JP6530992B2 - Surface intake water circulation system - Google Patents

Surface intake water circulation system Download PDF

Info

Publication number
JP6530992B2
JP6530992B2 JP2015143861A JP2015143861A JP6530992B2 JP 6530992 B2 JP6530992 B2 JP 6530992B2 JP 2015143861 A JP2015143861 A JP 2015143861A JP 2015143861 A JP2015143861 A JP 2015143861A JP 6530992 B2 JP6530992 B2 JP 6530992B2
Authority
JP
Japan
Prior art keywords
flow path
water
water intake
cylindrical portion
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015143861A
Other languages
Japanese (ja)
Other versions
JP2017023924A (en
Inventor
矢延 孝也
孝也 矢延
真孝 山岸
真孝 山岸
藤村 公人
公人 藤村
裕史 木下
裕史 木下
佑索 細木
佑索 細木
Original Assignee
株式会社丸島アクアシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社丸島アクアシステム filed Critical 株式会社丸島アクアシステム
Priority to JP2015143861A priority Critical patent/JP6530992B2/en
Publication of JP2017023924A publication Critical patent/JP2017023924A/en
Application granted granted Critical
Publication of JP6530992B2 publication Critical patent/JP6530992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

本発明は、貯水池などにおける深層の嫌気化(貧酸素状態化)および表層における微細藻類の発生、繁殖を抑制する表層取水循環装置に関するものである。   The present invention relates to a surface water intake / recirculation apparatus that suppresses deep-layer anaerobic analysis (poorized oxygenation) in a reservoir or the like and generation and reproduction of microalgae in the surface layer.

従来、表層取水循環装置の一つとして、特許文献1に開示されるようなアオコ除去装置が公知である。この装置は、内筒、中筒及び外筒から構成され、フロートによって鉛直姿勢で貯水池に浮かぶ三管体と、この三管体の中筒にその下端部からエアを送り込むエア供給手段とを備えており、前記エアの供給に伴い、三管体の周囲の水(表層水)を外筒の上端からその内側に吸い込みながら、内筒の下端から流出させるように構成されている。つまり、中筒と内筒との間の空間へのエアの供給により当該中筒内に上昇流が形成され、この上昇流の形成によって外筒内の水が中筒の下端から当該中筒に引き込まれる一方、中筒内を上昇して押し上げられた水が中筒上端から内筒に流入することにより、内筒の内側に下降流が形成される。このように、中筒へのエアレーションによって外筒の上端から内筒の下端に向う水の流れを形成することで、アオコの原因となる微細藻類を含む表層水を三管体の周囲から取り込みながら光の届きにくい深層に送り込み、アオコの発生を抑制する仕組みである。   DESCRIPTION OF RELATED ART Conventionally, the water-bloom removal apparatus which is disclosed by patent document 1 as one of surface layer water intake circulation apparatuses is known. This device comprises an inner cylinder, a middle cylinder and an outer cylinder, and comprises three tubes floating in a reservoir in a vertical posture by a float, and an air supply means for feeding air from the lower end to the middle tube of the three tubes. With the supply of the air, the water around the three tubes (surface water) is drawn from the upper end of the outer cylinder to the inside and is made to flow out from the lower end of the inner cylinder. That is, an upward flow is formed in the middle cylinder by the supply of air to the space between the middle cylinder and the inner cylinder, and the formation of the upward flow causes water in the outer cylinder to flow from the lower end of the middle cylinder to the middle cylinder. While being drawn up, the downward flow is formed inside the inner cylinder by the water which ascends the inside of the middle cylinder and is pushed up flows into the inner cylinder from the upper end of the middle cylinder. Thus, by forming the flow of water from the upper end of the outer cylinder to the lower end of the inner cylinder by aeration to the middle cylinder, while taking in surface water containing microalgae that causes water bloom from around the three tubes It is a mechanism that sends it to the deep layer where light does not reach easily and suppresses the occurrence of water bloom.

特開2014−224360号公報JP, 2014-224360, A

しかし、上記従来の表層取水循環装置は、比較的占有スペースの大きい三管体を水面に浮かべる必要があるため、貯水池の池面利用や景観を損なうおそれがある。また、風や波の影響を受け易く、流木などの移動の障害物にもなり易いため、維持管理に手間がかかる。さらに、水面変動に対してしては、作業者が貯水池に潜って内筒の下端部を伸縮させて排水水位の調整を行う必要があるため、この点でも維持管理性が悪いものとなっている。   However, since the above-mentioned conventional surface water intake circulation system needs to float three pipes with relatively large occupied space on the water surface, there is a possibility that the use of the reservoir surface and the landscape may be impaired. In addition, it is easily affected by wind and waves, and is also likely to be an obstacle of movement such as driftwood, so maintenance and management take time. Furthermore, for water surface fluctuations, it is necessary for workers to adjust the drainage water level by extending and retracting the lower end of the inner cylinder by diving into the reservoir, which also makes maintenance and management difficult. There is.

本発明は、上記のような事情に鑑みてなされたものであり、貯水池の池面利用や景観を損ない難く、しかも、維持管理性の良い表層取水循環装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a surface water intake / circulation apparatus which is less likely to damage the use of the reservoir surface and the landscape, and which is excellent in maintenance and management.

上記の課題を解決するために、本発明は、貯水池の表層水を取り込みながら深層に送り込む表層取水循環装置であって、水底に係留される装置本体と、この装置本体にエアを供給するエア供給装置と、前記装置本体の下端部が水底近傍の所定位置に配置されるように当該装置本体を係留する係留手段と、を含み、前記装置本体は、上向きに開口する取水口と、この取水口に繋がり貯水池の水中を上下方向に延びる第1流路と、この第1流路の下端部の位置で当該第1流路に繋がり、当該下端部と前記取水口との間の所定位置まで第1流路に沿って上向きに延びる第2流路と、この第2流路の上端部の位置でエア溜め室を介して当該第2流路に繋がり、当該上端部の位置から第2流路に沿って下向きに延びる第3流路と、この第3流路の下端部に繋がる排水口と、を備え、前記エア供給装置は、前記第2流路にエアを供給することにより、当該第2流路に上昇流を形成前記装置本体は、内側から順に配置された第1筒部、第2筒部および第3筒部を有し、前記第1筒部の上端部が前記取水口とされ、当該第1筒部の内側が前記第1流路とされ、第1筒部と第2筒部との間が前記第2流路とされ、第2筒部と第3筒部との間が第3流路とされた三重管構造を有し、前記係留手段により装置本体が係留された状態で、前記第1筒部の上端部が、水面下であってかつ当該水面近傍の所定位置に配置されるように、前記第1筒部の上下方向長さが設定されるとともに、前記第3筒部の上端部が、少なくとも貯水池の水温躍層よりも深層に位置するように、前記第2、第3筒部の上下方向長さが設定されているものである。 In order to solve the above-mentioned problems, the present invention is a surface water intake circulation device for feeding the surface water of a reservoir into the deep layer while taking in the surface water, and a device main body which is moored to the water bottom and an air supply which supplies air to the device A device, and a mooring means for mooring the device body such that the lower end of the device body is disposed at a predetermined position near the bottom of the water; the device body having a water intake opening upward; And a first flow path extending vertically in the water of the reservoir, and the lower end of the first flow path is connected to the first flow path to a predetermined position between the lower end and the water intake port. A second flow path extending upward along one flow path, and an air reservoir at a position of an upper end of the second flow path are connected to the second flow path, and a second flow path is formed from the position of the upper end A third flow path extending downward along the lower end of the third flow path With a drain outlet connected, wherein the air supply device, by supplying air to the second passage to form a rising flow to the second flow path, wherein the device body is placed in order from the inner side A first cylindrical portion, a second cylindrical portion, and a third cylindrical portion, wherein an upper end portion of the first cylindrical portion is the water intake port, and an inner side of the first cylindrical portion is the first flow path; The mooring means has a triple pipe structure in which the space between the first cylinder and the second cylinder is the second flow path, and the space between the second cylinder and the third cylinder is the third flow path. So that the upper end portion of the first cylindrical portion is disposed below the water surface and at a predetermined position near the water surface in a state in which the device body is moored The vertical length of the second and third cylindrical portions is set so that the upper end portion of the third cylindrical portion is positioned deeper than the thermocline of the reservoir. There are those that have been set.

この表層取水循環装置によれば、第2流路へのエアの供給(エアレーション)によって当該第2流路に上昇流が形成されと、順次第1、第2、第3流路に沿って移動する水流が形成され、これにより貯水池の表層水が取水口から取り込まれながら排水口から深層に排水されることとなる。そのため、貯水池の表層と深層との間で効果的に水を循環させて、深層の嫌気化(貧酸素状態化)やアオコの発生を抑制することができる。しかも、この表層取水循環装置によれば、装置本体を水底に係留して使用するので、水面に現れるものが殆どない。そのため、貯水池の池面利用や景観を著しく損なうことがない。また、風や波の影響を受け易く、流木などの移動の障害にもなり難いので、装置本体が流されたり、装置本体の周囲に流木が留まるといったことも抑制される。従って、貯水池の池面利用や景観を損ない難く、維持管理性も向上することとなる。   According to this surface layer intake / circulation circulation system, when an upward flow is formed in the second flow path by the supply (air) of air to the second flow path, the flow sequentially moves along the first, second, and third flow paths. The surface water of the reservoir is drained from the drainage port to the deep layer while being taken in from the intake port. Therefore, it is possible to effectively circulate water between the surface layer and the deep layer of the reservoir, and to suppress the occurrence of the anaerobic (poor oxygenation) of the deep layer and the water bloom. Moreover, according to this surface layer water intake circulation device, since the device main body is moored to the bottom of the water and used, almost nothing appears on the water surface. Therefore, the use of the reservoir surface and the landscape will not be significantly impaired. Further, it is susceptible to the influence of wind and waves, and is less likely to be an obstacle to the movement of driftwood and the like, so that drifting of the device body or stagnation of driftwood around the device body is also suppressed. Therefore, it is difficult to damage the use of the reservoir surface and the landscape, and the maintenance and management will also be improved.

また、装置本体が第1〜第3筒部からなる三重管構造を有するもので、構造的なバランスが良いことに加え、水の流れのバランスも良くなるので、装置本体を水中に直立姿勢で安定的に係留することが可能となる。
また、装置本体が水面に露出することがないため、貯水池の池面利用や景観を著しく損なうことが軽減される。しかも、装置本体のうち、特にボリュームのある部分が水温躍層よりも深い深層に位置するので、装置本体が、風や波の影響を受けることが殆どない。そのため、装置本体をより安定的に貯水池に係留することが可能となる。
In addition, the device main body has a triple pipe structure including the first to third cylindrical portions, and in addition to the good structural balance, the balance of the flow of water also improves, so the device main body is upright in water. It becomes possible to moor stably.
In addition, since the device body is not exposed to the water surface, the damage to the use of the reservoir surface and the landscape can be reduced significantly. In addition, since the particularly voluminous part of the device body is located deeper than the thermocline, the device body is hardly affected by wind or waves. Therefore, the device body can be moored to the reservoir more stably.

この場合、第1筒部は、定形性を有した下側の筒部本体と、この筒部本体に繋がる伸縮自在な上側の伸縮部とを含み、前記装置本体は、前記伸縮部の上端部に連結されたフロートをさらに含むものであるのが好適である。   In this case, the first tubular portion includes a lower tubular portion main body having a fixed shape and an expandable upper and lower elastic portion connected to the cylindrical portion main body, and the device main body includes an upper end portion of the expandable portion. Preferably, it further comprises a float connected to.

この構成によれば、取水口を水面の変動に追従させることができる。そのため、水面の変動に応じて取水口の位置を調整する必要がなく、これにより維持管理性が向上する。   According to this configuration, it is possible to make the water intake follow the fluctuation of the water surface. Therefore, it is not necessary to adjust the position of the water intake according to the fluctuation of the water surface, which improves the maintenance and management.

また、上記の表層取水循環装置において、前記取水口は、下方から上方に向かって拡がる漏斗状であるのが好適である。   Further, in the above-mentioned surface layer intake / circulation apparatus, it is preferable that the intake port is in the shape of a funnel expanding upward from below.

この構成によれば、貯水池の表層水を効率良く取水口から取り込みながら深層に送り込むことが可能となる。   According to this configuration, the surface water of the reservoir can be efficiently fed into the deep layer while being taken in from the water intake.

また、上記の表層取水循環装置において、前記排水口は、前記装置本体の下端部又はその近傍位置の周囲に設けられているのが好適である。   Further, in the above-mentioned surface layer intake / circulation apparatus, it is preferable that the drainage port is provided around the lower end portion of the apparatus main body or a position near the lower end.

この構成によれば、深層の嫌気化(貧酸素状態化)を効果的に抑制することが可能となる。また、アオコの原因となる微細藻類を含む表層水をより光の届きにくい深層に送り込むことで、アオコの発生を効果的に抑制することが可能御となる。   According to this configuration, it is possible to effectively suppress deep-layer anaerobic (poor oxygenation). In addition, it is possible to effectively suppress the occurrence of water-blooming by feeding surface water containing microalgae which causes water-blooming to a deeper layer to which light can not easily reach.

以上説明したように、本発明によれば、貯水池の池面利用や景観を損ない難く、しかも、維持管理性の良い表層取水循環装置を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a surface water intake / circulation apparatus which is less likely to damage the use of the reservoir surface of the reservoir and the landscape, and which is also easy to maintain and manage.

本発明にかかる表層取水循環装置の断面図である。It is sectional drawing of the surface layer water intake circulation apparatus concerning this invention. 水位が下がったときの表層取水循環装置の断面図である。It is sectional drawing of a surface layer water intake circulation system when a water level falls.

以下、添付図面を参照しながら本発明の実施の一形態について詳述する。   Hereinafter, one embodiment of the present invention will be described in detail with reference to the attached drawings.

図1は、本発明にかかる表層取水循環装置を示しており、より詳しくは、ダム湖(貯水池の一つ)に設置された状態の表層取水循環装置を断面図で示している。   FIG. 1 shows a surface water intake circulation system according to the present invention, and more specifically shows a surface water intake circulation system installed in a dam lake (one of the reservoirs) in a cross-sectional view.

同図に示すように、表層取水循環装置1は、湖面(水面)下に設置される水没式装置であり、湖底(水底)に係留される装置本体2と、エアレーション装置4(本発明のエア供給装置に相当する)とを備える。   As shown to the same figure, the surface layer intake water circulation system 1 is a submersible-type apparatus installed under the lake surface (water surface), and the apparatus main body 2 moored to the lake bottom (water bottom), and the aeration apparatus 4 (Corresponding to a supply device).

装置本体2は、概略的には全体が円柱状を有しており、その下端部に連結されたチェーン7により、湖底に設置されたシンカー6に係留されている。詳しくは、装置本体2に備えられた後記フロート28、32の浮力により、上記チェーン7の連結長さだけ引っ張り上げられることで、水中に起立姿勢、つまり垂直に自立した状態で係留されている。なお、当実施形態では、シンカー6及びチェーン7が本発明の係留手段に相当する。   The apparatus body 2 generally has a cylindrical shape as a whole, and is anchored to the sinker 6 installed at the bottom of the lake by a chain 7 connected to the lower end thereof. In more detail, it is moored in water standing upright, that is, vertically standing, by being pulled up by the connection length of the chain 7 by the buoyancy of the later-described floats 28 and 32 provided in the apparatus body 2. In the present embodiment, the sinkers 6 and the chains 7 correspond to the mooring means of the present invention.

装置本体2は、上下方向に延びる第1円筒部10と、その外側(径方向外側)に配置されて上下方向に延びる第2円筒部12と、さらに第2円筒部12の外側に配置されて上下方向に延びる第3円筒部14とを備えた三重管構造を有している。装置本体2の隣接する筒部同士は、図外のスペーサを介して互いに固定されており、これにより、隣接する筒部の間が一定間隔に保たれている。   The device body 2 is disposed on the outer side of the first cylindrical portion 10 extending in the vertical direction, the second cylindrical portion 12 disposed on the outer side (radial direction outer side) and extending in the vertical direction, and further the second cylindrical portion 12 It has a triple tube structure provided with a third cylindrical portion 14 extending in the vertical direction. Adjacent cylindrical parts of the apparatus main body 2 are fixed to each other via a spacer (not shown), whereby the adjacent cylindrical parts are kept at a constant interval.

第1円筒部10は、定型性を有する下側の筒部本体10aと、この筒部本体10aに繋がる上側の伸縮部10bとから構成されており、伸縮部10bは、例えば蛇腹状に形成されることが伸縮自在に構造されている。伸縮部10bの上端部は、当該表層取水循環装置1の取水口11であり、下方から上方に向かって拡がる漏斗状に形成されている。伸縮部10bは、水の浮力に抗して自重で収縮可能に構成されており、その上端部(取水口11)には、ロープ16を介してフロート18が連結されている。これにより、水位の変動に追従して、所定の水深位置に取水口11が配置されるようになっている。   The first cylindrical portion 10 is composed of a lower cylindrical portion main body 10a having a fixed property and an upper elastic portion 10b connected to the cylindrical portion main body 10a. The elastic portion 10b is formed in, for example, a bellows shape It is structured to be flexible. The upper end portion of the expanding and contracting portion 10 b is the water intake 11 of the surface layer water intake and circulation device 1, and is formed in a funnel shape expanding upward from the lower side. The stretchable portion 10 b is configured to be deflated by its own weight against the buoyancy of water, and the float 18 is connected to the upper end portion (the water intake 11) via a rope 16. Thereby, the intake 11 is arranged at a predetermined water depth position in accordance with the fluctuation of the water level.

第2円筒部12は、第1円筒部10のうち、筒部本体10aに対応する位置に設けられている。第2円筒部12の下端部は、第1円筒部10の下端部よりも下方に位置しており、底蓋20によって塞がれている。一方、第3円筒部14の上端部は、第2円筒部12の上端部よりも上方に位置しており、上蓋22によって塞がれている。なお、第2円筒部12の上端部と上蓋22とは比較的大きく離れており、これにより、第2円筒部12の上方にエア溜め室15が形成されている。   The second cylindrical portion 12 is provided in the first cylindrical portion 10 at a position corresponding to the cylindrical portion main body 10 a. The lower end portion of the second cylindrical portion 12 is located below the lower end portion of the first cylindrical portion 10, and is closed by the bottom cover 20. On the other hand, the upper end portion of the third cylindrical portion 14 is located above the upper end portion of the second cylindrical portion 12, and is closed by the upper lid 22. The upper end portion of the second cylindrical portion 12 and the upper lid 22 are relatively separated from each other, whereby the air reservoir chamber 15 is formed above the second cylindrical portion 12.

このような構成により、装置本体2には、取水口11に繋がり、当該装置本体2の中心位置で上下方向に延びる第1流路Ipと、この第1流路Ipの下端部の位置で当該第1流路Ipに繋がり、当該下端部と取水口11との間の所定位置まで第1流路Ipに沿って上向きに延びる第2流路Mpと、この第2流路Mpの上端部の位置でエア溜め室15を介して当該第2流路Mpに繋がり、当該上端部の位置から第2流路Mpに沿って下向きに延びる第3流路Opとが形成されている。   With such a configuration, the apparatus main body 2 is connected to the water intake port 11, and the first flow path Ip extending in the vertical direction at the center position of the apparatus main body 2 and the lower end portion of the first flow path Ip A second flow passage Mp connected to the first flow passage Ip and extending upward along the first flow passage Ip to a predetermined position between the lower end portion and the water intake port 11, and an upper end portion of the second flow passage Mp A third flow passage Op, which is connected to the second flow passage Mp via the air reservoir chamber 15 at a position and extends downward from the position of the upper end along the second flow passage Mp, is formed.

第3円筒部14の下端部は、第1円筒部10の下端部とほぼ同じ位置に設けられている。第3円筒部14の下端部の周囲には、円環状の鍔部材24が接合されており、これにより、装置本体2の下端部の周囲に、当該鍔部材24と前記底蓋20とにより形成される全方位型の排水口25、すなわち、水平かつ放射状に排水可能な排水口25が設けられている。なお、排水口25の位置は、装置本体2の下端部の近傍位置であれば、それより上方位置であってもよい。   The lower end portion of the third cylindrical portion 14 is provided at substantially the same position as the lower end portion of the first cylindrical portion 10. An annular wedge member 24 is joined to the periphery of the lower end portion of the third cylindrical portion 14, and thereby, it is formed by the wedge member 24 and the bottom cover 20 around the lower end portion of the device body 2. An omnidirectional drain 25 is provided, ie a horizontally and radially drainable drain 25. In addition, as long as the position of the drainage port 25 is the vicinity position of the lower end part of the apparatus main body 2, it may be an upper position than it.

装置本体2のうち、第3円筒部14の上端部分であってその外周面には、複数段の大型のフロート28が固定されている。また、第1円筒部10のうち、伸縮部10bを除く第3円筒部14の上端よりも上方の領域であって、かつその周囲の複数の位置には、当該第1円筒部10に沿ってロープ30が張設されており、これらロープ30に沿って小型のフロート32(フロート28よりも小さいフロート)が所定間隔で固定されている。   A plurality of large floats 28 are fixed to the upper end portion of the third cylindrical portion 14 and the outer peripheral surface of the device main body 2. In the first cylindrical portion 10, the region above the upper end of the third cylindrical portion 14 excluding the stretchable portion 10b, and at a plurality of positions around it, along the first cylindrical portion 10 The ropes 30 are stretched, and small floats 32 (floats smaller than the floats 28) are fixed along the ropes 30 at predetermined intervals.

装置本体2の具体的な寸法は、設置される水深により異なるが、当例では、図1に示すように装置本体2が係留された状態において、第1円筒部10(装置本体2)の下端部が湖底に近接し、かつ第1円筒部10の上端部、つまり取水口11が、上述の通り、湖面近傍の所定の水深位置(例えば水深50cm程度の位置)に配置され得るように第1円筒部10の上下方向長さが設定されている。そして、第2円筒部12および第3円筒部14が、ダム湖の水温躍層よりも深層に位置するように、当該円筒部12、14の上下方向長さが設定されている。   Although the specific dimension of the device body 2 varies depending on the depth of water to be installed, in this example, the lower end of the first cylindrical portion 10 (device body 2) in a state where the device body 2 is anchored as shown in FIG. The first part is close to the bottom of the lake, and the upper end of the first cylindrical part 10, that is, the water intake 11 can be disposed at a predetermined water depth position near the lake surface (for example, about 50 cm depth) as described above. The length in the vertical direction of the cylindrical portion 10 is set. The vertical lengths of the cylindrical portions 12 and 14 are set such that the second cylindrical portion 12 and the third cylindrical portion 14 are positioned deeper than the thermocline of the dam lake.

エアレーション装置4は、装置本体2の内部にエアを供給するものである。このエアレーション装置4は、概略的には、前記底蓋20に固定されたノズル34と、ダム湖の湖岸に設置された図外のコンプレッサと、開閉バルブ等を介して当該コンプレッサと前記ノズル34とを繋ぐ給気ホース36とを含み、第2円筒部12の下端部からその内側、すなわち、第2流路Mpにエアaを供給するものである。   The aeration device 4 supplies air to the inside of the device body 2. The aeration apparatus 4 generally includes a nozzle 34 fixed to the bottom cover 20, a compressor (not shown) installed on the shore of the dam lake, and the compressor and the nozzle 34 via an open / close valve and the like. And the air supply hose 36 for connecting the air from the lower end portion of the second cylindrical portion 12 to the inner side, that is, the second flow passage Mp.

なお、装置本体2は、前記エア溜め室15に溜まる余剰エアを排出するためのエア抜き装置5を備えている。   The apparatus body 2 is provided with an air removing device 5 for discharging the excess air accumulated in the air reservoir chamber 15.

エア抜き装置5は、エア溜め室15の天井を形成する前記上蓋22に固定された自動排気バルブ40と、この自動排気バルブ40に連結された排気ホース42と、排気ホース42の排気口を保持するフロート44とを備えている。自動排気バルブ40は、エア溜め室15に溜まったエアの圧力が一定値以上になると開弁して、排気ホース42を介して余剰エアを排気するものであり、これにより、溜め室15内が予め定められた所定の圧力値に保たれるようになっている。   The air vent 5 holds an automatic exhaust valve 40 fixed to the upper lid 22 forming the ceiling of the air reservoir 15, an exhaust hose 42 connected to the automatic exhaust valve 40, and an exhaust port of the exhaust hose 42. And a float 44. The automatic exhaust valve 40 opens when the pressure of air accumulated in the air reservoir chamber 15 exceeds a predetermined value, and exhausts excess air through the exhaust hose 42, whereby the interior of the reservoir chamber 15 is It is designed to be maintained at a predetermined pressure value which has been determined in advance.

上記の表層取水循環装置1は、図1に示したように、ダム湖の湖底に係留された状態で使用される。そして、上記ホース36及びノズル34を通じて装置本体2にエアaが供給されることにより、詳しくは、第1円筒部10と第2円筒部12との間の第2流路Mpにエアaが供給されることにより作動する。すなわち、第2流路Mpにエアaが供給されると、当該エアaの上昇に伴い第2流路Mp内に上昇流が形成され、この上昇流の形成によって第1流路IPの水が第1円筒部10の下端部から第2流路Mpに引き込まれる。また、第2流路Mpを上昇して押し上げられた水が、第2円筒部12の上端部からエア溜め室15を介して外側の第3流路Opに流入し、これにより第3流路Opに下降流が形成される。この際、エア抜き装置5によってエア溜め室15内の圧力が一定の圧力値に保たれることにより、下降流の形成が安定的に行われる。   The above-described surface intake circulation device 1 is used in a moored state at the bottom of the dam lake as shown in FIG. Then, the air a is supplied to the apparatus main body 2 through the hose 36 and the nozzle 34, so that the air a is supplied to the second flow passage Mp between the first cylindrical portion 10 and the second cylindrical portion 12 in detail. It operates by being done. That is, when the air a is supplied to the second flow path Mp, a rising flow is formed in the second flow path Mp as the air a rises, and the water in the first flow path IP is formed by the formation of the rising flow. The lower end portion of the first cylindrical portion 10 is drawn into the second flow passage Mp. Further, the water pushed up by raising the second flow passage Mp flows from the upper end portion of the second cylindrical portion 12 through the air reservoir chamber 15 into the outer third flow passage Op, whereby the third flow passage Downflow is formed in Op. At this time, since the pressure in the air reservoir chamber 15 is maintained at a constant pressure value by the air vent 5, the formation of the downflow is stably performed.

このように、第2流路Mpへのエアレーションによって、第1流路IPの上端部から第2流路Mpを通じて第3流路Opの下端部に向う水の流れが形成されることで、アオコの原因となる微細藻類を含む、ダム湖の表層水が取水口11から取り込まれながら、排水口25から、光の届きにくい深層に排水される。その結果、ダム湖におけるアオコの発生が効果的に抑制されることとなる。また、酸素を比較的多く含んだ表層水が深層に案内されながら、さらにその過程で、エアレーションにより多くのエアaが当該表層水に溶け込むことで、ダム湖の深層に効果的に酸素が供給されることとなる。そして、このようなサイクルが繰り返されることで、ダム湖の表層と深層との間で効果的に水の循環が行われ、深層の嫌気化(貧酸素状態化)やアオコの発生が長期的に抑制されることとなる。   In this manner, the flow of water from the upper end portion of the first flow path IP to the lower end portion of the third flow path Op is formed by aeration in the second flow path Mp. The surface water of the dam lake, which contains microalgae causing the above, is drained from the drainage port 25 to a deep layer to which light does not easily reach while being taken in from the water intake 11. As a result, the occurrence of water bloom in the dam lake is effectively suppressed. In addition, while the surface water containing a relatively large amount of oxygen is guided to the deep layer, in the process, more air a is dissolved in the surface water by aeration, whereby oxygen is effectively supplied to the deep layer of the dam lake. The Rukoto. And, by repeating such a cycle, the water circulation is effectively performed between the surface layer and the deep layer of the dam lake, and the deep layer anaerobic (poor oxygenation) and the occurrence of water blue algae are generated in the long run. It will be suppressed.

以上のような表層取水循環装置1によれば、ダム湖の深層の嫌気化やアオコの発生を抑制できることに加え次のような利点がある。すなわち、この表層取水循環装置1は、装置本体2を湖底に係留して使用する水没式の装置であり、フロート18、44を除けば、湖面に現れるものが無い。そのため、ダム湖の湖面利用や景観を著しく損なうことがないという利点がある。また、風や波の影響を受け易く、流木などの移動の障害にもなり難いので、装置本体2が流されたり、装置本体2の周囲に流木が留まるといったことが抑制される。特に、装置本体2は、三重管の部分、すなわち第3円筒部14に対応する比較的占有スペースが大きい部分がダム湖の水温躍層よりも深層に位置するように構成されているので、風や波の影響を受けることが殆どない。そのため、三管体(三重管構造の部分)が湖面に浮いている従来の表層取水循環装置(特許文献1)に比べると、係留状態の維持管理に要する手間を軽減することができる。   The surface water intake / circulation apparatus 1 as described above has the following advantages in addition to the ability to suppress the occurrence of anaerobic and deepwater blooms in the depths of the dam lake. That is, the surface layer intake / circulation apparatus 1 is a submersible apparatus that moors the apparatus body 2 to the bottom of the lake and there is nothing appearing on the lake surface except for the floats 18 and 44. Therefore, there is an advantage that the lake surface utilization and the landscape of the dam lake are not significantly impaired. In addition, since it is susceptible to the influence of wind and waves, and is unlikely to be an obstacle to the movement of driftwood or the like, the drifting of the device main body 2 or the stagnation of driftwood around the device main body 2 is suppressed. In particular, since the device body 2 is configured such that a portion of the triple tube, that is, a portion having a relatively large occupied space corresponding to the third cylindrical portion 14 is positioned deeper than the thermocline of the dam lake, There is almost no influence of waves. Therefore, compared with the conventional surface layer water intake circulation device (patent document 1) in which the three pipe body (portion of the triple pipe structure) floats on the lake surface, it is possible to reduce the time required for maintaining and managing the moored state.

また、装置本体2は、湖底に係留されるものであるため湖面の水位変動によって排水口25の位置を変える必要が無い。また、取水口11については、上記の通り、湖面の水位変動に追従するように構成されている。従って、湖面の水位変動に応じて取水口11や排水口25の位置を調整する必要がなく、この点でも維持管理性が良いという利点がある。   Further, since the device body 2 is moored to the bottom of the lake, it is not necessary to change the position of the drainage port 25 due to the water level fluctuation on the surface of the lake. In addition, as described above, the water intake 11 is configured to follow the water level fluctuation on the lake surface. Therefore, it is not necessary to adjust the positions of the water intake 11 and the water outlet 25 according to the water level fluctuation of the lake surface, and this also has an advantage of good maintenance and management.

また、装置本体2は、その取水口11が上向きに広がる漏斗状であるため、第1円筒部10(伸縮部10b)を細径化しながら、ダム湖の表層水を効率良く取り込むことができるという利点もある。   In addition, since the apparatus main body 2 is in the shape of a funnel whose intake port 11 extends upward, it is possible to efficiently take in surface water of the dam lake while reducing the diameter of the first cylindrical portion 10 (stretching portion 10b). There is also an advantage.

なお、以上説明した表層取水循環装置1は、本発明にかかる表層取水循環装置の好ましい実施の形態であって、その具体的な構成は、本発明の要旨を逸脱しない範囲で適宜変更可能である。   The surface layer water intake and circulation device 1 described above is a preferred embodiment of the surface layer water intake and circulation device according to the present invention, and the specific configuration thereof can be appropriately changed without departing from the scope of the present invention. .

例えば、上記実施形態では、装置本体2は、第円筒部10、第2円筒部12および第3円筒部14からなる三重管構造であるが、必ずしも三重管構造である必要はなく、要は、上向きに開口する取水口と、この取水口に繋がり貯水池の水中を上下方向に延びる第1流路と、この第1流路の下端部の位置で当該第1流路に繋がり、当該下端部と前記取水口との間の所定位置まで第1流路に沿って上向きに延びる第2流路と、この第2流路の上端部の位置でエア溜め室を介して当該第2流路に繋がり、当該上端部の位置から第2流路に沿って下向きに延びる第3流路と、この第3流路の下端部に繋がる排水口とを備えていればよい。これにより、上述した作用効果を享受することが可能となる。   For example, in the above embodiment, the device main body 2 has a triple tube structure including the first cylindrical portion 10, the second cylindrical portion 12 and the third cylindrical portion 14, but the device main body 2 need not necessarily have a triple tube structure. An inlet opening upward, a first channel connected to the inlet and extending vertically in the water of the reservoir, and a lower channel of the first channel are connected to the first channel, and the lower channel A second flow path extending upward along the first flow path to a predetermined position between the water intake and the second flow path via an air reservoir at the upper end of the second flow path It may be provided with a third flow path extending downward along the second flow path from the position of the upper end, and a drainage port connected to the lower end of the third flow path. This makes it possible to receive the above-described effects.

また、上記実施形態では、装置本体2が3つの円筒部10、12、14によって構成されているが、勿論、多角筒部によって構成されていてもよい。   Moreover, in the said embodiment, although the apparatus main body 2 is comprised by the three cylindrical parts 10, 12, 14, of course, you may be comprised by the polygonal cylinder part.

また、上記実施形態では、第1円筒部10は、筒部本体10aと伸縮部10bとを備えた構成であるが、伸縮部10bを省略した構造を採用してもよい。   Moreover, in the said embodiment, although the 1st cylindrical part 10 is the structure provided with the cylinder part main body 10a and the expansion-contraction part 10b, you may employ | adopt the structure which abbreviate | omitted the expansion-contraction part 10b.

なお、上記実施形態では、表層取水循環装置1をダム湖に設置した場合について説明したが、当該表層取水循環装置1は、ダム湖以外の貯水池にも勿論、設置可能である。   In addition, although the said embodiment demonstrated the case where the surface layer water intake circulation apparatus 1 was installed in a dam lake, the said surface layer water intake circulation apparatus 1 can be naturally installed in reservoirs other than a dam lake.

1 表層取水循環装置
2 装置本体
4 エアレーション装置(エア供給装置)
10 第1円筒部(第1筒部)
10a 筒部本体
10b 伸縮部
11 取水口
12 第2円筒部(第2筒部)
14 第3円筒部(第3筒部)
25 排水口
Ip 第1流路
Mp 第2流路
Op 第3流路
1 surface water intake circulation device 2 device main body 4 aeration device (air supply device)
10 1st cylindrical part (1st cylinder part)
10a Tube body 10b Telescopic portion 11 Water intake 12 Second cylindrical portion (second tubular portion)
14 Third cylinder (third cylinder)
25 outlet Ip first channel Mp second channel Op third channel

Claims (4)

貯水池の表層水を取り込みながら深層に送り込む表層取水循環装置であって、
水底に係留される装置本体と、この装置本体にエアを供給するエア供給装置と、前記装置本体の下端部が水底近傍の所定位置に配置されるように当該装置本体を係留する係留手段と、を含み、
前記装置本体は、上向きに開口する取水口と、この取水口に繋がり貯水池の水中を上下方向に延びる第1流路と、この第1流路の下端部の位置で当該第1流路に繋がり、当該下端部と前記取水口との間の所定位置まで第1流路に沿って上向きに延びる第2流路と、この第2流路の上端部の位置でエア溜め室を介して当該第2流路に繋がり、当該上端部の位置から第2流路に沿って下向きに延びる第3流路と、この第3流路の下端部に繋がる排水口と、を備え、
前記エア供給装置は、前記第2流路にエアを供給することにより、当該第2流路に上昇流を形成
前記装置本体は、内側から順に配置された第1筒部、第2筒部および第3筒部を有し、前記第1筒部の上端部が前記取水口とされ、当該第1筒部の内側が前記第1流路とされ、第1筒部と第2筒部との間が前記第2流路とされ、第2筒部と第3筒部との間が第3流路とされた三重管構造を有し、
前記係留手段により装置本体が係留された状態で、前記第1筒部の上端部が、水面下であってかつ当該水面近傍の所定位置に配置されるように、前記第1筒部の上下方向長さが設定されるとともに、前記第3筒部の上端部が、少なくとも貯水池の水温躍層よりも深層に位置するように、前記第2、第3筒部の上下方向長さが設定されている、ことを特徴とする表層取水循環装置。
A surface water intake and circulation system that feeds the surface water of the reservoir while feeding it to the deep layer.
A device body anchored to the bottom of the water, an air supply device for supplying air to the device body, and anchoring means for anchoring the device body such that the lower end of the device body is disposed at a predetermined position near the bottom of the water; Including
The apparatus main body is connected to the first flow path at a position of a lower end portion of the first flow path, and a first flow path extending in the vertical direction in the water of the reservoir connected to the water intake port opening upward, A second flow path extending upward along the first flow path to a predetermined position between the lower end portion and the water intake port, and the upper end portion of the second flow path via the air reservoir chamber; A third flow path connected to the two flow paths and extending downward from the position of the upper end along the second flow path, and a drainage port connected to the lower end of the third flow path,
The air supply device forms an upward flow in the second flow path by supplying air to the second flow path,
The device body has a first cylindrical portion, a second cylindrical portion and a third cylindrical portion arranged in order from the inside, and the upper end of the first cylindrical portion is the water intake port, and the first cylindrical portion The inner side is the first flow path, the space between the first and second cylindrical portions is the second flow path, and the space between the second and third cylindrical portions is the third flow path Have a triple-tube structure,
In a state in which the device main body is moored by the mooring means, the vertical direction of the first cylindrical portion is arranged such that the upper end portion of the first cylindrical portion is located below the water surface and at a predetermined position near the water surface. The lengths of the second and third cylindrical portions are set such that the length is set, and the upper end of the third cylindrical portion is positioned deeper than at least the water temperature layer of the reservoir. The surface water intake circulation system characterized by having.
請求項に記載の表層取水循環装置において、
第1筒部は、定形性を有する下側の筒部本体と、この筒部本体に繋がる伸縮自在な上側の伸縮部とを含み、
前記装置本体は、前記伸縮部の上端部に連結されたフロートをさらに含む、ことを特徴とする表層取水循環装置。
In the surface water intake circulation device according to claim 1 ,
The first tubular portion includes a lower tubular portion main body having a fixed shape, and an expandable upper and lower telescopic portion connected to the tubular portion main body,
The surface water intake circulation device according to claim 1, wherein the device body further includes a float connected to an upper end of the stretchable portion.
請求項又はに記載の表層取水循環装置において、
前記取水口は、下方から上方に向かって拡がる漏斗状であることを特徴とする表層取水循環装置。
In the surface layer water intake circulation device according to claim 1 or 2 ,
The surface water intake and circulation device characterized in that the water intake port is in the shape of a funnel that spreads upward from below.
請求項乃至の何れか一項に記載の表層取水循環装置において、
前記排水口は、前記装置本体の下端部又はその近傍位置の周囲に設けられている、ことを特徴とする表層取水循環装置。
In the surface layer water intake circulation device according to any one of claims 1 to 3 ,
The surface water intake circulation device, wherein the drainage port is provided around a lower end portion of the device main body or a position near the lower end portion.
JP2015143861A 2015-07-21 2015-07-21 Surface intake water circulation system Active JP6530992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015143861A JP6530992B2 (en) 2015-07-21 2015-07-21 Surface intake water circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015143861A JP6530992B2 (en) 2015-07-21 2015-07-21 Surface intake water circulation system

Publications (2)

Publication Number Publication Date
JP2017023924A JP2017023924A (en) 2017-02-02
JP6530992B2 true JP6530992B2 (en) 2019-06-12

Family

ID=57948937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143861A Active JP6530992B2 (en) 2015-07-21 2015-07-21 Surface intake water circulation system

Country Status (1)

Country Link
JP (1) JP6530992B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339557A (en) * 2018-11-06 2019-02-15 中冶北方(大连)工程技术有限公司 Scalable mechanical return water tower
JP7308287B2 (en) * 2019-11-27 2023-07-13 京セラ株式会社 flow path device
CN114988593A (en) * 2022-05-05 2022-09-02 昆明有色冶金设计研究院股份公司 Device for conveying surface water to deep layer for oxygenation

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161498U (en) * 1981-04-02 1982-10-09
JPS5813999Y2 (en) * 1981-05-11 1983-03-18 株式会社 丸島水門製作所 Eutrophication prevention equipment such as dam reservoirs
DE3675632D1 (en) * 1985-05-07 1990-12-20 Fred Dipl Ing Petersen METHOD FOR INPUTING OXYGEN IN WATER AND DEVICE FOR IMPLEMENTING THE METHOD.
JPH0420559Y2 (en) * 1987-02-27 1992-05-11
JP2568417B2 (en) * 1987-11-16 1997-01-08 海洋工業株式会社 Deep aeration equipment such as reservoirs
JPH0657500U (en) * 1993-01-19 1994-08-09 株式会社丸島アクアシステム Pond water purification equipment
JP3384590B2 (en) * 1993-06-30 2003-03-10 株式会社丸島アクアシステム Aeration devices such as reservoirs
US5755976A (en) * 1996-11-13 1998-05-26 Kortmann; Robert W. Pneumatic bubble aeration reactor and method of using same
JP4382956B2 (en) * 2000-03-27 2009-12-16 高砂熱学工業株式会社 Aeration equipment
JP2005193197A (en) * 2004-01-09 2005-07-21 Hokoku Kogyo Co Ltd Water cleaning apparatus
JP2005334835A (en) * 2004-05-31 2005-12-08 Yokogawa Electric Corp Gas dissolving apparatus
JP4767704B2 (en) * 2006-01-25 2011-09-07 五洋建設株式会社 Water quality improvement method and apparatus
JP5938005B2 (en) * 2013-05-15 2016-06-22 松江土建株式会社 Blue seam removal device

Also Published As

Publication number Publication date
JP2017023924A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6923547B2 (en) Semi-submersible aquaculture system
CN110461145B (en) Flotation device
JP5605924B2 (en) Floating type sacrifice
US20150359206A1 (en) Outlet Basin for a Fish Pen
JP6530992B2 (en) Surface intake water circulation system
DK2963186T3 (en) A device for protection against noise in the context of nedramningsarbejde of the pile in the seabed
NO340712B1 (en) Fish farming system
JP4648782B2 (en) Aeration equipment
NO20180265A1 (en) Aquaculture plant in a rigid material
WO2019245385A1 (en) An arrangement at floating net cage
GB2619842A (en) Structure for fish farming
NO20170955A1 (en) Tank for fishfarming
AU2008294758B2 (en) An off-shore structure, a buoyancy structure, and method for installation of an off-shore structure
KR20150021988A (en) Structure of floating fish cage
NO343634B1 (en) Cage system with wave compensation
NO344247B1 (en) Cage system with frame for an enclosure
CN204778899U (en) Strain hydrophone from flexible pipe of floating
JP5022321B2 (en) Seawater circulation device
JP3859133B2 (en) Upper and lower layer water mixing type water purification device and water purification method using this water purification device
JP2010241161A (en) Water intake system of sea-bed cold water pipe of ocean thermal energy conversion power plant
JP2009028686A (en) Aerator
KR101275352B1 (en) Silt protector of intake tower
KR200467498Y1 (en) Silt protector of intake tower
KR102508702B1 (en) Red tide control and high water temperature suppression device in aquaculture farm using bubble
WO2023106930A1 (en) Self-stabilizing submersible fish farm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6530992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250