JP6529380B2 - Condenser diagnostic method - Google Patents

Condenser diagnostic method Download PDF

Info

Publication number
JP6529380B2
JP6529380B2 JP2015155914A JP2015155914A JP6529380B2 JP 6529380 B2 JP6529380 B2 JP 6529380B2 JP 2015155914 A JP2015155914 A JP 2015155914A JP 2015155914 A JP2015155914 A JP 2015155914A JP 6529380 B2 JP6529380 B2 JP 6529380B2
Authority
JP
Japan
Prior art keywords
physical quantity
condenser
diagnosis
physical
mathematical expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015155914A
Other languages
Japanese (ja)
Other versions
JP2017032259A (en
Inventor
秀樹 月元
秀樹 月元
陽介 宇田川
陽介 宇田川
忠雄 川合
忠雄 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka City University
NTT Facilities Inc
Original Assignee
Osaka City University
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka City University, NTT Facilities Inc filed Critical Osaka City University
Priority to JP2015155914A priority Critical patent/JP6529380B2/en
Publication of JP2017032259A publication Critical patent/JP2017032259A/en
Application granted granted Critical
Publication of JP6529380B2 publication Critical patent/JP6529380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Description

本発明は、凝縮器の劣化状態を診断する凝縮器診断方法に関する。   The present invention relates to a condenser diagnosis method for diagnosing a deterioration state of a condenser.

原子力プラント等の運転状態の異常を診断する方法として、例えば特許文献1に記載の発明がある。
当該文献に係る発明では『機器の状態が正常な定常状態から変化した場合に、正常な定常状態を表す関係式を微分して得られる変数の増分についての近似式においてその係数を定常状態の変数の値により計算し、変動量が大きい場合には、誤差を少なくするために変動の前後の係数の平均値を用いることとして、これらの式に測定点の変数の定常状態における値からの変動量を代入して別の測定点の変数の変動量を計算し、その点の測定値の変動量と比較することにより、機能に異常が生じている部分を同定し、さらに、当該部分に関連する全ての測定点の変数の変動量を当該関係式に代入し、異常個所の変数の変動量を逆算することにより、当該部分に含まれる異常個所を推定する。』
As a method for diagnosing an abnormality in the operating state of a nuclear power plant or the like, there is, for example, the invention described in Patent Document 1.
In the invention according to the document, “When the state of the device changes from a normal steady state, the coefficient is used as a steady state variable in the approximation formula for the increment of the variable obtained by differentiating the relational expression representing the normal steady state. If the amount of fluctuation is large, use the average value of the coefficients before and after the fluctuation to reduce the error. In these equations, the amount of fluctuation from the steady-state value of the measurement point variable Is used to calculate the amount of fluctuation of the variable at another measurement point, and by comparing it with the amount of fluctuation of the measured value at that point, to identify the portion in which the function is abnormal, and further to relate to that portion By substituting the fluctuation amounts of variables of all measurement points into the relational expression and calculating the fluctuation amounts of variables of abnormal points, the abnormal points included in the portion are estimated. "

特許第3359109号明細書Patent No. 3359109 specification

しかし、特許文献1に記載の発明では、原子力プラント等の診断対象を精度良く現す関係式を同定するには、演算負荷が非常に大きくなる可能性がある。
本発明は、上記点に鑑み、特許文献1に記載の発明とは異なる新規な手法にて「凝縮器の劣化状態を診断することを目的とする。
However, in the invention described in Patent Document 1, there is a possibility that the operation load becomes very large in order to identify a relational expression that accurately represents a diagnosis target such as a nuclear power plant.
In view of the above-mentioned point, the present invention aims to “diagnose the deterioration state of the condenser by a new method different from the invention described in Patent Document 1.

本願では、凝縮器の劣化状態を診断する凝縮器診断方法において、予め決められた時(以下、正常時という。)の過渡状態時に実測した第1物理量であって、凝縮器の冷媒入口でのエンタルピーと当該凝縮器の冷媒出口でのエンタルピーとの差に基づく第1物理量を取得する第1取得工程と、正常時の過渡状態時に実測した第2物理量であって、凝縮器にて熱交換される前の空気温度と当該凝縮器にて熱交換された後の空気温度との差に基づく第2物理量を取得する第2取得工程と、第1物理量と第2物理量とを関係付ける数式モデルを同定する数式モデル同定工程であって、第1物理量及び第2物理量を用いて当該数式モデルを同定する数式モデル同定工程と、第1物理量及び第2物理量のうち一方の物理量に相当する物理量であって、正常時以降のタイミング(以下、診断タイミングという。)の過渡状態時に実測した物理量(以下、第1診断時物理量という。)を取得する第3取得工程と、第1物理量及び第2物理量のうち他方の物理量に相当する物理量であって、診断タイミングの過渡状態時に実測した物理量(以下、第2診断時物理量という。)を取得する第4取得工程と、数式モデル同定工程にて同定された数式モデルに第1診断時物理量を代入して得られる比較基準物理量を決定する比較基準物理量決定工程と、比較基準物理量と第2診断時物理量とを比較する比較工程とを備える。   In the present application, in the condenser diagnosis method for diagnosing the deterioration state of the condenser, the first physical quantity actually measured in the transient state at a predetermined time (hereinafter referred to as normal time), which is measured at the refrigerant inlet of the condenser A first acquisition step of acquiring a first physical quantity based on a difference between an enthalpy and an enthalpy at a refrigerant outlet of the condenser, and a second physical quantity measured in a transient state under normal conditions, the heat exchange being performed in the condenser A second acquisition step of acquiring a second physical quantity based on a difference between the air temperature before the temperature change and the air temperature after heat exchange in the condenser, and a mathematical model relating the first physical quantity to the second physical quantity It is a mathematical expression model identification step of identifying, which is a mathematical expression model identification step of identifying the mathematical expression model using the first physical quantity and the second physical quantity, and a physical quantity corresponding to one of the first physical quantity and the second physical quantity. Positive A third acquisition step of acquiring a physical quantity (hereinafter referred to as a first diagnosis physical quantity) measured during a transient state of timing after time (hereinafter referred to as diagnosis timing), and the other of the first physical quantity and the second physical quantity A physical quantity corresponding to a physical quantity, which is a fourth acquisition process for acquiring a physical quantity (hereinafter referred to as second diagnosis physical quantity at the time of diagnosis) measured at a transition state of diagnosis timing, and a mathematical model identified in the mathematical model identification process A comparison reference physical amount determining step of determining a comparison reference physical amount obtained by substituting the first diagnosis physical amount, and a comparison step of comparing the comparison reference physical amount with the second diagnosis physical amount.

つまり、本願発明では、互いに関係性の高い2種類の物理量、つまり第1物理量及び第2物理量を用いて数式モデルを同定する。このとき、数式モデルとしてARXモデルを用いると、数式モデル同定時の演算負荷を低減することが可能となり得る。   That is, in the present invention, a mathematical expression model is identified using two types of physical quantities that are highly correlated with each other, that is, the first physical quantity and the second physical quantity. At this time, if an ARX model is used as a mathematical expression model, it is possible to reduce the calculation load at the time of mathematical expression model identification.

蒸気圧縮式冷凍機の模式図である。It is a schematic diagram of a vapor compression type refrigerator. 本実施形態に係る凝縮器診断方法の工程をその工程順に示した工程図である。It is process drawing which showed the process of the condenser diagnostic method which concerns on this embodiment in order of the process.

以下に説明する「発明の実施形態」は実施形態の一例を示すものである。つまり、特許請求の範囲に記載された発明特定事項等は、下記の実施形態に示された具体的構成や構造等に限定されるものではない。   The “invention embodiment” described below shows an example of the embodiment. That is, the invention-specifying matters and the like described in the claims are not limited to the specific configuration and the structure and the like described in the following embodiments.

(第1実施形態)
1.蒸気圧縮式冷凍機(図1参照)
本実施形態は、蒸気圧縮式冷凍機に用いられる凝縮器1に、本発明に係る凝縮器診断方法を適用したものである。凝縮器1とは、圧縮機2から吐出された高温・高圧の気相冷媒と空気等(本実施形態では、室外空気)と熱交換し、当該気相冷媒を凝縮(液化)する熱交換器である。
First Embodiment
1. Vapor compression refrigerator (see Figure 1)
In the present embodiment, the condenser diagnosis method according to the present invention is applied to a condenser 1 used in a vapor compression type refrigerator. The heat exchanger exchanges heat between the high-temperature high-pressure gas-phase refrigerant discharged from the compressor 2 and the air (in the present embodiment, outdoor air) with the condenser 1, and condenses (liquefys) the gas-phase refrigerant. It is.

なお、減圧器3は、凝縮器1にて凝縮された高圧液相冷媒を減圧する。蒸発器4は、減圧された低圧冷媒と冷却対象(本実施形態では、室内空気又は水)とを熱交換し、当該低圧液相冷媒を蒸発させる。   The decompressor 3 decompresses the high-pressure liquid-phase refrigerant condensed by the condenser 1. The evaporator 4 exchanges heat between the decompressed low-pressure refrigerant and the object to be cooled (in the present embodiment, indoor air or water) to evaporate the low-pressure liquid-phase refrigerant.

そして、本実施形態に係る凝縮器診断方法では、凝縮器1の劣化状態を診断可能である。なお、凝縮器1の劣化とは、例えば、(a)凝縮器1の表面が汚れることによる熱交換能力の低下、及び(b)凝縮器1の熱交換部(コア部)が潰れる等したことによる熱交換能力の低下等である。   And, with the condenser diagnosis method according to the present embodiment, the deterioration state of the condenser 1 can be diagnosed. Deterioration of the condenser 1 means, for example, (a) a decrease in heat exchange capacity due to the surface of the condenser 1 becoming dirty, and (b) a heat exchange portion (core portion) of the condenser 1 being crushed or the like. Decrease in heat exchange capacity.

なお、本実施形態に係る凝縮器診断方法は、劣化の原因を明らかにする診断方法ではなく、凝縮器1の劣化が発生したか否か、又はその劣化が進行したか否か、つまり凝縮器1の劣化状態を診断するものである。   The condenser diagnosis method according to the present embodiment is not a diagnosis method for clarifying the cause of deterioration, but whether the deterioration of the condenser 1 has occurred or whether the deterioration has progressed, that is, the condenser 1 is to diagnose the deterioration state.

2.凝縮器診断方法
図2は、本実施形態に係る凝縮器診断方法の工程をその工程順に示した工程表である。
<第1取得工程>
第1取得工程では、予め決められた時(以下、正常時という。)の過渡状態時に実測した第1物理量H1が取得される。第1物理量H1は、凝縮器1の冷媒入口でのエンタルピーと当該凝縮器1の冷媒出口でのエンタルピーとの差に基づく物理量である。
2. Condenser Diagnosis Method FIG. 2 is a process chart showing the process of the condenser diagnosis method according to the present embodiment in the order of the processes.
<First acquisition process>
In the first acquisition step, the first physical quantity H1 actually measured in the transient state when predetermined (hereinafter referred to as normal) is acquired. The first physical quantity H1 is a physical quantity based on the difference between the enthalpy at the refrigerant inlet of the condenser 1 and the enthalpy at the refrigerant outlet of the condenser 1.

本実施形態に係る第1物理量H1は、凝縮器1の冷媒入口での比エンタルピーh1から凝縮器1の冷媒出口での比エンタルピーh2を差し引いた値に冷媒の質量流量Vmを乗算した値(=Vm(h1−h2))である。   The first physical quantity H1 according to the present embodiment is a value obtained by multiplying the value obtained by subtracting the specific enthalpy h2 at the refrigerant outlet of the condenser 1 from the specific enthalpy h1 at the refrigerant inlet of the condenser 1 by the mass flow rate Vm of the refrigerant (= It is Vm (h1-h2).

「過渡状態」とは「圧縮機2の回転数が予め設定された変動幅を越えた時点から予め設定された時間が経過したとき」をいう。正常時とは、例えば、(a)蒸気圧縮式冷凍機が設置されて最初に稼働したとき、(b)メーカでの開発試験時や出荷試験時などをいう。   The “transient state” means “when a preset time has elapsed since the number of revolutions of the compressor 2 exceeds a preset fluctuation range”. The normal time means, for example, (a) at the time of development test at the manufacturer, shipping test, etc., when the vapor compression type refrigerator is first installed and operated.

<第2取得工程>
第2取得工程では、正常時の過渡状態時に実測した第2物理量H2が取得される。第2物理量H2は、凝縮器1にて熱交換される前の空気温度と当該凝縮器1にて熱交換された後の空気温度との差に基づく物理量である。
<Second acquisition process>
In the second acquisition step, the second physical quantity H2 actually measured at the time of the transient state in the normal state is acquired. The second physical quantity H2 is a physical quantity based on the difference between the air temperature before heat exchange in the condenser 1 and the air temperature after heat exchange in the condenser 1.

本実施形態に係る第2物理量H2は、凝縮器1にて熱交換された後の空気温度T1から凝縮器1にて熱交換される前の空気温度T2を差し引いた値に空気の質量流量Va及び比熱Cを乗算した値(=Va・C(T1−T2))である。   The second physical quantity H2 according to the present embodiment is a mass flow rate Va of air to a value obtained by subtracting the air temperature T2 before heat exchange in the condenser 1 from the air temperature T1 after heat exchange in the condenser 1 And the specific heat C multiplied value (= Va · C (T1−T2)).

<数式モデル同定工程>
数式モデル同定工程では、第1物理量H1と第2物理量H2とを関係付ける数式モデルを、第1物理量H1及び第2物理量H2を用いて当該数式モデルを同定する。なお、本実施形態では、数式モデルとして、ARX(Auto-Regressive eXogeneous)モデルを採用している。
<Formula model identification process>
In the mathematical expression model identification step, the mathematical expression model that relates the first physical quantity H1 and the second physical quantity H2 is identified using the first physical quantity H1 and the second physical quantity H2. In the present embodiment, an ARX (Auto-Regressive eXogeneous) model is adopted as a mathematical expression model.

<第3取得工程>
第3取得工程では、第1物理量H1及び第2物理量H2のうち一方の物理量(本実施形態では、第1物理量H1)に相当する物理量であって、正常時以降の所定タイミング(以下、診断タイミングという。)の過渡状態時に実測した物理量(以下、第1診断時物理量Hr1という。)を取得する。
<Third acquisition process>
In the third acquisition step, a physical quantity corresponding to one of the first physical quantity H1 and the second physical quantity H2 (in the present embodiment, the first physical quantity H1), and a predetermined timing after the normal time (hereinafter, diagnosis timing ) (Hereinafter referred to as “the first diagnostic physical quantity Hr1.”) Obtained in the transient state.

本実施形態に係る診断タイミングとは、蒸気圧縮式冷凍機が設置されて最初に稼働した時を基準として、予め設定された期間(例えば、30日)毎のタイミングをいう。つまり、本実施形態に係る診断タイミングとは、最初に稼働した日から30日が経過したとき(以下、第1回目という。)、第1回目の日から30日が経過したときのような定期的なタイミングをいう。   The diagnosis timing according to the present embodiment refers to timing every predetermined period (for example, 30 days) based on the time when the vapor compression type refrigerator is first installed and operated. That is, the diagnosis timing according to the present embodiment is a periodic timing such as 30 days from the first day when 30 days have passed from the day of first operation (hereinafter referred to as the first time). Timing.

なお、第3取得工程及び以下の第4取得工程〜比較工程の実施は、蒸気圧縮式冷凍機を管理する管理者による手動実施、及び予めプログラミングされた自動実施のいずれであってもよい。   In addition, implementation of the 3rd acquisition process and the following 4th acquisition process-comparison process may be any of manual implementation by the manager who manages a vapor compression type refrigerator, and automatic implementation pre-programmed.

<第4取得工程>
第4取得工程では、第1物理量H1及び第2物理量H2のうち他方の物理量(本実施形態では、第2物理量H2)に相当する物理量であって、診断タイミングの過渡状態時に実測した物理量(以下、第2診断時物理量Hr2という。)を取得する。
<Fourth acquisition process>
In the fourth acquisition step, the physical quantity corresponding to the other physical quantity (the second physical quantity H2 in the present embodiment) of the first physical quantity H1 and the second physical quantity H2 and measured at the transient state of the diagnosis timing (below , And the second diagnostic physical quantity Hr2).

<比較基準物理量決定工程>
比較基準物理量決定工程では、数式モデル同定工程にて同定された数式モデルに第1診断時物理量Hr1を代入して得られる比較基準物理量Hcを決定する。
<Comparison criteria physical quantity determination process>
In the comparison reference physical quantity determination step, a comparison reference physical quantity Hc obtained by substituting the first diagnosis physical quantity Hr1 into the mathematical expression model identified in the mathematical expression model identification step is determined.

<比較工程>
比較工程では、比較基準物理量Hcと第2診断時物理量Hr2とを比較する。当該比較工程では、例えば、下記の数式1が用いられる。そして、数式1の値(FIT)を利用して凝縮器1の劣化状態(本実施形態では、凝縮器1の汚れ度合い)が決定される。数式1の値(FIT)と凝縮器1の劣化状態を示す数値との関係は、予め試験により関連付けられ、データベース化されている。
<Comparison process>
In the comparison step, the comparison reference physical quantity Hc and the second diagnosis physical quantity Hr2 are compared. In the comparison step, for example, the following formula 1 is used. Then, the deterioration state of the condenser 1 (in the present embodiment, the degree of contamination of the condenser 1) is determined using the value (FIT) of Formula 1. The relationship between the value (FIT) of Equation 1 and the numerical value indicating the deterioration state of the condenser 1 is associated in advance by a test and is made into a database.

Figure 0006529380
3.本実施形態に係る凝縮器診断方法の特徴
本実施形態では、互いに関係性の高い2種類の物理量、つまり第1物理量H1及び第2物理量H2を用いて数式モデルを同定する。このとき、数式モデルとしてARXモデルを採用しているので、数式モデル同定時の演算負荷を低減することが可能となり得る。
Figure 0006529380
3. Characteristics of Condenser Diagnosis Method According to this Embodiment In this embodiment, a mathematical expression model is identified using two types of physical quantities that are highly related to each other, that is, the first physical quantity H1 and the second physical quantity H2. At this time, since the ARX model is adopted as the mathematical expression model, it is possible to reduce the operation load at the time of identification of the mathematical expression model.

したがって、凝縮器1の劣化診断精度を向上させることが可能となる。さらに、蒸気圧縮式冷凍機(例えば、空調装置)の異常を定量的に診断ができるため、事後的な保全作業を削減できるとともに、不必要な機器メンテナンス(例えば、凝縮器1の交換)を削減できる。   Therefore, the deterioration diagnosis accuracy of the condenser 1 can be improved. Furthermore, since abnormalities in the vapor compression type refrigerator (for example, air conditioners) can be quantitatively diagnosed, it is possible to reduce post-maintenance work and reduce unnecessary equipment maintenance (for example, replacement of the condenser 1). it can.

(その他の実施形態)
上述の実施形態では、過渡状態として「圧縮機の回転数が予め設定された変動幅を越えた時点から予め設定された時間が経過したとき」採用したが、本発明はこれに限定されるものではなく、例えば「圧縮機の起動直後」を過渡状態としてもよい。
(Other embodiments)
In the above embodiment, the transient state is adopted as "when the preset time has elapsed from the time when the number of revolutions of the compressor exceeds the preset fluctuation range", but the present invention is limited thereto For example, “immediately after startup of the compressor” may be set as a transient state.

上述の実施形態では、数式モデルとしてARXモデルを採用したが、本発明はこれに限定されるものではない。同様に、比較工程に用いる数式は上記の数式に限定されるものではない。   In the above-mentioned embodiment, although the ARX model was adopted as a formula model, the present invention is not limited to this. Similarly, the equation used in the comparison step is not limited to the above equation.

上述の実施形態では、「凝縮器の劣化」として主に「凝縮器の表面汚れ」を想定したが、本発明はこれに限定されるものではなく、例えば、凝縮器の気密性・液密性の低下による凝縮能力の低下を「凝縮器の劣化」としてもよい。   In the above embodiment, “surface contamination of the condenser” is mainly assumed as “deterioration of the condenser”, but the present invention is not limited to this, for example, the airtightness / liquid tightness of the condenser The decrease in condensation capacity due to the decrease in H may be regarded as “deterioration of the condenser”.

上述の実施形態では、第1物理量H1を第1診断時物理量Hr1とし、第2物理量H2を第2診断時物理量Hr2としたが、本発明はこれに限定されるものではなく、第1物理量H1を第2診断時物理量Hr2とし、第2物理量H2を第1診断時物理量Hr1としてもよい。   In the above embodiment, the first physical quantity H1 is the first diagnostic physical quantity Hr1, and the second physical quantity H2 is the second diagnostic physical quantity Hr2. However, the present invention is not limited to this, and the first physical quantity H1 is not limited thereto. Alternatively, the second diagnosis physical quantity Hr2 may be used as the second diagnosis physical quantity Hr2, and the second physical quantity H2 may be used as the first diagnosis physical quantity Hr1.

本発明は、特許請求の範囲に記載された発明の趣旨に合致するものであればよく、上述の実施形態に限定されるものではない。つまり、上述の実施形態に係る凝縮器1は、例えば、空冷式及び水冷式のいずれの方式でもよい。また、当該凝縮器1の用途は不問である。   The present invention does not have to be limited to the above-described embodiment as long as it conforms to the spirit of the invention described in the claims. That is, the condenser 1 according to the above-described embodiment may be, for example, any of an air cooling type and a water cooling type. Moreover, the use of the said condenser 1 is unquestioned.

1… 凝縮器
2… 圧縮機
3… 減圧器
4… 蒸発器
DESCRIPTION OF SYMBOLS 1 ... Condenser 2 ... Compressor 3 ... Decompression device 4 ... Evaporator

Claims (3)

凝縮器の劣化状態を診断する凝縮器診断方法において、
予め決められた時(以下、正常時という。)の過渡状態時に実測した第1物理量であって、凝縮器の冷媒入口でのエンタルピーと当該凝縮器の冷媒出口でのエンタルピーとの差に基づく第1物理量を取得する第1取得工程と、
前記正常時の過渡状態時に実測した第2物理量であって、凝縮器にて熱交換される前の空気温度と当該凝縮器にて熱交換された後の空気温度との差に基づく第2物理量を取得する第2取得工程と、
前記第1物理量と前記第2物理量とを関係付ける数式モデルを同定する数式モデル同定工程であって、前記第1物理量及び前記第2物理量を用いて当該数式モデルを同定する数式モデル同定工程と、
前記第1物理量及び前記第2物理量のうち一方の物理量に相当する物理量であって、前記正常時以降のタイミング(以下、診断タイミングという。)の過渡状態時に実測した物理量(以下、第1診断時物理量という。)を取得する第3取得工程と、
前記第1物理量及び前記第2物理量のうち他方の物理量に相当する物理量であって、前記診断タイミングの過渡状態時に実測した物理量(以下、第2診断時物理量という。)を取得する第4取得工程と、
前記数式モデル同定工程にて同定された数式モデルに前記第1診断時物理量を代入して得られる比較基準物理量を決定する比較基準物理量決定工程と、
前記比較基準物理量と前記第2診断時物理量とを比較する比較工程と
を備えることを特徴とする凝縮器診断方法。
In a condenser diagnostic method for diagnosing a deterioration state of a condenser,
A first physical quantity measured during a transient state at a predetermined time (hereinafter referred to as normal), which is based on the difference between the enthalpy at the refrigerant inlet of the condenser and the enthalpy at the refrigerant outlet of the condenser 1) a first acquisition process for acquiring one physical quantity;
The second physical quantity based on the difference between the air temperature before heat exchange in the condenser and the air temperature after heat exchange in the condenser, which is the second physical quantity actually measured in the transient state at the normal time A second acquisition process for acquiring
A mathematical expression model identification step of identifying a mathematical expression model that relates the first physical quantity and the second physical quantity, wherein the mathematical expression model identification process identifies the mathematical expression model using the first physical quantity and the second physical quantity;
A physical quantity corresponding to one physical quantity among the first physical quantity and the second physical quantity, and the physical quantity (hereinafter referred to as first diagnosis) measured in the transient state of timing after the normal time (hereinafter referred to as diagnosis timing). A third acquisition step of acquiring a physical quantity);
A physical quantity corresponding to the other physical quantity among the first physical quantity and the second physical quantity, and a fourth acquisition step of acquiring a physical quantity (hereinafter referred to as a second physical quantity at diagnosis) measured at a transition state of the diagnosis timing When,
A comparison reference physical amount determination step of determining a comparison reference physical amount obtained by substituting the first diagnosis physical amount into the equation model identified in the equation model identification step;
A condenser diagnostic method comprising: a comparison step of comparing the comparison reference physical quantity with the second diagnosis physical quantity.
前記過渡状態とは「圧縮機の回転数が予め設定された変動幅を越えた時点から予め設定された時間が経過したとき」であることを特徴とする請求項1に記載の凝縮器診断方法。   The condenser diagnostic method according to claim 1, wherein the transient state is "when a preset time has elapsed from the time when the number of revolutions of the compressor exceeds a preset fluctuation range". . 前記数式モデルは、ARXモデルであることを特徴とする請求項1又は2記載の凝縮器診断方法。   The condenser diagnostic method according to claim 1, wherein the mathematical model is an ARX model.
JP2015155914A 2015-08-06 2015-08-06 Condenser diagnostic method Active JP6529380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015155914A JP6529380B2 (en) 2015-08-06 2015-08-06 Condenser diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015155914A JP6529380B2 (en) 2015-08-06 2015-08-06 Condenser diagnostic method

Publications (2)

Publication Number Publication Date
JP2017032259A JP2017032259A (en) 2017-02-09
JP6529380B2 true JP6529380B2 (en) 2019-06-12

Family

ID=57988534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015155914A Active JP6529380B2 (en) 2015-08-06 2015-08-06 Condenser diagnostic method

Country Status (1)

Country Link
JP (1) JP6529380B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359109B2 (en) * 1993-07-16 2002-12-24 日本メックス株式会社 Method for diagnosing abnormalities of equipment whose operation status is represented by continuous quantities
JP2003303020A (en) * 2002-04-12 2003-10-24 Toshiba Corp Plant monitoring and diagnostic system
JP4049610B2 (en) * 2002-04-17 2008-02-20 東京瓦斯株式会社 Abnormality detection device for heat pump heat exchanger
JP3746729B2 (en) * 2002-04-17 2006-02-15 東京瓦斯株式会社 How to detect equipment degradation
JP4520819B2 (en) * 2004-10-25 2010-08-11 大陽日酸株式会社 Plant failure prediction method
JP4290705B2 (en) * 2006-03-07 2009-07-08 株式会社Nttファシリティーズ Diagnostic method and diagnostic system for air conditioner
JP2010127568A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Abnormality detection device and refrigerating cycle device including the same
JP2012127625A (en) * 2010-12-17 2012-07-05 Samsung Yokohama Research Institute Co Ltd Fault diagnosis apparatus to be used for air conditioning apparatus
JP6200816B2 (en) * 2014-01-15 2017-09-20 株式会社日立ビルシステム Device diagnosis apparatus, device diagnosis method, and device diagnosis program

Also Published As

Publication number Publication date
JP2017032259A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6359423B2 (en) Control device for air conditioning system, air conditioning system, and abnormality determination method for control device for air conditioning system
JP4966921B2 (en) Deterioration diagnosis apparatus, deterioration diagnosis method, and deterioration diagnosis system for cooling / heating supply system
JPH0480578A (en) Efficiency diagnosing device for heat source apparatus
US10989428B2 (en) Performance diagnosis device and performance diagnosis method for air conditioner
WO2016063550A1 (en) Control device for air conditioning system, air conditioning system, and method for determining anomaly of air conditioning system
JP4290705B2 (en) Diagnostic method and diagnostic system for air conditioner
Shin et al. Indoor unit fault detector for a multi-split VRF system in heating mode
CN113654182A (en) Method for detecting refrigerant leakage, computer readable storage medium and air conditioner
JP2010025475A (en) Failure diagnostic device used for refrigerating cycle equipment
JP4301085B2 (en) Deterioration diagnosis system for heat source equipment
EP3477409A1 (en) A computer implemented method, a computer program, and an apparatus for the diagnosis of anomalies in a refrigeration system
JP6529380B2 (en) Condenser diagnostic method
JP2016081363A (en) Instrument diagnosis device, instrument diagnosis method and instrument diagnosis program
JP2018044701A (en) Capacity diagnosis system and capacity diagnosis method for absorptive refrigerator
JP5350684B2 (en) Failure diagnosis device used for refrigeration cycle equipment
CN112595137B (en) Method for on-line monitoring and analyzing performance of condenser and computer expert system
DK181350B1 (en) WATER MIXTURE DETECTION DEVICE, WATER MIXTURE DETECTION PROGRAM, WATER MIXTURE DETECTION METHOD AND WATER MIXTURE DETECTION SYSTEM
JP6980034B2 (en) Device life evaluation method
JP4253648B2 (en) Performance evaluation method and diagnostic system of absorption chiller / heater
CN113669839A (en) Method for detecting refrigerant leakage, computer readable storage medium and air conditioner
WO2020066197A1 (en) Operating cost assessment method and operating cost assessment program
Pan et al. Development and online tuning of an empirically-based model for centrifugal chillers
JP6988366B2 (en) Performance deterioration diagnostic method and diagnostic equipment for water-cooled turbo chillers
CN110701727B (en) Method and system for detecting faults in an HVAC system and memory
Firdaus et al. Chiller faults diagnosis: a case study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6529380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250