JP6530661B2 - Solenoid valve device - Google Patents

Solenoid valve device Download PDF

Info

Publication number
JP6530661B2
JP6530661B2 JP2015142638A JP2015142638A JP6530661B2 JP 6530661 B2 JP6530661 B2 JP 6530661B2 JP 2015142638 A JP2015142638 A JP 2015142638A JP 2015142638 A JP2015142638 A JP 2015142638A JP 6530661 B2 JP6530661 B2 JP 6530661B2
Authority
JP
Japan
Prior art keywords
solenoid valve
voltage
timer
circuit
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015142638A
Other languages
Japanese (ja)
Other versions
JP2017025961A (en
Inventor
敬晴 安井
敬晴 安井
Original Assignee
ワイ・エル・ビー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ワイ・エル・ビー株式会社 filed Critical ワイ・エル・ビー株式会社
Priority to JP2015142638A priority Critical patent/JP6530661B2/en
Publication of JP2017025961A publication Critical patent/JP2017025961A/en
Application granted granted Critical
Publication of JP6530661B2 publication Critical patent/JP6530661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は電磁弁装置に係り、特に、電磁弁に供給する電力を低減して省エネを実現するとともに、電磁弁の発熱による不具合の解消を図った電磁弁装置に関するものである。   The present invention relates to a solenoid valve device, and more particularly, to a solenoid valve device that achieves power saving by reducing power supplied to the solenoid valve and that solves a problem due to heat generation of the solenoid valve.

流体の流れを制御するために使用される電磁弁は、運転中に通電されたコイルが発熱するため、コイルの発熱によって不具合が惹起される問題がある。電磁弁のコイル発熱による不具合を解消する技術として、出願人は、特許文献1に開示される発明を既に出願している。   The solenoid valve used to control the flow of fluid has a problem that the heating of the coil causes problems due to the heating of the coil energized during operation. The applicant has already filed the invention disclosed in Patent Document 1 as a technique for solving the problem caused by the coil heating of the solenoid valve.

特許文献1に開示される発明は、電磁弁を開閉制御する制電用の電磁弁制御回路にタイマリレー手段とスイッチング方式定電圧手段とを備え、タイマリレー手段が動作して電磁弁と電源とを接続する電路を所定の通電時間後に遮断状態となった際に、スイッチング方式定電圧手段が電圧降下された電圧を他の電路によって電磁弁に供給することで、電磁弁に供給する電力を低減して省エネを図り、電磁弁の発熱を抑えるものである。   The invention disclosed in Patent Document 1 includes a timer relay means and switching system constant voltage means in a solenoid valve control circuit for charge / discharge control of opening and closing a solenoid valve, and the timer relay means operates to operate the solenoid valve and the power supply. The power supply to the solenoid valve is reduced by supplying the voltage that has been dropped by the switching method constant voltage means to the solenoid valve through the other electrical path when the electrical path connecting the components is cut off after the predetermined energization time. Save energy and reduce the heat generation of the solenoid valve.

特開2014−206240号公報JP, 2014-206240, A

ところが、特許文献1の発明は、電磁弁に電源の電圧を供給するタイマリレー手段が機械式の有接点リレーであるため、動作時間の遅延、接点寿命が短いという欠点がある。
また、電磁弁に電圧降下された電圧を供給するスイッチング方式定電圧手段は、半導体素子やトランスの損失による発熱を放熱するために放熱板を敷設しているが、回路部分から十分に放熱することができない問題があった。
However, the invention of Patent Document 1 has a disadvantage that the operation time is delayed and the contact life is short because the timer relay means for supplying the voltage of the power supply to the solenoid valve is a mechanical contact relay.
In addition, a switching system constant voltage means for supplying a voltage-dropped voltage to the solenoid valve lays a heat sink to dissipate heat generated by the loss of the semiconductor element or transformer, but it is necessary to sufficiently dissipate heat from the circuit part There was a problem that

この発明の目的は、電磁弁の常時運転時に供給する電力の低減を図り、電磁弁の常時通電時に電磁弁のコイルの発熱を抑制して発熱による不具合をも解消し得る電磁弁制御回路を備えた電磁弁装置を実現することにある。   The object of the present invention is to provide a solenoid valve control circuit which can reduce the power supplied during the normal operation of the solenoid valve and can suppress the heat generation of the coil of the solenoid valve when the solenoid valve is constantly supplied and eliminate the problems due to the heat generation. To realize a solenoid valve device.

この発明は、上述不都合を除去するために、電磁弁を開閉制御する電磁弁制御回路を備える電磁弁装置において、記電磁弁制御回路は、前記電磁弁と電圧を供給する電源とを接続する電路と、所定の通電時間後に前記電路を遮断状態とするタイマ型無接点リレー手段と、前記タイマ型無接点リレー手段が動作して前記電路が遮断状態となった際に前記タイマ型無接点リレー手段を迂回する他の電路によって電圧降下された電圧を前記電磁弁に供給するスイッチング方式定電圧手段と、前記スイッチング方式定電圧手段の前記電磁弁側に設けた電圧逆流防止手段と、前記電磁弁に対してそれぞれ並列となるように設けたサージ電圧吸収手段及びコンデンサと、を備え、前記タイマ型無接点リレー手段は、電源から供給される電圧を電圧降下するように変換する変換回路と、前記変換回路から出力された電圧が供給されるとトリガー信号を出力するトリガー回路と、前記トリガー信号を受けてオン動作し、前記オン動作から所定時間が経過するとオフ動作するタイマ回路と、前記タイマ回路のオン動作に基づいた出力信号により発光し、前記タイマ回路のオフ動作に基づいた出力信号により発光を停止する発光素子と、前記発光素子からの光を受光する受光素子とを含むフォトカプラと、前記フォトカプラのオン時に、前記電源の電圧を駆動電圧として前記電路に出力し、前記フォトカプラのオフ時に、前記駆動電圧の前記電路への出力を停止する外部接続同電位回路と、を有し、前記電磁弁制御回路は、前記電磁弁が有する金属製の外装部に取り付けられるとともに、前記スイッチング方式定電圧手段に敷設した放熱板を前記外装部に接続した状態で、放熱機能を有する収納ケースに被覆される制御基板に設けられることを特徴とする。 The present invention, in order to remove the above disadvantages, an electromagnetic valve device comprising a solenoid valve control circuit which controls the opening and closing of the electromagnetic valve, before SL solenoid valve control circuit is connected to the solenoid valve, and a power source for supplying a voltage path and, a timer-type non-contact relay means for the cut-off state the path after a predetermined energization time, the timer-type non-contact when said path running said timer-type non-contact relay means becomes a cutoff state to and switching method constant voltage means for supplying a voltage which is the voltage drop in the solenoid valve by other path that bypasses the relay unit, and the voltage backflow prevention means provided on the solenoid valve side of the switching type voltage regulating means, said electromagnetic and a surge voltage absorbing means and a capacitor provided so as to be parallel with each relative to the valve, the timer-type non-contact relay means, voltage drop the voltage supplied from the power supply Conversion circuit, a trigger circuit that outputs a trigger signal when the voltage output from the conversion circuit is supplied, and the trigger signal are turned on in response to the trigger signal, and a predetermined time has elapsed from the on operation A light emitting element that emits light by an output signal based on the turning on operation of the timer circuit and a light emitting element that stops light emission by the output signal based on the turning off operation of the timer circuit, and receives light from the light emitting element A photo coupler including a light receiving element, and when the photo coupler is on, outputs the voltage of the power supply as a drive voltage to the electric path, and stops the output of the drive voltage on the electric path when the photo coupler is off An external connection same potential circuit, and the solenoid valve control circuit is attached to a metal exterior part of the solenoid valve, and the switch The heat radiating plate laid on the ring system voltage regulating means in a state of being connected to the outer portion, characterized in that provided in the control board to be coated in the housing case having a heat dissipating function.

この発明の電磁弁装置は、タイマ型無接点リレー手段が電源から電磁弁に所定の通電時間だけ電圧を供給して駆動し、所定の通電時間が経過した後にスイッチング方式定電圧手段が電磁弁に電圧降下された電圧を供給して電磁弁の駆動を保持するので、電磁弁を駆動状態に保持しつつ、電磁弁に供給する電力の低減を図り、省エネを実現することができるとともに、電圧降下された電圧で電磁弁の駆動を保持するので、電磁弁のコイルの発熱を抑制することができる。
また、この発明の電磁弁装置は、スイッチング方式定電圧手段に敷設した放熱板を電磁弁の外装部に接続したことで、電磁弁の外装部からの放熱を助長させることができる。そして、前述電圧降下された電圧の供給による電磁弁コイルの発熱の抑制と、スイッチング方式定電圧手段の放熱板による放熱の助長とによって、電磁弁の発熱による不具合をより確実に解消することができる。
さらに、この発明の電磁弁装置は、機械式の有接点リレーでなく、タイマ型無接点リレー手段により電磁弁に電圧を供給するので、機械式の有接点リレーの欠点である動作時間の遅延や、接点寿命が短いことを補うことができる。また、タイマ型無接点リレー手段は、機械式の有接点リレーに比べて容積が極めて小さいので、スイッチング方式定電圧手段などの他の電気的手段とともに集積することができ、電磁弁制御回路を小さな制御基板上に実装することが可能となる。
さらにまた、この発明の電磁弁装置は、電磁弁制御回路が実装された制御基板上の、スイッチング方式定電圧手段に敷設した放熱板を電磁弁の外装部に接続したことで、電磁弁と電磁弁制御回路とを一体化することができ、装置のコンパクト化を図ることができる。
In the solenoid valve device according to the present invention, the timer type non-contact relay means supplies a voltage from the power supply to the solenoid valve for a predetermined energizing time to drive it, and the switching mode constant voltage means turns to the solenoid valve after the predetermined energizing time elapses. Since the voltage-dropped voltage is supplied to hold the drive of the solenoid valve, the power supplied to the solenoid valve can be reduced while the solenoid valve is kept in the drive state, energy saving can be realized, and the voltage drop Since the drive of the solenoid valve is held at the set voltage, heat generation of the coil of the solenoid valve can be suppressed.
Moreover, the electromagnetic valve apparatus of this invention can promote the thermal radiation from the exterior part of a solenoid valve by having connected the heat sink installed in the switching system constant voltage means to the exterior part of a solenoid valve. And, by suppressing the heat generation of the solenoid valve coil by the supply of the voltage-dropped voltage and promoting the heat radiation by the heat sink of the switching type constant voltage means, it is possible to more reliably solve the problems due to the heat generation of the solenoid valve. .
Furthermore, since the solenoid valve device of the present invention is not a mechanical contact relay, but supplies voltage to the solenoid valve by timer-type contactless relay means, the operation time delay which is a drawback of the mechanical contact relay is , It can be compensated that the contact life is short. In addition, since the timer type noncontact relay means has an extremely small volume compared to the mechanical type contact relay, it can be integrated with other electric means such as a switching type constant voltage means, so that the solenoid valve control circuit is small. It becomes possible to mount on a control board.
Furthermore, according to the solenoid valve device of the present invention, the heat sink mounted on the switching type constant voltage means is connected to the exterior portion of the solenoid valve on the control substrate on which the solenoid valve control circuit is mounted. The valve control circuit can be integrated, and the device can be made compact.

図1は電磁弁制御回路を備える電磁弁装置の概略構成図である。(実施例)FIG. 1 is a schematic configuration diagram of a solenoid valve device provided with a solenoid valve control circuit. (Example) 図2は電磁弁制御回路の制御基板を取り付けた電磁弁の説明図である。(実施例)FIG. 2 is an explanatory view of a solenoid valve to which a control board of the solenoid valve control circuit is attached. (Example) 図3は電磁弁の吸引力特性を示す図である。(実施例)FIG. 3 is a view showing suction force characteristics of the solenoid valve. (Example) 図4はタイマ型無接点リレー手段の実態配線図である。(実施例)FIG. 4 is a wiring diagram of the timer type non-contact relay means. (Example) 図5はタイマ型無接点リレー手段の動作表である。(実施例)FIG. 5 is an operation table of the timer type non-contact relay means. (Example) 図6(A)は高電圧連続供給状態を示す図、図6(B)は電磁弁制御回路による電圧供給状態を示す図である。(実施例)FIG. 6A is a view showing a high voltage continuous supply state, and FIG. 6B is a view showing a voltage supply state by the solenoid valve control circuit. (Example) 図7は電磁弁のコイル温度上昇特性を示す図である。(実施例)FIG. 7 is a view showing a coil temperature rise characteristic of the solenoid valve. (Example) 図8は高電圧連続供給状態のコイル温度と節電用の電磁弁制御回路による電圧供給状態のコイル温度との変化を示す図である。(実施例)FIG. 8 is a diagram showing changes in the coil temperature in the high voltage continuous supply state and the coil temperature in the voltage supply state by the solenoid valve control circuit for power saving. (Example) 図9は電磁弁制御回路によるフォトカプラと電圧との関係を示す図である。(実施例)FIG. 9 is a diagram showing the relationship between the photocoupler and the voltage by the solenoid valve control circuit. (Example)

以下図面に基づいてこの発明の実施例を詳細に説明する。   Embodiments of the present invention will be described in detail below based on the drawings.

図1〜図9は、この発明の実施例を示すものである。図1及び図2において、電磁弁装置1は、流体の流れを制御するために使用される電磁弁2を備え、電磁弁2を開閉制御する電磁弁制御回路3を備える。
電磁弁2は、図2に示すように、金属製の外装部4内にコイル5とコア6とスプリング7とプランジャ8とを内蔵し、プランジャ8により開閉される弁部9を有している。電磁弁2は、コイル5により励磁されたコア6の発生する吸引力とスプリング7のバネ力とによってプランジャ8を移動させ、弁部9を開閉する。
コイル5は、図3に示すように、プランジャ8を非駆動位置から駆動位置(吸着点)に向かって移動させるために必要な駆動電圧を供給され、その後、移動させたプランジャ8を駆動位置で保持するために必要な保持電圧を供給される。コイル5により発生する吸引力特性は、コア6にプランジャ8が吸着された駆動位置において最大となり、駆動位置から離れるほど小さくなる。プランジャ8は、非駆動位置と駆動位置との間で移動(ストローク)する。
電磁弁2は、コイル5に駆動電圧が供給されると、発生する吸引力によりプランジャ8が非駆動位置から駆動位置に向かい移動し、弁部9を開き初める。電磁弁2は、プランジャ8が駆動位置の近くまで移動すると、コイル5に供給される駆動電圧が電圧降下された保持電圧に切り換わり、発生する吸引力によりプランジャ8がさらに駆動位置に向かい移動して駆動位置に達し、弁部9を完全に開く。
これより、電磁弁2は、非通電時に閉じ、通電時に開く、常閉型の電磁弁である。電磁弁2は、流体の流れる流体通路(図示せず)の途中に配置され、流体の流れを制御する。
1 to 9 show an embodiment of the present invention. 1 and 2, the solenoid valve device 1 includes a solenoid valve 2 used to control the flow of fluid, and includes a solenoid valve control circuit 3 that opens and closes the solenoid valve 2.
As shown in FIG. 2, the solenoid valve 2 incorporates a coil 5, a core 6, a spring 7 and a plunger 8 in a metal exterior portion 4 and has a valve portion 9 which is opened and closed by the plunger 8. . The solenoid valve 2 moves the plunger 8 by the suction force generated by the core 6 excited by the coil 5 and the spring force of the spring 7 to open and close the valve portion 9.
The coil 5 is supplied with a drive voltage necessary to move the plunger 8 from the non-drive position toward the drive position (suction point) as shown in FIG. 3, and then the moved plunger 8 is at the drive position. It is supplied with the holding voltage necessary to hold it. The suction force characteristic generated by the coil 5 is maximized at the drive position where the plunger 8 is attracted to the core 6 and becomes smaller as it is separated from the drive position. The plunger 8 moves (strokes) between the non-driving position and the driving position.
When a drive voltage is supplied to the coil 5, the solenoid valve 2 causes the plunger 8 to move from the non-drive position to the drive position by the generated suction force, and the valve portion 9 starts to open. When the plunger 8 moves close to the drive position, the solenoid valve 2 switches the drive voltage supplied to the coil 5 to the lowered holding voltage, and the generated suction force causes the plunger 8 to move further toward the drive position. Reaches the drive position, and the valve 9 is completely opened.
Thus, the solenoid valve 2 is a normally closed solenoid valve that closes when not energized and opens when energized. The solenoid valve 2 is disposed in the middle of a fluid passage (not shown) through which fluid flows to control the flow of fluid.

電磁弁制御回路3は、電圧により電磁弁2を開閉制御する。
電磁弁制御回路3は、図1に示すように、電源10の電圧(例えば、24V)が入力される入力側プラス端子11及び接地される入力側マイナス端子12を備え、電磁弁2のコイル5に駆動電圧及び保持電圧を出力する出力側プラス端子13及び接地される出力側マイナス端子14を備える。
入力側プラス端子11と出力側プラス端子13とは、駆動電圧用の電路15で接続されるとともに、電路15と並列な保持電圧用の電路16で接続される。入力側マイナス端子12と出力側マイナス端子14とは、マイナス用の電路17で接続される。
The solenoid valve control circuit 3 controls opening and closing of the solenoid valve 2 by voltage.
As shown in FIG. 1, the solenoid valve control circuit 3 includes an input plus terminal 11 to which a voltage (for example, 24 V) of the power supply 10 is input and an input minus terminal 12 grounded. , And an output negative terminal 14 connected to ground.
The input-side positive terminal 11 and the output-side positive terminal 13 are connected by an electric path 15 for driving voltage and are connected by an electric path 16 for holding voltage in parallel with the electric path 15. The input-side negative terminal 12 and the output-side negative terminal 14 are connected by an electric path 17 for negative.

電磁弁制御回路3は、電磁弁2のコイル5と電圧を供給する電源10とを接続する電路15に、所定の通電時間後に電路15を遮断状態とするタイマ型無接点リレー手段18を備える。
タイマ型無接点リレー手段18は、図4に示すように、電源10の投入(ON)で供給された電圧を低電圧(例えば、5V)に変換して出力する低電圧変換IC19と、低電圧変換IC19から供給される低電圧でONしてトリガー信号を出力するトリガー回路20と、トリガー信号でON動作して所定の通電時間が経過するとOFF動作するタイマIC21と、ON動作したタイマIC21の出力信号でONし、OFF動作したタイマIC21の出力信号でOFFする発光素子22a及び受光素子22bからなるフォトカプラ22と、を備える。
また、タイマ型無接点リレー手段18は、低電圧変換IC19の電源10側の電路15に抵抗23を備え、フォトカプラ22の電磁弁2側(出力側プラス端子13側)の電路15に外部接続同電位回路24を備える。外部接続同電位回路24は、フォトカプラ22の受光素子22bのコレクタ側に接続される電路15に、抵抗25とLED26とを介して電源10を接続する。外部接続同電位回路24は、フォトカプラ22のONで電源10の電圧を駆動電圧として電路15のAに出力し、フォトカプラ22のOFFで駆動電圧を電路15のAに出力することを停止する。
タイマ型無接点リレー手段18は、電源10の投入による通電開始からタイマIC21が計時する所定の通電時間だけフォトカプラ22をONすることで駆動電圧用の電路15を導通状態とし、駆動電圧を出力する。また、タイマ型無接点リレー手段18は、タイマIC20が計時する所定の通電時間が経過した後にフォトカプラ22をOFFすることで電路15を遮断状態とし、駆動電圧の出力を停止する。
The solenoid valve control circuit 3 is provided with a timer type non-contact relay means 18 for setting the power path 15 in a cut-off state after a predetermined energization time in the power path 15 connecting the coil 5 of the solenoid valve 2 and the power supply 10 for supplying voltage.
As shown in FIG. 4, the timer type non-contact relay means 18 converts a voltage supplied by turning on (ON) the power supply 10 to a low voltage (for example, 5 V) and outputs it, and a low voltage conversion IC 19 The output of the trigger circuit 20 which is turned on with a low voltage supplied from the conversion IC 19 and outputs a trigger signal, the timer IC 21 which is turned on by the trigger signal and turned off when a predetermined energization time elapses, and the output of the timer IC 21 which is turned on The photocoupler 22 includes a light emitting element 22a and a light receiving element 22b which are turned on by a signal and turned off by an output signal of the timer IC 21 which has been turned off.
The timer type non-contact relay means 18 has a resistor 23 in the electric path 15 on the power supply 10 side of the low voltage conversion IC 19 and is externally connected to the electric path 15 on the solenoid valve 2 side (output side positive terminal 13 side) of the photocoupler 22. The same potential circuit 24 is provided. The external connection same potential circuit 24 connects the power supply 10 to the electric path 15 connected to the collector side of the light receiving element 22 b of the photocoupler 22 through the resistor 25 and the LED 26. The external connection same potential circuit 24 outputs the voltage of the power supply 10 as a drive voltage to A of the electric path 15 when the photocoupler 22 is turned on, and stops outputting the drive voltage to A of the electric path 15 when the photocoupler 22 is turned off. .
The timer type non-contact relay means 18 turns on the photocoupler 22 for a predetermined conduction time counted by the timer IC 21 after the start of the conduction by turning on the power supply 10, thereby making the electric path 15 for the drive voltage conductive and outputting the drive voltage. Do. Further, the timer type non-contact relay means 18 turns off the photocoupler 22 after a predetermined current-flowing time counted by the timer IC 20 has elapsed, thereby making the electric path 15 a cut-off state and stopping the output of the drive voltage.

このように、タイマ型無接点リレー手段18は、フォトカプラ22を半導体素子スイッチング素子として使用した可動接点部分が無いリレー(ソリッドステートリレー)であり、タイマIC20により計時する所定の通電時間だけ外部接続同電位回路24により駆動電圧を電磁弁2に供給する。
なお、所定の通電時間は、プランジャ8を非駆動位置から駆動位置(吸着点)の近くまで移動させることが可能な瞬間的な時間(例えば、200ms〜500ms)であり、自由に設定が可能である。
また、電磁弁制御回路3は、タイマ型無接点リレー手段18の電磁弁2側(出力側プラス端子13側)の電路15に、供給電源増幅回路27を配置している。供給電源増幅回路27は、2つの抵抗28・29とトランジスタ30とを備え、外部接続同電位回路24が出力する駆動電圧により作動し、電源10の電圧を増幅して電磁弁2のコイル5に供給する。
As described above, the timer type noncontact relay means 18 is a relay (solid state relay) having no movable contact portion using the photocoupler 22 as a semiconductor element switching element, and is externally connected for a predetermined conduction time counted by the timer IC 20. The drive voltage is supplied to the solenoid valve 2 by the same potential circuit 24.
The predetermined energization time is an instantaneous time (for example, 200 ms to 500 ms) in which the plunger 8 can be moved from the non-drive position to the vicinity of the drive position (suction point), and can be freely set. is there.
Further, in the solenoid valve control circuit 3, a power supply amplification circuit 27 is disposed in the electric path 15 on the solenoid valve 2 side (the output side plus terminal 13 side) of the timer type non-contact relay means 18. The power supply amplification circuit 27 includes two resistors 28 and 29 and a transistor 30 and operates with the drive voltage output from the externally connected same potential circuit 24 to amplify the voltage of the power supply 10 and generate the coil 5 of the solenoid valve 2. Supply.

電磁弁制御回路3は、駆動電圧用の電路15と並列な保持電圧用の電路16に、スイッチング方式定電圧手段31を備える。スイッチング方式定電圧手段31は、放熱板32を備え、マイナス用の電路17に接続する。スイッチング方式定電圧手段31は、タイマ型無接点リレー手段18を迂回する他の電路16によって、電路15の駆動電圧よりも電圧降下された電圧(例えば、9V)を保持電圧として電磁弁2に供給する。
スイッチング方式定電圧手段31は、電源10の投入による通電開始から電圧降下された電圧を電路16によって電磁弁2に供給し、タイマ型無接点リレー手段18が動作して電路15が遮断状態となって駆動電圧の出力が停止された後も、電圧降下された電圧を電磁弁2に供給する。電圧降下された電圧は、電源10の電圧(例えば、24V)の0%を越え、かつ、100%未満の値(例えば、DC15VやDC12V、DC9Vなど)である。
電磁弁2への供給電力は、電圧の二乗に比例するため、駆動電圧に対して保持電圧を1/2の電圧とした場合に、1/2の電圧降下で消費電力は1/4となり、この消費電力の減少に伴ってコイル5の発熱状態も約1/4程度となるものである。
The solenoid valve control circuit 3 includes a switching system constant voltage means 31 in the electric path 16 for holding voltage parallel to the electric path 15 for driving voltage. The switching system constant voltage means 31 includes a heat sink 32 and is connected to the electric path 17 for minus. The switching type constant voltage means 31 supplies the voltage (for example, 9 V), which is lowered by a voltage lower than the drive voltage of the electric path 15, to the solenoid valve 2 by the other electric path 16 bypassing the timer type noncontact relay means 18 Do.
The switching type constant voltage means 31 supplies the voltage, which is reduced in voltage from the start of energization by turning on the power supply 10, to the solenoid valve 2 through the electric path 16 and the timer type noncontact relay means 18 operates to cut the electric path 15 Even after the output of the drive voltage is stopped, the voltage dropped is supplied to the solenoid valve 2. The voltage dropped is more than 0% and less than 100% of the voltage of the power supply 10 (for example, 24V) (for example, DC 15V, DC 12V, DC 9V, etc.).
Since the power supplied to the solenoid valve 2 is proportional to the square of the voltage, when the holding voltage is 1/2 of the drive voltage, the power consumption is 1/4 with a voltage drop of 1/2. As the power consumption decreases, the heat generation state of the coil 5 also becomes about 1/4.

電磁弁制御回路3は、スイッチング方式定電圧手段31よりも電磁弁2側(出力側プラス端子13側)の電路16に、電圧逆流防止手段33を備える。電圧逆流防止手段33は、電圧逆流防止用のダイオードからなり、保持電圧よりも高い駆動電圧がスイッチング方式定電圧手段31側に逆流することを防止する。
また、電磁弁制御回路3は、電磁弁2に対してそれぞれ並列となるように、スイッチング方式定電圧手段31よりも電磁弁2側の電路16とマイナス用の電路17との間に、サージ電圧吸収手段34及びコンデンサ35を備える。
サージ電圧吸収手段34は、サージ電圧吸収用のダイオードからなり、電圧逆流防止手段33よりも電磁弁2側の電路16とマイナス用の電路17との間に配置する。サージ電圧吸収手段34は、タイマ型無接点リレー手段18が電路15を遮断状態として電源10から電磁弁2に供給される高い電圧を遮断した際に、瞬間的に発生するサージ電圧を吸収する。コンデンサ35は、電圧逆流防止手段33よりもスイッチング方式定電圧手段31側の電路16とマイナス用の電路17との間に配置する。
さらに、電磁弁制御回路3は、サージ電圧吸収手段34よりも電磁弁2側の電路16とマイナス用の電路17との間に抵抗36とLED37とを直列に配置し、スイッチング方式定電圧手段31よりも電源10側(入力側プラス端子11側)の電路16とマイナス用の電路17との間にコンデンサ38を配置する。
The solenoid valve control circuit 3 includes a voltage backflow prevention means 33 in the electric path 16 on the solenoid valve 2 side (the output side plus terminal 13 side) of the switching type constant voltage means 31. The voltage backflow prevention means 33 is formed of a diode for preventing voltage backflow, and prevents a drive voltage higher than the holding voltage from flowing back to the switching system constant voltage means 31 side.
In addition, the solenoid valve control circuit 3 has a surge voltage between the electric path 16 on the solenoid valve 2 side and the electric path 17 for minus than the switching type constant voltage means 31 so as to be in parallel with the solenoid valve 2 respectively. An absorbing means 34 and a capacitor 35 are provided.
The surge voltage absorbing means 34 is a diode for absorbing a surge voltage, and is disposed between the electric path 16 closer to the solenoid valve 2 than the voltage backflow preventing means 33 and the electric path 17 for minus. The surge voltage absorbing means 34 absorbs a surge voltage generated instantaneously when the timer type non-contact relay means 18 shuts off the electric path 15 and shuts off the high voltage supplied from the power source 10 to the solenoid valve 2. The capacitor 35 is disposed between the electric path 16 closer to the switching system constant voltage means 31 than the voltage backflow prevention means 33 and the electric path 17 for minus.
Further, the solenoid valve control circuit 3 arranges the resistor 36 and the LED 37 in series between the electric path 16 closer to the solenoid valve 2 than the surge voltage absorbing means 34 and the electric path 17 for the minus, so that the switching system constant voltage means 31 A capacitor 38 is disposed between the electric path 16 on the power source 10 side (the input side positive terminal 11 side) and the electric path 17 for the minus side.

電磁弁制御回路3は、タイマ型無接点リレー手段18、外部接続同電位回路24、供給電源増幅回路27、スイッチング方式定電圧手段31などを、小さな制御基板39に実装する。制御基板39は、図2に示すように、電磁弁2の外装部4に取り付けられる。外装部4に取り付けた制御基板39は、基板上のスイッチング方式定電圧手段31に敷設した放熱板32を外装部4に接続し、放熱機能を有する収納ケース40で覆われる。制御基板39は、接続電線41により電源10に接続される。   The solenoid valve control circuit 3 mounts the timer type noncontact relay means 18, the external connection same potential circuit 24, the power supply amplification circuit 27, the switching type constant voltage means 31, etc. on the small control board 39. The control board 39 is attached to the exterior 4 of the solenoid valve 2 as shown in FIG. The control board 39 attached to the exterior part 4 connects the heat sink 32 laid on the switching system constant voltage means 31 on the board to the exterior part 4 and is covered with a storage case 40 having a heat dissipation function. The control board 39 is connected to the power supply 10 by the connection wire 41.

次に作用を説明する。
電磁弁装置1は、流体が流れる図示しない流体通路に弁部9を位置させて電磁弁2を配置し、電磁弁制御回路3を動作して電磁弁2を開閉制御する。
電磁弁制御回路3は、図5に示すように、電源10の投入(ON)で電磁弁制御回路3に通電が開始されると、タイマ型無接点リレー手段18のトリガー回路20がONしてトリガー信号を出力し、トリガー信号でタイマIC21がON動作して計時を開始すると同時にフォトカプラ22がONし、外部接続同電位回路24が動作(ON)して電源10からの高い電圧(24V)を駆動電圧として電路15のAに出力(ON)する。
また、電磁弁制御回路3は、電源10の投入(ON)で電磁弁制御回路3に通電が開始されると、スイッチング方式定電圧手段31により電圧降下された電圧(9V)を保持電圧として電路16に出力する。
出力された駆動電圧及び保持電圧は、電磁弁2のコイル5に供給される。電磁弁2は、コイル5の吸引力によりプランジャ8を非駆動位置から駆動位置(吸着点)に向かって移動させ、弁部9により流体流路を開いて流体の流れを許可する。
Next, the operation will be described.
The solenoid valve device 1 positions the valve unit 9 in a fluid passage (not shown) through which the fluid flows, arranges the solenoid valve 2, and operates the solenoid valve control circuit 3 to open / close the solenoid valve 2.
As shown in FIG. 5, when energization of the solenoid valve control circuit 3 is started when the power supply 10 is turned on (ON), the trigger circuit 20 of the timer type non-contact relay means 18 is turned on. The trigger signal is output, and the timer IC 21 is turned ON by the trigger signal to start timing at the same time as the photocoupler 22 is turned ON, the external connection same potential circuit 24 is operated (ON) and a high voltage (24 V) from the power supply 10 Are output (ON) to A of the circuit 15 as a drive voltage.
In addition, when the solenoid valve control circuit 3 starts to be energized when the power supply 10 is turned on (ON), the voltage (9 V) dropped by the switching method constant voltage means 31 is used as a holding voltage to Output to 16
The output drive voltage and holding voltage are supplied to the coil 5 of the solenoid valve 2. The solenoid valve 2 moves the plunger 8 from the non-drive position toward the drive position (suction point) by the suction force of the coil 5 and opens the fluid flow path by the valve unit 9 to allow the fluid flow.

電磁弁制御回路3は、瞬間的な所定の通電時間が経過すると、タイマIC21がOFF動作してフォトカプラ22がOFFし、外部接続同電位回路24が停止(OFF)して駆動電圧を電路15のAに出力することを停止する。所定の通電時間だけ駆動電圧及び保持電圧を供給された電磁弁2は、コイル5の吸引力によりプランジャ8を駆動位置に移動させ、弁部9により流体通路を全開状態とする。
電磁弁制御回路3は、所定の通電時間後に電路15を遮断状態とするので、スイッチング方式定電圧手段31により電圧降下された保持電圧(9V)だけが電路16によって電磁弁2に供給される。電磁弁2は、電圧降下された保持電圧を供給されても、高い駆動電圧で動作された弁体9の状態(開放状態)を維持することができる。
これにより、制御弁装置1は、所定の通電時間が経過した後の電磁弁2に供給される電力を低減することができる。なお、電圧を降下させる度合いに関しては、消費電力や電磁弁2の発熱量などを勘案して設定する。
電磁弁制御回路3は、電源10の遮断(OFF)で通電を停止されると、スイッチング方式定電圧手段31による電圧降下された保持電圧の供給を停止する。電磁弁2は、保持電圧の供給停止によりコイル5による吸引力が消滅し、駆動位置のプランジャ8がスプリング7のバネ力で移動して非駆動位置に戻り、弁体9により流体流路を閉じて流体の流れを阻止する。
In the solenoid valve control circuit 3, when the momentary predetermined energizing time elapses, the timer IC 21 is turned off and the photocoupler 22 is turned off, and the externally connected same potential circuit 24 is stopped (turned off) to drive the drive voltage 15 Stop outputting to A. The solenoid valve 2 supplied with the drive voltage and the holding voltage for a predetermined energization time moves the plunger 8 to the drive position by the suction force of the coil 5 and causes the valve portion 9 to fully open the fluid passage.
Since the solenoid valve control circuit 3 shuts down the electric path 15 after a predetermined energization time, only the holding voltage (9 V) whose voltage is dropped by the switching type constant voltage means 31 is supplied to the solenoid valve 2 by the electric path 16. The solenoid valve 2 can maintain the state (opened state) of the valve body 9 operated at the high drive voltage even when supplied with the lowered holding voltage.
Thus, the control valve device 1 can reduce the power supplied to the solenoid valve 2 after the predetermined energization time has elapsed. The degree to which the voltage is dropped is set in consideration of power consumption, the amount of heat generation of the solenoid valve 2 and the like.
The solenoid valve control circuit 3 stops the supply of the holding voltage whose voltage is dropped by the switching type constant voltage means 31 when the power supply 10 is turned off (OFF) to stop the energization. In the solenoid valve 2, the suction force by the coil 5 disappears by stopping the supply of the holding voltage, the plunger 8 at the drive position moves by the spring force of the spring 7 and returns to the non-drive position, and the fluid flow path is closed by the valve 9 Block the flow of fluid.

ここで、電磁弁2の発熱について考察する。
定格電圧の直流24Vで作動する電磁弁の場合、駆動電圧である直流24Vの通電でコイルは磁化され、プランジャを駆動する。コイルは、通電により発熱する。このときのコイル温度の上昇について、81.7Ωのコイルを使用して経過時間毎の抵抗値を実測したところ、図6〜図8に示すコイル温度上昇の結果を示したデータが得られた。コイルの温度は、JIS抵抗法に従って算出した。
図6(A)にように、直流24Vの駆動電圧を連続通電した場合、数分でコイルが発熱を開始し、通電開始から120分経過した時のコイルの温度上昇は53.9度となった(図7、図8参照)。
これに対して、図6(B)に示すように、定格電圧直流24Vを瞬時(200ms)で遮断して保持電圧(9V)を与えた場合、電磁弁は保持電圧によって駆動した状態を保たれ、通電開始から120分経過した時のコイルの温度上昇は10.9度であり、発熱が抑制された(図7、図8参照)。
Here, the heat generation of the solenoid valve 2 will be considered.
In the case of a solenoid valve operating at a direct current 24 V of a rated voltage, the coil is magnetized by the application of a direct current 24 V which is a drive voltage to drive a plunger. The coil generates heat when energized. About the rise of coil temperature at this time, when the resistance value for every lapsed time was measured using a 81.7 ohm coil, the data which showed the result of a rise in coil temperature shown in Drawing 6-Drawing 8 were obtained. The temperature of the coil was calculated according to the JIS resistance method.
As shown in FIG. 6A, when a drive voltage of 24 V DC is continuously energized, the coil starts generating heat within several minutes, and the temperature rise of the coil becomes 120 ° when 120 minutes have passed since the start of energization. (See FIGS. 7 and 8).
On the other hand, as shown in FIG. 6 (B), when the rated voltage 24 V is shut off instantaneously (200 ms) and the holding voltage (9 V) is given, the solenoid valve is kept driven by the holding voltage. The temperature rise of the coil at 120 minutes after the start of energization was 10.9 ° C., and heat generation was suppressed (see FIGS. 7 and 8).

この発明の電磁弁装置1は、電磁弁2の運転初期に大きな駆動エネルギーを短時間だけ供給し、電磁弁2の常時運転時は小さい駆動エネルギーで保持できるように、電磁弁制御回路3によって、電磁弁2に電圧を2系統で供給する。すなわち、電磁弁制御回路3は、電磁弁2の作動開始時にタイマ型無接点リレー手段18による高い電圧(駆動電圧)とスイッチング方式定電圧手段31による低い電圧(保持電圧)とを同時に供給し、電磁弁2が作動した直後(所定の通電時間後)に、タイマ型無接点リレー手段18により高い電圧を遮断する。
例えば、電磁弁装置1は、電磁弁2に直流24Vの電圧と直流12V以下の電圧とを同時に通電し、所定の通電時間が経過して電磁弁2の駆動が完了した直後に、直流24Vの電圧を遮断すると、直流12V以下の電圧のみが電磁弁2に通電されることになる。
このことは、電力に換算すると、直流24Vを遮断した直流12Vのみの通電で、電力を75%をカットしたことになる。また、コイル5の発熱量も同様に抑制されることから、消費電力は75%抑制され、経済効果も顕著なものがある。
さらに、標準化されている低電圧IC(9V)を保持電圧供給手段として選択した場合、設計値で86%の省エネ効果を得ることが可能である。
The solenoid valve device 1 according to the present invention supplies large driving energy only for a short time at the initial stage of operation of the solenoid valve 2 and can hold the small driving energy during normal operation of the solenoid valve 2 by the solenoid valve control circuit 3 Voltage is supplied to the solenoid valve 2 by two systems. That is, the solenoid valve control circuit 3 simultaneously supplies a high voltage (drive voltage) by the timer type noncontact relay means 18 and a low voltage (hold voltage) by the switching system constant voltage means 31 at the start of operation of the solenoid valve 2; Immediately after the solenoid valve 2 operates (after a predetermined energization time), the timer type non-contact relay means 18 shuts off a high voltage.
For example, the solenoid valve device 1 simultaneously energizes the solenoid valve 2 with a voltage of 24 V DC and a voltage of 12 V DC or less, and immediately after the drive of the solenoid valve 2 is completed after a predetermined energization time has elapsed, When the voltage is shut off, only the voltage of DC 12 V or less is energized to the solenoid valve 2.
This means that, in terms of electric power, 75% of the electric power is cut off by supplying only the direct electric 12 V which has cut off the 24 V DC. Moreover, since the calorific value of the coil 5 is similarly suppressed, the power consumption is suppressed by 75%, and the economic effect is also remarkable.
Furthermore, when the standardized low voltage IC (9 V) is selected as the holding voltage supply means, it is possible to obtain an energy saving effect of 86% in design value.

次に、電磁弁制御回路3の発熱について考察する。
電磁弁制御回路3の発熱の問題は、低電圧ICであるスイッチング方式定電圧手段31に敷設した放熱板32の処理である。
これを以下のように解決した。
前述のように直流24Vを遮断して直流12Vを通電する場合、電磁弁2の発熱が75%抑制されたことから、電磁弁2を構成する外装部4の発熱も抑制された。このことから、電磁弁装置1は、スイッチング方式定電圧手段31の放熱板32を電磁弁2の外装部4に接続することによって、電磁弁制御回路3の放熱を助長させる相乗効果によって発熱抑制が可能であることが実験により証明できた。
上記の放熱の効果は、図6〜図8に示すコイル温度上昇試験データによっても明らかである。スイッチング方式定電圧手段31の発熱量は、電磁弁2の発熱に比して極めて小さく、他部品、電磁弁2の制御する流体への影響は実用上全く無いことを確認できた。また、夏期室内温度上昇時に於いて、電磁石2の外装部4を触手しても、体温程度に維持されているため、全く間題にならないことが確認できた。
なお、電磁弁装置1は、実施例において電磁弁制御回路3を実装した制御基板39を電磁弁2の外装部4に取り付け、スイッチング方式定電圧手段31に敷設した放熱板32を外装部4に接続したが、小型電磁弁においては電力消費量が小さく、スイッチング方式定電圧手段31に敷設される放熱板32で十分な効果があるため、制御基板39を電磁弁2から分離しても省エネ効果を発揮できるものである。
加うるに、比較的発熱特性が高いことが周知で大きな放熱器を必要とするリニアー方式定電圧回路ICを構成した場合でも、省エネ効果に変化はみられない。このことからリニアー方式定電圧ICの使用も可能で、広く構成部品が選択可能なことから経済的効果も大きいものがある。
Next, the heat generation of the solenoid valve control circuit 3 will be considered.
The heat generation problem of the solenoid valve control circuit 3 is the processing of the heat sink 32 laid on the switching system constant voltage means 31 which is a low voltage IC.
This was solved as follows.
As described above, when the direct current 12V is supplied by interrupting the direct current 24V, the heat generation of the solenoid valve 2 is suppressed by 75%, so the heat generation of the exterior portion 4 constituting the solenoid valve 2 is also suppressed. From this, the solenoid valve device 1 suppresses the heat generation by the synergetic effect of promoting the heat radiation of the solenoid valve control circuit 3 by connecting the heat sink 32 of the switching type constant voltage means 31 to the exterior part 4 of the solenoid valve 2 It has been proved by experiments that it is possible.
The effect of the above heat release is also apparent from the coil temperature rise test data shown in FIGS. It has been confirmed that the calorific value of the switching type constant voltage means 31 is extremely small compared to the calorific value of the solenoid valve 2 and that there is practically no influence on the fluid controlled by the other components and the solenoid valve 2. In addition, when the temperature in the summer room rises, even if the user touches the exterior 4 of the electromagnet 2, the temperature is maintained at about the temperature, so it can be confirmed that there is no problem at all.
The solenoid valve device 1 has a control board 39 on which the solenoid valve control circuit 3 is mounted in the embodiment attached to the exterior portion 4 of the solenoid valve 2, and the heat sink 32 laid on the switching type voltage regulator 31 is mounted on the exterior portion 4. Although connected, the small solenoid valve consumes a small amount of power, and the heat sink 32 installed in the switching method constant voltage means 31 has sufficient effect, so even if the control board 39 is separated from the solenoid valve 2, the energy saving effect is achieved. Can be demonstrated.
In addition, even when the linear type constant voltage circuit IC, which is known to have relatively high heat generation characteristics and requires a large radiator, does not show any change in the energy saving effect. From this, it is also possible to use a linear constant voltage IC, and there is a large economic effect because components can be widely selected.

また、電磁弁装置1は、電磁弁2の駆動エネルギーを抑制するために、電磁弁2の定格駆動電圧を瞬時に遮断する装置として、電磁弁制御回路3にタイマ型無接点リレー手段18を採用した。タイマ型無接点リレー手段18は、IC等トランジスタで構成される無接点リレー(SSR:ソリッドステイトリレー)からなり、図9に示すように、電源10から電磁弁2に所定の通電時間だけ高い電圧を供給し、電磁弁2の駆動を開始する。
タイマ型無接点リレー手段18は、直接大きな電力を操作できるものであり、機械式リレーの時間遅れの改善、装置の縮小化、並びに直流を遮断する時に生じる過度現象からなる接点寿命の劣化を改善することができる。また、タイマ型無接点リレー手段18は、瞬間的な所定の通電時間のため発熱は認められず、他の部品も同様である。
電磁弁装置1は、タイマ型無接点リレー手段18によって上述のように電源10の投入から無接点で電力抑制を可能にし、省電力に導いた電磁弁2を実現することができるものであり、この省エネルギー効果は多岐に渡る産業に裨益するものである。
Further, the solenoid valve device 1 adopts timer type noncontact relay means 18 in the solenoid valve control circuit 3 as a device for instantaneously interrupting the rated drive voltage of the solenoid valve 2 in order to suppress the drive energy of the solenoid valve 2 did. The timer type non-contact relay means 18 is composed of a non-contact relay (SSR: solid state relay) composed of a transistor such as an IC, and as shown in FIG. To start the operation of the solenoid valve 2.
The timer type non-contact relay means 18 can directly operate a large amount of power, and improve the mechanical relay time delay, reduce the size of the device, and improve the deterioration of the contact life caused by the transient phenomenon that occurs when interrupting the direct current. can do. Further, the timer type non-contact relay means 18 does not generate heat because of the momentary predetermined energization time, and the same applies to other parts.
The solenoid valve device 1 enables the power control to be performed with no contact from the turning on of the power supply 10 as described above by the timer type non-contact relay means 18, and can realize the solenoid valve 2 led to power saving, This energy saving effect is beneficial to a wide range of industries.

このように、電磁弁装置1は、タイマ型無接点リレー手段18が電源10から電磁弁2に瞬間的な所定の通電時間だけ電圧を供給して駆動を開始し、所定の通電時間が経過した後にスイッチング方式定電圧手段31が電源10から電磁弁2に電圧降下された電圧を供給して電磁弁2の駆動を保持する。
これにより、電磁弁装置1は、電磁弁2を駆動状態に保持しつつ、電磁弁2に供給する電力の低減を図り、省エネを実現することができるとともに、電圧降下された電圧で電磁弁2の駆動を保持するので、電磁弁2のコイル5の発熱を抑制することができる。
また、電磁弁装置1は、スイッチング方式定電圧手段31に敷設した放熱板32を電磁弁2の外装部4に接続したことで、電磁弁2の外装部4からの放熱を助長させることができる。そして、電磁弁装置1は、前述電圧降下された電圧の供給による電磁弁2のコイル5の発熱の抑制と、スイッチング方式定電圧手段31の放熱板32による放熱の助長とによって、電磁弁2の発熱による不具合をより確実に解消することができる。
さらに、電磁弁装置1は、電磁弁制御回路3に、機械式の有接点リレーでなくタイマ型無接点リレー手段18を用い、タイマ型無接点リレー手段18で電磁弁2に電圧を供給するので、機械式の有接点リレーの欠点である動作時間の遅延の改善や、接点寿命が短いことを補うことができる。また、タイマ型無接点リレー手段18は、機械式の有接点リレーに比べて容積が極めて小さいので、スイッチング方式定電圧手段31などの他の電気的手段とともに集積することができ、電磁弁制御回路3を小さな制御基板39に実装することが可能となる。
さらにまた、電磁弁装置1は、電磁弁制御回路3が実装された制御基板39上の、スイッチング方式定電圧手段31に敷設した放熱板32を電磁弁2の外装部4に接続したことで、電磁弁2と電磁弁制御回路3とを一体化することができ、装置のコンパクト化を図ることができる。
As described above, in the solenoid valve device 1, the timer type non-contact relay means 18 supplies a voltage from the power source 10 to the solenoid valve 2 for a momentary predetermined energization time to start driving, and the predetermined energization time has elapsed. After that, the switching system constant voltage means 31 supplies the voltage dropped from the power supply 10 to the solenoid valve 2 to hold the drive of the solenoid valve 2.
As a result, the solenoid valve device 1 can reduce the power supplied to the solenoid valve 2 while holding the solenoid valve 2 in the drive state, and can realize energy saving, and the solenoid valve 2 can be operated with the voltage dropped. Since the drive of the above is maintained, the heat generation of the coil 5 of the solenoid valve 2 can be suppressed.
In addition, the electromagnetic valve device 1 can promote the heat radiation from the exterior portion 4 of the solenoid valve 2 by connecting the heat sink 32 laid on the switching type constant voltage means 31 to the exterior portion 4 of the electromagnetic valve 2 . Then, the solenoid valve device 1 suppresses the heat generation of the coil 5 of the solenoid valve 2 due to the supply of the voltage-dropped voltage and promotes the heat radiation by the heat sink 32 of the switching system constant voltage means 31. Problems due to heat generation can be eliminated more reliably.
Furthermore, since the solenoid valve device 1 uses the timer type non-contact relay means 18 instead of the mechanical type contact relay in the solenoid valve control circuit 3 and supplies voltage to the solenoid valve 2 by the timer type non-contact relay means 18 It is possible to compensate for the improvement in operating time delay which is a drawback of mechanical contact relays and the short contact life. Further, since the timer type non-contact relay means 18 has a very small volume compared to the mechanical type contact relays, it can be integrated with other electric means such as the switching type constant voltage means 31, so that the solenoid valve control circuit 3 can be mounted on a small control board 39.
Furthermore, the solenoid valve device 1 is connected to the exterior portion 4 of the solenoid valve 2 by connecting the heat sink 32 laid on the switching type constant voltage means 31 on the control substrate 39 on which the solenoid valve control circuit 3 is mounted. The solenoid valve 2 and the solenoid valve control circuit 3 can be integrated, and the device can be made compact.

この発明の電磁弁装置は、電磁弁の常時運転時に供給する電力の低減を図り、電磁弁の常時通電時に電磁弁のコイルの発熱を抑制して発熱による不具合をも解消し得るものであり、電力の低減による省エネルギー効果は電磁弁に限らず、電気で駆動される装置の定格駆動電圧を瞬時に遮断する装置に応用することができる。   The solenoid valve device according to the present invention can reduce the power supplied during the normal operation of the solenoid valve, can suppress the heat generation of the coil of the solenoid valve when the solenoid valve is constantly energized, and eliminate the problem due to the heat generation. The energy saving effect by the reduction of the power can be applied not only to the solenoid valve but also to a device for instantaneously interrupting the rated drive voltage of the device driven by electricity.

1 電磁弁装置
2 電磁弁
3 電磁弁制御回路
4 外装部
9 弁部
10 電源
15 駆動電圧用の電路
16 保持電圧用の電路
17 マイナス用の電路
18 タイマ型無接点リレー手段
19 低電圧変換IC
20 トリガー回路
21 タイマIC
22 フォトカプラ
24 外部接続同電位回路
27 供給電源増幅回路
31 スイッチング方式定電圧手段
32 放熱板
33 電圧逆流防止手段
34 サージ電圧吸収手段
35 コンデンサ
39 制御基板
40 収納ケース
41 接続電線
DESCRIPTION OF SYMBOLS 1 solenoid valve device 2 solenoid valve 3 solenoid valve control circuit 4 exterior part 9 valve part 10 power supply 15 electric path for drive voltage 16 electric path for holding voltage 17 electric path for minus 18 timer type noncontact relay means 19 low voltage conversion IC
20 trigger circuit 21 timer IC
22 photocoupler 24 external connection same potential circuit 27 power supply amplification circuit 31 switching system constant voltage means 32 heat sink 33 voltage backflow preventing means 34 surge voltage absorbing means 35 capacitor 39 control board 40 storage case 41 connecting wire

Claims (1)

電磁弁を開閉制御する電磁弁制御回路を備える電磁弁装置において、
記電磁弁制御回路は
記電磁弁と電圧を供給する電源とを接続する電路と
定の通電時間後に前記電路を遮断状態とするタイマ型無接点リレー手段と
前記タイマ型無接点リレー手段が動作して前記電路が遮断状態となった際に前記タイマ型無接点リレー手段を迂回する他の電路によって電圧降下された電圧を前記電磁弁に供給するスイッチング方式定電圧手段と
前記スイッチング方式定電圧手段の前記電磁弁側に設けた電圧逆流防止手段と
記電磁弁に対してそれぞれ並列となるように設けたサージ電圧吸収手段及びコンデンサと
備え、
前記タイマ型無接点リレー手段は、
電源から供給される電圧を電圧降下するように変換する変換回路と、
前記変換回路から出力された電圧が供給されるとトリガー信号を出力するトリガー回路と、
前記トリガー信号を受けてオン動作し、前記オン動作から所定時間が経過するとオフ動作するタイマ回路と、
前記タイマ回路のオン動作に基づいた出力信号により発光し、前記タイマ回路のオフ動作に基づいた出力信号により発光を停止する発光素子と、前記発光素子からの光を受光する受光素子とを含むフォトカプラと、
前記フォトカプラのオン時に、前記電源の電圧を駆動電圧として前記電路に出力し、前記フォトカプラのオフ時に、前記駆動電圧の前記電路への出力を停止する外部接続同電位回路と、
を有し、
前記電磁弁制御回路は、前記電磁弁が有する金属製の外装部に取り付けられるとともに、前記スイッチング方式定電圧手段に敷設した放熱板を前記外装部に接続した状態で、放熱機能を有する収納ケースに被覆される制御基板に設けられる
ことを特徴とする電磁弁装置。
In a solenoid valve device provided with a solenoid valve control circuit for opening and closing control of a solenoid valve,
Before Symbol electromagnetic valve control circuit,
Before SL solenoid valve, the electrical path connecting the power supply for supplying a voltage,
A timer-type non-contact relay means for said electric path cut-off state after Jo Tokoro energization time,
The timer-type supplying a voltage which is the voltage drop by other electrical path contactless relay means the path operates to bypass the timer type non-contact relay means upon a cutoff state to the solenoid valve switching Hoshikijo Voltage means ,
Voltage backflow prevention means provided on the solenoid valve side of the switching type voltage regulating means,
A surge voltage absorbing means and a capacitor provided so as to be parallel with respect to previous SL solenoid valve,
Equipped with a,
The timer type noncontact relay means
A conversion circuit that converts a voltage supplied from a power supply into a voltage drop;
A trigger circuit that outputs a trigger signal when the voltage output from the conversion circuit is supplied;
A timer circuit that is turned on in response to the trigger signal, and is turned off when a predetermined time has elapsed from the turned on operation;
A photo including a light emitting element that emits light by an output signal based on the on operation of the timer circuit and stops light emission by an output signal based on the off operation of the timer circuit, and a light receiving element that receives light from the light emitting element Coupler,
An externally connected equipotential circuit which outputs the voltage of the power supply as a drive voltage to the electric path when the photocoupler is on, and stops the output of the drive voltage to the electric path when the photocoupler is off;
Have
The solenoid valve control circuit is attached to a metal exterior portion of the solenoid valve, and a storage case having a heat dissipation function in a state where a heat dissipation plate laid on the switching type constant voltage means is connected to the exterior portion. A solenoid valve device provided on a control substrate to be coated .
JP2015142638A 2015-07-17 2015-07-17 Solenoid valve device Active JP6530661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015142638A JP6530661B2 (en) 2015-07-17 2015-07-17 Solenoid valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015142638A JP6530661B2 (en) 2015-07-17 2015-07-17 Solenoid valve device

Publications (2)

Publication Number Publication Date
JP2017025961A JP2017025961A (en) 2017-02-02
JP6530661B2 true JP6530661B2 (en) 2019-06-12

Family

ID=57950367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142638A Active JP6530661B2 (en) 2015-07-17 2015-07-17 Solenoid valve device

Country Status (1)

Country Link
JP (1) JP6530661B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6726632B2 (en) 2017-02-15 2020-07-22 株式会社ミツバ MOTOR CONTROL DEVICE AND MOTOR CONTROL DEVICE CONTROL METHOD

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820511U (en) * 1981-07-31 1983-02-08 ソニー株式会社 plunger solenoid
CN100532743C (en) * 2005-04-01 2009-08-26 Smc株式会社 Solenoid-operated valve and solenoid-operated valve-driving circuit
JP2014206240A (en) * 2013-04-15 2014-10-30 ワイ・エル・ビー株式会社 Solenoid valve control circuit for power saving

Also Published As

Publication number Publication date
JP2017025961A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP4359855B2 (en) Solenoid valve drive circuit and solenoid valve
JP5019303B2 (en) Electromagnetic valve driving circuit, electromagnetic valve, and electromagnetic valve driving method
US7342754B2 (en) Bypass circuit to prevent arcing in a switching device
JP4431996B2 (en) Solenoid valve drive circuit and solenoid valve
JP4852160B2 (en) Solenoid drive circuit
US20150062770A1 (en) Energy efficient bi-stable permanent magnet actuation system
JP2016025456A (en) Switching arrangement and load control system using the same
US8508201B2 (en) Inductor driving circuit
JP6530661B2 (en) Solenoid valve device
JP2010054054A (en) Solenoid valve driving circuit and solenoid valve
EP2387790B1 (en) A system for precisely controlling the operational characteristics of a relay
CN106796839A (en) Electromagnetic valve driver
CN212338349U (en) Energy-saving driving circuit of electromagnetic valve
JP4401084B2 (en) Actuator drive
JP2014206240A (en) Solenoid valve control circuit for power saving
JP7185768B2 (en) relay module
KR102475702B1 (en) Control circuit for solenoid valve
JP2011071249A (en) Solenoid driving circuit
CN111823870B (en) Low-consumption device for protection by means of an electromechanical relay and its use in an electric actuator PWM control device
CN216014375U (en) Cashbox control device and cashbox
TWI664656B (en) Relay and method for controlling power supply
JP5271864B2 (en) Electromagnetic actuator drive device
EP4080537A1 (en) Control device and method for contactor
WO2014049608A2 (en) Inductive energy optimized vacuum solenoid valve
JP3950817B2 (en) Square wave generator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190517

R150 Certificate of patent or registration of utility model

Ref document number: 6530661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150