JP6525180B1 - 対象数特定装置 - Google Patents

対象数特定装置 Download PDF

Info

Publication number
JP6525180B1
JP6525180B1 JP2018076046A JP2018076046A JP6525180B1 JP 6525180 B1 JP6525180 B1 JP 6525180B1 JP 2018076046 A JP2018076046 A JP 2018076046A JP 2018076046 A JP2018076046 A JP 2018076046A JP 6525180 B1 JP6525180 B1 JP 6525180B1
Authority
JP
Japan
Prior art keywords
objects
joints
time
identification
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018076046A
Other languages
English (en)
Other versions
JP2019185421A (ja
Inventor
木村 大介
大介 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asilla Inc
Original Assignee
Asilla Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asilla Inc filed Critical Asilla Inc
Priority to JP2018076046A priority Critical patent/JP6525180B1/ja
Priority to PCT/JP2019/015402 priority patent/WO2019198696A1/ja
Priority to US17/045,536 priority patent/US11482046B2/en
Application granted granted Critical
Publication of JP6525180B1 publication Critical patent/JP6525180B1/ja
Publication of JP2019185421A publication Critical patent/JP2019185421A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

【課題】 複数の時系列画像に映った対象の数を高精度に特定することが可能な対象数特定装置を提供する。【解決手段】 対象数特定装置1において、特定側検出部13は、特定側識別器11に記憶された複数の関節Aを識別するための基準に基づき、各時系列画像Yに映った複数の関節Aを検出する。特定側計側部14は、各時系列画像Yに映った複数の関節Aの座標及び深度を計測する。識別部15は、計測された各関節Aの座標及び深度の複数の時系列画像Yにおける変位に基づき、複数の関節Aの中から、一の対象に属する関節群Bを識別する。識別部15は、更に、特定側識別器11に記憶された対象Zの基本姿勢に関する基準に基づき、各時系列画像Yに映った対象Zの数の推定を行い、推定された対象Zの数と、検出された複数の関節Aの種類ごとの個数と、に基づき、各時系列画像Yに映った対象Zの数の特定を行う。【選択図】図6

Description

本発明は、複数の時系列画像に映った対象の数を特定するための対象数特定装置に関する。
従来より、時系列データに映った人間の関節等から姿勢を検知し、当該姿勢の変化に応じて行動を認識する装置が知られている。(例えば、特許文献1参照)。
特開2017−228100号公報
しかしながら、上記特許文献1では、時系列データに一の対象が映っている場合を想定しており、複数の対象が映っている場合に、どのようにして対象の数を特定するかが開示されていない。
そこで、本発明は、複数の時系列画像に映った対象の数を高精度に特定することが可能な対象数特定装置を提供することを目的としている。
本発明は、一又は複数の対象が映った複数の時系列画像を取得する特定側取得部と、対象の複数の関節を識別するための基準を記憶した識別器と、前記複数の関節を識別するための基準に基づき、各時系列画像に映った複数の関節を検出する特定側検出部と、各時系列画像に映った前記複数の関節の座標及び深度を計測する特定側計測部と、前記計測された各関節の座標及び深度の前記複数の時系列画像における変位に基づき、前記複数の関節の中から、一の対象に属する関節群を識別する識別部と、を備えた対象数特定装置であって、前記識別器は、対象の基本姿勢に関する基準を更に記憶しており、前記識別部は、前記基本姿勢に関する基準に基づき、各時系列画像に映った対象の数の推定を行い、前記推定された対象の数と、前記検出された複数の関節の種類ごとの個数と、に基づき、各時系列画像に映った対象の数の特定を行うことを特徴とする対象数特定装置を提供している。
このような構成によれば、時系列画像Yに映った対象Zの数を正確に特定することが可能となる。
また、前記識別器は、対象の複数の関節の可動域及び各関節間の距離に関する基準を更に記憶しており、前記識別部は、前記対象の数の特定に当たり、前記数が推定された対象を、メイン対象と、それ以外のサブ対象と、に分類し、前記複数の関節の可動域及び各関節間の距離に関する基準を考慮して、前記サブ対象を前記いずれかのメイン対象に連結し、前記識別部は、前記検出された関節の数が多い順に前記特定された数だけ、前記メイン対象に分類することが好ましい。
このような構成によれば、時系列画像Yに映った対象Zの数をより正確に特定することが可能となる。
また、前記識別器は、対象の複数の関節の可動域に関する基準を更に記憶しており、前記識別部は、前記対象の数の特定に当たり、前記推定された数の対象を、メイン対象と、それ以外のサブ対象と、に分類し、前記複数の関節の可動域に関する基準を考慮して、前記サブ対象を前記いずれかのメイン対象に連結し、前記識別部は、前記基本姿勢に関する基準に該当するものを前記メイン対象に分類することが好ましい。
このような構成によれば、時系列画像Yに映った対象Zの数をより正確に特定することが可能となる。
また、本発明の別の観点によれば、対象の複数の関節を識別するための基準が記憶されたコンピュータにインストールされるプログラムであって、一又は複数の対象が映った複数の時系列画像を取得するステップと、前記複数の関節を識別するための基準に基づき、各時系列画像に映った複数の関節を検出するステップと、各時系列画像に映った前記複数の関節の座標及び深度を計測するステップと、前記計測された各関節の座標及び深度の前記複数の時系列画像における変位に基づき、前記複数の関節の中から、一の対象に属する関節群を識別するステップと、前記関節群の全体としての座標及び深度の前記複数の時系列画像における変位に基づき、前記一の対象の行動を推定するステップと、を備えた対象数特定プログラムであって、前記コンピュータは、対象の基本姿勢に関する基準を更に記憶しており、前記識別するステップでは、前記基本姿勢に関する基準に基づき、各時系列画像に映った対象の数の推定を行い、前記推定された対象の数と、前記検出された複数の関節の種類ごとの個数と、に基づき、各時系列画像に映った対象の数の特定を行うことを特徴とする対象数特定プログラムを提供している。
また、前記コンピュータは、対象の複数の関節の可動域及び各関節間の距離に関する基準を更に記憶しており、前記識別するステップでは、前記対象の数の特定に当たり、前記数が推定された対象を、メイン対象と、それ以外のサブ対象と、に分類し、前記複数の関節の可動域及び各関節間の距離に関する基準を考慮して、前記サブ対象を前記いずれかのメイン対象に連結し、前記識別するステップでは、前記検出された関節の数が多い順に前記特定された数だけ、前記メイン対象に分類することが好ましい。
また、前記コンピュータは、対象の複数の関節の可動域に関する基準を更に記憶しており、前記識別するステップでは、前記対象の数の特定に当たり、前記推定された数の対象を、メイン対象と、それ以外のサブ対象と、に分類し、前記複数の関節の可動域に関する基準を考慮して、前記サブ対象を前記いずれかのメイン対象に連結し、前記識別するステップでは、前記基本姿勢に関する基準に該当するものを前記メイン対象に分類することが好ましい。
本発明の対象数特定装置によれば、複数の時系列画像に映った対象の数を高精度に特定することが可能となる。
本発明の実施の形態による対象数特定装置の使用状態の説明図 本発明の実施の形態による学習装置及び対象数特定装置のブロック図 本発明の実施の形態による関節群の説明図 本発明の実施の形態による対象数特定の説明図 本発明の実施の形態による対象数特定装置による行動推定のフローチャート 本発明の実施の形態による対象数特定のフローチャート 本発明の実施の形態による行動学習のフローチャート
以下、本発明の実施の形態による対象数特定装置1について、図1−図7を参照して説明する。
対象数特定装置1は、図1に示すように、撮影手段Xによって撮影された複数の時系列画像Y(動画を構成する各フレーム等)に映った一又は複数の対象Zの数を特定するためのものである(本実施の形態では、理解容易のため、対象Zを骨格だけで簡易的に表示している)。本実施の形態では、対象Zの数を特定した後に、更に、行動の推定を行うが、行動の推定に当たっては、学習装置2(図2参照)によって学習された情報を参照する。
まず、学習装置2の構成について説明する。
学習装置2は、図2に示すように、学習側識別器21と、学習側取得部22と、学習側検出部23と、正解行動取得部24と、学習側計側部25と、第1の学習部26と、第2の学習部27と、を備えている。
学習側識別器21は、対象Zの複数の関節A(本実施の形態では、首、右肘、左肘、腰、右膝、左膝)を識別するためのものであり、関節Aごとに、それぞれを識別するための形状、方向、サイズ等の基準が記憶されている。また、学習側識別器21には、対象Zの様々なバリエーション(“歩行”、“直立”等)の “基本姿勢 “、”各関節Aの可動域“、一の対象Zにおける”各関節A間の距離“に関する基準も記憶されている。
学習側取得部22は、正解行動が既知の映像、すなわち、複数の時系列画像Yを取得する。この複数の時系列画像Yは、対象数特定装置1のユーザにより入力される。
学習側検出部23は、各時系列画像Yに映った複数の関節Aを検出する。具体的には、CNN(Convolution Neural Network)を用いてモデリングされた推論モデルにより、学習側識別器21が示す基準に該当する部位を検出する。検出された各関節A(図1では、A1−A17)は、表示部(図示せず)上に、選択可能に表示される。
正解行動取得部24は、複数の時系列画像Yに映った対象Zの対応する正解行動を、学習側検出部23により検出された各関節Aについて取得する。この正解行動は、対象数特定装置1のユーザにより入力される。具体的には、ユーザは、学習側取得部22において対象Zが転倒した際の複数の時系列画像Yを入力した場合には、正解行動取得部24には、表示部上で各関節Aを選択し、正解行動“転倒”を入力することとなる。
また、本実施の形態では、時系列画像Yに複数の対象Zが映っている場合には、各対象Zに対して正解行動を入力する。この場合、同一の対象Zに含まれる関節Aを特定した上で、各関節Aに対して正解行動を入力する。例えば、図1の対象Z1に関しては、関節A1−A6を特定した上で、それぞれに対し、正解行動“歩行”を入力する。また、図1の対象Z2に関しては、関節A7−A11を特定した上で、正解行動“転倒”を入力する。また、図1の対象Z3に関しては、関節A12−A17を特定した上で、正解行動“しゃがむ”を入力する。更に、対象Z3に関しては、しゃがんでいるだけでなく、バランスも崩しているので、”各関節A12−A17に対し、正解行動“バランスを崩す”を更に入力する。
学習側計側部25は、学習側検出部23により検出された複数の関節Aの座標及び深度を計測する。この計測は、各時系列画像Yに対して行われる。
例えば、時刻t1の時系列画像Yにおける関節A1の座標及び深度は、(XA1(t1)、YA1(t1)、ZA1(t1))のように表すことができる。なお、深度に関しては、必ずしも座標で表す必要はなく、複数の時系列画像Yにおける相対的な深度で表してもよい。なお、深度は、既知の方法により測定してもよいが、正解行動取得部24において各関節Aの深度を入力しておき、その入力された深度をそのまま用いてもよい。本発明の“学習側計側部による深度の計測”には、このように、入力された深度を用いる場合も含まれる。この場合には、後述する第1の学習部26は、例えば、「この関節のサイズ、角度等であれば、○○mの距離である」と学習していくことになる。
第1の学習部26は、各対象Zに属する複数の関節Aの全体としての座標及び深度の複数の時系列画像Yにおける変位を学習する。具体的には、正解行動取得部24において特定された各対象Zに属する複数の関節Aを関節群B(図3参照)と識別した上で、当該関節群B全体としての座標及び深度の複数の時系列画像Yにおける変位を学習する。
関節群Bの全体としての座標及び深度の変位としては、検出された全ての関節Aの座標の中心点の座標及び深度の変位や、体の動きと密接に関連した重心の座標及び深度の変位を用いることが考えられる。また、これらの両方を用いたり、これらに加えて各関節Aの座標及び深度の変位も考慮して、より精度を高めてもよい。なお、重心の座標及び深度は、各関節Aの座標及び深度と、各関節A(筋肉、脂肪等を含む)の重量と、を考慮して算出することが考えられる。この場合、各関節Aの重量は、学習側識別器21等に記憶させておけばよい。
第2の学習部27は、第1の学習部26で学習された関節群Bの全体としての座標及び深度の複数の時系列画像Yにおける変位を、正解行動取得部24で入力された正解行動と対応付けて学習する。例えば、正解行動“前方への転倒”の場合、関節群Bの全体としての座標の変位は、“第1の距離だけ下方へ進む”、関節群Bの全体としての深度の変位は、“第2の距離だけ前方へ進む”というように学習することになる。
続いて、対象数特定装置1の構成について説明する。
対象数特定装置1は、図2に示すように、特定側識別器11と、特定側取得部12と、特定側検出部13と、特定側計側部14と、識別部15と、推定部16と、を備えている。
特定側識別器11は、対象Zの複数の関節A(肘、肩、腰、膝等)を識別するためのものであり、関節Aごとに、それぞれを識別するための形状、方向、サイズ等の基準が記憶されている。また、学習側識別器21には、対象Zの様々なバリエーション(“歩行”、“直立”等)の“基本姿勢 “、”各関節Aの可動域“、一の対象Zにおける”各関節A間の距離“に関する基準も設けられている。本実施の形態では、学習側識別器21と同一のものを用いるものとする。
特定側取得部12は、撮影手段Xに接続されており、撮影手段Xにより撮影された映像、すなわち、複数の時系列画像Yを取得する。本実施の形態では、複数の時系列画像Yをリアルタイムで取得するものとするが、対象数特定装置1の使用目的によっては、後から取得するようにしてもよい。
特定側検出部13は、各時系列画像Yに映った複数の関節Aを検出する。具体的には、CNN(Convolution Neural Network)を用いてモデリングされた推論モデルにより、特定側識別器11に記憶された関節Aを識別するための基準に該当する部位を検出する。特定側検出部13が関節Aを検出した場合には、時系列画像Yに一又は複数の対象Zが映っていると考えることができる。
特定側計側部14は、特定側検出部13により検出された複数の関節Aの座標及び深度を計測する。この計測は、各時系列画像Yに対して行われる。
例えば、時刻t1の時系列画像Yにおける関節A1の座標及び深度は、(XA1(t1)、YA1(t1)、ZA1(t1))のように表すことができる。なお、深度に関しては、必ずしも座標で表す必要はなく、複数の時系列画像Yにおける相対的な深度で表してもよい。なお、深度は、既知の方法により測定してもよいが、第1の学習部26によって深度の学習が行われている場合には、第1の学習部26を参照して深度を特定してもよい。本発明の“特定側計側部による深度の計測”には、このように、第1の学習部26で学習された深度を用いる場合も含まれる。
識別部15は、第1の学習部26を参照して、特定側計側部14により計測された各関節Aの座標及び深度の複数の時系列画像Yにおける変位に基づき、複数の関節Aの中から、各対象Zに属する関節群Bを識別する。図1及び図3では、関節A1−A6が対象Z1に属する関節群B1であり、関節A7−A11が対象Z2に属する関節群B2であり、関節A12−A17が対象Z3に属する関節群B3であると識別することになる。
ここで、本実施の形態では、各対象Zに属する複数の関節群A(関節群B)の識別に当たり、まず、対象Zの数の特定を行う。対象Zの数の特定に当たっては、特定側識別器11に記憶された“基本姿勢”に関する基準に基づき、(1)対象Zの数の推定を行い、続いて、複数の関節Aの種類ごとの個数に基づき、(2)対象Zの数の特定を行う。
(1)対象Zの数の推定
対象Zの数の推定では、特定側識別器11に記憶された“基本姿勢”に関する基準に該当する複数の関節Aを推定する。図1の例では、特定側検出部13により、関節A1−A17が検出されることになるが、このうち、関節A1−A6、及び、関節A7−11に関しては、“基本姿勢”に含まれる関節Aであると判断され、2つの対象Zが存在すると推定される。また、関節A12−14に関しては、“基本姿勢”の一部であると判断され、1つの対象Zが存在すると推定される。
一方、イレギュラーな位置にある関節A15−17に関しては、“基本姿勢”の一部であるとは判断されず、それぞれが個別の対象Zと推定されることになる。
従って、この場合、図4に示すように、“関節A1−A6”、“関節A7−11”、“A12−A14”、“関節A15”、“関節A16”、“関節A17”の合計6つの対象Z1’−Z6’が存在するものと推定されることになる。
(2)対象Zの数の特定
続いて、推定された対象Zの数と、複数の関節Aの種類ごとの個数と、に基づき、対象Zの数の特定を行う。
例えば、図4では、対象Z1’には、6つの関節A(“頭”、“右肘”、“左肘”、“腰”、“右膝”、“左膝”)が、対象Z2’には、5つの関節A(“頭”、“右肘”、“左肘”、“腰”、“左膝”)が、対象Z3’には、3つの関節A(“頭”、“右肘”、“左肘”)が、対象Z4’には、1つの関節A(“腰”)が、対象Z5’には、1つの関節A(“右膝”)が、対象Z6’には、1つの関節A(“左膝”)が含まれている。
この場合、それぞれ3つずつ存在する“頭”、“右肘”、“左肘”、“腰”、“左膝”の関節Aが最も多く存在する種類の関節Aとなるので、最終的には、全部で3つの対象Zが存在すると特定されることになる。
(3)各対象Zに属する複数の関節群A(関節群B)の識別
各対象Zに属する複数の関節群A(関節群B)の識別では、(A)対象Z’の“メイン対象”と“サブ対象”への分類、(B)“サブ対象”の“メイン対象”への連結、を行う。
(A)対象Z’の“メイン対象”と“サブ対象”への分類
ここでは、まず、対象Z1’−Z6’を、“メイン対象”と“サブ対象”に分類する。
図4に示す例では、「(2)対象Zの数の特定」において、全部で3つの対象Zが存在すると特定されているので、検出された関節Aの数が多い順に3つの対象Z1’、Z2’、Z3’を“メイン対象”、その他の対象Z4’、Z5’、Z6’を“サブ対象”に分類する。
(B)“サブ対象”の“メイン対象”への連結
続いて、特定側識別器11に記憶された“各関節Aの可動域”及び”各関節A間の距離“に関する基準を考慮して、“サブ対象”Z4’、Z5’、Z6’を、いずれかの“メイン対象”Z1’、Z2’、Z3’に連結可能がどうかを判断する。
図4では、“サブ対象”Z4’(“腰”)、Z5(“右膝”)’、Z6’(“左膝”)は、“メイン対象”Z3’と連結した場合に、“各関節Aの可動域”及び“各関節A間の距離”に不自然なところがないため、“メイン対象”Z3’に連結可能と判断され、これらを連結し、各対象Z1−Z3に属する複数の関節A(関節群B)を決定することになる。
なお、図1に示すように、対象Z2に関しては、対象Z3に隠れて、“右膝”のデータが欠損していることになるが、識別部15は、特定側識別器11に記憶された“基本姿勢”、“各関節Aの可動域”、“各関節A間の距離”に関する基準を考慮して、その他の関節A7−A11の位置から推定される位置に“右膝”が存在するものとして座標を与え、前後の時系列画像Yで“左膝”を検出した場合に連続動作として扱うことになる。
図2に戻り、推定部16は、第2の学習部27を参照して、識別部15で識別された関節群Bの全体としての座標及び深度の複数の時系列画像Yにおける変位に基づき、対象Zの行動を推定する。具体的には、第2の学習部27を参照して、様々な行動の選択肢(「転倒」、「歩行」、「走行」、「投球」等)の中から、確率の高い一又は複数の行動が選択されることになる。すなわち、対象数特定装置1では、各対象Zの関節群B全体としての座標及び深度を、LSTM(Long Short Term Memory)を用いた時系列の推論モデルにインプットし、「walking」「standing」といった行動識別ラベルをアウトプットすることになる。
ここで、対象Zの行動というものは、各関節Aの時系列な変位によってある程度は推定できるが、各関節Aの時系列な変位を個別に追うだけでは、高精度に行動を推定することは難しい。そこで、本実施の形態では、一の対象Zに属する関節群Bの全体としての座標及び深度の複数の時系列画像Yにおける変位に基づき、対象Zの行動を推定することで、高精度な行動推定を実現している。
続いて、図5及び図6のフローチャートを用いて、対象数特定装置1による“各対象Zに属する関節群Bの識別”及び“各対象Zの行動の推定”について説明する。
まず、特定側取得部12が複数の時系列画像Yを取得すると(S1)、特定側検出部13により、各時系列画像Yに映った複数の関節Aが検出される(S2)。
続いて、特定側計側部14により、S2で検出された複数の関節Aの座標及び深度が計測される(S3)。この計測は、各時系列画像Yに対して行われる。
続いて、識別部15により、S3で計測された各関節Aの座標及び深度の複数の時系列画像Yにおける変位に基づき、複数の関節Aの中から、各対象Zに属する関節群Bが識別される(S4)。
この“各対象Zに属する関節群Bの識別”に関しては、図6のフローチャートに示すように、まず、学習側識別器21に記憶された“基本姿勢”に関する基準に基づき、対象Zの数の推定を行う(S41)。
図4に示す例では、“関節A1−A6”、“関節A7−11”、“A12−A14”、“関節A15”、“関節A16”、“関節A17”の合計6つの対象Z1’−Z6’が存在すると推定されることになる。
続いて、複数の関節Aの種類ごとの個数に基づき、対象Zの数の特定を行う(S42)。
図4に示す例では、それぞれ3つずつ存在する“頭”、“右肘”、“左肘”、“腰”、“左膝”の関節Aが最も多く存在する種類の関節Aとなるので、全部で3つの対象Zが存在すると特定されることになる。
続いて、対象Z1’−Z6’を、“メイン対象”と“サブ対象”に分類する(S43)。
図4に示す例では、含まれる関節Aの数が多い上位3つの対象Z1’、Z2’、Z3’を“メイン対象”、その他の対象Z4’、Z5’、Z6’を“サブ対象”に分類する。
続いて、特定側識別器11に記憶された“各関節Aの可動域”に関する基準を考慮して、“サブ対象”Z4’、Z5’、Z6’を、いずれかの“メイン対象”Z1’、Z2’、Z3’に連結可能がどうかを判断する(S44)。
連結可能と判断された場合には(S44:YES)、これらを連結し(S45)、各対象Zに属する複数の関節A(関節群B)を決定することになる(S46)。
図4に示す例では、サブ対象Z4’(“腰”)、Z5(“右膝”)’、Z6’(“左膝”)は、全て、メイン対象Z3’に連結可能と判断され、連結されることになる。
そして、図5に戻り、最後に、推定部16により、S4で識別された関節群Bの全体としての座標及び深度の複数の時系列画像Yにおける変位に基づき、対象Zの行動を推定する(S5)。
このような構成を有する対象数特定装置1は、例えば、介護施設において、被介護者がいる室内を常時撮影し、撮影された映像に基づき被介護者(対象Z)が転倒したこと等を推定した場合に、その旨を介護者へ報知する等の用途で用いることができる。
なお、上記した対象数特定装置1による“各対象Zの行動の推定”には、学習装置2による“各対象Zの行動の学習”が前提となるので、図7のフローチャートを用いて、学習装置2による“各対象Zの行動の学習”について説明する。
まず、学習側取得部22が複数の時系列画像Yを取得すると(S21)、学習側検出部23により、各時系列画像Yに映った複数の関節Aが検出される(S22)。
続いて、正解行動取得部24により、学習側検出部23により検出された各関節Aに対して正解行動が取得されると(S23)、学習側計側部25により、S22で検出された複数の関節Aの座標及び深度が計測される(S24)。この計測は、各時系列画像Yに対して行われる。
続いて、第1の学習部26により、各対象Zに属する複数の関節Aの全体としての座標及び深度の複数の時系列画像Yにおける変位が学習される(S25)。
そして、最後に、第2の学習部27により、第1の学習部26で学習された関節群Bの全体としての座標及び深度の複数の時系列画像Yにおける変位を、正解行動取得部24で入力された正解行動と対応付けて学習する(S26)。
以上説明したように、本実施の形態による対象数特定装置1では、“基本姿勢”に関する基準に基づき、各時系列画像Yに映った対象Zの数の推定を行い、推定された対象Zの数と、検出された複数の関節Aの種類ごとの個数と、に基づき、時系列画像Yに映った対象Zの数の特定を行う。
このような構成によれば、時系列画像Yに映った対象Zの数を正確に特定することが可能となる。
また、本実施の形態による対象数特定装置1では、対象Zの数の特定に当たり、数が推定された対象Z’を、“メイン対象”と、それ以外の“サブ対象”と、に分類し、“複数の関節Aの可動域” 及び”各関節A間の距離“に関する基準を考慮して、サブ対象を前記いずれかのメイン対象に連結し、その際、検出された関節Aの数が多い順に、特定された数だけ、“メイン対象”に分類する。
このような構成によれば、時系列画像Yに映った対象Zの数をより正確に特定することが可能となる。
尚、本発明の対象数特定装置は、上述した実施の形態に限定されず、特許請求の範囲に記載した範囲で種々の変形や改良が可能である。
例えば、上記実施の形態では、対象数の特定の後に行動推定を行ったが、行動推定以外の目的のために対象数を特定してもよく、また、対象数を特定すること自体が目的であってもよい。
また、上記実施の形態では、対象Zの数の特定において、検出された関節Aの数が多い順に、特定された数(3つ)だけ、“メイン対象”に分類したが、“基本姿勢”又は“基本姿勢”の一部であると判断された関節Aを含む対象Z’を“メイン対象”に分類する方法も考えられる。
また、上記実施の形態では、対象Zとして人間を例に説明したが、動物やロボットの行動を推定するために使用することも可能である。また、上記実施の形態では、複数の関節Aとして、首、右肘、左肘、腰、右膝、左膝を例に説明を行ったが、その他の関節や、より多くの関節Aを用いてもよいことは言うまでもない。
また、本発明は、対象数特定装置1が行う処理に相当するプログラムや、当該プログラムを記憶した記録媒体にも応用可能である。記録媒体の場合、コンピュータ等に当該プログラムがインストールされることとなる。ここで、当該プログラムを記憶した記録媒体は、非一過性の記録媒体であっても良い。非一過性の記録媒体としては、CD−ROM等が考えられるが、それに限定されるものではない。
1 対象数特定装置
2 学習装置
11 特定側識別器
12 特定側取得部
13 特定側検出部
14 特定側計側部
15 識別部
16 推定部
21 学習側識別器
22 学習側取得部
23 学習側検出部
24 正解行動取得部
25 学習側計側部
26 第1の学習部
27 第2の学習部
A 関節
B 関節群
X 撮影手段
Y 時系列画像
Z 対象

Claims (6)

  1. 一又は複数の対象が映った複数の時系列画像を取得する推定側取得部と、
    対象の複数の関節を識別するための基準を記憶した識別器と、
    前記複数の関節を識別するための基準に基づき、各時系列画像に映った複数の関節を検出する推定側検出部と、
    各時系列画像に映った前記複数の関節の座標及び深度を計測する推定側計測部と、
    前記計測された各関節の座標及び深度の前記複数の時系列画像における変位に基づき、前記複数の関節の中から、一の対象に属する関節群を識別する識別部と、
    を備えた対象数特定装置であって、
    前記識別器は、対象の基本姿勢に関する基準を更に記憶しており、
    前記識別部は、前記基本姿勢に関する基準に基づき、各時系列画像に映った対象の数の推定を行い、前記推定された対象の数と、前記検出された複数の関節の種類ごとの個数と、に基づき、各時系列画像に映った対象の数の特定を行うことを特徴とする対象数特定装置。
  2. 前記識別器は、対象の複数の関節の可動域及び各関節間の距離に関する基準を更に記憶しており、
    前記識別部は、前記対象の数の特定に当たり、前記数が推定された対象を、メイン対象と、それ以外のサブ対象と、に分類し、前記複数の関節の可動域及び各関節間の距離に関する基準を考慮して、前記サブ対象を前記分類されたメイン対象のうちのいずれかに連結し、前記分類に当たっては、前記数が推定された対象のうち前記特定された数だけ、前記検出された関節の数が多い順に、前記メイン対象に分類することを特徴とする請求項1に記載の対象数特定装置。
  3. 前記識別器は、対象の複数の関節の可動域に関する基準を更に記憶しており、
    前記識別部は、前記対象の数の特定に当たり、前記推定された数の対象を、メイン対象と、それ以外のサブ対象と、に分類し、前記複数の関節の可動域に関する基準を考慮して、前記サブ対象を前記分類されたメイン対象のうちのいずれかに連結し、前記分類に当たっては、前記基本姿勢に関する基準に該当するものを前記メイン対象に分類することを特徴とする請求項1に記載の対象数特定装置。
  4. 対象の複数の関節を識別するための基準が記憶されたコンピュータにインストールされるプログラムであって、
    一又は複数の対象が映った複数の時系列画像を取得するステップと、
    前記複数の関節を識別するための基準に基づき、各時系列画像に映った複数の関節を検出するステップと、
    各時系列画像に映った前記複数の関節の座標及び深度を計測するステップと、
    前記計測された各関節の座標及び深度の前記複数の時系列画像における変位に基づき、前記複数の関節の中から、一の対象に属する関節群を識別するステップと、
    前記関節群の全体としての座標及び深度の前記複数の時系列画像における変位に基づき、前記一の対象の行動を推定するステップと、
    を備えた対象数特定プログラムであって、
    前記コンピュータは、対象の基本姿勢に関する基準を更に記憶しており、
    前記識別するステップでは、前記基本姿勢に関する基準に基づき、各時系列画像に映った対象の数の推定を行い、前記推定された対象の数と、前記検出された複数の関節の種類ごとの個数と、に基づき、各時系列画像に映った対象の数の特定を行うことを特徴とする対象数特定プログラム。
  5. 前記コンピュータは、対象の複数の関節の可動域及び各関節間の距離に関する基準を更に記憶しており、
    前記識別するステップでは、前記対象の数の特定に当たり、前記数が推定された対象を、メイン対象と、それ以外のサブ対象と、に分類し、前記複数の関節の可動域及び各関節間の距離に関する基準を考慮して、前記サブ対象を前記分類されたメイン対象のうちのいずれかに連結し、前記分類に当たっては、前記数が推定された対象のうち前記特定された数だけ、前記検出された関節の数が多い順に、前記メイン対象に分類することを特徴とする請求項4に記載の対象数特定プログラム。
  6. 前記コンピュータは、対象の複数の関節の可動域に関する基準を更に記憶しており、
    前記識別するステップでは、前記対象の数の特定に当たり、前記推定された数の対象を、メイン対象と、それ以外のサブ対象と、に分類し、前記複数の関節の可動域に関する基準を考慮して、前記サブ対象を前記分類されたメイン対象のうちのいずれかに連結し、前記分類に当たっては、前記基本姿勢に関する基準に該当するものを前記メイン対象に分類することを特徴とする請求項4に記載の対象数特定プログラム。
JP2018076046A 2018-04-11 2018-04-11 対象数特定装置 Active JP6525180B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018076046A JP6525180B1 (ja) 2018-04-11 2018-04-11 対象数特定装置
PCT/JP2019/015402 WO2019198696A1 (ja) 2018-04-11 2019-04-09 行動推定装置
US17/045,536 US11482046B2 (en) 2018-04-11 2019-04-09 Action-estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076046A JP6525180B1 (ja) 2018-04-11 2018-04-11 対象数特定装置

Publications (2)

Publication Number Publication Date
JP6525180B1 true JP6525180B1 (ja) 2019-06-05
JP2019185421A JP2019185421A (ja) 2019-10-24

Family

ID=66730611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076046A Active JP6525180B1 (ja) 2018-04-11 2018-04-11 対象数特定装置

Country Status (1)

Country Link
JP (1) JP6525180B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021033597A1 (ja) * 2019-08-20 2021-02-25

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481843B2 (ja) 2019-12-24 2024-05-13 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021033597A1 (ja) * 2019-08-20 2021-02-25
JP7388440B2 (ja) 2019-08-20 2023-11-29 コニカミノルタ株式会社 画像処理システム、画像処理プログラム、および画像処理方法

Also Published As

Publication number Publication date
JP2019185421A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
US11182924B1 (en) System for estimating a three dimensional pose of one or more persons in a scene
Yan et al. Development of ergonomic posture recognition technique based on 2D ordinary camera for construction hazard prevention through view-invariant features in 2D skeleton motion
US11348279B1 (en) System for estimating a three dimensional pose of one or more persons in a scene
US11521373B1 (en) System for estimating a three dimensional pose of one or more persons in a scene
JP7057959B2 (ja) 動作解析装置
US7457439B1 (en) System and method for motion capture
US11688139B1 (en) System for estimating a three dimensional pose of one or more persons in a scene
CN104274183A (zh) 动作信息处理装置
US20220083769A1 (en) Work estimation apparatus, method and non-transitory computer-readable storage medium
WO2016084285A1 (ja) 歩行解析システムおよび歩行解析プログラム
US11482046B2 (en) Action-estimating device
KR102297110B1 (ko) 보행 분석 시스템 및 방법
Nayak et al. Development of a fully automated RULA assessment system based on computer vision
JP7107264B2 (ja) 人等の身体動作推定システム
JP6525180B1 (ja) 対象数特定装置
KR20190097361A (ko) 자세 교정을 위한 자세 평가 시스템 및 그 방법
JP7480001B2 (ja) 学習装置、処理装置、学習方法、姿勢検出モデル、プログラム、及び記憶媒体
KR20180110443A (ko) 열량 정보 제공 장치 및 방법
Alazrai et al. Fall detection for elderly using anatomical-plane-based representation
KR101636171B1 (ko) 스켈레톤 트래킹 방법 및 이를 이용한 스켈레톤 트래킹 시스템
JP6525179B1 (ja) 行動推定装置
JP6525181B1 (ja) 行動推定装置
CN113221815A (zh) 一种基于骨骼关键点自动检测技术的步态鉴定方法
CN112438722A (zh) 肌肉衰减症评估方法、评估装置以及存储介质
JP7482471B2 (ja) 学習モデルの生成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R150 Certificate of patent or registration of utility model

Ref document number: 6525180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250