JP6524641B2 - Liquefied gas injection unit - Google Patents

Liquefied gas injection unit Download PDF

Info

Publication number
JP6524641B2
JP6524641B2 JP2014222851A JP2014222851A JP6524641B2 JP 6524641 B2 JP6524641 B2 JP 6524641B2 JP 2014222851 A JP2014222851 A JP 2014222851A JP 2014222851 A JP2014222851 A JP 2014222851A JP 6524641 B2 JP6524641 B2 JP 6524641B2
Authority
JP
Japan
Prior art keywords
injection
liquefied gas
angle
nozzle
spread angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014222851A
Other languages
Japanese (ja)
Other versions
JP2016089896A (en
Inventor
森田 佳之
佳之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2014222851A priority Critical patent/JP6524641B2/en
Priority to PCT/JP2015/075544 priority patent/WO2016067763A1/en
Publication of JP2016089896A publication Critical patent/JP2016089896A/en
Application granted granted Critical
Publication of JP6524641B2 publication Critical patent/JP6524641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Nozzles (AREA)

Description

本発明は、陽圧缶詰等の製造において液体窒素等の液化ガスを容器内に噴射充填する液化ガス噴射装置に使用される、噴射ノズルと噴射ノズルへの液化ガスの供給を制御するバルブ機構とを有する液化ガス噴射ユニットに関する。   The present invention is a valve mechanism for controlling supply of liquefied gas to a spray nozzle and a spray nozzle, which is used for a liquefied gas spray apparatus for spraying and filling liquefied gas such as liquid nitrogen into a container in the production of positive pressure cans and the like The present invention relates to a liquefied gas injection unit having

従来、液体窒素等の液化ガスを缶等の容器内にノズルから流下させて充填することによって、ガス置換を行うとともに内圧を発生させて、陽圧缶詰等のガス置換陽圧包装体を得ることは広く行われている。
しかしながら、液化ガスを直接流下させて充填すると、容器内に流下する液化ガスが内容液面との衝突時に一部が缶外へ飛散してしまうこと等があり、密封時に容器内に残留するガス量のバラツキが大きく、内圧精度が低いという問題点がある。
特に、液化ガスを少量充填する場合は、目標充填量に対するバラツキが一段と大きくなるので、従来の流下充填では少量の液化ガスを充填して低陽圧ガス置換包装体を安定して得ることができなかった。
そこで、本出願人は従来の液化ガス流下充填の欠点を解消して充填精度を高めるため、液化ガスをミスト状に噴射して容器に充填する液化ガス噴射ユニットを提案した(例えば、特許文献1等参照)。
さらに、高速ラインであっても噴射された液化ガスの微細粒を精度良く容器内に充填することができるように、液化ガスの噴射流が容器の進行方向の速度成分を有するように、噴射ノズルを傾斜させて、液化ガスを容器の進行に対して鉛直下方向から所定の角度傾斜して噴射する液化ガス噴射ユニットを提案した(例えば、特許文献2等参照)。
Conventionally, a liquefied gas such as liquid nitrogen is made to flow down from a nozzle into a container such as a can and filled, thereby performing gas substitution and generating an internal pressure to obtain a gas-substituted positive pressure package such as a positive pressure can. Is widely practiced.
However, if liquefied gas is allowed to directly flow and be filled, some of the liquefied gas flowing down into the container may be scattered out of the can at the time of collision with the liquid level, and the gas remaining in the container at the time of sealing. There is a problem that the variation of the amount is large and the internal pressure accuracy is low.
In particular, when a small amount of liquefied gas is filled, the variation with respect to the target filling amount is further increased, so that a low positive pressure gas replacement package can be stably obtained by filling a small amount of liquefied gas in the conventional downflow filling. It was not.
Therefore, the present applicant has proposed a liquefied gas injection unit for injecting liquefied gas in the form of a mist and filling the container in order to eliminate the drawbacks of the conventional liquefied gas flow downward filling and enhance the filling accuracy (for example, Patent Document 1) Etc.).
Furthermore, the injection nozzle has a velocity component in the traveling direction of the container so that the jet flow of the liquefied gas can accurately fill the container with the fine particles of the liquefied gas injected even in a high-speed line. A liquefied gas injection unit has been proposed in which the liquefied gas is injected at a predetermined angle from the vertically downward direction with respect to the progress of the container (see, for example, Patent Document 2).

特開平11−43110号公報Japanese Patent Application Laid-Open No. 11-43110 特開2000−128122号公報Japanese Patent Laid-Open No. 2000-128122

しかしながら、図5に示すように、噴射ノズル510を傾斜させた公知の液化ガス噴射ユニット500では、噴射ノズル510を傾斜して取り付けることで、噴射ノズル510への液化ガスの供給をオン・オフ制御する弁521、弁座522からなるバルブ機構520と噴射ノズル510との間には必ず液化ガスの供給流路Rが存在する。
容器の充填ラインが停止した際には、弁521を閉じて液化ガスの供給をオフとするが、図6に示すように、供給流路R内の液化ガスは噴射ノズル510から自然に流下し、供給流路R内の液化ガスの流下が終了するまでには所定の時間を要する。
However, as shown in FIG. 5, in the known liquefied gas injection unit 500 in which the injection nozzle 510 is inclined, the supply of the liquefied gas to the injection nozzle 510 is controlled by turning the injection nozzle 510 on and off. Between the valve mechanism 520 including the valve 521 and the valve seat 522 and the injection nozzle 510, there always exists a supply path R for liquefied gas.
When the filling line of the container stops, the valve 521 is closed to turn off the supply of liquefied gas, but as shown in FIG. 6, the liquefied gas in the supply flow path R naturally flows down from the injection nozzle 510. A predetermined time is required to complete the flow of the liquefied gas in the supply flow passage R.

このとき、供給流路R内の液化ガスの流下が終了する前に弁521を開いて液化ガスの供給をオンとすると、残存する液化ガスによって、液化ガスが微細粒化されない、或いは噴射パターンが広がらない等、正常な噴射を行うことができず、充填不良を起こすことがある。
また、供給流路R内の液化ガスの流下が終了した後に、弁521を開いて液化ガスの供給をオンとすると、液化ガスが噴射ノズル510に達して噴射されるまでにタイムラグが生じる。
このため、容器の充填ラインの再起動は、この供給流路R内に残留する液化ガスによる影響がなくなるのを待つとともに、タイムラグを考慮して行う必要があり、充填ラインの稼働効率が低下するという問題があった。
また、噴射ノズル510を傾斜させた公知の液化ガス噴射ユニット500では、噴射ノズル510は鉛直下方向から容器搬送方向に傾けた所定の噴射角で固定されるため角度を変更することができず、また、噴射ノズル510から噴射された液化ガスの微細粒の空間分布状態であり、噴射の広がりを示す広がり角も噴射ノズルの交換によって変更する必要があるため、容器の形状や、充填ラインの速度が変更された際に、最適に対応することが困難であるという問題があった。
At this time, if the valve 521 is opened to turn on the supply of the liquefied gas before the flow of the liquefied gas in the supply flow path R is completed, the liquefied gas is not finely granulated by the remaining liquefied gas, or the injection pattern is changed. For example, normal injection can not be performed due to non-spreading, which may cause a filling failure.
In addition, after the flow of the liquefied gas in the supply flow path R is completed, when the valve 521 is opened to turn on the supply of the liquefied gas, a time lag occurs until the liquefied gas reaches the injection nozzle 510 and is injected.
For this reason, it is necessary to restart the filling line of the container while waiting for the influence of the liquefied gas remaining in the supply flow path R to be eliminated, and it is necessary to consider the time lag, and the operation efficiency of the filling line is lowered. There was a problem that.
Further, in the known liquefied gas injection unit 500 in which the injection nozzle 510 is inclined, the injection nozzle 510 is fixed at a predetermined injection angle inclined in the container conveyance direction from the vertically downward direction, so the angle can not be changed. In addition, it is a spatial distribution state of fine particles of liquefied gas injected from the injection nozzle 510, and the spread angle indicating the spread of the injection also needs to be changed by the replacement of the injection nozzle. When it was changed, there was a problem that it was difficult to respond appropriately.

本発明は、前述した問題点を解決するものであり、充填ラインの稼働効率を向上するとともに、容器の形状や、充填ラインの速度に応じて最適な噴射を容易に行うことができる液化ガス噴射ユニットを提供することを目的とするものである。   The present invention solves the above-mentioned problems, and improves the operation efficiency of the filling line, and can easily perform the optimum injection according to the shape of the container and the speed of the filling line. The purpose is to provide a unit.

本発明に係る液化ガス噴射ユニットは、噴射ノズルと、前記噴射ノズルへの液化ガスの供給を制御するバルブ機構とを有する液化ガス噴射ユニットであって、前記噴射ノズルの噴射方向に、噴射された液化ガスの方向及び広がり角を変更する反射部材が設けられ、前記反射部材は、少なくとも反射面と広がり角抑制面とを備えた噴射流路を有し、前記噴射流路は、前記噴射ノズル側から終端側まで、短径がほぼ同一で、長径が直線的に徐々に大きくなる扇型の孔形状に形成され、前記反射面は、前記噴射ノズルから鉛直下方向に噴射された液化ガスを鉛直下方向から所定の角度の噴射角に変更して噴射するように構成され、前記広がり角抑制面は、前記反射面の幅方向両側に設けられ、方向が変更されて前記噴射流路の終端から噴射される液化ガスの広がり角を規定するように構成されていることにより、前記課題を解決するものである。
また、本発明に係る反射部材は、噴射ノズルの噴射方向に設けられる反射部材であって、少なくとも反射面と広がり角抑制面とを備えた噴射流路を有し、前記噴射流路は、前記噴射ノズル側から終端側まで、短径がほぼ同一で、長径が直線的に徐々に大きくなる扇型の孔形状に形成され、前記反射面は、前記噴射ノズルから鉛直下方向に噴射された液化ガスを鉛直下方向から所定の角度の噴射角に変更して噴射するように構成され、前記広がり角抑制面は、前記反射面の幅方向両側に設けられ、方向が変更されて前記噴射流路の終端から噴射される液化ガスの広がり角を規定するように構成されていることにより、前記課題を解決するものである。
The liquefied gas injection unit according to the present invention is a liquefied gas injection unit having an injection nozzle and a valve mechanism for controlling the supply of liquefied gas to the injection nozzle, and the injection is performed in the injection direction of the injection nozzle. A reflective member for changing the direction and the spread angle of the liquefied gas is provided, and the reflective member has a jet flow path provided with at least a reflection surface and a spread angle suppression surface, and the jet flow path is on the jet nozzle side From the end to the end side, the minor diameter is substantially the same, and the major diameter is formed in the shape of a fan-shaped hole gradually increasing linearly, and the reflecting surface vertically liquefies the liquid injected from the injection nozzle vertically downward. The injection angle is changed from the lower side to an injection angle of a predetermined angle, and the spread angle suppression surface is provided on both sides in the width direction of the reflection surface, the direction is changed, and the end of the injection flow path Liquid to be jetted By being configured to define the spread angle of the gas, it is to solve the above problems.
Further, the reflecting member according to the present invention is a reflecting member provided in the jetting direction of the jetting nozzle, and has a jetting flow path provided with at least a reflection surface and a spread angle suppression surface, and the jetting flow path is the above From the injection nozzle side to the end side, it is formed in a fan-shaped hole shape in which the minor diameter is substantially the same and the major diameter gradually increases linearly, and the reflecting surface is a liquefaction jetted vertically downward from the ejection nozzle The gas is changed from the vertically downward direction to an injection angle of a predetermined angle and injected, and the spread angle suppression surface is provided on both sides in the width direction of the reflection surface, and the direction is changed so that the injection flow path The above-mentioned subject is solved by being constituted so that a spread angle of liquefied gas injected from the end of the above may be specified.

本請求項1に係る液化ガス噴射ユニットによれば、噴射ノズルの噴射方向に、噴射された液化ガスの方向及び広がり角を変更する反射部材が設けられていることにより、反射部材によって噴射の方向を規定できるため、噴射ノズルを鉛直下方向に噴射するように固定しバルブ機構と近接して配置することが可能となる。
このことで、噴射ノズルとバルブ機構との間の供給流路に残留する液化ガスの量を少なくでき、液化ガスの供給をオフとした後、供給流路内の液化ガスの流下が終了するまでの時間を短縮することが可能となる。
従って、残留する液化ガスによる影響がなくなるまでの時間が短縮され、噴射開始までのタイムラグも少なくなるため、容器の充填ラインが停止した際の再起動を素早く行うことができ、充填ラインの稼働効率を向上することができる。
さらに、反射部材によって任意に噴射の方向及び広がり角を変更することが可能となるため、噴射ノズルを交換することなく反射部材を変更するだけで、容器の形状や、充填ラインの速度に応じて最適な噴射を容易に行うことができる。
According to the liquefied gas injection unit pertaining to the first aspect of the present invention, the direction of injection by the reflection member is provided by providing the reflection member for changing the direction and the spread angle of the injected liquefied gas in the injection direction of the injection nozzle. Therefore, it is possible to fix the injection nozzle so as to inject in the vertically downward direction and to be disposed close to the valve mechanism.
As a result, the amount of liquefied gas remaining in the supply passage between the injection nozzle and the valve mechanism can be reduced, and after the supply of liquefied gas is turned off, the flow of liquefied gas in the supply passage is completed. It is possible to reduce the time of
Therefore, the time until the influence of the remaining liquefied gas disappears is shortened, and the time lag until the injection start is reduced, so that the restart when the filling line of the container is stopped can be performed quickly, and the operating efficiency of the filling line Can be improved.
Furthermore, since the direction and angle of spread of the jet can be arbitrarily changed by the reflecting member, it is possible to change the reflecting member without replacing the jet nozzle, depending on the shape of the container and the speed of the filling line. Optimal injection can be easily performed.

また、本請求項1に係る液化ガス噴射ユニット及び本請求項4に係る反射部材によれば、反射面は、噴射ノズルから鉛直下方向に噴射された液化ガスを鉛直下方向から所定の角度の噴射角に変更して噴射するように構成され、広がり角抑制面は、反射面の幅方向両側に設けられ、方向が変更されて噴射流路の終端から噴射される液化ガスの広がり角を規定するように構成されていることにより、反射部材の噴射流路の形状に応じて、噴射流路の終端から噴射される液化ガスの噴射角、広がり角を自由に設定することが可能となるため、噴射ノズルを交換することなく反射部材を変更するだけで、容器の形状や、充填ラインの速度に応じて最適な噴射を容易に行うことができる
本請求項2に記載の構成によれば、噴射流路の終端から噴射される液化ガスの噴射角が、鉛直下方向から0°以上60°以下であることにより、充填ラインの速度に応じた最適な範囲がカバー可能となる。
本請求項3に記載の構成によれば、噴射流路の終端から噴射される液化ガスの広がり角が、10°以上60°以下であることにより、容器の形状に応じた最適な範囲がカバー可能となる。
Further , according to the liquefied gas injection unit of the first aspect and the reflecting member of the fourth aspect, the reflecting surface has a predetermined angle from the vertically downward direction of the liquefied gas injected from the injection nozzle in the vertically downward direction. The spread angle suppression surface is provided on both sides in the width direction of the reflection surface, and the direction is changed to define the spread angle of liquefied gas injected from the end of the injection flow path. It is possible to freely set the injection angle and the spread angle of the liquefied gas injected from the end of the injection flow path according to the shape of the injection flow path of the reflection member by being configured to According to the shape of the container and the speed of the filling line, it is possible to easily perform the optimum injection simply by changing the reflecting member without replacing the injection nozzle.
According to the configuration of the second aspect , the injection angle of the liquefied gas injected from the end of the injection flow path is 0 ° or more and 60 ° or less from the vertically downward direction, according to the speed of the filling line The optimal range can be covered.
According to the configuration of the third aspect of the present invention, when the spread angle of the liquefied gas injected from the end of the injection flow channel is 10 ° or more and 60 ° or less, the optimum range corresponding to the shape of the container is covered. It becomes possible.

本発明の一実施形態に係る液化ガス噴射ユニットを備えた液化ガス噴射装置の概略断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic cross-section explanatory drawing of the liquefied gas injection apparatus provided with the liquefied gas injection unit which concerns on one Embodiment of this invention. 本発明の一実施形態に係る液化ガス噴射ユニットの斜視半断面図。The perspective half section view of the liquefied gas injection unit concerning one embodiment of the present invention. 本発明の一実施形態に係る液化ガス噴射ユニットの断面図。Sectional drawing of the liquefied gas injection unit which concerns on one Embodiment of this invention. 本発明の一実施形態に係る液化ガス噴射ユニットの広がり角の説明図。Explanatory drawing of the divergence angle of the liquefied gas injection unit concerning one embodiment of the present invention. 従来の液化ガス噴射ユニットの噴射時の断面図。Sectional drawing at the time of injection of the conventional liquefied gas injection unit. 従来の液化ガス噴射ユニットの噴射停止時の断面図。Sectional drawing at the time of injection stop of the conventional liquefied gas injection unit.

本発明の一実施形態に係る液化ガス噴射ユニット100は、図1に示す液化ガス噴射装置1の一部を構成する。
液化ガス噴射ユニット100は、図1乃至図3に示すように、液体窒素等の低温の液化ガスを貯留する液化ガス貯留槽101の底部に設けられたバルブ機構120及び噴射ノズル110と、噴射ノズル110の噴射方向のタンク底部103に設けられた反射部材130を有している。
液化ガス貯留槽101は、上部の液化ガスが供給される開口と、下部のバルブ機構120及び噴射ノズル110が設けられる開口を除いて真空断熱層102で覆われており、さらにその周囲を、タンク底部103から立設された断熱カバー104で覆われている。
A liquefied gas injection unit 100 according to an embodiment of the present invention constitutes a part of the liquefied gas injection device 1 shown in FIG.
The liquefied gas injection unit 100, as shown in FIGS. 1 to 3, includes a valve mechanism 120 and an injection nozzle 110 provided at the bottom of a liquefied gas storage tank 101 for storing low temperature liquefied gas such as liquid nitrogen, and an injection nozzle It has a reflecting member 130 provided on the tank bottom 103 in the direction 110 of ejection.
The liquefied gas storage tank 101 is covered with the vacuum heat insulating layer 102 except for the opening where the liquefied gas is supplied at the upper part, and the opening where the lower valve mechanism 120 and the injection nozzle 110 are provided. It is covered with a heat insulating cover 104 provided upright from the bottom portion 103.

バルブ機構120はニードルバルブで構成され、弁棒123の先端に形成された弁121と弁座122とからなり、弁棒123は、液化ガス貯留槽101の上方開口から上部に延びており、図示しないバルブ制御手段により駆動制御できるようになっている。
弁棒123を下方に移動させると、図2に示すように、先端の弁121が弁座122と接触して、噴射ノズル110への液化ガスの供給が止まる。
弁棒123を上方に移動させると、図3に示すように、先端の弁121が弁座122から離間して、噴射ノズル110に液化ガスが供給される。
The valve mechanism 120 is constituted by a needle valve, and consists of a valve 121 formed at the tip of a valve rod 123 and a valve seat 122. The valve rod 123 extends from the upper opening of the liquefied gas storage tank 101 to the upper part The drive control can be performed by means of the valve control means.
When the valve rod 123 is moved downward, as shown in FIG. 2, the valve 121 at the tip contacts the valve seat 122 and the supply of the liquefied gas to the injection nozzle 110 is stopped.
When the valve rod 123 is moved upward, as shown in FIG. 3, the valve 121 at the tip is separated from the valve seat 122, and the liquefied gas is supplied to the injection nozzle 110.

噴射ノズル110は、バルブ機構120の弁座122の直下に、液化ガスを鉛直下方に噴射するように設けられている。
このことで、図2及び図3に示すように、弁座122と噴射ノズル110の間の液化ガスの供給流路Rは非常に小さくなる。
噴射ノズル110は、液化ガスの噴射パターンが、容器等の進行方向(図示右方向)にはほとんど広がらず、幅方向(容器等の進行方向と直交する方向)に所定の広がり角を有して広がり、容器等の進行方向から見て扇形となるように、固定されている。
噴射ノズル110としては、特開2000−128122号公報や特開2001−48120号公報等に記載の公知のものを使用することができる。
The injection nozzle 110 is provided immediately below the valve seat 122 of the valve mechanism 120 so as to inject liquefied gas vertically downward.
By this, as shown in FIG. 2 and FIG. 3, the supply flow path R of the liquefied gas between the valve seat 122 and the injection nozzle 110 becomes very small.
In the injection nozzle 110, the injection pattern of the liquefied gas hardly spreads in the traveling direction (right direction in the drawing) of the container etc., and has a predetermined spread angle in the width direction (direction orthogonal to the traveling direction of the container etc.) It spreads and is fixed so that it may become fan-shaped seeing from the advancing direction of a container etc.
As the injection | spray nozzle 110, the well-known thing as described in Unexamined-Japanese-Patent No. 2000-128122, 2001-48120, etc. can be used.

反射部材130は、噴射ノズル110の噴射方向に着脱可能に取り付ける取付部134と、反射部材本体に貫設され、反射面132と広がり角抑制面133とを備えた噴射流路131とから構成される。
反射部材130は、噴射ノズル110の直下のタンク底部103に、噴射流路131が容器等の進行方向(図示右方向)に傾斜した状態で取り付けられている。
反射部材130の取付部134は、ネジ固定等の適宜の手段により、タンク底部103に対し着脱自在で、かつ、確実に固定可能に構成されている。
噴射流路131は、図2乃至図4に示すように、噴射ノズル110から鉛直下方向に噴射された液化ガスを反射して鉛直下方向から所定の角度の噴射角に変更する反射面132と、反射面132の幅方向両側に設けられ、方向が変更されて噴射流路131の終端から噴射される液化ガスの広がり角を規定する広がり角抑制面133とを有している。
広がり角抑制面133は、反射面132の幅方向の両側に滑らかに連続する曲面からなる。
さらに、噴射流路131は、反射面132に対向する面を有し、噴射ノズル110側から終端側まで貫通する扇型の孔形状に形成されている。
すなわち、噴射流路131の断面はトラック形状で、噴射ノズル110側から終端側まで、短径がほぼ同一で、長径が直線的に徐々に大きくなるように形成されている。
The reflecting member 130 is composed of an attaching portion 134 detachably attached in the jetting direction of the jetting nozzle 110, and a jetting flow path 131 provided in the reflecting member main body and provided with a reflecting surface 132 and a spread angle suppression surface 133. Ru.
The reflection member 130 is attached to the tank bottom portion 103 directly below the injection nozzle 110 in a state where the injection flow path 131 is inclined in the traveling direction of the container or the like (right direction in the drawing).
The mounting portion 134 of the reflection member 130 is configured to be detachably and reliably fixed to the tank bottom portion 103 by an appropriate means such as screw fixation.
As shown in FIG. 2 to FIG. 4, the injection flow path 131 reflects the liquefied gas injected from the injection nozzle 110 in the vertically downward direction, and reflects the liquefied gas from the vertically downward direction to an injection angle of a predetermined angle. And a spread angle suppression surface 133 which is provided on both sides in the width direction of the reflective surface 132 and which changes the direction to define the spread angle of the liquefied gas jetted from the end of the injection flow channel 131.
The spread angle suppression surface 133 is formed of a curved surface smoothly continuous on both sides in the width direction of the reflection surface 132.
Furthermore, the injection flow path 131 has a surface facing the reflective surface 132, and is formed in a fan-shaped hole shape penetrating from the injection nozzle 110 side to the terminal end side.
That is, the cross section of the injection flow path 131 has a track shape, and the short diameter is substantially the same from the injection nozzle 110 side to the end side, and the long diameter is formed so as to gradually increase linearly.

噴射ノズル110から鉛直下方向に噴射された液化ガスは、図3に示すように、容器等の進行方向(図示右方向)に傾斜した反射面132に当たり、鉛直下方向から容器等の進行方向に噴射角を変更されて噴射される。
また、噴射ノズル110から鉛直下方向に噴射された液化ガスは、図4に示すように、幅方向でθnの広がり角を有しているが、反射面132の幅方向の両側方の広がり角抑制面133がθsの角度で延在しているため、噴射流路131の終端から噴射される液化ガスの幅方向の広がり角はθsとなる。
As shown in FIG. 3, the liquefied gas injected from the injection nozzle 110 in the vertically downward direction hits the reflecting surface 132 inclined in the advancing direction (right direction in the drawing) of the container etc. The injection angle is changed and injected.
Further, although the liquefied gas jetted from the jet nozzle 110 in the vertically downward direction has a spread angle of θn in the width direction as shown in FIG. 4, the spread angle of both sides of the reflection surface 132 in the width direction Since the suppression surface 133 extends at an angle of θs, the spread angle of the liquefied gas injected from the end of the injection flow path 131 in the width direction is θs.

以上のように構成された本発明の一実施形態に係る液化ガス噴射ユニット100の具体的な動作について説明する。
まず、前述の本発明の実施形態で、液化ガス貯留槽101内の圧力Pを0〜10kPa、噴射ノズル110の口径を約φ0.3mm及びφ1.1mm相当とし、噴射状態からバルブ機構120を閉じた時間を起点として、噴射ノズル110から液体窒素の流下が終了するまでの時間Tを計測した。結果を表1に示す。
比較例は、図5及び図6に示す、噴射ノズル510を傾斜して固定したもので、その鉛直下方向からの傾斜角度は30°であり、本発明の実施形態と同一条件で噴射ノズル510から液体窒素の流下が終了するまでの時間Tを計測した。
A specific operation of the liquefied gas injection unit 100 according to the embodiment of the present invention configured as described above will be described.
First, in the above-described embodiment of the present invention, the pressure P in the liquefied gas storage tank 101 is 0 to 10 kPa, the bore diameter of the injection nozzle 110 is about φ 0.3 mm and φ 1.1 mm, and the valve mechanism 120 is closed from the injection state. Starting from the above time, the time T until the end of the liquid nitrogen flow from the injection nozzle 110 was measured. The results are shown in Table 1.
In the comparative example, as shown in FIGS. 5 and 6, the injection nozzle 510 is inclined and fixed, and the inclination angle from the vertically downward direction is 30 °, and the injection nozzle 510 is the same condition as the embodiment of the present invention. The time T until the end of the liquid nitrogen flow was measured.

Figure 0006524641
Figure 0006524641

上記の結果からわかるように、液体窒素の流下が終了するまでの時間を大幅に短縮することができた。
一般的に、缶の充填ラインにおいて、缶の滞留等により秒単位で短時間のライン停止が発生する場合が多い。
充填不良の発生を防ぐために、ライン停止時に即座に噴射を停止し、再起動時に噴射を再開するが、再起動時の充填不良を防ぐ必要があるため、比較例の場合では、液体窒素の流下終了を待ち、マージンを含めてライン停止後5秒程度は再起動を禁止する必要があった。
本発明では、ライン停止後2秒程度で再起動が可能であり、充填ラインの稼働効率を向上することができる。
As can be seen from the above results, the time until the end of the liquid nitrogen flow was able to be significantly reduced.
Generally, in the can filling line, a short line stop may often occur on a second basis due to can retention and the like.
In order to prevent the occurrence of the filling failure, the injection is immediately stopped at the line stop and the injection is restarted at the restart, but since it is necessary to prevent the filling failure at the restart, in the case of the comparative example, the flow of liquid nitrogen It was necessary to wait for the end and prohibit the restart for about 5 seconds after the line was stopped including the margin.
In the present invention, it is possible to restart in about 2 seconds after stopping the line, and the operation efficiency of the filling line can be improved.

次に、前述の本発明の実施形態において、反射部材130の反射面132が鉛直下方向となす角度を30°とし、噴射ノズル110から噴射された液体窒素の広がり角θn=43.3°、反射部材130の噴射流路131両側の広がり角抑制面133のなす角度θs=30°、反射部材130の反射面132の反射位置の幅=23mmとして噴射パターンを観察した。
噴射流路131の終端からの距離と広がり幅を測定した結果、測定距離50mmにて、広がり幅が77mm(10回測定の平均値、最小値73mm、最大値80mm)であった。また、噴射角は30°であった。
図4から求めた距離50mmにおける計算値は76.6mmであり、反射部材130の噴射流路131の終端から噴射される液化ガスの広がり角が、広がり角抑制面133によって正確に規定できた。
以上の結果から、容器の形状や充填ラインの速度に応じて噴射角と広がり角を変えるには、噴射ノズル110を交換することなく反射部材130を変更するだけで容易に対応することが可能となる。
Next, in the embodiment of the present invention described above, the angle formed between the reflection surface 132 of the reflection member 130 and the vertically downward direction is 30 °, and the spread angle θn of liquid nitrogen ejected from the ejection nozzle 110 = 43.3 °, The jet pattern was observed with the angle θs of 30 ° formed by the spread angle suppression surface 133 on both sides of the jet flow channel 131 of the reflection member 130 and the width of the reflection position of the reflection surface 132 of the reflection member 130 = 23 mm.
As a result of measuring the distance from the end of the injection flow path 131 and the spread width, the spread width is 77 mm (average value of 10 measurements, minimum value 73 mm, maximum value 80 mm) at a measurement distance of 50 mm. The injection angle was 30 °.
The calculated value at a distance of 50 mm obtained from FIG. 4 is 76.6 mm, and the spread angle of the liquefied gas jetted from the end of the jet flow path 131 of the reflection member 130 can be accurately defined by the spread angle suppression surface 133.
From the above results, it can be easily coped with by changing the reflection member 130 without replacing the injection nozzle 110 in order to change the injection angle and the spread angle according to the shape of the container and the speed of the filling line. Become.

本発明の液化ガス噴射ユニットは、傾斜扇状に液化ガスを噴射するものであれば、缶等の容器内にガスを充填するもの以外の用途にも応用可能である。
また、缶等の容器に充填する場合は、液化ガスとして液体窒素等の低温の液化不活性ガスが好適であるが、用途に応じて他のガスであってもよい。
The liquefied gas injection unit of the present invention can be applied to uses other than the one in which a container such as a can is filled with gas as long as the liquefied gas is injected in an inclined fan shape.
Moreover, when filling containers, such as a can, although low temperature liquefied inert gas, such as liquid nitrogen, is suitable as liquefied gas, another gas may be sufficient according to a use.

1 ・・・ 液化ガス噴射装置
100、500 ・・・ 液化ガス噴射ユニット
101 ・・・ 液化ガス貯留槽
102 ・・・ 真空断熱層
103 ・・・ タンク底部
104 ・・・ 断熱カバー
110、510 ・・・ 噴射ノズル
120、520 ・・・ バルブ機構
121、521 ・・・ 弁
122、522 ・・・ 弁座
123 ・・・ 弁棒
130 ・・・ 反射部材
131 ・・・ 噴射流路
132 ・・・ 反射面
133 ・・・ 広がり角抑制面
134 ・・・ 取付部
R ・・・ 供給流路
θn ・・・ ノズル広がり角
θs ・・・ 反射部材広がり角
K ・・・ 容器
1 · · · Liquefied gas injection device 100, 500 · · · · · · Liquefied gas injection unit 101 · · · · · · · · · · · · · · · thermal insulation layer 103 · · · tank bottom portion 104 · · · thermal insulation cover 110, 510 · · · · Injection nozzle 120, 520 · · · Valve mechanism 121, 521 · · · Valve 122, 522 · · · Valve seat 123 · · · Valve rod · · · · · Reflecting member 131 · · · · · · · · · · · · · · · · · · · Surface 133 ··· Spread angle suppression surface 134 ··· Mounting portion R ··· Supply passage θ n ··· Nozzle spread angle θs ··· Reflecting member spread angle K ··· Container

Claims (5)

噴射ノズルと、前記噴射ノズルへの液化ガスの供給を制御するバルブ機構とを有する液化ガス噴射ユニットであって、
前記噴射ノズルの噴射方向に、噴射された液化ガスの方向及び広がり角を変更する反射部材が設けられ、
前記反射部材は、少なくとも反射面と広がり角抑制面とを備えた噴射流路を有し、
前記噴射流路は、前記噴射ノズル側から終端側まで、短径がほぼ同一で、長径が直線的に徐々に大きくなる扇型の孔形状に形成され、
前記反射面は、前記噴射ノズルから鉛直下方向に噴射された液化ガスを鉛直下方向から所定の角度の噴射角に変更して噴射するように構成され、
前記広がり角抑制面は、前記反射面の幅方向両側に設けられ、方向が変更されて前記噴射流路の終端から噴射される液化ガスの広がり角を規定するように構成されていることを特徴とする液化ガス噴射ユニット。
A liquefied gas injection unit comprising: an injection nozzle; and a valve mechanism for controlling supply of liquefied gas to the injection nozzle,
The injection direction of the injection nozzle, the reflecting member is provided we are changing the direction and spread angle of the injected liquefied gas,
The reflection member has an injection flow path provided with at least a reflection surface and a spread angle suppression surface,
The injection flow channel is formed in a fan-shaped hole shape having substantially the same minor diameter and a linear increase in major diameter from the jet nozzle side to the terminal end side,
The reflection surface is configured to inject the liquefied gas injected downward in the vertical direction from the injection nozzle from the vertically downward direction to an injection angle of a predetermined angle,
The spread angle suppression surface is provided on both sides in the width direction of the reflection surface, and is configured to change the direction to define the spread angle of the liquefied gas injected from the end of the injection flow path. And liquefied gas injection unit.
前記噴射流路の終端から噴射される液化ガスの噴射角が、鉛直下方向から0°以上60°以下であることを特徴とする請求項1に記載の液化ガス噴射ユニット。 The liquefied gas injection unit according to claim 1, wherein the injection angle of the liquefied gas injected from the end of the injection flow path is 0 ° or more and 60 ° or less from the vertically downward direction. 前記噴射流路の終端から噴射される液化ガスの広がり角が、10°以上60°以下であることを特徴とする請求項1又は2に記載の液化ガス噴射ユニット。 The liquefied gas injection unit according to claim 1 or 2, wherein a spread angle of the liquefied gas injected from the end of the injection flow path is 10 ° or more and 60 ° or less. 噴射ノズルの噴射方向に設けられる反射部材であって、
少なくとも反射面と広がり角抑制面とを備えた噴射流路を有し、
前記噴射流路は、前記噴射ノズル側から終端側まで、短径がほぼ同一で、長径が直線的に徐々に大きくなる扇型の孔形状に形成され、
前記反射面は、前記噴射ノズルから鉛直下方向に噴射された液化ガスを鉛直下方向から所定の角度の噴射角に変更して噴射するように構成され、
前記広がり角抑制面は、前記反射面の幅方向両側に設けられ、方向が変更されて前記噴射流路の終端から噴射される液化ガスの広がり角を規定するように構成されていることを特徴とする反射部材。
A reflecting member provided in the jetting direction of the jetting nozzle, wherein
It has an injection channel provided with at least a reflection surface and a spread angle suppression surface,
The injection flow channel is formed in a fan-shaped hole shape having substantially the same minor diameter and a linear increase in major diameter from the jet nozzle side to the terminal end side,
The reflection surface is configured to inject the liquefied gas injected downward in the vertical direction from the injection nozzle from the vertically downward direction to an injection angle of a predetermined angle,
The spread angle suppression surface is provided on both sides in the width direction of the reflection surface, and is configured to change the direction to define the spread angle of the liquefied gas injected from the end of the injection flow path. Reflective member.
前記噴射ノズルの噴射方向に着脱可能に取り付ける取付部を有することを特徴とする請求項4に記載の反射部材。 The reflecting member according to claim 4, further comprising a mounting portion that is detachably mounted in the injection direction of the injection nozzle.
JP2014222851A 2014-10-31 2014-10-31 Liquefied gas injection unit Active JP6524641B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014222851A JP6524641B2 (en) 2014-10-31 2014-10-31 Liquefied gas injection unit
PCT/JP2015/075544 WO2016067763A1 (en) 2014-10-31 2015-09-09 Liquefied gas jetting unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014222851A JP6524641B2 (en) 2014-10-31 2014-10-31 Liquefied gas injection unit

Publications (2)

Publication Number Publication Date
JP2016089896A JP2016089896A (en) 2016-05-23
JP6524641B2 true JP6524641B2 (en) 2019-06-05

Family

ID=55857109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014222851A Active JP6524641B2 (en) 2014-10-31 2014-10-31 Liquefied gas injection unit

Country Status (2)

Country Link
JP (1) JP6524641B2 (en)
WO (1) WO2016067763A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815363B2 (en) * 1979-06-27 1983-03-25 東洋製罐株式会社 Manufacturing method for canned food containing liquid nitrogen and nitrogen filling device
GB2235759A (en) * 1989-09-04 1991-03-13 Guinness Son & Co Ltd A Liquid dispensing system and packaging apparatus
JPH09324898A (en) * 1996-06-05 1997-12-16 Mitsubishi Materials Corp Liquefied inert gas filling device

Also Published As

Publication number Publication date
JP2016089896A (en) 2016-05-23
WO2016067763A1 (en) 2016-05-06

Similar Documents

Publication Publication Date Title
KR20140074974A (en) Liquid material discharge apparatus and method
JPH02500020A (en) Controlled supply of cryogenic liquids
WO2008054930A1 (en) Method and apparatus for dispensing a viscous meterial on a substrate
JP6524641B2 (en) Liquefied gas injection unit
JP6067434B2 (en) LPG cylinder valve device
CN208010492U (en) Fuel make up funnel, fuel supply system and fuel make up structure
JP2006320775A (en) Spray nozzle
US9789511B2 (en) Jetting devices
JP2016101980A (en) Liquid nitrogen filling device
JP2013189240A (en) Liquid injecting device
JP2017527436A (en) Valve seat for dispenser
US2519479A (en) Combined bottle stopper and measuring device
CN102582873B (en) Method and device for filling containers
JP2008162663A (en) Liquid filling method
US20170165772A1 (en) Solder ball feeding device
KR102116698B1 (en) Injection valve
JP2015096301A5 (en)
JP2009172556A (en) Slit coat type coating device and coating method
CN105764642A (en) Arrangement and method for the reproducible application of small amounts of liquid
JP2021053703A (en) Local soldering nozzle and local soldering device
JP5820136B2 (en) Smoke tester
JP3630025B2 (en) Liquefied inert gas spray filling device and spray nozzle thereof
TWI541071B (en) Liquid-crystal-supply apparatus for liquid-crystal dispenser
JP2019043559A (en) Nozzle for filling up oil automatically
JPS6338599B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6524641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150