EDM of Ti-6Al-4 V
Peterkin Electro-spark deposition machine design, physical controls and parameter effects
Roy et al. Influence of dielectric flushing conditions during WEDM of TiNiCu shape memory alloys
Khan et al. Optimal set-up and surface finish characteristics in electrical discharge machining on Ti-5Al-2.5 Sn using graphite
Hadi et al. Experimental Investigations of Surface Finish Generated by Wire Electrical Discharge Machining
Zainudin et al. Effect of Peak Current and Pulse On Time on the Coating Layer Thickness using Electrical Discharge Coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6531263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150