JP6526483B2 - Water wheel equipment - Google Patents

Water wheel equipment Download PDF

Info

Publication number
JP6526483B2
JP6526483B2 JP2015109492A JP2015109492A JP6526483B2 JP 6526483 B2 JP6526483 B2 JP 6526483B2 JP 2015109492 A JP2015109492 A JP 2015109492A JP 2015109492 A JP2015109492 A JP 2015109492A JP 6526483 B2 JP6526483 B2 JP 6526483B2
Authority
JP
Japan
Prior art keywords
fluid
impeller
piping
blade
water turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015109492A
Other languages
Japanese (ja)
Other versions
JP2016223341A (en
Inventor
皆木 秀雄
秀雄 皆木
Original Assignee
株式会社ミナギ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミナギ製作所 filed Critical 株式会社ミナギ製作所
Priority to JP2015109492A priority Critical patent/JP6526483B2/en
Publication of JP2016223341A publication Critical patent/JP2016223341A/en
Application granted granted Critical
Publication of JP6526483B2 publication Critical patent/JP6526483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

本発明は、水車装置に関するものである。   The present invention relates to a water turbine device.

従来、再生可能エネルギーの普及と共に高効率での発電が要請されており、例えば、小水力発電についての関心が高まっている。この種の小水力発電では、水車装置を用い、中小河川、用水路の等さまざまな水流を利用して発電が行われる。   Conventionally, with the spread of renewable energy, high-efficiency power generation has been demanded, and for example, interest in small-scale hydroelectric power generation is increasing. In this type of small-scale hydropower generation, power generation is performed using a water turbine device and using various water flows such as small and medium rivers and waterways.

また、この種の水車装置を用いる小水力発電は、水源のある場所であれば設置をすることができ、水などの流体が高い位置から地下などの低い位置までの高低差において循環し、その落下時の水流によって水車装置の羽根車を回転させ発電を行うことで、電力としてエネルギーを回収することができる。   In addition, small hydroelectric power generation using this type of water turbine device can be installed at any place where there is a water source, and fluid such as water circulates at a height difference from a high position to a low position such as underground, Energy can be recovered as electric power by rotating the impeller of the water turbine apparatus with the water flow at the time of falling to generate electric power.

このような小水力発電では、水流で水車装置を回転させ、この水車装置で発電機を駆動し、電力を得る。このような水力発電装置は、小さな水流でも効率的に発電を行えることが要望され、さらなる高効率化、小型化が求められる。   In such a small hydroelectric power generation, a water turbine rotates a water flow, and a generator is driven by the water turbine to obtain electric power. Such a hydroelectric power generation apparatus is required to be able to efficiently generate power even with a small water flow, and further higher efficiency and miniaturization are required.

この種の水力発電に用いる水車装置としては、例えば、特許文献1には、発電機を水車装置で駆動するものであって、水車装置のケースの内部に複数の羽根部材を有する羽根車を配置し、このケースには側壁部に羽根車の外方から羽根部材に水を供給する給水管を備え、水を排出する排水管を備える水車装置が開示されている。   As a water turbine apparatus used for this kind of hydroelectric power generation, for example, in Patent Document 1, a generator is driven by the water turbine apparatus, and an impeller having a plurality of blade members is disposed inside a case of the water turbine apparatus. In this case, there is disclosed a water wheel apparatus provided with a water supply pipe for supplying water to the blade member from the outer side of the impeller in the side wall in this case, and a water discharge pipe for discharging water.

特開2014−118831号公報JP, 2014-11883, A

しかし、特許文献1に記載の水車装置においては、羽根車の外方から羽根部材に水を供給する方式であるため、給水管から羽根部材へと供給される水は、一部は羽根部材へ行きわたらずに羽根車の外方へと散ってしまい、全量の水が万遍なく羽根部材へと供給されず、それにより発電の効率が低下してしまう問題があった。   However, in the water turbine apparatus described in Patent Document 1, since water is supplied to the blade members from the outer side of the impeller, part of the water supplied from the water supply pipe to the blade members is to the blade members. There is a problem that the water is scattered to the outside of the impeller without reaching all, and the entire amount of water is not supplied uniformly to the blade members, thereby reducing the efficiency of power generation.

本発明の目的は、中小河川、用水路等の水流の発生場所に設置するのに適し、高効率で発電を行うことができてかつ小型化をすることができる水車装置を提供することにある。   An object of the present invention is to provide a water turbine device which is suitable for being installed at a place where water flows such as small and medium-sized rivers, waterways and the like, and can generate electric power with high efficiency and can be miniaturized.

本発明の水車装置は、放射状に配置された複数の羽根部材を備える羽根車と、該羽根車を回転可能に支持する回転軸部材と、前記羽根車の羽根部材に向けて流体を流入させる流体流入手段とからなる水車装置において、
前記流体流入手段は、前記羽根車及び前記回転軸部材の中央部を貫通して設けられる中空状の配管部と、該配管部に接続されて配管部内へ前記流体を流入させる流体流入部と、前記羽根車の中心部に位置する前記配管部に形成される開口部と、前記配管部内に設けられ、該配管部内へ流入した前記流体を前記開口部へ案内する流体案内部とからなり、
前記回転軸部材は、前記配管部に回転可能に支持固定される回転軸部材支持部を備え、
前記流体流入部により前記配管部内に流入された流体が、前記流体案内部を介して前記開口部から前記羽根車の羽根部材の中央部端部流入され、該流入した流体を羽根部材の内表面で受けて羽根車が回転されること
ことを特徴としている。

The water turbine apparatus according to the present invention comprises an impeller having a plurality of radially arranged vane members, a rotary shaft member rotatably supporting the impeller, and a fluid for causing a fluid to flow toward the vane members of the impeller. In the water wheel device comprising the inflow means,
The fluid inflow means includes a hollow piping portion provided through the central portion of the impeller and the rotary shaft member, and a fluid inflow portion connected to the piping portion to allow the fluid to flow into the piping portion. It comprises an opening formed in the piping part located at the center of the impeller, and a fluid guiding part provided in the piping part and guiding the fluid flowing into the piping part to the opening.
The rotary shaft member includes a rotary shaft member support portion rotatably supported and fixed to the piping portion,
Fluid flowing into the pipe portion by the fluid inflow portion, is flowed from the opening through the fluid guide portion to the central portion end of the blade member of the impeller, of the blade members the inflowing fluid It is characterized in that it is received by the surface and the impeller is rotated.

本発明の水車装置は、また、羽根部材が、羽根車の半径方向に直線状に延在した羽根部と、羽根車の円周方向に延在した羽根部が連続して形成されることを特徴としている。   In the water turbine apparatus according to the present invention, the blade member may be formed by continuously forming a blade portion linearly extending in the radial direction of the impeller and a blade portion extending in the circumferential direction of the impeller. It is characterized.

本発明の水車装置は、また、前記羽根部材への流体の流入で回転された羽根車の回転力により駆動する発電機と、前記羽根車の回転力を前記発電機に伝達する駆動力伝達手段とを備えることを特徴としている。   The water turbine apparatus of the present invention also includes a generator driven by the rotational force of the impeller rotated by the inflow of the fluid into the blade member, and a driving force transmission means for transmitting the rotational force of the impeller to the generator. And providing.

本発明の水車装置は、上述の如く構成したので、中小河川、用水路等の水流の発生場所に設置するのに適し、高効率で発電を行うことができてかつ小型化をすることができる水車装置を提供することができる。   Since the water turbine apparatus of the present invention is configured as described above, it is suitable for being installed at a place where water flows such as small and medium-sized rivers and waterways, and can generate electric power with high efficiency and can be miniaturized. An apparatus can be provided.

本発明の実施例の水車装置の構成を示す縦断面図である。It is a longitudinal section showing the composition of the water turbine device of the example of the present invention. 図1の本実施例の水車装置における羽根車の縦断面図を示す図である。It is a figure which shows the longitudinal cross-sectional view of the impeller in the water turbine apparatus of the present Example of FIG. 本発明の実施例の水車装置の構成の変形例の構成を示す図である。It is a figure which shows the structure of the modification of a structure of the water turbine apparatus of the Example of this invention. 本発明の実施例の水車装置の構成の別の変形例の配管部の構成を横断面図で示す図である。It is a figure which shows the structure of the piping part of another modification of the structure of the water turbine apparatus of the Example of this invention with a cross-sectional view. 図4の配管部の断面図であり、図5(a)は、配管部の一の状態を示しており、図5(b)は配管部の別の状態を示している。FIG. 5A is a cross-sectional view of the piping portion of FIG. 4, FIG. 5A illustrates one state of the piping portion, and FIG. 5B illustrates another state of the piping portion.

以下、本発明の実施例(以下、本実施例と称する。)の水車装置について、図面に基づいて説明する。なお、同様の構成については以下同符号を用いて説明する。   Hereinafter, a water turbine apparatus according to an embodiment of the present invention (hereinafter, referred to as a present embodiment) will be described based on the drawings. The same configuration will be described below using the same reference numerals.

図1は、本発明の実施例の水車装置の構成を示す概略斜視図である。また、図2は、図1の本実施例の水車装置における羽根車の縦断面図を示す図である。   FIG. 1 is a schematic perspective view showing the structure of a water turbine apparatus according to an embodiment of the present invention. Further, FIG. 2 is a view showing a longitudinal sectional view of the impeller in the water turbine apparatus of the present embodiment of FIG.

本実施例の水車装置100は、放射状に配置された複数の羽根部材1を備える羽根車10と、この羽根車10を回転可能に支持する回転軸部材20と、羽根車10の羽根部材1に向けて流体Qを流入させる流体流入手段30とからなる。   The water turbine apparatus 100 according to the present embodiment includes an impeller 10 having a plurality of radially arranged vane members 1, a rotary shaft member 20 rotatably supporting the impeller 10, and blade members 1 of the impeller 10. It comprises the fluid inflow means 30 which makes the fluid Q flow in.

また、流体流入手段30は、羽根車10及び回転軸部材20の中央部を貫通して設けられる中空状の配管部32と、この配管部32に接続されて配管部32内へ上記流体Qを流入させる流体流入部31と、羽根車10の中心部に位置する配管部32に形成される開口部35と、配管部32内に設けられ、この配管部32内へ流入した上記流体Qを開口部35へ案内する流体案内部33とからなる。   Further, the fluid inflow means 30 is connected to the hollow piping portion 32 provided penetrating the central portions of the impeller 10 and the rotary shaft member 20, and the piping portion 32 so that the fluid Q can be introduced into the piping portion 32. A fluid inflow portion 31 to be flowed in, an opening portion 35 formed in a piping portion 32 positioned at a central portion of the impeller 10, and the piping portion 32 provided therein, the fluid Q flowing into the piping portion 32 is opened And a fluid guiding portion 33 for guiding the portion 35.

また、本実施例の水車装置100において、回転軸部材20には、配管部32に回転可能に支持固定される回転軸部材支持部22を備える。   Further, in the water turbine apparatus 100 of the present embodiment, the rotation shaft member 20 is provided with the rotation shaft member support portion 22 rotatably supported and fixed to the piping portion 32.

そして、流体流入部31により配管部32内に流入された流体Qが、流体案内部33を介して開口部35から羽根車10の羽根部材1の中央部端部2から流入され、この流入した流体Qを羽根部材1の内表面3で受けて羽根車10が回転されるようになっている。   Then, the fluid Q which has flowed into the piping portion 32 by the fluid inflow portion 31 flows in from the opening 35 via the fluid guiding portion 33 from the central end portion 2 of the blade member 1 of the impeller 10 and flows The fluid Q is received by the inner surface 3 of the blade member 1 and the impeller 10 is rotated.

本実施例の水車装置100の構成は、上述のごとく、羽根車10及び回転軸部材20の中央部を貫通させた流体流入手段30における流体流入の機能を備える中空状の配管部32により、羽根部材1の中央部端部から、つまり羽根車10の中央部から流体の流入を行っている構造であるので、従来の流体の羽根部材への流入方式とは全く異なるものであり、この構成により、経済的に、高効率で発電を行うことができてかつ小型化をすることができる水車装置を提供することができる。以下、本実施例の水車装置100の構成について詳述する。   As described above, the configuration of the water turbine apparatus 100 according to the present embodiment includes the hollow piping section 32 having the function of fluid inflow in the fluid inflow means 30 penetrating the central portion of the impeller 10 and the rotary shaft member 20. Since the fluid is introduced from the end of the central portion of the member 1, that is, from the central portion of the impeller 10, it is completely different from the conventional method of inflowing the fluid into the blade member. Economically, it is possible to provide a water turbine device that can generate power with high efficiency and can be miniaturized. Hereinafter, the structure of the water turbine apparatus 100 of a present Example is explained in full detail.

羽根車10は、複数の同一形状の羽根部材1を図2に示す如く放射状に配置して、その羽根部材1の両側に円形状の側板12、14を配置し、これら羽根部材1と側板12、14とを側板連結手段50により連結することで構成されている。ここで羽根部材1は、半円状の円弧状に形成されて流体Qを貯留する貯留部4が形成される。この羽根部材1の貯留部4は、本実施例以外の構成には限定されない。例えば、後述する図3に示す構造であってもよい。   In the impeller 10, a plurality of blade members 1 of the same shape are arranged radially as shown in FIG. 2, and circular side plates 12 and 14 are arranged on both sides of the blade member 1, and these blade members 1 and 12 , 14 are connected by the side plate connection means 50. Here, the blade member 1 is formed in a semicircular arc shape, and a reservoir 4 for storing the fluid Q is formed. The storage portion 4 of the blade member 1 is not limited to the configuration other than the present embodiment. For example, the structure shown in FIG. 3 described later may be used.

羽根車10は、以上の構成により、流体流入部31から所定の水圧を持って流体Qが中央部端部2へ流入される。この際、流入した流体Qが中央部端部2側の羽根部材1の内表面3へと当たり、その後貯留部4に貯留される。ここで、中央部端部2側の羽根部材1の内表面3に当たる流体Qの流体力(抗力と称する。)および貯留部4に貯留された流体Qの重力により、羽根部材1に回転力Rがはたらき、羽根車10が回転されることとなる。   In the impeller 10, the fluid Q is introduced into the central end 2 with a predetermined water pressure from the fluid inlet 31 by the above configuration. Under the present circumstances, the fluid Q which flowed in contacts the inner surface 3 of the blade member 1 by the side of the center part edge part 2, and it is stored by the storage part 4 after that. Here, the rotational force R of the blade member 1 is caused by the fluid force (referred to as drag) of the fluid Q that strikes the inner surface 3 of the blade member 1 on the central end 2 side and the gravity of the fluid Q stored in the reservoir 4. Work, and the impeller 10 is rotated.

ここで、羽根部材1の数は本実施例では16枚設けており、この弧は半円状に形成しているが、これら羽根部材1の枚数及び形状は上記のごとき回転力Rが発生しうるものであれば、適宜別のものを選択し得る。   Here, the number of the blade members 1 is 16 in the present embodiment, and the arc is formed in a semicircular shape, but the number and shape of the blade members 1 generate the rotational force R as described above. If it is possible, another one may be selected as appropriate.

側板連結手段50は、羽根部材1と側板12、14とを貫通して配置する棒状のロッド部材52と、貫通させたロッド部材52を側板12、14の双方でナットのごとく締め付け部材54、56とからなり、この締め付け部材54、56の締め付けにより羽根部材1と側板12、14とロッド部材52とを連結する。   The side plate connecting means 50 is a rod-like rod member 52 disposed to penetrate through the blade member 1 and the side plates 12 and 14 and a rod member 52 penetrating the through members like nuts on both side plates 12 and 14. And the wing members 1, the side plates 12, 14 and the rod member 52 are connected by tightening the tightening members 54, 56.

この際、側板12、14と締め付け部材56との間にロッド部材52に貫通させて、後述する回転軸部材20における円形状の側板25を設け、締め付け部材54、56の締め付けにより、側板12、14と側板25とが連結され、もって羽根車10と回転軸部材20が連結されることになる。   At this time, the rod member 52 is made to penetrate between the side plates 12 and 14 and the tightening member 56 to provide a circular side plate 25 of the rotary shaft member 20 described later, and the side plates 12 are tightened by tightening the tightening members 54 and 56. 14 and the side plate 25 are connected, whereby the impeller 10 and the rotating shaft member 20 are connected.

ここで、羽根部材1と側板12、14は、例えば金属製の板状部材が用いられるが、本発明の効果を奏するものであれば、別の材質のものを用いてもよい。例えば、上述の側板連結手段50は、羽根車10の同心円状にかつ対称的に複数個設けることで、羽根車10の補強を堅固にすることができる。   Here, although the plate member made of metal is used as the blade member 1 and the side plates 12 and 14, for example, other materials may be used as long as the effects of the present invention can be obtained. For example, the reinforcement of the impeller 10 can be made rigid by providing a plurality of the side plate connection means 50 described above concentrically and symmetrically on the impeller 10.

また、回転軸部材20は、上述した円形状の側板25と、円形状の側板23及び側板24とが溶接等により固着されて、中空円筒状に形成されたリム部材と、羽根車10の中央部に設けられた回転軸部材支持部22とからなる。円形状の側板23及び側板24は、例えば、金属製のものが用いられる。これにより、羽根車10の補強がなされる。ここで、側板24を羽根車10の外側へ向けて径小となるように傾斜させる形状とすることにより、羽根車10の安定した回転に供し、また後述する駆動力伝達手段94の側板24への接触による干渉を防ぐことができる。   Further, the rotary shaft member 20 is a rim member formed in a hollow cylindrical shape, in which the circular side plate 25 and the circular side plate 23 and the side plate 24 are fixed by welding or the like, and the center of the impeller 10 And a rotary shaft member supporting portion 22 provided on the portion. The circular side plates 23 and 24 are made of, for example, metal. Thereby, the impeller 10 is reinforced. Here, the side plate 24 is inclined toward the outside of the impeller 10 so as to be smaller in diameter, thereby providing stable rotation of the impeller 10 and to the side plate 24 of the driving force transmission means 94 described later. Can prevent interference from contact.

また、回転軸部材支持部22は、例えばベアリング22Aとベアリングハウジング22Bとからなるベアリング等の軸受け部材が用いられる。これにより、後述する配管部32を貫通させて、配管部32に支持させる構成とし、その外周に羽根車10を接触させて設けることで、羽根車10を回転可能に支持する。このため、回転軸部材支持部22は、羽根車10における回転軸となる。ここで、羽根車10とに連結されたリム部材についても羽根車10を接触させて設けられ、羽根車10と共に回転可能に支持される。   Further, as the rotating shaft member supporting portion 22, for example, a bearing member such as a bearing comprising a bearing 22A and a bearing housing 22B is used. Thereby, the piping part 32 mentioned later is penetrated, it is set as the structure made to support by the piping part 32, and the impeller 10 is rotatably supported by contacting and providing the impeller 10 in the outer periphery. For this reason, the rotation shaft member support portion 22 is a rotation shaft of the impeller 10. Here, the rim member connected to the impeller 10 is also provided in contact with the impeller 10, and is supported rotatably together with the impeller 10.

回転軸部材20は、以上の構成であり、羽根車10の両側にこの羽根車10に連結して設けられる。これにより、羽根車10は、回転軸部材20に補強されると共に回転軸部材20の回転軸部材支持部22を回転軸として回転可能に支持されることになる。   The rotating shaft member 20 has the above configuration, and is provided on both sides of the impeller 10 so as to be connected to the impeller 10. Thus, the impeller 10 is reinforced by the rotary shaft member 20 and is rotatably supported with the rotary shaft member support 22 of the rotary shaft member 20 as a rotary shaft.

ここで、回転軸部材支持部22は、配管部32の外周上を摺動可能に設けられるが、係止部材42、44、46、48を各回転軸部材支持部22の両側にそれぞれ設けて配管部32上に固定することで、摺動された回転軸部材支持部22が係止部材42、44、46、48に係止されて回転軸部材支持部22の摺動が制限される。   Here, the rotary shaft member support portion 22 is provided slidably on the outer periphery of the piping portion 32, but the locking members 42, 44, 46, 48 are provided on both sides of each rotary shaft member support portion 22 respectively. By fixing on the piping part 32, the slid rotational shaft member support 22 is locked by the locking members 42, 44, 46, 48, and the slide of the rotational shaft member support 22 is limited.

これにより、羽根車10の安定した回転が実現される。ここで、係止部材42、44、46、48は、円環状に形成して配管部32上に固定してもよいが、円周方向に断続して設けた突起状に形成して配管部32上に固定してもよい。また、係止部材42、44、46、48は、側板12、14やリム部材と干渉しないようにして設ける。   Thereby, stable rotation of the impeller 10 is realized. Here, although the locking members 42, 44, 46, 48 may be formed in an annular shape and fixed on the piping portion 32, they may be formed in a projecting shape intermittently provided in the circumferential direction for forming the piping portion It may be fixed on 32. The locking members 42, 44, 46, 48 are provided so as not to interfere with the side plates 12, 14 or the rim member.

流体流入手段30の配管部32は、羽根車10及び回転軸部材20の中央部を貫通して設けられる。この配管部32は、中空状の金属製の配管が用いられ、一方側に外部に中小河川、用水路等の水源からの流体を自然流下させる流体流入部31を設け、この流体流入手部31により配管部32の一方側から配管内32部に流体Qを流入させるように構成されている。   The pipe portion 32 of the fluid inflow means 30 is provided to penetrate the central portion of the impeller 10 and the rotary shaft member 20. The pipe portion 32 is a hollow metal pipe, and on one side is provided with a fluid inflow portion 31 for allowing the fluid from the water source such as small and medium-sized rivers and waterways to flow down naturally. The fluid Q is made to flow from one side of the piping portion 32 into the inside 32 of the piping.

また、配管部32内の他方側には、この配管部32内の他方側を封止するようにして流体案内部33が設けられる。この流体案内部33は、例えば金属製のものが用いられ、配管部32内に溶接等で固着される。これにより、配管部32内の一方側から流入した流体Qを流体案内部33側表面(図1で、左側表面)で受け止めると共に、後述する開口部35へと案内する。ここで、流体案内部33側表面の形状は、流体の流線形に沿って曲線状に形成することにより、より円滑に流体Qの開口部35への案内をすることができる。   Further, on the other side in the piping portion 32, a fluid guiding portion 33 is provided so as to seal the other side in the piping portion 32. The fluid guide portion 33 is made of, for example, metal, and is fixed in the piping portion 32 by welding or the like. As a result, the fluid Q flowing from one side in the piping portion 32 is received by the fluid guide portion 33 side surface (left surface in FIG. 1) and is guided to the opening 35 described later. Here, the shape of the surface on the fluid guide 33 side can be more smoothly guided to the opening 35 of the fluid Q by forming a curved shape along the fluid streamline.

また、開口部35は、羽根車10の中心部に位置する配管部32に形成される。この開口部35によれば、流体流入手段31により配管部32の一方側から配管内32部に流入された流体Qを流体案内部33を介し、羽根車10の羽根部材1の中央部端部2へと、流体Qが流入されることになる。   Further, the opening 35 is formed in the piping portion 32 located at the center of the impeller 10. According to this opening 35, the fluid Q which has flowed into the inner portion 32 of the pipe from one side of the pipe 32 by the fluid inflow means 31 passes through the fluid guiding portion 33, and the central end of the blade member 1 of the impeller 10 The fluid Q will be flowed into 2.

ここで、開口部35には、図示するように、配管部32の軸方向に平行に所定の間隔で複数個配置する板部材38を設けてもよい。つまり、開口部35をスリット状に形成する。この複数個の板部材38によれば、配管部32内に流入された流体Qが開口部35から吐出される際に、各板部材38の間を流れ出ることとなるので、各羽根部材1へと均一に流体Qを分配して流入させることができる。   Here, as shown in the drawing, the opening 35 may be provided with a plurality of plate members 38 disposed in parallel in the axial direction of the piping portion 32 at predetermined intervals. That is, the opening 35 is formed in a slit shape. According to the plurality of plate members 38, when the fluid Q flowing into the piping portion 32 is discharged from the opening 35, the fluid Q flows out between the plate members 38. And the fluid Q can be distributed uniformly.

本実施例の水車装置100は、また、羽根部材1への流体Qの流入で回転された羽根車10の回転力により駆動する発電機90と、羽根車10の回転力を発電機90に伝達する駆動力伝達手段80とが備えられている。   The water turbine apparatus 100 of the present embodiment also transmits the rotational force of the impeller 10 driven by the rotational force of the impeller 10 rotated by the inflow of the fluid Q into the blade member 1 and the rotational force of the impeller 10 to the generator 90 Driving force transmitting means 80 are provided.

駆動力伝達手段80は、スプロケット等のギヤを用いて回転動力を伝達させる第一の駆動力伝達部材92が、一方側(図で、左側)の回転軸部材20の外側面に設けられ、ボルト87およびナット86、88等の締結手段によって、一方側の回転軸部材20と連結される。これにより、羽根車10の回転に伴って、回転軸部材20を介し駆動力伝達部材92が回転されることとなる。   In the driving force transmitting means 80, a first driving force transmitting member 92 for transmitting rotational power using a gear such as a sprocket is provided on the outer surface of the rotary shaft member 20 on one side (left side in FIG. It is connected with the rotating shaft member 20 on one side by fastening means such as 87 and nuts 86, 88 and the like. Thus, with the rotation of the impeller 10, the driving force transmission member 92 is rotated via the rotation shaft member 20.

また、第一の駆動力伝達部材92の外周と接触してこの第一の駆動力伝達部材92の回転動力を伝達する第二の駆動力伝達部材94が設けられ、さらに第二の駆動力伝達部材94は発電機90に接続される。これにより、第一の駆動力伝達部材の回転動力が第二の駆動力伝達部材94を介して発電機90へと伝達され、発電機90でこの伝達された回転動力により発電がなされる。   Further, a second driving force transmission member 94 for transmitting rotational power of the first driving force transmission member 92 in contact with the outer periphery of the first driving force transmission member 92 is provided, and the second driving force transmission is further provided. The member 94 is connected to a generator 90. As a result, the rotational power of the first drive power transmission member is transmitted to the generator 90 via the second drive power transmission member 94, and the generator 90 generates electric power by the transmitted rotational power.

次に、上述の構成による本実施例の水車装置100における水力発電の手順について説明する。   Next, the procedure of the hydraulic power generation in the water turbine apparatus 100 of the present embodiment having the above-described configuration will be described.

まず、中小河川、用水路の等の水流の発生場所において水車装置100を設置し、流体流入手段30の流体流入部31より、上記水流から自然流下する流体Qを配管部32内へと供給する。   First, the water turbine apparatus 100 is installed at a generation location of water flow such as small and medium-sized rivers and waterways, and the fluid Q which naturally flows down from the water flow from the fluid inflow portion 31 of the fluid inflow means 30 is supplied into the piping portion 32.

次に、配管部32内に流入された流体Qは、流体案内部33を介し、羽根車10の中心部に位置する配管部32に形成された開口部35から、羽根車10の複数の羽根部材1の中央部端部2へと流出される。   Next, the fluid Q that has flowed into the piping portion 32 passes through the fluid guiding portion 33 and from the opening portion 35 formed in the piping portion 32 located at the center portion of the impeller 10, a plurality of blades of the impeller 10 It flows out to the central end 2 of the member 1.

次に、羽根部材1の中央部端部2に流出した流体Qは、羽根部材1の内表面3に当たり、羽根部材1内に形成される貯留部4に貯留される。ここで、配管部32内に流入された流体Qは、万遍なく羽根部材1へ供給されることになるので、全ての流入流体が上記発電機90による発電に供されることになる。   Next, the fluid Q that has flowed out to the central end 2 of the blade member 1 strikes the inner surface 3 of the blade member 1 and is stored in the reservoir 4 formed in the blade member 1. Here, since the fluid Q flowing into the piping portion 32 is uniformly supplied to the blade member 1, all the inflowing fluid is used for power generation by the generator 90.

ここで、中央部端部2側の羽根部材1の内表面3に当たる流体Qの抗力および貯留部4に貯留された流体Qの重力により、羽根部材1に回転力Rがはたらき、羽根車10が回転されることとなる。そして、配管部32内に流体Qを流入し続けることにより、羽根車10の回転力Rが発生し続け、これにより羽根車10が回転し続ける。   Here, the rotational force R acts on the blade member 1 by the drag force of the fluid Q that hits the inner surface 3 of the blade member 1 on the central end portion 2 side and the gravity of the fluid Q stored in the reservoir 4, and the impeller 10 It will be rotated. Then, by continuously flowing the fluid Q into the piping portion 32, the rotational force R of the impeller 10 continues to be generated, whereby the impeller 10 continues to rotate.

羽根車10の回転により、流体Qを貯留した羽根部材1が回転することでやがて回転位置により、羽根部材1の円周側端部5から流体Qが外方へ吐出される。   By the rotation of the impeller 10, the blade member 1 storing the fluid Q is rotated, and the fluid Q is discharged outward from the circumferential end 5 of the blade member 1 according to the rotational position.

一方で、上記の羽根車10の回転により、この回転動力が、羽根車10に連結された駆動力伝達手段92に伝達され、駆動力伝達手段94を介して発電機90へと回転動力が伝えられる。そして、発電機90により伝達された回転動力に基づいて発電が行われる。   On the other hand, the rotational power is transmitted to the drive power transmission means 92 connected to the impeller 10 by the rotation of the impeller 10 described above, and the rotational power is transmitted to the generator 90 through the drive power transmission means 94. Be Then, power generation is performed based on the rotational power transmitted by the generator 90.

本実施例の水車装置100は、以上のようにして水力発電が行われるので、配管部32内に流入された流体Qは、その全量が羽根部材1へ供給され、高い効率で水力発電を行うことができる。   In the water turbine apparatus 100 of the present embodiment, since the hydroelectric power generation is performed as described above, the whole amount of the fluid Q flowing into the piping portion 32 is supplied to the blade member 1, and the hydraulic power generation is performed with high efficiency. be able to.

また、本実施例の水車装置100は、上述の構成であるので、流体流入手段30による水流からの流体Qの開口部35への出力は低出力としても十分な発電量を得ることができるので、穏やかな水流の現場すなわち高低差の小さい現場においても効果的に適用することができる。なお、高低差の大きい水源においては、その水源より自然流下する流体Qの水圧はより大きくなるので、これにより容易に高い発電効率を得ることができる。   In addition, since the water turbine apparatus 100 of the present embodiment has the above-described configuration, a sufficient amount of power generation can be obtained even when the output from the water flow to the opening 35 of the fluid Q from the water flow is low. The present invention can be effectively applied to a gentle stream of water, that is, a small spot of height difference. In a water source with a large difference in elevation, the hydraulic pressure of the fluid Q naturally flowing down from the water source becomes larger, so that high power generation efficiency can be easily obtained.

また、本実施例の水車装置100は、上述の構成であるので、羽根車10の径を小さくして高い発電効率を得ることができるので、高効率発電で小型化した水車装置を提供することができる。   Further, since the water turbine apparatus 100 of the present embodiment has the above-described configuration, it is possible to reduce the diameter of the impeller 10 and obtain high power generation efficiency, thereby providing the water turbine apparatus miniaturized by high efficiency power generation. Can.

また、本実施例の水車装置100は、流体Qは低出力とすることで、河川等に存在する小魚等が水車装置100内に引き込んだとしても、小魚に被害を与えずに吐出させることができるので、環境の面においても好適である。   In addition, even if a small fish or the like present in a river or the like is drawn into the water wheel apparatus 100 by making the output of the fluid Q low, the water wheel apparatus 100 of the present embodiment discharges the small fish without causing damage. It is preferable in terms of the environment as it can be

また、本実施例の水車装置100は、上述の通り、各要素を金属性の板などで構成することができ、また、簡便な構造であるために、経済的に製造することができる。   In addition, as described above, the water turbine apparatus 100 according to the present embodiment can configure each element with a metal plate or the like, and can be economically manufactured because of its simple structure.

本発明の水車装置は、上述の如く構成したので、中小河川、用水路等の水流の発生場所に設置するのに適し、高効率で発電を行うことができてかつ小型化された水車装置を提供することができる。   Since the water turbine apparatus of the present invention is configured as described above, it is suitable for being installed at a place where water flows such as small and medium-sized rivers, waterways, etc., and provides a water turbine apparatus capable of generating power with high efficiency and miniaturized. can do.

また、本発明の水車装置は、図3に示すように構成されてもよい。図3は、本発明の実施例の水車装置の構成の変形例の構成を示す図である。図3に示す羽根部材1は所定の厚みを有するが、説明の便宜上一本の線により示している。この変形例において、羽根部材1は8枚からなり、羽根車10の半径方向に直線状に延在した羽根部6と、羽根車10の円周方向に延在した羽根部7とが連続して形成されている。また、図に示すように羽根部6と羽根部7との間に貯留部4が形成される。   Moreover, the water turbine apparatus of this invention may be comprised as shown in FIG. FIG. 3 is a view showing the configuration of a modification of the configuration of the water turbine apparatus of the embodiment of the present invention. Although the blade member 1 shown in FIG. 3 has a predetermined thickness, it is shown by a single line for convenience of explanation. In this modification, the blade members 1 are eight in number, and the blade portion 6 linearly extended in the radial direction of the impeller 10 and the blade portion 7 extended in the circumferential direction of the impeller 10 are continuous. It is formed. In addition, as shown in the figure, the reservoir 4 is formed between the blade 6 and the blade 7.

この変形例における水車装置は、図2に示す例と同様に、配管部32に流入された流体Qが、開口部35から羽根車10の羽根部材1の中央部端部2から羽根部材1へと流入する。この際、流入した流体Qは、羽根部6の表面に当たり、貯留部4へ貯留される。   In the water turbine apparatus in this modification, as in the example shown in FIG. 2, the fluid Q flowing into the piping section 32 is transferred from the opening 35 to the blade section 1 from the central end 2 of the blade 1 of the impeller 10. To flow. Under the present circumstances, the fluid Q which flowed in contacts the surface of the blade part 6, and is stored by the storage part 4. As shown in FIG.

この変形例の構成による水車装置によっても、上述の実施例と同様の効果を奏することができる。更にこの変形例による場合、羽根部6の構成が簡便化されているので、安価に製造できるメリットがある。また、この変形例による場合、貯留部4により多くの流体を貯留することができるメリットがある。   The same effects as those of the above-described embodiment can be achieved by the water turbine device according to the configuration of this modification. Furthermore, according to this modification, since the configuration of the blade portion 6 is simplified, there is an advantage that it can be manufactured inexpensively. Further, in the case of this modification, there is an advantage that more fluid can be stored in the storage unit 4.

また、本発明の水車装置の配管部は、図4、図5に示すように構成されてもよい。図4は、本発明の実施例の水車装置の構成の別の変形例の配管部の構成を横断面図で示す図であり、また、図5は、図4の配管部の断面図であり、図5(a)は、配管部の一の状態を示しており、図5(b)は配管部の別の状態を示している。   Moreover, the piping part of the water turbine apparatus of this invention may be comprised as shown to FIG. 4, FIG. FIG. 4 is a cross-sectional view showing the configuration of a piping section of another modification of the configuration of the water turbine apparatus of the embodiment of the present invention, and FIG. 5 is a cross-sectional view of the piping section of FIG. 5 (a) shows one state of the piping part, and FIG. 5 (b) shows another state of the piping part.

この変形例では、配管部32の内部に内部配管部39が設けられている。この内部配管部39は、外径が配管部32の内径よりも小さくされて、配管部32内を回転可能とされる。また、この内部配管部39の流体案内部33とは反対側の一方側に(図で、右側)、流体案内部33が設けられている。また、この内部配管部39には、複数個の板部材36が溶接等により取り付けられる。   In this modification, an internal piping portion 39 is provided inside the piping portion 32. The inner piping portion 39 has an outer diameter smaller than the inner diameter of the piping portion 32 so that the inside of the piping portion 32 can rotate. Further, a fluid guide 33 is provided on one side (right side in the figure) opposite to the fluid guide 33 of the internal piping 39. In addition, a plurality of plate members 36 are attached to the internal piping portion 39 by welding or the like.

この流体部案内部33には、クランク方式で回転するような回転駆動機構99が設けられており、この回転機構99の回転により、流体案内部33を介して、配管部39が回転されるように構成されている。   The fluid guide portion 33 is provided with a rotation drive mechanism 99 that rotates in a crank manner, and the piping portion 39 is rotated via the fluid guide 33 by the rotation of the rotation mechanism 99. Is configured.

また、この内部配管部39は、図5(a)に示す状態においては、開口部35は、配管部32の開口部35と内部配管部39の開口部37とがほぼ一致するために、開口部37によって閉じられないので、この状態の際では、流体Qの水圧は高くならずに羽根部材1に吐出されることになる。   Further, in the state shown in FIG. 5A, the internal pipe 39 is an opening 35 because the opening 35 of the pipe 32 and the opening 37 of the internal pipe 39 substantially coincide with each other. In this state, the fluid pressure of the fluid Q is not increased and is discharged to the blade member 1 because it is not closed by the portion 37.

また、図5(b)は、回転駆動機構99により内部配管部39が回転された状態を示している。板部材36は、配管部32に対して傾斜して配置される状態が形成される。配管部32の開口部35は、開口部37によって一部が閉じられて狭くされる。この結果、羽根部材1に吐出される流体Qは少なくなると共に水圧が高くされる。また、板部材36が傾斜されることで羽根部材1に吐出される流体Qの方向が図に示すように変えられる。このようにして、回転機構99により板部材36の傾斜や流体Qの水圧を変えることにより、羽根部材1に当たる流体Qの水圧や流出方向を調整することができる。また、この回転駆動機構99によれば、水車装置の設置現場において、作業者等がその現場において水車装置の動作の状況に応じて回転駆動機構99を用いることにより羽根部材1に吐出される流体Qの水圧や流出方向を適宜調整することができるので、現場での使用に好適となる水車装置を提供することができる。   Further, FIG. 5 (b) shows a state in which the internal piping portion 39 is rotated by the rotation drive mechanism 99. The plate member 36 is formed to be inclined with respect to the piping portion 32. The opening 35 of the piping portion 32 is partially closed and narrowed by the opening 37. As a result, the fluid Q discharged to the blade member 1 is reduced and the water pressure is increased. Further, as the plate member 36 is inclined, the direction of the fluid Q discharged to the blade member 1 is changed as shown in the figure. In this manner, by changing the inclination of the plate member 36 and the water pressure of the fluid Q by the rotation mechanism 99, it is possible to adjust the water pressure and the outflow direction of the fluid Q that hits the blade member 1. Further, according to this rotary drive mechanism 99, at the installation site of the water turbine device, the fluid etc. discharged to the blade member 1 by using the rotary drive mechanism 99 according to the operation status of the water turbine device at the site. Since the water pressure of Q and the outflow direction can be appropriately adjusted, it is possible to provide a water turbine device suitable for on-site use.

Q…流体、1…羽根部材、2…羽根部材の中央部端部、3…羽根部材の内表面、4…貯留部、10…羽根車、20…回転軸部材、30…流体流入手段、31…流体流入部、32…配管部、33…流体案内部、35…開口部、100…水車装置。   Q: fluid, 1: blade member, 2: central end of blade member, 3: inner surface of blade member, 4: reservoir, 10: impeller, 20: rotary shaft member, 30: fluid inflow means, 31 ... fluid inflow portion, 32 ... piping portion, 33 ... fluid guiding portion, 35 ... opening portion, 100 ... water wheel device.

Claims (3)

放射状に配置された複数の羽根部材を備える羽根車と、該羽根車を回転可能に支持する回転軸部材と、前記羽根車の羽根部材に向けて流体を流入させる流体流入手段とからなる水車装置において、
前記流体流入手段は、前記羽根車及び前記回転軸部材の中央部を貫通して設けられる中空状の配管部と、該配管部に接続されて配管部内へ前記流体を流入させる流体流入部と、前記羽根車の中心部に位置する前記配管部に形成される開口部と、前記配管部内に設けられ、該配管部内へ流入した前記流体を前記開口部へ案内する流体案内部とからなり、
前記回転軸部材は、前記配管部に回転可能に支持固定される回転軸部材支持部を備え、
前記流体流入部により前記配管部内に流入された流体が、前記流体案内部を介して前記開口部から前記羽根車の羽根部材の中央部端部流入され、該流入した流体を羽根部材の内表面で受けて羽根車が回転されること
特徴とする水車装置。
A watermill apparatus comprising: an impeller having a plurality of radially arranged vane members; a rotary shaft member rotatably supporting the impeller; and fluid inflow means for causing fluid to flow toward the vane members of the impeller In
The fluid inflow means includes a hollow piping portion provided through the central portion of the impeller and the rotary shaft member, and a fluid inflow portion connected to the piping portion to allow the fluid to flow into the piping portion. It comprises an opening formed in the piping part located at the center of the impeller, and a fluid guiding part provided in the piping part and guiding the fluid flowing into the piping part to the opening.
The rotary shaft member includes a rotary shaft member support portion rotatably supported and fixed to the piping portion,
Fluid flowing into the pipe portion by the fluid inflow portion, is flowed from the opening through the fluid guide portion to the central portion end of the blade member of the impeller, of the blade members the inflowing fluid Receiving on the surface and rotating the impeller
Water wheel and wherein the.
請求項1に記載の水車装置において、羽根部材が、羽根車の半径方向に直線状に延在した羽根部と、羽根車の円周方向に延在した羽根部が連続して形成されることを特徴とする水車装置。   The water turbine apparatus according to claim 1, wherein the blade member is formed by continuously forming a blade portion linearly extending in a radial direction of the impeller and a blade portion extending in a circumferential direction of the impeller. Water turbine device characterized by 請求項1に記載の水車装置において、前記羽根部材への流体の流入で回転された羽根車の回転力により駆動する発電機と、前記羽根車の回転力を前記発電機に伝達する駆動力伝達手段とを備えることを特徴とする水車装置。   The water turbine apparatus according to claim 1, wherein the generator driven by the rotational force of the impeller rotated by the inflow of the fluid into the blade member, and the drive power transmission transmitting the rotational force of the impeller to the generator And a water turbine apparatus characterized by comprising:
JP2015109492A 2015-05-29 2015-05-29 Water wheel equipment Active JP6526483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015109492A JP6526483B2 (en) 2015-05-29 2015-05-29 Water wheel equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015109492A JP6526483B2 (en) 2015-05-29 2015-05-29 Water wheel equipment

Publications (2)

Publication Number Publication Date
JP2016223341A JP2016223341A (en) 2016-12-28
JP6526483B2 true JP6526483B2 (en) 2019-06-05

Family

ID=57745376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015109492A Active JP6526483B2 (en) 2015-05-29 2015-05-29 Water wheel equipment

Country Status (1)

Country Link
JP (1) JP6526483B2 (en)

Also Published As

Publication number Publication date
JP2016223341A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
KR101196357B1 (en) Energy integration with Magnetism-operation of Vertical axis a Water current Hydraulic turbine
KR101464078B1 (en) Small hydro power plant
US20120313375A1 (en) Rotational force generating device and a centripetally acting type of water turbine using the same
WO2018117118A1 (en) Fluid machine
JP2007071194A (en) Power generating device utilizing water wheel-leverage
JP6526483B2 (en) Water wheel equipment
JP5696296B1 (en) Hollow impeller and power generator using the same
KR20170116915A (en) A High Efficient Water Wheel And A Small Hydro Power Device Using The Same
RU2746822C2 (en) Turbogenerator device for electrical power generation, methods of its installation and operation
JP6168902B2 (en) Small hydroelectric generator
JP6028244B2 (en) Water turbine device and hydroelectric power generation device
JP2015140802A (en) Hydraulic generating equipment
JP5072052B1 (en) Small hydroelectric generator
JP5725575B2 (en) Impeller with booster function
KR101320636B1 (en) A waterpower generator for pipe flowing water
JP2020084863A (en) Tidal power generation device
JP2017210872A (en) Fluid power generation device
JP2011064195A (en) Hydroelectric system
US20060108808A1 (en) System and method for generating electricity using well pressures
KR20110021013A (en) Wind power generator
KR20110063994A (en) Current energy power generation apparatus having simple structure
KR20190014876A (en) water power circulation, engine
EP2831407A2 (en) A screw device for a power generation or a material handling apparatus
JP6078101B2 (en) Conical propeller water turbine device and hydroelectric power generator using the same
JP7421030B1 (en) Hydroelectric power generation system and hydroelectric power generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190508

R150 Certificate of patent or registration of utility model

Ref document number: 6526483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250